1
|
Miao Q, Ji W, Dong H, Zhang Y. Occurrence of phthalate esters in the yellow and Yangtze rivers of china: Risk assessment and source apportionment. J Environ Sci (China) 2025; 149:628-637. [PMID: 39181673 DOI: 10.1016/j.jes.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 08/27/2024]
Abstract
Phthalate esters (PAEs), recognized as endocrine disruptors, are released into the environment during usage, thereby exerting adverse ecological effects. This study investigates the occurrence, sources, and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins. The total concentration of PAEs in the Yellow River spans from 124.5 to 836.5 ng/L, with Dimethyl phthalate (DMP) (75.4 ± 102.7 ng/L) and Diisobutyl phthalate (DiBP) (263.4 ± 103.1 ng/L) emerging as the predominant types. Concentrations exhibit a pattern of upstream (512.9 ± 202.1 ng/L) > midstream (344.5 ± 135.3 ng/L) > downstream (177.8 ± 46.7 ng/L). In the Yangtze River, the total concentration ranges from 81.9 to 441.6 ng/L, with DMP (46.1 ± 23.4 ng/L), Diethyl phthalate (DEP) (93.3 ± 45.2 ng/L), and DiBP (174.2 ± 67.6 ng/L) as the primary components. Concentration levels follow a midstream (324.8 ± 107.3 ng/L) > upstream (200.8 ± 51.8 ng/L) > downstream (165.8 ± 71.6 ng/L) pattern. Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH, and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate (DNOP). Conversely, in other regions, the associated risk with PAEs is either low or negligible. The main source of PAEs in Yellow River is attributed to the release of construction land, while in the Yangtze River Basin, it stems from the accumulation of pollutants in lakes and forests discharged into the river. These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers, providing valuable insights for global PAEs research in other major rivers.
Collapse
Affiliation(s)
- Qinkui Miao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenxiang Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ying Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Qian W, Yang Y, Xinyue D, Hanqi L, Lanlan C, Wenhui H, Juan-Ying L. Reducing baseline toxicity in fishery product-related sediments from land to sea: Region-specific solutions are required. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174024. [PMID: 38906300 DOI: 10.1016/j.scitotenv.2024.174024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Eastern China is a major producer of fishery products (including inland aquaculture, coastal mariculture, and coastal fishing products). The quality of the products is affected by hydrophobic organic contaminants (HOCs) in the sediments. Based on in-vitro luminescent bacterial assay, the baseline toxicity (BEQBio) of 56 common HOCs were assessed in the present study. Specifically, the BEQBio of sediments declined from land (31-400 mg/kg) to sea (9.1-270 mg/kg). However, the toxicity contribution explained by the HOCs increased gradually from land (0.70 %) to sea (10 %) using Iceberg Modeling. In the inland pond, current use HOCs (pyrethroid pesticide (PEs), organic tin (OTCs), and antibiotic) exhibited considerable concentrations, although their toxicity contribution was very small (0.076 %), thus more regulations on the use of HOCs should be proposed and further screening is needed to confirm the major toxicants. In coastal mariculture area, the toxicity contribution of current use HOCs further declined (0.010 %), whereas environmental background HOCs, such as polycyclic aromatic hydrocarbons (PAHs), became increasingly significant, with the contribution ratio increasing from 0.37 % to 2.4 %. To minimize the negative impacts of PAHs, optimization of energy structure in transportation and coastal industry is required. In the coastal fishing area, the phased-out persistent organic pollutants (POPs) remained a major concern, in terms of both concentration and toxicity contribution. The phased-out POPs explained 7.0 % of the toxic effects of the sediments from the coastal fishing area, due to historical residue, industrial emissions, and their high toxicities. For this reason, it is critical to improve the relevant emission regulations and standards, so as to eventually reduce the unintentional discharges of POPs.
Collapse
Affiliation(s)
- Wang Qian
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - Yu Yang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - Dong Xinyue
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - Liu Hanqi
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China
| | - Chu Lanlan
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - He Wenhui
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China
| | - Li Juan-Ying
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China.
| |
Collapse
|
3
|
Zhang X, Yang J, Qi L, Zhou W, Zhu Y, Li Z, Chen F, Guan C. Evaluation of electrokinetic-assisted phytoremediation efficiency of dibutyl phthalate contaminated soil by maize (Zea mays L.) under different electric field intensities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173838. [PMID: 38879025 DOI: 10.1016/j.scitotenv.2024.173838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
The excessive accumulation of dibutyl phthalate (DBP) in soil poses a serious threat to soil ecosystems and crop safety production. Electrokinetic-assisted phytoremediation (EKPR) has been considered as a potential technology for remediating organic contaminated soils. In order to investigate the effect of different electric fields on removal efficiency of DBP, three kinds of electric fields were set up in this study (1 V·cm-1, 2 V·cm-1 and 3 V·cm-1). The results showed that 59 % of DBP in soil was removed by maize (Zea mays L.) within 20 d in low-intensity electric field (1 V·cm-1), and the accumulation of DBP in maize tissues decreased significantly compared to the non-electrified treatment group. Interestingly, it could be observed that the low-intensity electric field could maintain ion homeostasis and improve the photosynthetic efficiency of the plant, thereby relieving the inhibition of DBP on plant growth and increasing the chlorophyll content (94.1 %) of maize. However, the removal efficiency of DBP by maize decreased significantly under the medium-intensity (2 V·cm-1) and high-intensity electric field (3 V·cm-1). Moreover, the important roles of soil enzyme and rhizosphere bacterial community in low-electric field were also investigated and discussed. This study provided a new perspective for exploring the mechanism of removing DBP through EKPR.
