1
|
Zhang L, Xu W, Jiang J, Li R, Gu J, Liang W. Metagenomic insights on promoting the removal of resistome in aerobic composting pig manure by lightly burned modified magnesite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177101. [PMID: 39490844 DOI: 10.1016/j.scitotenv.2024.177101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
The antibiotic resistance genes (ARGs) have become a serious issue facing public health. In this study, light-burned magnesite with a high specific surface area at 650 °C (MS650) was used for aerobic composting, evaluating its effect on the resistome during pig manure composting. Different concentrations of MS650 reduced the abundance of the resistome, including seven high-risk ARGs, class two metal and biocide resistance genes (MBRGs), and human pathogenic bacteria (HPBs). The addition of 2.5 % MS650 (L1) in the composting had the best reduction effect on ARGs, MBRGs and HPBs. ARG and microbial community assembly are deterministic processes. Proteobacteria and Actinobacteria was the main factor associated with the decrease in ARGs, followed by virulence factor genes (VFGs, 44.2 %). The reduction in MBRGs by MS650 mainly suppressed HGT by reducing the Isfinder abundance. To summarize, MS650 is an effective method to improve emission reduction of ARGs and MBRGs. This study provided a theoretical basis for improving the engineering application potential of MS650.
Collapse
Affiliation(s)
- Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wanying Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiangxiang Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen Liang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Anyame Bawa S, Chan A, Wrobel-Tobiszewska A, Hardie M, Towns C. A review of methods for mitigating microplastic contamination in biosolids from wastewater treatment plants before agricultural soil application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177360. [PMID: 39515387 DOI: 10.1016/j.scitotenv.2024.177360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Wastewater treatment plants (WWTP) are recognized as major sources of microplastic (MP) particles in terrestrial environments, particularly in agricultural soils through biosolids application. While many reviews have focused on the distribution, detection, and mitigation of MPs in wastewater effluent to limit their discharge into oceans, our understanding of methods to mitigate biosolid contamination remains limited. This review focuses on methods for mitigating MPs contamination in biosolids at various intervention points, including sources, WWTP including the primary and secondary treatment stages where sludge is generated, and post-contamination. These methods are categorized as physical, physicochemical, and biological approaches, and their advantages and limitations are discussed. For instance, physicochemical methods, especially froth flotation, are cost-effective but are hindered by contaminants and reagents. Physical methods like microfibre filtration devices (MFD) are safe but their efficiency depends on the filter pore size and design. Biological methods, particularly microbial degradation, are limited by the varying efficiencies of microorganisms in breaking down MPs and the extended time required for their effective degradation. Other physical methods including dissolved air flotation, and ultrasonication already exist in WWTPs but may require retrofitting or optimization to enhance MP removal from biosolids. As each method inherently has limitations, the key to achieving MP-free biosolids, and thus preventing their release into agricultural soil, lies in integrating these methods through multi-coupling strategies.
Collapse
Affiliation(s)
| | - Andrew Chan
- School of Engineering, University of Tasmania, Australia
| | | | - Marcus Hardie
- Tasmania Institute of Agriculture (TIA), University of Tasmania, Australia
| | - Carmel Towns
- School of Engineering, University of Tasmania, Australia
| |
Collapse
|
3
|
Song J, Huang Z, Gao Y, Wang W, Guo G, Duan Y, Zhou S, Tang Z. Metagenomic insight into the enrichment of antibiotic resistance genes in activated sludge upon exposure to nanoplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125260. [PMID: 39510298 DOI: 10.1016/j.envpol.2024.125260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Activated sludge is an important reservoir for the co-occurring emerging contaminants including nanoplastics (NPs) and antibiotic resistance genes (ARGs). However, the impacts and potential mechanisms of NPs on the fate of ARGs in activated sludge are not fully understood. Herein, we used metagenomic approach to investigate the responses of ARGs, host bacteria, mobile genetic elements (MGEs), and functional genes to polystyrene (PS) NPs at environmentally relevant (0.5 mg/L) and high stress concentrations (50 mg/L) in activated sludge. The results showed that 0.5 and 50 mg/L PS NPs increased the relative abundance of ARGs in the activated sludge by 58.68% and 46.52%, respectively (p < 0.05). Host tracking analysis elucidated that the hosts of ARGs were significantly enriched by PS NPs (p < 0.05), with Proteobacteria being the predominant host bacteria. Additionally, the occurrence of new ARGs hosts and the enrichment of MGEs and functional genes (i.e., genes related to SOS response, cell membrane permeability, and secretion system, etc.) indicated that PS NPs promoted horizontal gene transfer (HGT) of ARGs. Finally, path modeling analysis revealed that the proliferation of ARGs caused by PS NPs was primarily attributed to the enhancement of HGT and the enrichment of host bacteria. Our findings contribute to a comprehensive understanding of the spread risk of ARGs in activated sludge under NPs pollution.
Collapse
Affiliation(s)
- Jian Song
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China.
| | - Zefeng Huang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Weigang Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Gang Guo
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yi Duan
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang, 421001, China.
| | - Zhenping Tang
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China.
| |
Collapse
|
4
|
Wang S, Li W, Xi B, Cao L, Huang C. Mechanisms and influencing factors of horizontal gene transfer in composting system: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177017. [PMID: 39427888 DOI: 10.1016/j.scitotenv.2024.177017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Organic solid wastes such as livestock manure and sewage sludge are important sources and repositories of antibiotic resistance genes (ARGs). Composting, a solid waste treatment technology, has demonstrated efficacy in degrading various antibiotics and reducing ARGs. However, some recalcitrant ARGs (e.g., sul1, sul2) will enrich during the composting maturation period. These ARGs persist in compost products and spread through horizontal gene transfer (HGT). We analyzed the reasons behind the increase of ARGs during the maturation phase. It was found that the proliferation of ARG-host bacteria and HGT process play an important role. This article revealed that microbial physiological responses, environmental factors, pollutants, and quorum sensing (QS) can all influence the HGT process in composting systems. We examined the influence of these factors on HGT in the compost system and summarized potential mechanisms by analyzing the alterations in microbial communities. We comprehensively summarized the HGT hazards that these factors may present in composting systems. Finally, we summarized methods to inhibit HGT in compost, such as using additives, quorum sensing inhibitors (QSIs), microbial inoculation, and predicting HGT events. Overall, the HGT mechanism and driving force in complex composting systems are still insufficiently studied. In view of the current situation, using predictions to assess the risk of HGT in composting may be advisable.
Collapse
Affiliation(s)
- Simiao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lijia Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
5
|
Zhou Y, Zhang G, Zhang D, Zhu N, Bo J, Meng X, Chen Y, Qin Y, Liu H, Li W. Microplastic biofilms promote the horizontal transfer of antibiotic resistance genes in estuarine environments. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106777. [PMID: 39368156 DOI: 10.1016/j.marenvres.2024.106777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
As emerging pollutants, microplastics can aggregate microorganisms on their surfaces and form biofilms, enriching antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Consequently, microplastic biofilms have become a focal point of research. Horizontal gene transfer is one of the primary mechanisms by which bacteria acquire antibiotic resistance, with much of the research focusing on suspended bacteria. However, microplastic biofilms, as hotspots for horizontal gene transfer, also merit significant investigation. This study primarily explored and compared the frequency of ARG conjugative transfer between suspended bacteria and microplastic biofilms. The results demonstrated that, compared to suspended bacteria, microplastic biofilms enhanced the frequency of ARG conjugative transfer by 7.2-19.6 times. Among them, biofilms on polyethylene microplastics showed the strongest promotion of conjugation. After the formation of microplastic biofilms, there was a significant increase in bacterial density within the biofilms, which raised the collision frequency of donor and recipient bacteria. Then microplastic biofilms facilitated the gene expression levels of outer membrane proteins, enhanced bacterial gene transfer capabilities, promoted the synthesis of conjugative pili, accelerated the formation of conjugative pairing systems, and elevated the expression levels of genes related to DNA replication and transfer systems, thereby enhancing the conjugative transfer of ARGs within microplastic biofilms. Among different types of microplastic biofilms, polyethylene biofilms exhibited the highest bacterial density, thus showing the highest frequency of ARG conjugation. This study highlights the risks associated with ARG conjugative transfer following the formation of microplastic biofilms and provides insights into the risks of microplastic and antibiotic resistance propagation in estuarine environments.
Collapse
Affiliation(s)
- Yangyuan Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, PR China
| | - Guosheng Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, PR China.
| | - Dawei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, PR China
| | - Ningzheng Zhu
- Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, PR China
| | - Jinpei Bo
- Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, PR China
| | - Xiangzhou Meng
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, PR China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, PR China
| | - Yu Qin
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, PR China
| | - Huajie Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Weiying Li
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, PR China; School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, PR China.
| |
Collapse
|
6
|
Chen X, Song X, Liang Y, Wang F, Pan C, Wei Z. Evaluation of the potential horizontal gene transfer ability during chicken manure and pig manure composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124621. [PMID: 39067739 DOI: 10.1016/j.envpol.2024.124621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Resistance genes have been identified as emerging pollutants due to their ability to rapidly spread in the environment through horizontal gene transfer (HGT). Microbial community serves as the pivotal factor influencing the frequency of HGT during manure composting. However, the characteristics of HGT in microbial community from different types of manure were unclear. Therefore, this study aimed to evaluate the potential risk of HGT in bacterial community through the co-composting of chicken manure and pig manure in different proportions. The experimental results showed that the abundance of sulfonamide antibiotic resistance genes and integrase genes was higher during pig manure composting than those during chicken manure composting. In addition, the addition of pig manure also increased resistance genes abundance during chicken manure composting. These results suggested that the potential HGT risk was greater during pig manure composting. Furthermore, microbial analysis of co-composting suggested that bacterial community of pig manure was more competitive and adaptable than that of chicken manure. Ultimately, statistical analysis indicated that compared to chicken manure composting, the potential ability of HGT was greater during pig manure composting. This study provided the vital theoretical support and scientific guidance for mitigating the HGT risk during manure composting.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyang Song
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yao Liang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Feng Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaonan Pan
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
7
|
Zhao K, Yin X, Wang N, Chen N, Jiang Y, Deng L, Xiao W, Zhou K, He Y, Zhao X, Yang Y, Zhang J, Chen A, Wu Z, He L. Optimizing the management of aerobic composting for antibiotic resistance genes elimination: A review of future strategy for livestock manure resource utilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122766. [PMID: 39369531 DOI: 10.1016/j.jenvman.2024.122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Aerobic composting technology is an efficient, safe and practical method to reduce the residues of antibiotics and antibiotic resistance genes (ARGs) due to unreasonable disposal of livestock manure. Nowadays, it remains unclear how aerobic composting works to minimize the level of remaining antibiotics and ARGs in manure. Moreover, aerobic composting techniques even have the potential to enhance ARGs level. Therefore, this study conducted a literature review on ARGs variation during the composting process to assess the fate, migration, and risk features of antibiotics and ARGs in different livestock manure and compost. The relationship between ARGs reduction and crucial factors (temperature, heavy metal, and microbial community structures) in the composting process was discussed. The merits and limitations of different technologies used in compost was summarized. The effects on ARGs reduction in the aerobic composting process with various strategies was examined. We attempt to provide a fresh and novel viewpoint on the advancement of global aerobic composting technology.