Collapse
Affiliation(s)
- Xiaoge Zhang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Jingjing Yang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Lihua Qi
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Wenqing Zhou
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yalan Zhu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Zhiman Li
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Fenyan Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
4
|
Ri H, Zhu Y, Jo H, Miao X, Ri U, Yin J, Zhou L, Ye L. Di-(2-ethylhexyl) phthalate and its metabolites research trend: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50142-50165. [PMID: 39107640 DOI: 10.1007/s11356-024-34533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/24/2024] [Indexed: 09/01/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is one of the most widely used plasticizers. Many studies focus on the impact of continuous exposure to DEHP on humans and ecosystems. In this study, the bibliometric analysis of DEHP and its metabolites research was conducted to assess the research performances, hotspot issues, and trends in this field. The data was retrieved from a Web of Science Core Collection online database. VOSviewer 1.6.18 was used to analyze. A total of 4672 publications were collected from 1975 to 2022 October 21. The number of publications and citations increased annually in the last decades. China had the largest number of publications, and the USA had the highest co-authorship score. The most productive and most frequently cited institutions were the Chinese Academy of Sciences and the Centers for Disease Control & Prevention (USA), respectively. The journal with the most publications was the Science of Total Environment, and the most cited one was the Environmental Health Perspectives. The most productive and cited author was Calafat A. M. (USA). The most cited reference was "Phthalates: toxicology and exposure." Four hotspot issues were as follows: influences of DEHP on the organisms and its possible mechanisms, assessment of DEHP exposure to the human and its metabolism, dynamics of DEHP in external environments, and indoor exposure of DEHP and health outcomes. The research trends were DNOP, preterm birth, gut microbiota, microplastics, lycopene, hypertension, and thyroid hormones. This study can provide researchers with new ideas and decision-makers with reference basis to formulate relevant policies.
Collapse
Affiliation(s)
- Hyonju Ri
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
- Pyongyang Medical University, Pyongyang, 999093, Democratic People's Republic of Korea
| | - Ying Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
| | - Hyonsu Jo
- Pyongyang Medical University, Pyongyang, 999093, Democratic People's Republic of Korea
- Department of Breast Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, China
| | - Xiaohan Miao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
| | - Unsim Ri
- Department of Epidemiology, Central Hygienic and Anti-Epidemiologic Institute, Ministry of Health, Pyongyang, 999093, Democratic People's Republic of Korea
| | - Jianli Yin
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China.
| |
Collapse
|
5
|
Wu P, Fan Y, Zhang X, Wu W, Zhang Z, Wu Y, Wang J, Xu J, Chen T, Gao B. Seasonal dynamics, tidal influences, and anthropogenic impacts on microplastic distribution in the Yangtze River estuary: A comprehensive characterization and comparative analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135167. [PMID: 39029194 DOI: 10.1016/j.jhazmat.2024.135167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Microplastics (MPs) are emerging contaminants with significant ecological and human health implications. This study examines the abundance, characteristics, and distribution of MPs in the Yangtze River estuary, focusing on seasonal variations, tidal cycles, and anthropogenic influences. Surface samples were collected using the Manta trawl method to ensure consistency with previous marine MP research. The study found an average MP concentration of 1.01 (± 0.65) n m-3, predominantly comprising low-density polymers such as polystyrene (38 %), polypropylene (33 %), and polyethylene (29 %). MPs were mainly fragments (34.9 %) and foam (30.7 %), with a prevalence of white particles. Seasonal analysis indicated significantly higher MP concentrations during flood seasons (1.32 ± 1.09 n m-3), nearly 1.9 times higher than during non-flood seasons (0.70 ± 0.28 n m-3). Tidal cycles also impacted MP distribution, with ebb tides showing increased concentrations (2.44 ± 1.30 n m-3) compared to flood tides (1.48 ± 2.07 n m-3). Furthermore, MP abundance showed a decreasing trend with increasing distance from urban centers, with significant correlations (0.52 < R2 < 0.65, P < 0.001). These findings underscore the necessity for seasonally adjusted monitoring and robust management strategies to combat MP pollution. The study advocates for the integration of diverse sampling methods and the consideration of environmental factors in future MP assessments, laying the groundwork for understanding the MP transport mechanism in the Yangtze River estuary and similar estuarine systems worldwide.
Collapse
Affiliation(s)
- Panfeng Wu
- Jiangsu Nantong Environmental Monitoring Center, Nantong, Jiangsu 226002, China; School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Yuchuan Fan
- Soil, Water, and Ecosystem Sciences Department, University of Florida, Gainesville, FL 32611, USA; High Performance Computing Collaboratory-Geosystems Research Institute, Mississippi State University, Starkville, MS 39759, USA
| | - Xinxin Zhang
- Jiangsu Nantong Environmental Monitoring Center, Nantong, Jiangsu 226002, China
| | - Wei Wu
- Nantong Agricultural Environmental Protection Monitoring Station, Nantong, Jiangsu 226000, China
| | - Zaifeng Zhang
- Jiangsu Nantong Environmental Monitoring Center, Nantong, Jiangsu 226002, China.
| | - Yaping Wu
- Jiangsu Nantong Environmental Monitoring Center, Nantong, Jiangsu 226002, China
| | - Jingyi Wang
- Jiangsu Nantong Environmental Monitoring Center, Nantong, Jiangsu 226002, China
| | - Jing Xu
- Institute of Educational Science, Nantong University, Nantong, Jiangsu 226000, China.
| | - Tianming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
6
|
Wang Y, Zhang F, Zhang G, Wang H, Zhu S, Zhang H, He T, Guo T. Trace metals coupled with plasticisers in microplastics strengthen the denitrification function of the soil microbiome in the Qinghai Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134593. [PMID: 38749249 DOI: 10.1016/j.jhazmat.2024.134593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Due to the lack of research on the co-effects of microplastics and trace metals in the environment on nitrogen cycling-related functional microorganisms, the occurrence of microplastics and one of their plasticisers, phthalate esters, as well as trace metals, were determined in soils and river sediments in the Qinghai-Tibet Plateau. Relationship between microplastics and phthalate esters in the area was determined; the co-effects of these potentially toxic materials, and key factors and pathways affecting nitrogen functions were further explored. Significant correlations between fibre- and film-shaped microplastics and phthalate esters were detected in the soils from the plateau. Copper, lead, cadmium and di-n-octyl phthalate detected significantly affected nitrogen cycling-related functional microorganisms. The co-existence of di-n-octyl phthalate and copper in soils synergistically stimulated the expression of denitrification microorganisms nirS gene and "nitrate_reduction". Additionally, di-n-octyl phthalate and dimethyl phthalate more significantly affected the variation of nitrogen cycling-related functional genes than the number of microplastics. In a dimethyl phthalate- and cadmium-polluted area, nitrogen cycling-related functional genes, especially nirK gene, were more sensitive and stressed. Overall, phthalate esters originated from microplastics play a key role in nitrogen cycling-related functions than microplastics themselves, moreover, the synergy between di-n-octyl phthalate and copper strengthen the expression of denitrification functions.
Collapse
Affiliation(s)
- Yonglu Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengsong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Huaxin Wang
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming 650224, China
| | - Shiliang Zhu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Tiantian He
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Tingyu Guo
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| |
Collapse
|
7
|
Lin X, Lin L, Chang S, Xing Y, Zhang Y, Yang C. Insights into pollution characteristics and human health risks of plasticizer phthalate esters in shellfish species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172984. [PMID: 38710392 DOI: 10.1016/j.scitotenv.2024.172984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
The ubiquitous application of phthalate esters (PAEs) as plasticizers contributes to high levels of marine pollution, yet the contamination patterns of PAEs in various shellfish species remain unknown. The objective of this research is to provide the first information on the pollution characteristics of 16 PAEs in different shellfish species from the Pearl River Delta (PRD), South China, and associated health risks. Among the 16 analyzed PAEs, 13 were identified in the shellfish, with total PAE concentrations ranging from 23.07 to 3794.08 ng/g dw (mean = 514.35 ng/g dw). The PAE pollution levels in the five shellfish species were as follows: Ostreidae (mean = 1064.12 ng/g dw) > Mytilus edulis (mean = 509.88 ng/g dw) > Babylonia areolate (mean = 458.14 ng/g dw) > Mactra chinensis (mean = 378.90 ng/g dw) > Haliotis diversicolor (mean = 335.28 ng/g dw). Dimethyl phthalate (DMP, mean = 69.85 ng/g dw), diisobutyl phthalate (DIBP, mean = 41.39 ng/g dw), dibutyl phthalate (DBP, mean = 130.91 ng/g dw), and di(2-ethylhexyl) phthalate (DEHP, mean = 226.23 ng/g dw) were the most abundant congeners. Notably, DEHP constituted the most predominant fraction (43.98 %) of the 13 PAEs detected in all shellfish from the PRD. Principal component analysis indicated that industrial and domestic emissions served as main sources for the PAE pollution in shellfish from the PRD. It was estimated that the daily intake of PAEs via shellfish consumption among adults and children ranged from 0.004 to 1.27 μg/kgbw/day, without obvious non-cancer risks (< 0.034), but the cancer risks raised some alarm (2.0 × 10-9-1.4 × 10-5). These findings highlight the necessity of focusing on marine environmental pollutants and emphasize the importance of ongoing monitoring of PAE contamination in seafood.
Collapse
Affiliation(s)
- Xiaoqin Lin
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Luanxun Lin
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Shuaidan Chang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Yiqing Xing
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Yanhao Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chunxue Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China.
| |
Collapse
|
8
|
Li NY, Zhong B, Guo Y, Li XX, Yang Z, He YX. Non-negligible impact of microplastics on wetland ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171252. [PMID: 38423326 DOI: 10.1016/j.scitotenv.2024.171252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
There has been much concern about microplastic (MP) pollution in marine and soil environments, but attention is gradually shifting towards wetland ecosystems, which are a transitional zone between aquatic and terrestrial ecosystems. This paper comprehensively reviews the sources of MPs in wetland ecosystems, as well as their occurrence characteristics, factors influencing their migration, and their effects on animals, plants, microorganisms, and greenhouse gas (GHG) emissions. It was found that MPs in wetland ecosystems originate mainly from anthropogenic sources (sewage discharge, and agricultural and industrial production) and natural sources (rainfall-runoff, atmospheric deposition, and tidal effects). The most common types and forms of MPs identified in the literature were polyethylene and polypropylene, fibers, and fragments. The migration of MPs in wetlands is influenced by both non-biological factors (the physicochemical properties of MPs, sediment characteristics, and hydrodynamic conditions) and biological factors (the adsorption and growth interception by plant roots, ingestion, and animal excretion). Furthermore, once MPs enter wetland ecosystems, they can impact the resident microorganisms, animals, and plants. They also have a role in global warming because MPs act as unique exogenous carbon sources, and can also influence GHG emissions in wetland ecosystems by affecting the microbial community structure in wetland sediments and abundance of genes associated with GHG emissions. However, further investigation is needed into the influence of MP type, size, and concentration on the GHG emissions in wetlands and the underlying mechanisms. Overall, the accumulation of MPs in wetland ecosystems can have far-reaching consequences for the local ecosystem, human health, and global climate regulation. Understanding the effects of MPs on wetland ecosystems is essential for developing effective management and mitigation strategies to safeguard these valuable and vulnerable environments.