Collapse
Affiliation(s)
- Keqi Zhao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Xiaowei Yin
- POWERCHINA Zhongnan Engineering Corporation Limited, Changsha, Hunan, 410014, China
| | - Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Nianqiao Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Youming Jiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Linyan Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Wenbo Xiao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Kun Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Yong He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Xichen Zhao
- Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China; National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China.
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Liuqin He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China.
| |
Collapse
|
8
|
Zhou Z, Cui E, Abid AA, Zhu L, Xu J, Chen H. Evaluating the impact of biochar amendment on antibiotic resistance genes and microbiome dynamics in soil, rhizosphere, and endosphere at field scale. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135440. [PMID: 39111179 DOI: 10.1016/j.jhazmat.2024.135440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Biochar amendment is a promising strategy for mitigating antibiotic resistance genes (ARGs) in soil and plants, but its effects on ARGs at field scale are not fully understood. Here, field trials were executed utilizing two plant varieties, Brassica juncea and Lolium multiflorum, with four types of biochar to investigate changes in ARGs and microbiome in soil, rhizosphere, root endophytes, and leaf endophytes. Results showed that biochar altered ARG distribution in soil and plant, and restrained their transmission from soil and rhizosphere to endophytes. A reduction of 1.2-2.2 orders of magnitude in the quantity of ARGs was observed in root and leaf endophytes following biochar addition, while no significant changes were observed in soil and rhizosphere samples. Procrustes and network analyses revealed significant correlations between microbial communities and mobile genetic elements with ARGs (P < 0.05). Besides, redundancy and variation partitioning analysis indicated that bacterial communities may play a dominant role in shaping the ARGs profile, contributing to 43 % of the variation observed in ARGs. These field results suggest that biochar amendment alone may not fully alleviate ARGs in soil, but it has a significant beneficial impact on food safety and human health by effectively reducing ARGs in plant endophytes.
Collapse
Affiliation(s)
- Zhenchao Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Erping Cui
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Abbas Ali Abid
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Li B, Chang C, Sun C, Zhao D, Hu E, Li M. Multi-habitat distribution and coalescence of resistomes at the watershed scale based on metagenomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135349. [PMID: 39068887 DOI: 10.1016/j.jhazmat.2024.135349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
The characteristics of the resistome distribution in rivers have been extensively studied. However, the distribution patterns of resistomes in multiple habitats and contributions of upstream habitats to the resistome profile in water bodies remains unclear. The current study explored the distribution and coalescence of antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and mobile genetic elements (MGEs) in four habitats (including water bodies, sediments, biofilms, and riparian soils) within the Shichuan River watershed. The results revealed significant variations in the abundances and diversity of resistomes across the four habitats and two seasons. Assembly processes of resistomes were predominated by stochastic processes in summer but deterministic processes in winter. The main source of the resistome in summer water bodies was the movement of genes from upstream water bodies. However, the main sources of resistome in downstream water bodies in winter were the movement of resistomes in upstream sediments and the input of external pollution. The physicochemical properties of winter water bodies significantly influenced the movement of the resistomes across habitats. The current study elucidated the multi-habitat distribution pattern and migration mechanism of the resistome in the river system, providing new insights for effectively monitoring and controlling bacterial resistance.
Collapse
Affiliation(s)
- Bingcong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Chao Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Changshun Sun
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, PR China.
| | - Dan Zhao
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, PR China
| | - En Hu
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, PR China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| |
Collapse
|
10
|
Wang Z, Fu Y, Zheng YL, Jiang N, Jiang H, Wu C, Lv Z, Krüger-Haker H, Feßler AT, Schwarz S, Wang Y. Fate of florfenicol and linezolid resistance genes and their bacterial hosts during two waste treatment models in swine feedlots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173645. [PMID: 38821272 DOI: 10.1016/j.scitotenv.2024.173645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Florfenicol resistance genes (FRGs) are widely present in livestock farms. The aim of this study was to evaluate the removal efficiencies of FRGs as well as the relationships between FRGs, mobile genetic elements (MGEs) and bacterial communities during the natural drying (ND) and anaerobic digestion (AD) processes of manure treatment in swine farms by combining bacterial isolation, quantitative PCR and metagenomic approaches. Solid manure showed a higher abundance of FRGs than fresh manure and was the main contamination source of fexA and fexB in ND farms, whilst biogas slurry displayed a lower abundance of FRGs than the wastewater in AD farms. Moreover, fresh manure and wastewater showed a high abundance of optrA, and wastewater was the main contamination source of cfr in both ND and AD farms. Both optrA/fexA-positive enterococci and cfr/fexA-positive staphylococci were mainly isolated along the farms' treatment processes. The cfr-positive staphylococci were highly prevalent in wastewater (57.14 % - 100 %) and may be associated with nasal-derived cfr-positive porcine staphylococci. An increased abundance of Enterococcus, Jeotgalibaca and Vagococcus in the bacterial community structures may account for the high optrA abundance in wastewater and Jeotgalibaca may be another potential host of optrA. Furthermore, the abundance of FRG-related MGEs increased by 22.63 % after the ND process and decreased by 66.96 % in AD farms. A significant correlation was observed between cfr and ISEnfa4, whereas no significance was found between optrA and IS1216E, although IS1216E is the predominant insertion sequence involved in the transfer of optrA. In conclusion, manure and wastewater represented independent pollution sources of FRGs in swine farms. Associated MGEs might play a key role in the transfer and persistence of FRGs. The AD process was more efficient in the removal of FRGs than the ND method, nevertheless a longer storage of slurry may be required for a complete removal.
Collapse
Affiliation(s)
- Zheng Wang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, China.
| | - Yulin Fu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China; Central Laboratory Department, Shenzhen Centre for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yong-Liang Zheng
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, China
| | - Nansong Jiang
- Research Center for Poultry Diseases of Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ziquan Lv
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Henrike Krüger-Haker
- Institute of Microbiology and Epizootics, Center for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany; Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andrea T Feßler
- Institute of Microbiology and Epizootics, Center for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany; Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Stefan Schwarz
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China; Institute of Microbiology and Epizootics, Center for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany; Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
11
|
Wang G, Gao X, Cai Y, Li G, Ma R, Yuan J. Dynamics of antibiotic resistance genes during manure composting: Reduction in herbivores manure and accumulation in carnivores. ENVIRONMENT INTERNATIONAL 2024; 190:108900. [PMID: 39053194 DOI: 10.1016/j.envint.2024.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/17/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The elevated levels of antibiotic resistance genes (ARGs) in livestock manure represent a significant threat to both the environment and human health. Composting has been recognized as an effective strategy to mitigate the abundance of ARGs in manure. However, notable rebounds in ARGs abundance have been observed during this process. This study explored the changes in ARGs abundance and the underlying influencing factors during the composting of carnivore (chicken and pig) and herbivore (sheep and cow) manures, along with mushroom residues. The findings revealed that the total relative abundance of ARGs increased by 6.96 and 10.94 folds in chicken and pig manure composts, respectively, whereas it decreased by a remarkable 91.72% and 98.37% in sheep and cow manure composts. Nitrogen content emerged as the primary physicochemical factors governing the abundance of ARGs in chicken and pig manure composts. Conversely, carbon content played a pivotal role in determining ARGs abundance in chicken and pig manure composts. Furthermore, the presence of dominant hosts, such as Corynebacterium, Bacillus, and Clostridium, along with emerging bacteria like Thermobifida, Saccharomonospora, and Actinomadura, contributed significantly to the enrichment of total ARGs, including tetG, tetO, tetX, and sul2, in chicken and pig manure composts. The coexistence of these genes with mobile genetic elements and a plethora of host bacteria, coupled with their high abundance, renders them particularly high-risk ARGs. On the other hand, the observed decrease in the abundance of total ARGs in sheep and cow manure composts can be attributed to the decline in the population of host bacteria, specifically Atopostipes, Psychrobacter, and Corynebacterium. Collectively, these results provide crucial insights into the management of ARGs risks and offer essential theoretical support for enhancing the safe utilization of organic fertilizer in agriculture.
Collapse
Affiliation(s)
- Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| | - Xia Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yu Cai
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Wei L, Han Y, Zheng J, Xu X, Zhu L. Accelerated dissemination of antibiotic resistant genes via conjugative transfer driven by deficient denitrification in biochar-based biofiltration systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173268. [PMID: 38754503 DOI: 10.1016/j.scitotenv.2024.173268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Biofiltration systems harbored and disseminated antibiotic resistance genes (ARGs), when confronting antibiotic-contained wastewater. Biochar, a widely used environmental remediation material, can mitigate antibiotic stress on adjoining microbes by lowering the availability of sorbed antibiotics, and enhance the attachment of denitrifiers. Herein, bench-scale biofiltration systems, packed with commercial biochars, were established to explore the pivotal drivers affecting ARG emergence. Results showed that biofiltration columns, achieving higher TN removal and denitrification capacity, showed a significant decrease in ARG accumulation (p < 0.05). The relative abundance of ARGs (0.014 ± 0.0008) in the attached biofilms decreased to 1/5-folds of that in the control group (0.065 ± 0.004). Functional analysis indicated ARGs' accumulation was less attributed to ARG activation or horizontal gene transfer (HGT) driven by sorbed antibiotics. Most denitrifiers, like Bradyrhizobium, Geothrix, etc., were found to be enriched and host ARGs. Nitrosative stress from deficient denitrification was demonstrated to be the dominant driver for affecting ARG accumulation and dissemination. Metagenomic and metaproteomic analysis revealed that nitrosative stress promoted the conjugative HGT of ARGs mainly via increasing the transmembrane permeability and enhancing the amino acid transport and metabolism, such as cysteine, methionine, and valine metabolism. Overall, this study highlighted the risks of deficient denitrification in promoting ARG transfer and transmission in biofiltration systems and natural ecosystems.
Collapse
Affiliation(s)
- Lecheng Wei
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Yutong Han
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Jingjing Zheng
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University.
| |
Collapse
|
13
|
Wang P, Wu D, Su Y, Xie B. Mitigated dissemination of antibiotic resistance genes by nanoscale zero-valent iron and iron oxides during anaerobic digestion: Roles of microbial succession and regulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134636. [PMID: 38772111 DOI: 10.1016/j.jhazmat.2024.134636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Nanoscale zero-valent iron (ZVI) and the oxides have been documented as an effective approach for mitigating the dissemination of antibiotic resistance genes (ARGs) during anaerobic digestion (AD). However, the mechanism of ARGs dissemination mitigated by nanoscale ZVI and iron oxides remain unclear. Here, we investigated the influencing mechanisms of nanoscale ZVI and iron oxides on ARGs dissemination during AD. qPCR results indicated that nanoscale ZVI and iron oxides significantly declined the total ARGs abundances, and the strongest inhibiting effect was observed by 10 g/L nanoscale ZVI. Mantel test showed ARGs distribution was positively correlated with physiochemical properties, integrons and microbial community, among which microbial community primarily contributed to ARGs dissemination (39.74%). Furthermore, redundancy and null model analyses suggested the dominant and potential ARGs host was Fastidiosipila, and homogeneous selection in the determinism factors was the largest factor for driving Fastidiosipila variation, confirming the inhibition of Fastidiosipila was primary reason for mitigating ARGs dissemination by nanoscale ZVI and iron oxides. These results were related to the inhibition of ARGs transfer related functions. This work provides novel evidence for mitigating ARGs dissemination through regulating microbial succession and regulation induced by ZVI and iron oxides.
Collapse
Affiliation(s)
- Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
14
|
He L, Wang Y, Xi B, Zhao X, Cai D, Sun Y, Du Y, Zhang C. Synergistic removal of total petroleum hydrocarbons and antibiotic resistance genes in Yellow River Delta wetlands contaminated soil composting regulated by biogas slurry addition. ENVIRONMENTAL RESEARCH 2024; 252:118724. [PMID: 38518917 DOI: 10.1016/j.envres.2024.118724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
The interactive effects between the emerging contaminant antibiotic resistance genes (ARGs) and the traditional pollutant total petroleum hydrocarbons (TPHs) in contaminated soils remain unclear. The synergistic removal of TPHs and ARGs from composted contaminated soil, along with the microbial mechanisms driven by the addition of biogas slurry, have not yet been investigated. This study explored the impact of biogas slurry on the synergistic degradation mechanisms and bacterial community dynamics of ARGs and TPHs in compost derived from contaminated soil. The addition of biogas slurry resulted in a reduction of targeted ARGs and mobile genetic elements (MGEs) by 9.96%-95.70% and 13.32%-97.66%, respectively. Biogas slurry changed the succession of bacterial communities during composting, thereby reducing the transmission risk of ARGs. Pseudomonas, Cellvibrio, and Devosia were identified as core microorganisms in the synergistic degradation of ARGs and TPHs. According to the partial least squares path model, temperature and NO3- indirectly influenced the removal of ARGs and TPHs by directly regulating the abundance and composition of host microbes and MGEs. In summary, the results of this study contribute to the high-value utilization of biogas slurry and provide methodological support for the low-cost remediation of contaminated soils.
Collapse
Affiliation(s)
- Liangzi He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Danmei Cai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yiwen Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yuewei Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Chuanyan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| |
Collapse
|
15
|
Wang X, Lu T, Yang B, Cao J, Li M. Exposure to resorcinol bis (diphenyl phosphate) induces colonization of alien microorganisms with potential impacts on the gut microbiota and metabolic disruption in male zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172892. [PMID: 38719053 DOI: 10.1016/j.scitotenv.2024.172892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
Organophosphate esters (OPEs) have been demonstrated to induce various forms of toxicity in aquatic organisms. However, a scarcity of evidence impedes the conclusive determination of whether OPEs manifest sex-dependent toxic effects. Here, we investigated the effects of tris (1-chloro-2-propyl) phosphate (TCPP) and resorcinol bis (diphenyl phosphate) (RDP) on the intestines of both female and male zebrafish. The results indicated that, in comparison to TCPP, RDP induced more pronounced intestinal microstructural damage and oxidative stress, particularly in male zebrafish. 16S rRNA sequencing and metabolomics revealed significant alterations in the species richness and oxidative stress-related metabolites in the intestinal microbiota of zebrafish under exposure to both TCPP and RDP, manifesting gender-specific effects. Based on differential species analysis, we defined invasive species and applied invasion theory to analyze the reasons for changes in the male fish intestinal community. Correlation analysis demonstrated that alien species may have potential effects on metabolism. Overall, this study reveals a pronounced gender-dependent impact on both the intestinal microbiota and metabolic disruptions of zebrafish due to OPEs exposure and offers a novel perspective on the influence of pollutants on intestinal microbial communities and metabolism.
Collapse
Affiliation(s)
- Xinwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ting Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Jiangsu Environmental Engineering Technology Co. Ltd, Nanjing, Jiangsu 210019, China
| | - Bin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
16
|
Xia J, Ge C, Yao H. Antimicrobial peptides: An alternative to antibiotic for mitigating the risks of Antibiotic resistance in aquaculture. ENVIRONMENTAL RESEARCH 2024; 251:118619. [PMID: 38442817 DOI: 10.1016/j.envres.2024.118619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
The utilization of antibiotics increases the prevalence of antibiotic resistance genes (ARGs) in various matrices and poses the potential risk of ARG transmission, garnering global attention. Antimicrobial peptides (AMPs) represent a promising novel category of antimicrobials that may address the urgent issue of antibiotic resistance. Here, a zebrafish cultivation assay in which zebrafish were fed a diet supplemented with AMP (Cecropin A) or antibiotics was conducted to determine the effects of the intervention on the microorganisms and antibiotic resistance spectrum in zebrafish gut samples. Cecropin A treatment decreased the α-diversity of the microbiota. Moreover, NMDS (nonmetric multidimensional scaling) results revealed that the β-diversity in the microbiota was more similar between the control (CK) and Cecropin A samples than between the antibiotic treatment groups. The absolute quantity of ARGs in the AMP treatment was less than that observed in the antibiotic treatment. The findings indicated that FFCH7168, Chitinibacter and Cetobacterium were the most significant biomarkers detected in the CK, Cecropin A and antibiotic treatments, respectively. Although the use of antibiotics notably enhanced the occurrence of multidrug-resistant bacteria, the application of Cecropin A did not lead to this phenomenon. The results indicated that the application of AMPs can effectively manage and control ARGs in aquaculture.
Collapse
Affiliation(s)
- Jing Xia
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China; Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, PR China.
| |
Collapse
|
17
|
Peng X, Zhou J, Lan Z, Tan R, Chen T, Shi D, Li H, Yang Z, Zhou S, Jin M, Li JW, Yang D. Carbonaceous particulate matter promotes the horizontal transfer of antibiotic resistance genes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:915-927. [PMID: 38618896 DOI: 10.1039/d3em00547j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
There is growing concern about the transfer of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in airborne particulate matter. In this study, we investigated the effects of various types of carbonaceous particulate matter (CPM) on the transfer of ARGs in vitro. The results showed that CPM promoted the transfer of ARGs, which was related to the concentration and particle size. Compared with the control group, the transfer frequency was 95.5, 74.7, 65.4, 14.7, and 3.8 times higher in G (graphene), CB (carbon black), NGP (nanographite powder), GP1.6 (graphite powder 1.6 micron), and GP45 (graphite powder 45 micron) groups, respectively. Moreover, the transfer frequency gradually increased with the increase in CPM concentration, while there was a negative relationship between the CPM particle size and conjugative transfer frequency. In addition, the results showed that CPM could promote the transfer of ARGs by increasing ROS, as well as activating the SOS response and expression of conjugative transfer-related genes (trbBp, trfAp, korA, kroB, and trbA). These findings are indicative of the potential risk of CPM for the transfer of ARGs in the environment, enriching our understanding of environmental pollution and further raising awareness of environmental protection.
Collapse
Affiliation(s)
- Xuexia Peng
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Jiake Zhou
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Zishu Lan
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Rong Tan
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Tianjiao Chen
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Danyang Shi
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Haibei Li
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Zhongwei Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Shuqing Zhou
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Min Jin
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Jun-Wen Li
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Dong Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| |
Collapse
|
18
|
Yu X, Lv Y, Wang Q, Wang W, Wang Z, Wu N, Liu X, Wang X, Xu X. Deciphering and predicting changes in antibiotic resistance genes during pig manure aerobic composting via machine learning model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33610-33622. [PMID: 38689043 DOI: 10.1007/s11356-024-33087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Livestock manure is one of the most important pools of antibiotic resistance genes (ARGs) in the environment. Aerobic composting can effectively reduce the spread of antibiotic resistance risk in livestock manure. Understanding the effect of aerobic composting process parameters on manure-sourced ARGs is important to control their spreading risk. In this study, the effects of process parameters on ARGs during aerobic composting of pig manure were explored through data mining based on 191 valid data collected from literature. Machine learning (ML) models (XGBoost and Random Forest) were utilized to predict the rate of ARGs changes during pig manure composting. The model evaluation index of the XGBoost model (R2 = 0.651) was higher than that of the Random Forest (R2 = 0.490), indicating that XGBoost had better prediction performance. Feature importance was further calculated for the XGBoost model, and the XGBoost black box model was interpreted by Shapley additive explanations analysis. Results indicated that the influencing factors on the ARGs variation in pig manure were sequentially divided into thermophilic period, total composting period, composting real time, and thermophilic stage average temperature. The findings gave an insight into the application of ML models to predict and decipher the ARG changes during manure composting and provided suggestions for better composting manipulation and optimization of process parameters.
Collapse
Affiliation(s)
- Xiaohui Yu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Yang Lv
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Qing Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Wenhao Wang
- College of Chemical Engineering and Material Science, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zhiqiang Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Nan Wu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China.
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China.
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xiaobo Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xiaoyan Xu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, 300392, China
| |
Collapse
|
19
|
Luo Q, Wang H, Lu X, Wang C, Chen R, Cheng J, He T, Fu T. Potential of combined reactor and static composting applications for the removal of heavy metals and antibiotic resistance genes from chicken manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120592. [PMID: 38508009 DOI: 10.1016/j.jenvman.2024.120592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Chicken manure (CM) can pose a serious threat to environmental and human health, and need to be managed properly. The compost can effectively treat CM. However, there is limited research on the heavy metals and antibiotic resistance genes (ARGs) during compost CM. In this study, the combined application of reactor and static composting (RSC) was used to produce organic fertilizer of CM (OCM), and heavy metals, ARGs and bacterial community structure was investigated. The results show that RSC could be used to produce OCM, and OCM meet the National organic fertilizer standard (NY/T525-2021). Compared to the initial CM, DTPA-Cu, DTPA-Zn, DTPA-Pb, DTPA-Cr, DTPA-Ni and DTPA-As in OCM decreased by 40.83%, 23.73%, 34.27%, 38.62%, 16.26%, and 43.35%, respectively. RSC decreased the relative abundance of ARGs in CM by 84.06%, while the relative abundance of sul1 and ermC increased. In addition, the relative abundance and diversity of ARGs were mainly influenced by the bacterial community, with Actinobacteria, Firmicutes, and Proteobacteria becoming the dominant phyla during composting, and probably being the main carriers and dispersers of most of the ARGs. Network analyses confirmed that Gracilibacillus, Lactobacillus, Nocardiopsis, Mesorhizobium and Salinicoccus were the main potential hosts of ARGs, with the main potential hosts of sul1 and ermC being Mesorhizobium and Salinicoccus. The passivation and physicochemical properties of heavy metals contribute to the removal of ARGs, with sul1 and ermC being affected by the toal heavy metals. Application of RSC allows CM to produce mature, safe organic fertilizer after 32 d and reduces the risk of rebound from ARGs, but the issues of sul1 and ermC gene removal cannot be ignored.