Collapse
Affiliation(s)
- Na-Ying Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Bo Zhong
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Yun Guo
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xian-Xiang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Geography and Tourism, Chongqing Normal University, Chongqing 400047, China
| | - Zao Yang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yi-Xin He
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
9
|
Zhao ML, Ji X, Zhang J, Yang GP. Spatiotemporal variation, partitioning, and ecological risk assessment of benzothiazoles, benzotriazoles, and benzotriazole UV absorbers in the Yangtze River Estuary and its adjacent area. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133337. [PMID: 38142656 DOI: 10.1016/j.jhazmat.2023.133337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
The distributions and toxicities of the pollutants benzothiazoles (BTHs), benzotriazoles (BTRs), and benzotriazole ultraviolet stabilizers (BUVs) have attracted much attention, but most research has focused on freshwater environments and few have examined their levels in marine environments. This study, for the first time, investigated the spatial and temporal variability and ecological risks of BTHs, BTRs and BUVs in the Yangtze River estuary and its adjacent area, and further elucidated how environmental factors influence the transport of these contaminants. The concentrations of BTHs, BTRs, and BUVs in seawater showed significant seasonal variability, with the highest concentrations in summer, followed by autumn, and then winter-spring. The spatiotemporal variability in BTHs, BTRs and BUVs in the seawater and sediments samples showed decreasing trends from nearshore to offshore, reflecting the influence of river discharge. Marine debris and continuous discharge from cities were responsible for the high detection frequency of these contaminants in the YRE and its adjacent area. Furthermore, the moderate risk from the presence of BTHs, BTRs, and BUVs as they accumulate in sediments should not be ignored. Our study provides new insights into the fate and ecological risk of BTHs, BTRs, and BUVs in the estuary.
Collapse
Affiliation(s)
- Ming-Liang Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xuan Ji
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jing Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China; Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China; Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
10
|
Jiang J, Li T, Wang E, Zhang Y, Han J, Tan L, Li X, Fan Y, Wu Y, Chen Q, Jin J. Polybrominated diphenyl ethers in dust, hair and urine: Exposure, excretion. CHEMOSPHERE 2024; 352:141380. [PMID: 38368958 DOI: 10.1016/j.chemosphere.2024.141380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been detected in various environmental media and human tissues. PBDEs concentrations in dust from college buildings and homes and in paired hair and urine samples from students were determined. This is of great significance to explore the accumulation and excretion patterns of PBDEs in the human body. The median PBDEs concentrations in the dust (College: 84.59 ng/g; Home: 170.32 ng/g) and hair (undergraduate: 6.16 ng/g; Home: 3.25 ng/g) samples were generally lower than were found in the majority of previous studies. The PBDEs concentrations in the hair and urine samples were subjected to principal component analysis, and the results combined with the PBDEs detection rates confirmed that hair is a useful non-invasive sampling medium for assessing PBDEs exposure and the risks posed. Body mass indices (BMIs) were used to divide students who had not been exposed to large amounts of PBDEs into groups. Body fat percentage is an important factor affecting the accumulation of PBDE in the human body. Environmental factors were found to affect the PBDEs concentrations in the hair and urine samples less for normal-weight students (BMI≤24) than overweight students (BMI>24). Short-term environmental changes to more readily affect the PBDEs concentrations in the tissues of the normal-weight than overweight students. PBDEs with seven or more bromine substituents were found not to be readily excreted in urine. Performing molecular docking simulations of the binding of isomers BDE-99 and BDE-100 to megalin. The binding energy was higher for BDE-100 and megalin than for BDE-99 and megalin, meaning BDE-99 would be more readily excreted than BDE-100.
Collapse
Affiliation(s)
- Junjie Jiang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Tianwei Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Erde Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yan Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jiali Han
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Linli Tan
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Xiang Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yuhao Fan
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Ye Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Qianhui Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Engineering Research Center of Food Environment and Public Health, Beijing, 100081, China.