Collapse
Affiliation(s)
- Qu Luo
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Guizhou Engineering Laboratory of Mountain Livestock and Poultry Farming Pollution Control and Resource Technology, Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
| | - Hu Wang
- Guizhou Chuyang Ecological Environmental Protection Technology Co., Ltd., Guizhou, 550003, China
| | - Xiaoqing Lu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Guizhou Engineering Laboratory of Mountain Livestock and Poultry Farming Pollution Control and Resource Technology, Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
| | - Can Wang
- Lijiang Agricultural Environmental Protection Monitoring Station, Lijiang, Yunnan, 674100, China
| | - Ruiying Chen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Guizhou Engineering Laboratory of Mountain Livestock and Poultry Farming Pollution Control and Resource Technology, Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
| | - Jianbo Cheng
- Guizhou Engineering Laboratory of Mountain Livestock and Poultry Farming Pollution Control and Resource Technology, Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
| | - Tengbing He
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Guizhou Engineering Laboratory of Mountain Livestock and Poultry Farming Pollution Control and Resource Technology, Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
| | - Tianling Fu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Guizhou Engineering Laboratory of Mountain Livestock and Poultry Farming Pollution Control and Resource Technology, Institute of New Rural Development, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
20
|
Singh A, Singh E, Khan N, Shukla S, Bhargava PC. Effect of biochar on the fate of antibiotic resistant genes and integrons in compost amended agricultural soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23535-23548. [PMID: 38421542 DOI: 10.1007/s11356-024-32600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
The persistence and transmission of emerging pollutants such as antibiotic resistance genes (ARGs) via mobile genetic elements (MGEs) have caused concern to scientific community. Composting practises are often adapted for the reduction of organic waste or to enhance fertility in agriculture soil but its continuous usage has posed a potential risk of increased abundance of ARGs in soil. Thus, the present study scrutinises the emerging risk of ARGs and MGEs in agriculture soil and its potential mitigation using biochar owing to its proven environmental sustainability and performance. After 30 days incubation, ARG distribution of SulI, SulII, dfrA1, dfrA12, tetA, flor, and ErmA was 50, 37.5, 37.5, 62.5, 42.11, 62.5, and 52.63% in control samples whereas it was 5, 15.78, 21.05, 15.79, 10.53, 21.05, and 31.58%, respectively, for biochar amended samples. Similarly, IntI1 and IntI2 in control and biochar amended samples were 18.75 and 6.25% and 10.53 and 5.26%, respectively. Principal component analysis (PCA) factor suggests that biochar amendment samples showed enhanced value for pH, organic matter, and organic carbon over control samples. Furthermore, Pearson's correlation analysis performed between detected ARGs and MGEs demonstrated the positive and significant correlation at p < 0.05 for both control and biochar amended samples.
Collapse
Affiliation(s)
- Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ekta Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Saurabh Shukla
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
21
|
Chen Y, Yan Z, Zhang Y, Zhu P, Jiang R, Wang M, Wang Y, Lu G. Co-exposure of microplastics and sulfamethoxazole propagated antibiotic resistance genes in sediments by regulating the microbial carbon metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132951. [PMID: 37951174 DOI: 10.1016/j.jhazmat.2023.132951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
The concerns on the carriers of microplastics (MPs) on co-existing pollutants in aquatic environments are sharply rising in recent years. However, little is known about their interactions on the colonization of microbiota, especially for the spread of pathogens and antibiotic resistance genes (ARGs). Therefore, this study aimed to investigate the influences on the propagation of ARGs in sediments by the co-exposure of different MPs and sulfamethoxazole (SMX). The results showed that the presence of MPs significantly enhanced the contents of total organic carbon, while having no effects on the removal of SMX in sediments. Exposure to SMX and MPs obviously activated the microbial carbon utilization capacities based on the BIOLOG method. The propagation of ARGs in sediments was activated by SMX, which was further promoted by the presence of polylactic acid (PLA) MPs, but significantly lowered by the co-exposed polyethylene (PE) MPs. This apparent difference may be attributed to the distinct influence on the antibiotic efflux pumps of two MPs. Moreover, the propagation of ARGs may be also dominated by microbial carbon metabolism in sediments, especially through regulating the carbon sources of carboxylic acids, carbohydrates, and amino acids. This study provides new insights into the carrier effects of MPs in sediments.
Collapse
Affiliation(s)
- Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Peiyuan Zhu
- College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
22
|
Wang M, Wang C, Yang J, Liu X, Xie B, Ren P, Kong X, Fu Y. Biochar induces different responses of intracellular and extracellular antibiotic resistance genes and suppresses horizontal transfer during lincomycin fermentation dregs composting. BIORESOURCE TECHNOLOGY 2024; 394:130227. [PMID: 38135225 DOI: 10.1016/j.biortech.2023.130227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
This study aims to indicate the influence of biochar on extracellular and intracellular ARGs (e/iARGs) variation and proliferation during lincomycin fermentation dregs (LFDs) compost. Biochar addition made iARGs keep reducing but eARGs increase to the maximum at the middle thermophilic phase and reduce at the end of the compost. Compared to control 3.15-log and 5.42-log reduction of iARGs and eARGs were observed, respectively. Biochar addition, bacterial community, and MGEs were the major contributors to iARGs and eARGs removal, with the contribution percentages of 38.4%, 31.0%, 23.7%, and 27.2%, 29.1%, and 34.9%, respectively. Moreover, biochar significantly inhibited eARGs transformation and RP4 plasmid conjugative transfer among E. coli DH5α and Pseudomonas aeruginosa HLS-6. The underlying mechanism involved in broken cell membranes of bacteria, and altered expression of oxidative stress genes and save our souls (SOS) response-related genes. The results indicated that biochar addition in composting could limit the dissemination of ARGs.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenhao Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jie Yang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiangyu Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Peng Ren
- Laoshan Laboratory, Qingdao 266061, China
| | - Xiaowei Kong
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yunxia Fu
- Key Laboratory of Geological Safety of Coastal Urban Underground Space, Ministry of Natural Resources, Qingdao 266100, China; Qingdao Geo-Engineering Surveying Institute (Qingdao Geological Exploration Development Bureau), Qingdao 266100, China
| |
Collapse
|
23
|
Chen Y, Yan Z, Zhou Y, Zhang Y, Jiang R, Wang M, Yuan S, Lu G. Dynamic evolution of antibiotic resistance genes in plastisphere in the vertical profile of urban rivers. WATER RESEARCH 2024; 249:120946. [PMID: 38043355 DOI: 10.1016/j.watres.2023.120946] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Microplastics (MPs) can vertically transport in the aquatic environment due to their aging and biofouling, forming distinct plastisphere in different water layers. However, even though MPs have been regarded as hotspots for antibiotic resistance genes (ARGs), little is known about the propagation and transfer of ARGs in plastisphere in waters, especially in the vertical profile. Therefore, this study investigated the dynamic responses and evolution of ARGs in different plastisphere distributed vertically in an urbanized river. The biofilm biomass in the polylactic acid (PLA) plastisphere was relatively higher than that in the polyethylene terephthalate (PET), showing depth-decay variations. The ARGs abundance in plastisphere were much higher than that in the surrounding waters, especially for the PLA. In the vertical profiles, the ARGs abundance in the PET plastisphere increased with water depths, while the highest abundance of ARGs in the PLA mostly appeared at intermediate waters. In the temporal dynamic, the ARGs abundance in plastisphere increased and then decreased, which may be dominated by the MP types at the initial periods. After long-term exposure, the influences of water depths seemed to be strengthened, especially in the PET plastisphere. Compared with surface waters, the microbiota attached in plastisphere in deep waters showed high species richness, strong diversity, and complex interactions, which was basically consistent with the changes of nutrient contents in different water layers. These vertical variations in microbiota and nutrients (e.g., nitrogen) may be responsible for the propagation of ARGs in plastisphere in deep waters. The host bacteria for ARGs in plastisphere was also developed as water depth increased, leading to an enrichment of ARGs in deep waters. In addition, the abundance of ARGs in plastisphere in bottom waters was positively correlated with the mobile genetic elements (MGEs) of intI1 and tnpA05, indicative of a frequent horizontal gene transfer of ARGs. Overall, water depth played a critical role in the propagation of ARGs in plastisphere, which should not be ignored in a long time series. This study provides new insights into the dynamic evolution of ARGs propagation in plastisphere under increasing global MPs pollution, especially in the vertical profile.
Collapse
Affiliation(s)
- Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yixin Zhou
- College of Environment, Hohai University, Nanjing 210098, China
| | - Yan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Saiyu Yuan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
24
|
Huang B, Lv X, Zheng H, Yu H, Zhang Y, Zhang C, Wang J. Microbial organic fertilizer prepared by co-composting of Trichoderma dregs mitigates dissemination of resistance, virulence genes, and bacterial pathogens in soil and rhizosphere. ENVIRONMENTAL RESEARCH 2024; 241:117718. [PMID: 37995998 DOI: 10.1016/j.envres.2023.117718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
The use of manure, mycelium dregs and other waste as organic fertilizer is the main source of antibiotic resistance genes (ARGs) and pathogens in farmland. Composting of waste may effectively remove ARGs and pathogens. However, the profiles and drivers of changes in metal resistance genes (MRGs), biocide resistance genes (BRGs), and virulence genes (VGs) in soil-crop rhizosphere systems after compost application remain largely unknown. Here, we prepared two kinds of microbial organic fertilizers (MOF) by using Trichoderma dregs (TDs) and organic fertilizer mixing method (MOF1) and TDs co-composting method (MOF2). The effects of different types and doses of MOF on resistance genes, VGs and pathogens in soil-rhizosphere system and their potential mechanisms were studied. The results showed that co-composting of TDs promoted the decomposition of organic carbon and decreased the absolute abundance of ARGs and mobile genetic elements (MGEs) by 53.4-65.0%. MOF1 application significantly increased the abundance and diversity of soil ARGs, BRGs, and VGs, while low and medium doses of MOF2 significantly decreased their abundance and diversity in soil and rhizosphere. Patterns of positive co-occurrence between MGEs and VGs/MRGs/BRGs/ARGs were observed through statistical analysis and gene arrangements. ARGs/MRGs reductions in MOF2 soil were directly driven by weakened horizontal gene transfer triggered by MGEs. Furthermore, MOF2 reduced soil BRGs/VGs levels by shifting bacterial communities (e.g., reduced bacterial host) or improving soil property. Our study provided new insights into the rational use of waste to minimize the spread of resistomes and VGs in soil.