| |
Collapse
|
11
|
Yuan P, Wang Y, Chen X, Gao P. An overview of microplastic pollution in the environment over the megacity of Shanghai during 2013-2022. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168986. [PMID: 38040359 DOI: 10.1016/j.scitotenv.2023.168986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Microplastics (MPs) are emerging pollutants that have been globally found in the environment, and have become a focus of intensive management for the Shanghai government in China. Although there are several studies reporting the abundance of microplastics (MPs) in different matrices in Shanghai city, the general data are still limited. This work comprehensively reviews microplastic (MP) pollution in the water, sediment, atmosphere, and soil of Shanghai during 2013-2022. A summary of characteristics such as the abundance, shape, and polymer composition of MPs is presented. Additionally, the pollution trends, traceability, and ecological risks of MPs are analyzed and evaluated. Based on the analytical results, we find that the inland water in Shanghai city is the most contaminated with the highest abundance of MPs at 14.76 × 103 particles/m3 on average, while the abundances of MPs in the external water, inland sediment, external sediment, indoor atmosphere, outdoor atmosphere, inland soil, and external soil are 2.78 × 103 particles/m3, 0.80 × 103 particles/kg, 1.37 × 103 particles/kg, 0.03 × 103 particles/m3, 0.08 × 103 particles/m3, 0.27 × 103 particles/kg, and 0.18 × 103 particles/kg, respectively. Polyethylene and polypropylene are the top two detected polymer compositions of MPs. Results of ecological risk assessment using risk index and pollution load index models indicate that the risks of MPs in the water and sediment of the Yangtze Estuary are high. It is noteworthy that the abundances of MPs at the junction site of Suzhou Creek and the Huangpu River as well as in the Yangtze Estuary exhibited an increasing trend between 2017 and 2019. This work contributes to a comprehensive overview of MPs in the environment of Shanghai city during 2013-2022 and provides important data for local governments to develop urgent strategies for the management of MP pollution. However, more investigations are increasingly needed for better understand the production, migration, ecological risk, and management of MPs in the environment of Shanghai city.
Collapse
Affiliation(s)
- Peikun Yuan
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoqian Chen
- Bioassay and Safety Assessment Laboratory, Shanghai Academy of Public Measurement, 201203 Shanghai, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
12
|
Ibrahim IA, Rawindran H, Alam MM, Leong WH, Sahrin NT, Ng HS, Chan YJ, Abdelfattah EA, Lim JW, Aliyu US, Khoo KS. Mitigating persistent organic pollutants from marine plastics through enhanced recycling: A review. ENVIRONMENTAL RESEARCH 2024; 240:117533. [DOI: 10.1016/j.envres.2023.117533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
|
13
|
Ferreira O, Barboza LGA, Rudnitskaya A, Moreirinha C, Vieira LR, Botelho MJ, Vale C, Fernandes JO, Cunha S, Guilhermino L. Microplastics in marine mussels, biological effects and human risk of intake: A case study in a multi-stressor environment. MARINE POLLUTION BULLETIN 2023; 197:115704. [PMID: 37944437 DOI: 10.1016/j.marpolbul.2023.115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
This study documented seasonal levels of microplastics (MPs) and biomarkers (condition index, neurotoxicity, energy, oxidative stress) in mussels (Mytilus galloprovincialis), and water physico-chemical parameters in the Douro estuary (NE Atlantic coast), and estimated the human risk of MP intake (HRI) through mussels. Mussel stress was determined through the Integrated Biomarker Response (IBR). HRI was estimated from mussel MP concentrations and consumer habits. MPs were mainly micro-fibres (72 %) with varied chemical composition. Seasonal MP means (±SEM) in mussels ranged from 0.111 ± 0.044 (spring) to 0.312 ± 0.092 MPs/g (summer). Seasonal variations of mussel stress (IBR: 1.4 spring to 9.7 summer) and MP concentrations were not related. MeO-BDEs, PBDEs, temperature, salinity and other factors likely contributed to mussel stress variation. HRI ranged from 2438 to 2650 MPs/year. Compared to the literature, MP contamination in mussels is low, as well as the human risk of MP intake through their consumption.
Collapse
Affiliation(s)
- Orlanda Ferreira
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health and Research Team of Contaminant Pathways and Interactions with Marine Organisms, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - L Gabriel A Barboza
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health and Research Team of Contaminant Pathways and Interactions with Marine Organisms, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| | - Alisa Rudnitskaya
- Chemistry Department and CESAM, Centre for Environmental and Marine Studies, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Catarina Moreirinha
- Chemistry Department and CESAM, Centre for Environmental and Marine Studies, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Luís R Vieira
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health and Research Team of Contaminant Pathways and Interactions with Marine Organisms, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| | - M João Botelho
- CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health and Research Team of Contaminant Pathways and Interactions with Marine Organisms, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; IPMA - IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal.
| | - Carlos Vale
- CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health and Research Team of Contaminant Pathways and Interactions with Marine Organisms, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Sara Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Lúcia Guilhermino
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health and Research Team of Contaminant Pathways and Interactions with Marine Organisms, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
14
|
Chen Y, Wang Y, Tan Y, Jiang C, Li T, Yang Y, Zhang Z. Phthalate esters in the Largest River of Asia: An exploration as indicators of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166058. [PMID: 37553051 DOI: 10.1016/j.scitotenv.2023.166058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Phthalate esters (PAEs) are the most ubiquitous and highly used plasticizers in plastic products globally, yet studies on the spatial variation, risks, and their correlation with microplastics (MPs) are limited, particularly throughout the Yangtze River (the largest river in China/Asia). Therefore, this study investigated for the first time the PAEs pollution characteristics throughout the Yangtze River sediments, studied the environmental factors linked to the distribution of PAEs, and explored their potential as chemical indicators for interpreting pollution patterns of MPs. Totally 14 out of 16 PAEs were detected in sediments, with total concentrations ranging from 84.67 ng/g to 274.0 ng/g (mean: 163.5 ng/g), dominated by Bis(2-ethylhexyl) phthalate (DEHP), Di-n-butyl phthalate (DBP), and Di-isobutyl phthalate (DIBP), with contributions of 38.9 %, 31.8 %, and 20.8 %, respectively. Spatial distribution of PAEs did not indicate significant differences, which may be related to anthropogenic activities (i.e., emission intensity), runoff, and sediment physicochemical properties (i.e., TOC and TN), with TOC and TN being potential predictors of PAEs. The quantitative relationships (p < 0.001) between DEHP/∑16PAEs ratio and MPs (both individual and total MPs) were found in sediments, which suggested that DEHP could be potentially used as an indicator for MPs. DEHP, DIBP, and DBP posed high risks, accounting for 100 %, 68.4 %, and 10.5 % of the monitoring sites, respectively. Further work is necessary to better understand the relationship between DEHP/∑16PAEs and MPs in the environment and to take corresponding management and control measures for these pollutants.