Collapse
Affiliation(s)
- Bin Huang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiaolin Lv
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Haitao Yu
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Chengsheng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jie Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
25
|
Fu Q, Chen Z, Zhu C, Wen Q, Bao H, Wu Y. Size matters: Powder biochar promotes the elimination of antibiotics resistance genes and potential hosts during swine manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167384. [PMID: 37797762 DOI: 10.1016/j.scitotenv.2023.167384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Livestock manure faced acute environmental pollution and ecology risky caused by antibiotic resistance genes (ARGs). This study investigated the effects of biochar particle size including powder biochar (75 μm, PB), and granular biochar (2 mm, GB) on ARGs variation during the aerobic composting. The results showed that the total relative abundance (RA) of the ARGs decreased significantly in all the treatments after composting. While compared to the removal efficiency of total RA in the control (CK), PB decreased by 90.99 % and GB increased by 93.25 %, and both PB and GB removed MGEs completely. Sulfonamide antibiotic resistance genes were the main contributor of the ARGs rebounding. PB addition could hinder the rebounding of sulfonamide antibiotic resistance genes during the later stage of the composting. Co-occurrence network analysis showed that the addition of biochar (both types) increased the complexity of the microbial community the competition of inter-phylum, which was indicated by the higher number of edge and density and lower positive connection. The different ARGs removal efficiency in these two treatments might be that PB promoted the competition both inter-phylum and potential hosts-other microbes, resulted in fewer kinds and abundance of ARGs hosts, while GB increased the stability of ARGs hosts making it more resistant to environment changes. Totally, compared with the global adjustment strategy of microbial communities, more exclusive methods focusing on the controlling of ARGs hosts should be explored to decrease the ecological risk of composting products during composting process.
Collapse
Affiliation(s)
- Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Chengwu Zhu
- Beijing Municipal Constructure (Group) Co., Ltd, Beijing 100045, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China.
| | - Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Yiqi Wu
- Research Institute of Standards and Norms, Ministry of Housing and Urban-Rural Development, Beijing 100835, China
| |
Collapse
|
26
|
Wu L, Wu Q, Xu J, Rong L, Yu X, Cai C, Huang X, Zou X. Responses of antibiotic resistance genes in the enhanced biological phosphorus removal system under various antibiotics: Mechanisms and implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167247. [PMID: 37739079 DOI: 10.1016/j.scitotenv.2023.167247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The effects of antibiotics on the proliferation of antibiotic resistant genes (ARGs) in WWTPs have drawn great attention in recent years. The effects of antibiotics on ARGs in the enhanced biological phosphorus removal (EBPR) system and its mechanisms, however, are still not well understood. In this study, EBPR systems were constructed using activated sludge to investigate the effects of ten commonly detected antibiotics in the environment on the proliferation of ARGs and the mechanisms involved. The results showed that the total abundance of ARGs increased to varying degrees with the addition of different antibiotics (0.05 mmol/L), and the top 30 ARGs increased by 271.1 % to 370.0 %. Mobile genetic elements (MGEs), functional modules, and the bacteria community were consistently related to the changes in ARGs. Refractory antibiotics, in particular, have a stronger promoting effect on transduction in the EBPR system. The insertion sequence common region (ISCR) and transposon (Tnp) were identified as crucial factors in the proliferation of ARGs. Moreover, the risk of polyphosphate accumulating organisms (PAOs) carrying ARGs in the presence of antibiotics should not be ignored. Our findings emphasize the potential efficacy of employing strategies that target the reduction of MGEs, regulation of cellular communication, and management of microbial communities to effectively mitigate the risks associated with ARGs.
Collapse
Affiliation(s)
- Ligui Wu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Qiaofeng Wu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Fuzhou Urban and Rural Construction Group Co. Ltd, Fuzhou 350007, China
| | - Jingcheng Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lingling Rong
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Xiaoli Yu
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Chen Cai
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xiaoming Zou
- School of Life Science, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
27
|
Tang L, Pan Z, Li X, Li J, Meng J. Antibiotics resistance removal from piggery wastewater by an integrated anaerobic-aerobic biofilm reactor: Efficiency and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167031. [PMID: 37714352 DOI: 10.1016/j.scitotenv.2023.167031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Antibiotic resistance residual in piggery wastewater poses serious threat to environment and human health. Biological treatment process is commonly installed to remove nutrient from piggery wastewater and also effective in removing antibiotics to varying degrees. But the specific pathways and mechanisms involved in the removal of antibiotic resistance are not yet well-understood. An integrated anaerobic-aerobic biofilm reactor (IAOBR) has been demonstrated efficient in removing conventional nutrients. It is here shown that the IAOBR effectively removed 79.0% of Sulfonamides, 55.7% of Tetracyclines and 53.6% of Quinones. Antibiotic resistance bacteria (ARB) were simultaneously inactivated by ~0.5 logs. Antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) were decreased by 0.51 logs and 0.42 logs, respectively. The antibiotics were mainly removed through aerobic compartments of the IAOBR. The mass loss of antibiotics in the reactor was achieved by biodegradation and adsorption, accounting for 52.1% and 47.9%, respectively. An obvious accumulation of ARGs was observed in the activated sludge. The potential host of ARGs was analyzed via microbial community and network. Partial least squares-structural equation model and correlation analysis revealed that the enrichment of ARGs was positively affected by MGEs, followed by bacterial community and ARBs, but the effect of antibiotics on ARGs was negative. Outcomes of this study provide valuable insights into the mechanisms of antibiotic resistance removal in biological treatment processes.
Collapse
Affiliation(s)
- Lianggang Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhen Pan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
28
|
Endale H, Mathewos M, Abdeta D. Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective-A Review. Infect Drug Resist 2023; 16:7515-7545. [PMID: 38089962 PMCID: PMC10715026 DOI: 10.2147/idr.s428837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 07/04/2024] Open
Abstract
Antimicrobial resistance, referring to microorganisms' capability to subsist and proliferate even when there are antimicrobials is a foremost threat to public health globally. The appearance of antimicrobial resistance can be ascribed to anthropological, animal, and environmental factors. Human-related causes include antimicrobial overuse and misuse in medicine, antibiotic-containing cosmetics and biocides utilization, and inadequate sanitation and hygiene in public settings. Prophylactic and therapeutic antimicrobial misuse and overuse, using antimicrobials as feed additives, microbes resistant to antibiotics and resistance genes in animal excreta, and antimicrobial residue found in animal-origin food and excreta are animals related contributive factors for the antibiotic resistance emergence and spread. Environmental factors including naturally existing resistance genes, improper disposal of unused antimicrobials, contamination from waste in public settings, animal farms, and pharmaceutical industries, and the use of agricultural and sanitation chemicals facilitatet its emergence and spread. Wildlife has a plausible role in the antimicrobial resistance spread. Adopting a one-health approach involving using antimicrobials properly in animals and humans, improving sanitation in public spaces and farms, and implementing coordinated governmental regulations is crucial for combating antimicrobial resistance. Collaborative and cooperative involvement of stakeholders in public, veterinary and ecological health sectors is foremost to circumvent the problem effectively.
Collapse
Affiliation(s)
- Habtamu Endale
- School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Mesfin Mathewos
- School of Veterinary Medicine, Wachemo University, Wachemo, Ethiopia
| | - Debela Abdeta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| |
Collapse
|
29
|
Zhang X, Usman S, Bature I, Xu D, Guo X. Occurrence and fate of antibiotic-resistance genes and their potential hosts in high-moisture alfalfa silage treated with or without formic acid bactericide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119235. [PMID: 37806267 DOI: 10.1016/j.jenvman.2023.119235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Silage as the main forage for ruminants could be a reservoir for antibiotic resistance genes (ARGs) through which these genes got access into the animals' system causing a latent health risk. This study employed metagenomics and investigated the ARGs' fate and transmission mechanism in high-moisture alfalfa silage treated with formic acid bactericide. The results showed that there were 22 ARGs types, in which multidrug, macrolide-lincosamide-streptogramine, bacitracin, beta-lactam, fosmidomycin, kasugamycin, and polymycin resistance genes were the most prevalent ARGs types in the ensiled alfalfa. The natural ensiling process increased ARGs enrichment. Intriguingly, after 5 days of ensiling, formic acid-treated silage reduced ARGs abundances by inhibiting host bacterial and plasmids. Although formic acid bactericide enhanced the fermentation characteristics of the high-moisture alfalfa by lowering silage pH, butyric acid concentration, dry matter losses and proteolysis, it increased ARGs abundances in alfalfa silage owing to increases in abundances of ARGs carriers and transposase after 90 days of ensiling. Notably, several pathogens like Staphylococcus, Clostridium, and Pseudomonas were inferred as potential ARGs hosts in high-moisture alfalfa silage, and high-moisture alfalfa silage may harbor a portion of the clinical ARGs. Fundamentally, microbes were distinguished as the foremost driving factor of ARGs propagation in ensiling microecosystem. In conclusion, although formic acid bactericide improved the fermentation characteristics of high-moisture alfalfa during ensiling and reduced ARGs enrichment at the initial ensiling stage, it increased ARGs enrichment at the end of ensiling.
Collapse
Affiliation(s)
- Xia Zhang
- School of Life Sciences, Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Samaila Usman
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Ibrahim Bature
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Dongmei Xu
- School of Life Sciences, Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, PR China
| | - Xusheng Guo
- School of Life Sciences, Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
30
|
Yang H, Lu H, Li K, Huang Y, Li Q. Insights into antibiotic resistance gene abundances and regulatory mechanisms induced by ionic liquids during composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118652. [PMID: 37481880 DOI: 10.1016/j.jenvman.2023.118652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/15/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
This study investigated the regulatory mechanism of the evolution of antibiotic resistance genes (ARGs) during the composting process with sawdust and cow manure as raw materials using ionic liquids (ILs) pretreatment. The results showed that genes of MLS, chloramphenicol, tetracycline, beta - lactam as composting gradually decreased. From day0 to day3, MLS in control group (CK) and experimental group (T) decreased by 25.62% and 26.66%, respectively. Tetracycline decreased by 7.21% in CK and by 7.86% in T. Chloramphenicol decreased by 2.85% in CK and 3.34% in T. Beta-lactam decreased by 1.95% in Ck and by 3.69% in T. Mechanism studies have shown that ILs can effectively decompose extracellular polymeric substances (EPS) and enhance lactose dehydrogenase (LDH) release, resulting in ARGs release and elimination. Meanwhile, ILs pretreatment can inhibit growth of some ARGs hosts, especially Firmicutes, resulting in decreased ARGs. Moreover, metabolic pathways and related genes take part in ARGs transmission were down regulated, leading to decreased ARGs.
Collapse
Affiliation(s)
- Hongxiang Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Heng Lu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Kecheng Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
31
|
Zhu N, Long Y, Kan Z, Zhu Y, Jin H. Reduction of mobile genetic elements determines the removal of antibiotic resistance genes during pig manure composting after thermal pretreatment. BIORESOURCE TECHNOLOGY 2023; 387:129672. [PMID: 37586429 DOI: 10.1016/j.biortech.2023.129672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Animal manure is a primary repository of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). This work explored the efficiency of ARGs and MGEs removal during pig manure composting after thermal pretreatment (TPC) and the underlying mechanisms. TPC resulted in a decrease of 94.7% and 92.3% in the relative abundance of ARGs and MGEs which was 48.9% and 76.6% lower than control, respectively. Network analysis indicated that reductions of ARGs and MGEs in TPC were relevant to decrease in the amount and abundance of bacterial hosts. Furthermore, total ARGs abundance in TPC was correlated with that of intI1 and Tn916/1545 (P < 0.001). Redundancy analysis supported a leading role of MGEs in ARGs dynamics in TPC. Reduction of MGEs rather than bacterial hosts contributed mainly to ARGs removal in TPC, as revealed by structural equation modeling. In conclusion, TPC was an effective method to treat animal manure containing ARGs.
Collapse
Affiliation(s)
- Ning Zhu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujiao Long
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zexin Kan
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanyun Zhu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongmei Jin
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
32
|
Shen C, He M, Zhang J, Liu J, Wang Y. Response of soil antibiotic resistance genes and bacterial communities to fresh cattle manure and organic fertilizer application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119453. [PMID: 39492397 DOI: 10.1016/j.jenvman.2023.119453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
Livestock manure use in agriculture contributes to pollutants like antibiotic resistance genes (ARGs) and resistant bacteria. This practice could potentially facilitate ARGs development in soil ecosystems. Our study aimed to explore ARGs and bacterial communities in cattle manure from Ningxia beef cattle farms with varying breeding periods. We also assessed the impact of different application rates of cattle manure compost, created by mixing manure with different growing periods, on soil's physicochemical and heavy metal properties. High-throughput PCR and sequencing were used to analyze ARGs and bacterial communities. We aimed to understand ARGs dynamics in cattle manure during breeding stages and the impact of different fertilizer application rates on soil bacteria and resistance genes. We found 212 ARGs from cattle manure, spanning tetracycline, aminoglycoside, multidrug, and MLSB categories. Relative ARGs abundance was presented across breeding stages: lactation (C1), breeding (C3), pre-fattening (C4), calving (C2), and late fattening (C5). pH, total nitrogen (TN), electrical conductivity (EC), arsenic (As) and cadmium (Cd) presence significantly impacted ARGs quantity and microbial community structure in manure. Mobile genetic elements (MGEs) were the primary factor altering ARGs in manure (65.56%). Heavy metals contributed to 18.60% of ARGs changes. Manure application changed soil ARGs abundance, notably in soils with high application rates, primarily associated with aminoglycoside, multidrug and sulfonamide resistance. Soils with higher manure rates had elevated MGEs, positively correlated with most ARGs, suggesting MGEs' role in ARGs dissemination. Soil microbial community structure was influenced by fertilization, particularly with the highest application rate. Heavy metals (specifically Cd, contributing to 23.12%), microbial community changes (17.42%), and MGEs (17.38%) were the main factors affecting soil antibiotic resistance. Our study establishes a framework for understanding ARGs emergence in manure and treated soils. This informs strategies to mitigate environmental ARGs transmission and guides diverse livestock manure application and management.
Collapse
Affiliation(s)
- Cong Shen
- School of Life Sciences, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Mengyuan He
- School of Life Sciences, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Junhua Zhang
- School of Ecology and Environment, Ningxia University, Yinchuan, 750021, Ningxia, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Yinchuan, 750021, Ningxia, China.
| | - Jili Liu
- School of Ecology and Environment, Ningxia University, Yinchuan, 750021, Ningxia, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Yinchuan, 750021, Ningxia, China
| | - Yuanduo Wang
- School of Life Sciences, Ningxia University, Yinchuan, 750021, Ningxia, China
| |
Collapse
|
33
|
Zhou Y, Kurade MB, Sirohi R, Zhang Z, Sindhu R, Binod P, Jeon BH, Syed A, Verma M, Awasthi MK. Biochar as functional amendment for antibiotic resistant microbial community survival during hen manure composting. BIORESOURCE TECHNOLOGY 2023; 385:129393. [PMID: 37364648 DOI: 10.1016/j.biortech.2023.129393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The study aim was to reveal the mechanism of impact of two type biochar on composting of hen manure (HM) and wheat straw (WS). Biochar derived from coconut shell and bamboo used as additives to reduce antibiotic resistant bacteria (ARB) in HM compost. The results manifested that effect of biochar amendment was significant to reduce ARB in HM composting. Compared with control, the microbial activity and abundance were increased in both biochar applied treatment, and bacterial community was changed. Additionally, network analysis revealed that biochar amendment increased the quantity of microorganisms related to organic matter degrading. Among them, coconut shell biochar (CSB) played a pioneering role to mitigate ARB to better exert its effects. Structural correlation analysis showed that CSB reduce ARB mobility and promote organic matter degradation via improving beneficial bacterial community structure. Overall, composting with participation of biochar amendment stimulated antibiotic resistance bacterial dynamics. These results evidence practical value for scientific research and lay the foundation for agricultural promotion of composting.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Ranjna Sirohi
- School of Health Sciences and Technology, University of Petroleum and Energy Studies Dehradun, 248007 Uttarakhand, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Meenakshi Verma
- University Centre for Research & Development, Department of Chemistry, Chandigarh University Gharuan, Mohali, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
34
|
Liu H, Shi B, Liu W, Wang L, Zhu L, Wang J, Kim YM, Wang J. Effects of magnesium-modified biochar on antibiotic resistance genes and microbial communities in chicken manure composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108553-108564. [PMID: 37752398 DOI: 10.1007/s11356-023-29804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Abatement of antibiotic resistance genes (ARGs) in livestock manure by composting has attracted attention. This study investigated the effect of adding magnesium-modified biochar (MBC) on ARGs and microbial communities in chicken manure composting. Twelve genes for tetracyclines, sulfonamides, and macrolides, and mobile genetic elements were measured in the compost pile. The results showed that after 45 days of the composting, the treatment groups of MBC had longer high temperature periods, significantly higher germination indices (GI) and lower phytotoxicity. There were four major dominant phyla (Firmicutes, Actinobacteriota, Proteobacteria, and Bacteroidota) in the compost. The abundance of Firmicutes decreased significantly during the compost cooling period; tetracycline resistance genes demonstrated an extremely significant positive correlation with Firmicutes, showing a trend of the same increase and decrease with composting time; tetT, tetO, tetM, tetW, ermB, and intI2 were reduced in the MBC group; the total abundance of resistance genes in the 2% MBC addition group was 0.67 times that of the control; Proteobacteria and Chloroflexi were also significantly lower than the other treatment groups. Most ARGs were significantly associated with mobile genetic elements (MGEs); MBC can reduce the spread and diffusion of ARGs by reducing the abundance of MGEs and inhibiting horizontal gene transfer (HGT).
Collapse
Affiliation(s)
- Hunan Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Baihui Shi
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Wenwen Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Lanjun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Lusheng Zhu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Jun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Jinhua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China.
| |
Collapse
|
35
|
Fan Q, Zhang J, Shi H, Chang S, Hou F. Metagenomic Profiles of Yak and Cattle Manure Resistomes in Different Feeding Patterns before and after Composting. Appl Environ Microbiol 2023; 89:e0064523. [PMID: 37409977 PMCID: PMC10370317 DOI: 10.1128/aem.00645-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/04/2023] [Indexed: 07/07/2023] Open
Abstract
Antibiotic resistance is a global threat to public health, with antibiotic resistance genes (ARGs) being one of the emerging contaminants; furthermore, animal manure is an important reservoir of biocide resistance genes (BRGs) and metal resistance genes (MRGs). However, few studies have reported differences in the abundance and diversity of BRGs and MRGs between different types of animal manure and the changes in BRGs and MRGs before and after composting. This study employed a metagenomics-based approach to investigate ARGs, BRGs, MRGs, and mobile genetic elements (MGEs) of yak and cattle manure before and after composting under grazing and intensive feeding patterns. The total abundances of ARGs, clinical ARGs, BRGs, MRGs, and MGEs were lower in the manure of grazing livestock than in the manure of the intensively fed group. After composting, the total abundances of ARGs, clinical ARGs, and MGEs in intensively fed livestock manure decreased, whereas those of ARGs, clinical ARGs, MRGs, and MGEs increased in grazing livestock manure. The synergy between MGEs mediated horizontal gene transfer and vertical gene transmission via host bacteria proliferation, which was the main driver that altered the abundance and diversity of ARGs, BRGs, and MRGs in livestock manure and compost. Additionally, tetQ, IS91, mdtF, and fabK were potential indicators for estimating the total abundance of clinical ARGs, BRGs, MRGs, and MGEs in livestock manure and compost. These findings suggest that grazing livestock manure can be directly discharged into the fields, whereas intensively fed livestock manure should be composted before returning to the field. IMPORTANCE The recent increase in the prevalence of antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and metal resistance genes (MRGs) in livestock manure poses risks to human health. Composting is known to be a promising technology for reducing the abundance of resistance genes. This study investigated the differences and changes in the abundances of ARGs, BRGs, and MRGs between yak and cattle manure under grazing and intensive feeding patterns before and after composting. The results indicate that the feeding pattern significantly affected the abundances of resistance genes in livestock manure. Manure in intensive farming should be composted before being discharged into the field, while grazing livestock manure is not suitable for composting due to an increased number of resistance genes.
Collapse
Affiliation(s)
- Qingshan Fan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jing Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hairen Shi
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Shenghua Chang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
36
|
Li Y, Kumar Awasthi M, Sindhu R, Binod P, Zhang Z, Taherzadeh MJ. Biochar preparation and evaluation of its effect in composting mechanism: A review. BIORESOURCE TECHNOLOGY 2023; 384:129329. [PMID: 37329992 DOI: 10.1016/j.biortech.2023.129329] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
This article provides an overview of biochar application for organic waste co-composting and its biochemical transformation mechanism. As a composting amendment, biochar work in the adsorption of nutrients, the retention of oxygen and water, and the promotion of electron transfer. These functions serve the micro-organisms (physical support of niche) and determine changes in community structure beyond the succession of composing primary microorganisms. Biochar mediates resistance genes, mobile gene elements, and biochemical metabolic activities of organic matter degrading. The participation of biochar enriched the α-diversity of microbial communities at all stages of composting, and ultimately reflects the high γ-diversity. Finally, easy and convincing biochar preparation methods and characteristic need to be explored, in turn, the mechanism of biochar on composting microbes at the microscopic level can be studied in depth.
Collapse
Affiliation(s)
- Yui Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | | |
Collapse
|
37
|
González-Reguero D, Robas-Mora M, Fernández-Pastrana VM, Probanza-Lobo A, Jiménez-Gómez PA. Reduced Antibiotic Resistance in the Rhizosphere of Lupinus albus in Mercury-Contaminated Soil Mediated by the Addition of PGPB. BIOLOGY 2023; 12:801. [PMID: 37372086 PMCID: PMC10295369 DOI: 10.3390/biology12060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
The emergence of antibiotic resistance (AR) poses a threat to the "One Health" approach. Likewise, mercury (Hg) pollution is a serious environmental and public health problem. Its ability to biomagnify through trophic levels induces numerous pathologies in humans. As well, it is known that Hg-resistance genes and AR genes are co-selected. The use of plant-growth-promoting bacteria (PGPB) can improve plant adaptation, decontamination of toxic compounds and control of AR dispersal. The cenoantibiogram, a technique that allows estimating the minimum inhibitory concentration (MIC) of a microbial community, has been postulated as a tool to effectively evaluate the evolution of a soil. The present study uses the metagenomics of 16S rRNA gene amplicons to understand the distribution of the microbial soil community prior to bacterial inoculation, and the cenoantibiogram technique to evaluate the ability of four PGPB and their consortia to minimize antibiotic resistance in the rhizosphere of Lupinus albus var. Orden Dorado grown in Hg-contaminated soils. Results showed that the addition of A1 strain (Brevibacterium frigoritolerans) and its consortia with A2, B1 and B2 strains reduced the edaphic community´s MIC against cephalosporins, ertapenem and tigecycline. The metagenomic study revealed that the high MIC of non-inoculated soils could be explained by the bacteria which belong to the detected taxa,. showing a high prevalence of Proteobacteria, Cyanobacteria and Actinobacteria.