Collapse
Affiliation(s)
- Yulin Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yile Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yang Tan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chunxia Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tianyi Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
15
|
Wang H, Li C, Yan G, Zhang Y, Wang H, Dong W, Chu Z, Chang Y, Ling Y. Seasonal distribution characteristics and ecological risk assessment of phthalate esters in surface sediment of Songhua River basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122567. [PMID: 37717898 DOI: 10.1016/j.envpol.2023.122567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Phthalic acid esters (PAEs) are typical industrial chemicals used in China. PAEs have received considerable attention because of their ubiquity and potential hazard to humans and the ecology. The spatiotemporal distributions of six PAEs in the surface sediments of the Songhua River in the spring (March), summer (July), and autumn (September) are investigated in this study. The total concentration of phthalic acid esters (∑6PAEs) ranges from 1.62 × 102 ng g-1 dry weight (dw) to 3.63 × 104 ng g-1·dw, where the amount in the spring is substantially higher (p < 0.01) than those in the autumn and summer. Seasonal variations in PAEs may be due to rainfall and temperature. The ∑6PAEs in the Songhua River's upper reaches are significantly higher than those in the middle and lower reaches (p < 0.05). Dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) are the two most abundant PAEs. The ecological hazard of five PAEs is assessed using the hazard quotient method. DBP and DEHP pose moderate or high ecological risks to aquatic organisms at various trophic levels. PAEs originate primarily from industrial, agricultural, and domestic sources. Absolute principal components-multiple linear regression results indicate that agricultural sources are the most dominant contributor to the ∑6PAEs (53.7%). Guidelines for controlling PAEs pollution in the Songhua River are proposed.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Congyu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Yanjie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Weiyang Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Zhaosheng Chu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Yu Ling
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| |
Collapse
|
16
|
Wu N, Xiang W, Zhu F, Huo Z, Wang Z, Qu R. Oxidative degradation and possible interactions of coexisting decabromodiphenyl ether (BDE-209) on polystyrene microplastics in UV/chlorine process. WATER RESEARCH 2023; 245:120560. [PMID: 37688852 DOI: 10.1016/j.watres.2023.120560] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
This work was to investigate the transformation of coexisting decabromodiphenyl ether (BDE-209) on microplastics and their possible interactions in UV/chlorine process. Compared with pristine microplastics, the highly aged polystyrene (PS) showed an inhibitory effect on degradation of BDE-209. Increasing initial concentration of BDE-209 on PS inhibited degradation, while the chlorine concentration and pH did not affect the final degradation efficiency. Moreover, the presence of NO3-, SO42-, HCO3- and HA in water was unfavorable for BDE-209 degradation. According to the experimental and calculation results, the contribution to the degradation of BDE-209 was ranked as direct photolysis > HO• > •Cl in the UV/ chlorine system. Chlorination products released by PS during UV/chlorination were detected. Four possible reaction pathways of BDE-209 were proposed, which mainly involved debromination, hydroxylation, chlorine substitution, cleavage of ether bond, and intramolecular elimination of HBr. It was worth noting that PS microplastics not only inhibited the degradation of BDE-209, but also affected the type and abundance of its transformation products. Meanwhile, interaction products of PS and BDE-209 were determined, which was attributed to reactions of PS-derived radicals with •Br/•C6Br5 and •Cl. Results of toxicity evaluation showed that the introduction of carbon-halogen bonds, especially C-Br bond, increased the toxicity of chain scission products of PS. This work provides some new insights into transformation, interaction, and associated ecological risks of coexisting microplastics and surface adsorbed contaminants in the UV/chlorine process of drinking water treatment plants (DWTPs) and wastewater treatment plants (WWTPs).
Collapse
Affiliation(s)
- Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Wenrui Xiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, NO.172 Jiangsu Road, Jiangsu Nanjing 210023, China
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, NO.172 Jiangsu Road, Jiangsu Nanjing 210023, China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
17
|
Wang Y, Sun Y, Gao M, Xin Y, Zhang G, Xu P, Ma D. Degradation of dimethyl phthalate by morphology controlled β-MnO 2 activated peroxymonosulfate: The overlooked roles of high-valent manganese species. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132199. [PMID: 37541123 DOI: 10.1016/j.jhazmat.2023.132199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Activated peroxymonosulfate (PMS) processes have emerged as an efficient advanced oxidation process to eliminate refractory organic pollutants in water. This study synthesized a novel spherical manganese oxide catalyst (0.4KBr-β-MnO2) via a simple KBr-guided approach to activate PMS for degrading dimethyl phthalate (DMP). The 0.4KBr-β-MnO2/PMS system enhanced DMP degradation under different water quality conditions, exhibiting an ultrahigh and stable catalytic activity, outperforming equivalent quantities of pristine β-MnO2 by 8.5 times. Mn(V) was the dominant reactive species that was revealed by the generation of methyl phenyl sulfone from methyl phenyl sulfoxide oxidation. The selectivity of Mn(V) was demonstrated by the negligible inhibitory effects of Inorganic anions. Theoretical calculations confirmed that Mn (V) was more prone to attack the CO bond of the side chain of DMP. This study revealed the indispensable roles of high-valent manganese species in DMP degradation by the 0.4KBr-β-MnO2/PMS system. The findings could provide insight into effective PMS activation by Mn-based catalysts to efficiently degrade pollutants in water via the high-valent manganese species.