Collapse
Affiliation(s)
- Daniel González-Reguero
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, 28668 Boadilla del Monte, Spain; (V.M.F.-P.)
| | - Marina Robas-Mora
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, 28668 Boadilla del Monte, Spain; (V.M.F.-P.)
| | | | | | | |
Collapse
|
38
|
Xing R, Sun H, Du X, Lin H, Qin S, Chen Z, Zhou S. Enhanced degradation of microplastics during sludge composting via microbially-driven Fenton reaction. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131031. [PMID: 36821904 DOI: 10.1016/j.jhazmat.2023.131031] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
It has been increasingly documented that the hydroxyl radical (•OH) can promote the transformation of organic contaminants such as microplastics (MPs) in various environments. However, few studies have sought to identify an ideal strategy for accelerating in situ MPs degradation through boosting the process of •OH production in practical applications. In this work, iron-mineral-supplemented thermophilic composting (imTC) is proposed and demonstrated for enhancing in situ degradation of sludge-based MPs through strengthening •OH generation. The results show that the reduction efficiency of sludge-based MPs abundance was about 35.93% in imTC after treatment for 36 days, which was 38.99% higher than that of ordinary thermophilic composting (oTC). Further investigation on polyethylene-microplastics (PE-MPs) suggested that higher abundance of •OH (the maximum value was 408.1 μmol·kg-1) could be detected on the MPs isolated from imTC through microbially-mediated redox transformation of iron oxides, as compared to oTC. Analyses of the physicochemical properties of the composted PE-MPs indicated that increased •OH generation could largely accelerate the oxidative degradation of MPs. This work, for the first time, proposes a feasible strategy to enhance the reduction efficiency of MPs abundance during composting through the regulation of •OH production.
Collapse
Affiliation(s)
- Ruizhi Xing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hanyue Sun
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xian Du
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hao Lin
- Fujian Provincial Key Laboratory of Eco‑Inductrial Green Technology, Wuyi University, Wuyishan 354300, Fujian, China
| | - Shuping Qin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
39
|
Li H, Tan L, Zhang C, Wei X, Wang Q, Li Q, Zheng X, Xu Y. Spatial distribution of bacterial resistance towards antibiotics of rural sanitation system in China and its potential link with diseases incidence. J Environ Sci (China) 2023; 127:361-374. [PMID: 36522068 DOI: 10.1016/j.jes.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 06/17/2023]
Abstract
Chinese government is vigorously promoting toilet renovation in rural areas to reduce the risk of human feces exposure, which would cause infectious diseases, especially antibiotic resistance genes (ARGs) and pathogens. However, the distribution of ARGs in human feces from different regions of China remained ill-defined. It is not yet known how the survival of ARGs after toilet treatment is associated with the regional infection rates. Here, we investigated the prevalence of ARGs in human feces in rural areas of China and their potential relationship with infectious diseases for the first large-scale. The results showed that there were still high ARGs residues in human feces after rural toilet treatment, especially tetM-01 and ermB with average relative abundance as high as 1.21 × 10-1 (Eastern) and 1.56 × 10-1 (Northern), respectively. At a large regional scale, the significant differences in human feces resistomes were mainly shaped by the toilet types, TN, NH3-N, and the bacterial community. A critical finding was that toilets still cannot effectively decrease the pathogenicity risk in human feces. The significant positive relationship (P<0.05) between infectious diseases and ARGs can infer that ARGs in human feces exposure might be a critical path for enhancing the incidence of diseases, as these ARGs hinder the effectiveness of antibiotics.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qiang Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qian Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
40
|
Shan G, Liu J, Zhu B, Tan W, Li W, Tang Z, Hu X, Zhu L, Xi B. Effect of hydrochar on antibiotic-resistance genes and relevant mechanisms during chicken manure composting. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131459. [PMID: 37094443 DOI: 10.1016/j.jhazmat.2023.131459] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
The reduction of enhanced antibiotic resistance genes (ARGs) in compost is important to mitigate the risk of ARG transmission in agricultural production. Hydrochar is used in many applications as a functional carbon material with adsorption and catalytic properties. This study investigated the effects of hydrochar addition on bacterial communities, mobile genetic elements (MGEs), and ARGs in chicken manure composting. The addition of 2%, 5%, and 10% hydrochar (dry weight) reduced the total numbers of target ARGs and MGEs in the compost products by 40.13-55.33% and 23.63-37.23%, respectively. Hydrochar changed the succession of the bacterial population during composting, lowering the abundance of potential pathogens and promoting microbial activity in amino acid and carbohydrate metabolism. A significant possible microbial host for ARGs was found to be Firmicutes. Hydrochar was found to affect the host microorganisms and MGEs directly by altering environmental factors that indirectly impacted the ARG profiles, as shown by partial least squares pathway modeling analysis. In conclusion, the addition of hydrochar to compost is a simple and effective method to promote the removal of ARGs.
Collapse
Affiliation(s)
- Guangchun Shan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jie Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Zhu
- Shenergy Environmental Technologies Co., LTD, Hangzhou 311100, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhurui Tang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xinhao Hu
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
41
|
Tan Y, Cao X, Chen S, Ao X, Li J, Hu K, Liu S, Penttinen P, Yang Y, Yu X, Liu A, Liu C, Zhao K, Zou L. Antibiotic and heavy metal resistance genes in sewage sludge survive during aerobic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161386. [PMID: 36608829 DOI: 10.1016/j.scitotenv.2023.161386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Municipal sewage sludge has been generated in increasing amounts with the acceleration of urbanization and economic development. The nutrient rich sewage sludge can be recycled by composting that has a great potential to produce stabilized organic fertilizer and substrate for plant cultivation. However, little is known about the metals, pathogens and antibiotic resistance transfer risks involved in applying the composted sludge in agriculture. We studied changes in and relationships between heavy metal contents, microbial communities, and antibiotic resistance genes (ARGs), heavy metal resistance genes (HMRGs) and mobile genetic elements (MGEs) in aerobic composting of sewage sludge. The contents of most of the analyzed heavy metals were not lower after composting. The bacterial α-diversity was lower, and the community composition was different after composting. Firmicutes were enriched, and Proteobacteria and potential pathogens in the genera Arcobacter and Acinetobacter were depleted in the composted sludge. The differences in bacteria were possibly due to the high temperature phase during the composting which was likely to affect temperature-sensitive bacteria. The number of detected ARGs, HMRGs and MGEs was lower, and the relative abundances of several resistance genes were lower after composting. However, the abundance of seven ARGs and six HMRGs remained on the same level after composting. Co-occurrence analysis of bacterial taxa and the genes suggested that the ARGs may spread via horizontal gene transfer during composting. In summary, even though aerobic composting is effective for managing sewage sludge and to decrease the relative abundance of potential pathogens, ARGs and HMRGs, it might include a potential risk for the dissemination of ARGs in the environment.
Collapse
Affiliation(s)
- Yulan Tan
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuedi Cao
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xiaoling Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Petri Penttinen
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xiumei Yu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Chengxi Liu
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ke Zhao
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Likou Zou
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
42
|
Nnorom MA, Saroj D, Avery L, Hough R, Guo B. A review of the impact of conductive materials on antibiotic resistance genes during the anaerobic digestion of sewage sludge and animal manure. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130628. [PMID: 36586329 DOI: 10.1016/j.jhazmat.2022.130628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The urgent need to reduce the environmental burden of antibiotic resistance genes (ARGs) has become even more apparent as concerted efforts are made globally to tackle the dissemination of antimicrobial resistance. Concerning levels of ARGs abound in sewage sludge and animal manure, and their inadequate attenuation during conventional anaerobic digestion (AD) compromises the safety of the digestate, a nutrient-rich by-product of AD commonly recycled to agricultural land for improvement of soil quality. Exogenous ARGs introduced into the natural environment via the land application of digestate can be transferred from innocuous environmental bacteria to clinically relevant bacteria by horizontal gene transfer (HGT) and may eventually reach humans through food, water, and air. This review, therefore, discusses the prospects of using carbon- and iron-based conductive materials (CMs) as additives to mitigate the proliferation of ARGs during the AD of sewage sludge and animal manure. The review spotlights the core mechanisms underpinning the influence of CMs on the resistome profile, the steps to maximize ARG attenuation using CMs, and the current knowledge gaps. Data and information gathered indicate that CMs can profoundly reduce the abundance of ARGs in the digestate by easing selective pressure on ARGs, altering microbial community structure, and diminishing HGT.
Collapse
Affiliation(s)
- Mac-Anthony Nnorom
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Devendra Saroj
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Lisa Avery
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
| | - Bing Guo
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
43
|
Efremenko E, Senko O, Maslova O, Lyagin I, Aslanli A, Stepanov N. Destruction of Mycotoxins in Poultry Waste under Anaerobic Conditions within Methanogenesis Catalyzed by Artificial Microbial Consortia. Toxins (Basel) 2023; 15:205. [PMID: 36977096 PMCID: PMC10058804 DOI: 10.3390/toxins15030205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
To reduce the toxicity of modern feeds polluted by mycotoxins, various sorbents are added to them when feeding animals. A part of the mycotoxins is excreted from the body of animals with these sorbents and remains in the manure. As a result, bulk animal wastes containing mixtures of mycotoxins are formed. It is known that it is partially possible to decrease the initial concentration of mycotoxins in the process of anaerobic digestion (AD) of contaminated methanogenic substrates. The aim of this review was to analyze the recent results in destruction of mycotoxins under the action of enzymes present in cells of anaerobic consortia catalyzing methanogenesis of wastes. The possible improvement of the functioning of the anaerobic artificial consortia during detoxification of mycotoxins in the bird droppings is discussed. Particular attention was paid to the possibility of effective functioning of microbial enzymes that catalyze the detoxification of mycotoxins, both at the stage of preparation of poultry manure for methanogenesis and directly in the anaerobic process itself. The sorbents with mycotoxins which appeared in the poultry wastes composed one of the topics of interest in this review. The preliminary alkaline treatment of poultry excreta before processing in AD was considered from the standpoint of effectively reducing the concentrations of mycotoxins in the waste.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
44
|
Cao H, Jiao Q, Cheng L, Song L, Xun M, Yang H. Occurrence and prevalence of antibiotic resistance genes in apple orchard after continual application of anaerobic fermentation residues of pig manure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29229-29242. [PMID: 36409412 DOI: 10.1007/s11356-022-24320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Fermented organic fertilizers made from pig manure contaminated with antibiotics are widely used in fruit tree production. However, their effects on the residual antibiotics and the spread of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in apple orchards are still largely unknown. In the present study, we detected 100 ARGs and 10 MGEs that were transferred from pig manure to an apple orchard. Compared with the original pig manure, significantly greater concentrations of tetracycline, chlortetracycline, oxytetracycline, sulfadiazine, and salfamethyldiazine were observed in anaerobic fermentation residues of the pig manure. The total relative abundance levels of ARGs on the apple pericarp surface, in the orchard soil treated with biogas slurry, and in the orchard soil treated with biogas residue were 122.5, 5.2, 1.4 times higher than those in pristine soil, respectively, which were primarily attributed to the increase in the relative abundance of some ARG subtypes, including blaCTX-M, blaTEM, ermC, sul2, tetO, vgaB, and vgb. Long-term biogas slurry and biogas residue applications to orchard soil enriched bioaccumulation of 10 ARGs and 1 MGEs on the apple pericarp surface with 67.98 the highest factor. This research indicates that the application of anaerobic fermentation residues of pig manure promoted the spread of ARGs in the soil and fruits and increased the level of ARG pollution in the orchard. Results of this study highlight the importance of assessing the ecological safety of organic fertilizers from the perspective of ARGs and indicate that efforts should be devoted to further reducing ARG levels in pig manure before its application to farmland.