Collapse
Affiliation(s)
- Yanhao Wang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yunlong Sun
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Yanjun Xin
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dong Ma
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
18
|
Carr B, Masqué P, Alonso-Hernández CM, Huertas D, Bersuder P, Tolosa I. Trends of legacy and emerging organic contaminants in a sediment core from Cienfuegos Bay, Cuba, from 1990 to 2015. CHEMOSPHERE 2023; 328:138571. [PMID: 37019402 DOI: 10.1016/j.chemosphere.2023.138571] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Legacy and emerging organic pollutants pose an ever-expanding challenge for the marine environment. This study analysed a dated sediment core from Cienfuegos Bay, Cuba, to assess the occurrence of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), alternative halogenated flame retardants (aHFRs), organophosphate esters (OPEs), and phthalates (PAEs) from 1990 to 2015. The results evidence the continuing presence of historical regulated contaminants (PCBs, OCPs, and PBDEs) in the southern basin of Cienfuegos Bay. PCB contamination declined since 2007, likely in response to the gradual global phasing out of PCB containing materials. There have been relatively consistent low accumulation rates for OCPs and PBDEs at this location (in 2015 approximately 1.9 and 0.26ng/cm2/year, respectively, with 2.8ng/cm2/year for Σ6PCBs), with indications of recent local DDT use in response to public health emergencies. In contrast, sharp increases are observed between 2012 and 2015 for the contaminants of emerging concern (PAEs, OPEs, and aHFRs), and in the case of two PAEs (DEHP and DnBP) the concentrations were above the established environmental effect limits for sediment dwelling organisms. These increasing trends reflect the growing global usage of both alternative flame retardants and plasticizer additives. Local drivers for these trends include nearby industrial sources such as a plastic recycling plant, multiple urban waste outfalls, and a cement factory. The limited capacity for solid waste management may also contribute to the high concentrations of emerging contaminants, especially plastic additives. For the most recent year (2015), the accumulation rates for Σ17aHFRs, Σ19PAEs, and Σ17OPEs into sediment at this location were estimated to be 10, 46 000, and 750ng/cm2/year, respectively. This data provides an initial survey of emerging organic contaminants within this understudied region of the world. The increasing temporal trends observed for aHFRs, OPEs, and PAEs highlights the need for further research concerning the rapid influx of these emerging contaminants.
Collapse
Affiliation(s)
- Brigid Carr
- IAEA Marine Environmental Laboratories, 4 Quai Antoine 1er, 98000, Monaco.
| | - Pere Masqué
- IAEA Marine Environmental Laboratories, 4 Quai Antoine 1er, 98000, Monaco
| | | | - David Huertas
- IAEA Marine Environmental Laboratories, 4 Quai Antoine 1er, 98000, Monaco
| | - Philippe Bersuder
- IAEA Marine Environmental Laboratories, 4 Quai Antoine 1er, 98000, Monaco
| | - Imma Tolosa
- IAEA Marine Environmental Laboratories, 4 Quai Antoine 1er, 98000, Monaco.
| |
Collapse
|
19
|
Zhao H, Federigi I, Verani M, Carducci A. Organic Pollutants Associated with Plastic Debris in Marine Environment: A Systematic Review of Analytical Methods, Occurrence, and Characteristics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4892. [PMID: 36981806 PMCID: PMC10048819 DOI: 10.3390/ijerph20064892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Plastic pollution has become one of the most serious environmental problems, and microplastics (MPs, particles < 5 mm size) may behave as a vehicle of organic pollutants, causing detrimental effects to the environment. Studies on MP-sorbed organic pollutants lack methodological standardization, resulting in a low comparability and replicability. In this work, we reviewed 40 field studies of MP-sorbed organic contaminants using PRISMA guidelines for acquiring information on sampling and analytical protocols. The papers were also scored for their reliability on the basis of 7 criteria, from 0 (minimum) to 21 (maximum). Our results showed a great heterogeneity of the methods used for the sample collection, MPs extraction, and instruments for chemicals' identification. Measures for cross-contamination control during MPs analysis were strictly applied only in 13% of the studies, indicating a need for quality control in MPs-related research. The most frequently detected MP-sorbed chemicals were polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs). Most of the studies showed a good reliability (>75% of the total score), with 32 papers scoring 16 or higher. On the basis of the collected information, a standardizable protocol for the detection of MPs and MP-sorbed chemicals has been suggested for improving the reliability of MPs monitoring studies.