Collapse
Affiliation(s)
- Hui Cao
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, Shandong Province, China
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Qian Jiao
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, Shandong Province, China
| | - Liangmei Cheng
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, Shandong Province, China
| | - Linhui Song
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, Shandong Province, China
| | - Mi Xun
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Hongqiang Yang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China.
| |
Collapse
|
45
|
Zhang X, Ding Z, Usman S, Zhang J, Chen M, Guo X. Metagenomics insights into the effects of lactic acid bacteria inoculation on the biological reduction of antibiotic resistance genes in alfalfa silage. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130329. [PMID: 36444055 DOI: 10.1016/j.jhazmat.2022.130329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance genes (ARGs) are a new type of pollutant and pose major threats to public health. However, the distribution and transmission risk of ARGs in alfalfa silage as the main forage for ruminants have not been studied. This study first deciphered the effects of Lactobacillus plantarum MTD/1 or Lactobacillus buchneri 40788 inoculations on distribution and transmission mechanism of ARGs in alfalfa silage by metagenomics. Results showed that multidrug and bacitracin resistance genes were the dominant ARGs in ensiled alfalfa. The natural ensiling process increased the abundances of bacitracin, beta_lactam, and aminoglycoside in alfalfa silage with 30% DM, and vancomycin in alfalfa silage with 40% DM. Meanwhile, prolonged wilting increased ARG enrichment in fresh alfalfa. Interestingly, alfalfa silage inoculated with L. plantarum MTD/1 or L. buchneri 40788 reduced the abundances of total ARG, and multidrug, MLS, vancomycin, aminoglycoside, tetracycline, and fosmidomycin resistance genes by reductions of the host bacteria and the enrichment of ARGs located in the plasmid. The hosts of ARG in alfalfa silage were mainly derived from harmful bacteria or pathogens, and some of the clinical ARGs were observed in alfalfa silage. Basically, the combined effect of microbes, MGEs, and fermentation quality was the major driver of ARG transfer and dissemination in microecosystem of ensiling, where the microbes appeared to be the crucial factor. In summary, inoculation with the present lactic acid bacteria could reduce ARG abundance in ensiled alfalfa, and a better effect was observed in L. plantarum-treated silage than in L. buchneri treated silage.
Collapse
Affiliation(s)
- Xia Zhang
- State Key Laboratory of Grassland and Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Zitong Ding
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Samaila Usman
- State Key Laboratory of Grassland and Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Jiayao Zhang
- State Key Laboratory of Grassland and Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Mengyan Chen
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Xusheng Guo
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
46
|
Soil Component: A Potential Factor Affecting the Occurrence and Spread of Antibiotic Resistance Genes. Antibiotics (Basel) 2023; 12:antibiotics12020333. [PMID: 36830244 PMCID: PMC9952537 DOI: 10.3390/antibiotics12020333] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in soil have become research hotspots in the fields of public health and environmental ecosystems, but the effects of soil types and soil components on the occurrence and spread of ARGs still lack systematic sorting and in-depth research. Firstly, investigational information about ARB and ARGs contamination of soil was described. Then, existing laboratory studies about the influence of the soil component on ARGs were summarized in the following aspects: the influence of soil types on the occurrence of ARGs during natural or human activities and the control of exogenously added soil components on ARGs from the macro perspectives, the effects of soil components on the HGT of ARGs in a pure bacterial system from the micro perspectives. Following that, the similarities in pathways by which soil components affect HGT were identified, and the potential mechanisms were discussed from the perspectives of intracellular responses, plasmid activity, quorum sensing, etc. In the future, related research on multi-component systems, multi-omics methods, and microbial communities should be carried out in order to further our understanding of the occurrence and spread of ARGs in soil.
Collapse
|
47
|
Huang Y, Wen X, Li J, Niu Q, Tang A, Li Q. Metagenomic insights into role of red mud in regulating fate of compost antibiotic resistance genes mediated by both direct and indirect ways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120795. [PMID: 36462475 DOI: 10.1016/j.envpol.2022.120795] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
In this study, the amendment of red mud (RM) in dairy manure composting on the fate of antibiotic resistance genes (ARGs) by both direct (bacteria community, mobile genetic elements and quorum sensing) and indirect ways (environmental factors and antibiotics) was analyzed. The results showed that RM reduced the total relative abundances of 10 ARGs and 4 mobile genetic elements (MGEs). And the relative abundances of total ARGs and MGEs decreased by 53.48% and 22.30% in T (with RM added) on day 47 compared with day 0. Meanwhile, the modification of RM significantly increased the abundance of lsrK, pvdQ and ahlD in quorum quenching (QQ) and decreased the abundance of luxS in quorum sensing (QS) (P < 0.05), thereby attenuating the intercellular genes frequency of communication. The microbial community and network analysis showed that 25 potential hosts of ARGs were mainly related to Firmicutes, Proteobacteria and Actinobacteria. Redundancy analysis (RDA) and structural equation model (SEM) further indicated that RM altered microbial community structure by regulating antibiotic content and environmental factors (temperature, pH, moisture content and organic matter content), which then affected horizontal gene transfer (HGT) in ARGs mediated by QS and MGEs. These results provide new insights into the dissemination mechanism and removal of ARGs in composting process.
Collapse
Affiliation(s)
- Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Jixuan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Aixing Tang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
48
|
Jaffar NS, Jawan R, Chong KP. The potential of lactic acid bacteria in mediating the control of plant diseases and plant growth stimulation in crop production - A mini review. FRONTIERS IN PLANT SCIENCE 2023; 13:1047945. [PMID: 36714743 PMCID: PMC9880282 DOI: 10.3389/fpls.2022.1047945] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
The microbial diseases cause significant damage in agriculture, resulting in major yield and quality losses. To control microbiological damage and promote plant growth, a number of chemical control agents such as pesticides, herbicides, and insecticides are available. However, the rising prevalence of chemical control agents has led to unintended consequences for agricultural quality, environmental devastation, and human health. Chemical agents are not naturally broken down by microbes and can be found in the soil and environment long after natural decomposition has occurred. As an alternative to chemical agents, biocontrol agents are employed to manage phytopathogens. Interest in lactic acid bacteria (LAB) research as another class of potentially useful bacteria against phytopathogens has increased in recent years. Due to the high level of biosafety, they possess and the processes they employ to stimulate plant growth, LAB is increasingly being recognized as a viable option. This paper will review the available information on the antagonistic and plant-promoting capabilities of LAB and its mechanisms of action as well as its limitation as BCA. This review aimed at underlining the benefits and inputs from LAB as potential alternatives to chemical usage in sustaining crop productivity.
Collapse
Affiliation(s)
- Nur Sulastri Jaffar
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Sabah, Malaysia
- Horticulture Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Selangor, Malaysia
| | - Roslina Jawan
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Khim Phin Chong
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Sabah, Malaysia
| |
Collapse
|
49
|
Abdellah YAY, Luo YS, Sun SS, Yang X, Ji HY, Wang RL. Phytochemical and underlying mechanism of Mikania micrantha Kunth on antibiotic resistance genes, and pathogenic microbes during chicken manure composting. BIORESOURCE TECHNOLOGY 2023; 367:128241. [PMID: 36332871 DOI: 10.1016/j.biortech.2022.128241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Chicken manure is a source of antibiotic resistance genes (ARGs) and pathogenic microbes. Mikania micrantha Kunth (MM) is an invasive plant containing phytochemicals as antimicrobial agents. To explore its impacts on ARGs and pathogen-host interactions (PHIs), MM was added to composting mixtures. The findings indicated that compared with control (CK), MM significantly improved the phytochemical abundances, particularly stilbenoids and diarylheptanoids (4.87%), and ubiquinones (2.66%) in the treatment (T) compost. Besides, significant ARGs reduction was noted, where rpoB2, RbpA, FosB1, vatC, and vatB were removed from T compost. PHIs significantly declined in T compost, where the growth of Xanthomonas citri, Streptococcus pneumoniae, Fusarium graminearum, Vibrio cholerae, and Xanthomonas campestris were inhibited. Multiple variable analyses demonstrated that temperature and pH revealed a significant role in ARGs and PHIs decline. Accordingly, this study considerably recommends MM as a promising compost additive in terms of its antimicrobial potential toward pathogenic microbes and ARGs.
Collapse
Affiliation(s)
- Yousif Abdelrahman Yousif Abdellah
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Sen Luo
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Shan-Shan Sun
- College of Life Science, Heilongjiang University, Harbin 150030, China
| | - Xi Yang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Yi Ji
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Rui-Long Wang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
50
|
Wang C, Wang Y, Yan S, Li Y, Zhang P, Ren P, Wang M, Kuang S. Biochar-amended composting of lincomycin fermentation dregs promoted microbial metabolism and reduced antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2023; 367:128253. [PMID: 36334868 DOI: 10.1016/j.biortech.2022.128253] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Improper disposal of antibiotic fermentation dregs poses a risk of releasing antibiotics and antibiotic resistant bacteria to the environment. Therefore, this study evaluated the effects of biochar addition to lincomycin fermentation dregs (LFDs) composting. Biochar increased compost temperature and enhanced organic matter decomposition and residual antibiotics removal. Moreover, a 1.5- to 17.0-fold reduction in antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) was observed. Adding biochar also reduced the abundances of persistent ARGs hosts (e.g., Streptomyces, Pseudomonas) and ARG-related metabolic pathways and genes (e.g., ATP-binding cassette type-2 transport, signal transduction and multidrug efflux pump genes). By contrast, compost decomposition improved due to enhanced metabolism of carbohydrates and amino acids. Overall, adding biochar into LFDs compost reduced the proliferation of ARGs and enhanced microbial community metabolism. These results demonstrate that adding biochar to LFDs compost is a simple and efficient way to decrease risks associated with LFDs composting.
Collapse
Affiliation(s)
- Chenhao Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yafei Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shen Yan
- Staff Development Institute of China National Tobacco Corporation, Zhengzhou 450000, China
| | - Yingchun Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Peng Zhang
- Heilongjiang Lianshun Biotechnology Co. Ltd., Qitaihe 154264, China
| | - Peng Ren
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Mengmeng Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|