Collapse
|
20
|
Yin L, Wu N, Qu R, Zhu F, Ajarem JS, Allam AA, Wang Z, Huo Z. Insight into the photodegradation and universal interactive products of 2,2',4,4'-tetrabromodiphenyl ether on three microplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130475. [PMID: 36455331 DOI: 10.1016/j.jhazmat.2022.130475] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The transformation process of contaminants on microplastics (MPs) exposed to sunlight has attracted increasing attention. However, the interactions between them are typically disregarded; therefore, this work investigated the photodegradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on three MPs (polystyrene (PS), polypropylene (PP) and polyethylene (PE)) and the interactions between these two. The inhibition of aged PS on the elimination of BDE-47 was due to light shielding, while aged PP and PE increased the degradation rate. More hydroxyl radicals (HO•) was detected in the PS system, which resulted in the higher degradation rate of BDE-47 on PS. A total of 33 different products were identified and four reaction pathways were presented, and the reaction mechanisms mainly included debromination, hydroxylation, carbon-oxygen-bond breaking and interactive reactions. The Ecological Structure Activity Relationship (ECOSAR) and Toxicity Estimation Software Tool (TEST) programs were used to evaluate the toxicity of reaction products, and the results indicated that even though BDE-47 was the most toxic, the interaction products were still toxic or harmful to aquatic organisms. This study provides significant information on the photodegradation of contaminants on common microplastics and their interaction, which cannot be ignored.
Collapse
Affiliation(s)
- Linning Yin
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210009, PR China
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210009, PR China.
| |
Collapse
|
21
|
Silori R, Shrivastava V, Mazumder P, Mootapally C, Pandey A, Kumar M. Understanding the underestimated: Occurrence, distribution, and interactions of microplastics in the sediment and soil of China, India, and Japan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:120978. [PMID: 36586556 DOI: 10.1016/j.envpol.2022.120978] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are non-biodegradable substances that can sustain our environment for up to a century. What is more worrying is the incapability of modern technologies to annihilate MPs from om environment. One ramification of MPs is their impact on every kind of life form on this planet, which has been discussed ahead; that is why these substances are surfacing in everyday discussions of scholars and researchers. This paper discusses the overview of the global occurrence, abundance, analysis, and remediation techniques of MPs in the environment. This paper primarily reviews the event and abundance of MPs in coastal sediments and agricultural soil of three major Asian countries, India, China, and Japan. A significant concentration of MPs has been recorded from these countries, which affirms its strong presence and subsequent environmental impacts. Concentrations such as 73,100 MPs/kg in Indian coastal sediments and 42,960 particles/kg in the agricultural soil of China is a solid testimony to prove their massive outbreak in our environment and require urgent attention towards this issue. Conclusions show that human activities, rivers, and plastic mulching on agricultural fields have majorly acted as carriers of MPs towards coastal and terrestrial soil and sediments. Later, based on recorded concentrations and gaps, future research studies are recommended in the concerned domain; a dearth of studies on MPs influencing Indian agricultural soil make a whole sector and its consumer vulnerable to the adverse effects of this emerging contaminant.
Collapse
Affiliation(s)
- Rahul Silori
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Vikalp Shrivastava
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Payal Mazumder
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Chandrashekar Mootapally
- School of Applied Sciences & Technology (SAST), Gujarat Technological University (GTU), Ahmedabad, Gujarat, India
| | - Ashok Pandey
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Manish Kumar
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico.
| |
Collapse
|
22
|
Liu C, Fu L, Du H, Sun Y, Wu Y, Li C, Tong J, Liang S. Distribution, Source Apportionment and Risk Assessment of Phthalate Esters in the Overlying Water of Baiyang Lake, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2918. [PMID: 36833614 PMCID: PMC9957158 DOI: 10.3390/ijerph20042918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
As a kind of endocrine disruptor compounds, the presence of phthalate esters (PAEs) has become a global concern. In this study, the pollution levels and spatial distribution of sixteen PAEs were investigated. Their potential sources and eco-environmental health risk were discussed in Baiyang Lake and its upstream rivers during different periods. PAEs were detected in all of samples, ranging from 1215 to 3014 ng·L-1 in October 2020 and 1384 to 3399 ng·L-1 in May 2021. Dibutyl phthalate (DBP) and di-isobutyl phthalate (DIBP) were the predominant monomers, with a detection rate of 100% and the highest concentrations in the overlying water. Restricted by multiple factors, the spatial distribution difference between Baiyang Lake and its upstream rivers in October was more significant than in May. The source apportionment revealed that agricultural cultivation and disorderly use and disposal of plastic products were the primary factors for the contamination. The human health risk assessment indicated that eight PAE congeners did not pose significant carcinogenic and non-carcinogenic harms to males, females and children. However, the ecological risks of DBP, DIBP and di (2-ethylhexyl) phthalate to algae, crustaceans and fish species were moderate or high-risk levels. This study provides an appropriate dataset for the assessment of the pollution of PEs to the water ecosystem affected by anthropogenic activities.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Hebei Provincial Analytical Science and Technology, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Liguo Fu
- Key Laboratory of Hebei Provincial Analytical Science and Technology, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Hui Du
- Key Laboratory of Hebei Provincial Analytical Science and Technology, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Yaxue Sun
- Key Laboratory of Hebei Provincial Analytical Science and Technology, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Yihong Wu
- Hebei Provincial Academy of Ecological Environmental Science, Shijiazhuang 050037, China
| | - Cheng Li
- Hebei Provincial Academy of Ecological Environmental Science, Shijiazhuang 050037, China
| | - Jikun Tong
- Baiyangdian Watershed Ecological Environmental Monitoring Center, Baoding 071051, China
| | - Shuxuan Liang
- Key Laboratory of Hebei Provincial Analytical Science and Technology, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
23
|
Al Nahian S, Rakib MRJ, Kumar R, Haider SMB, Sharma P, Idris AM. Distribution, characteristics, and risk assessments analysis of microplastics in shore sediments and surface water of Moheshkhali channel of Bay of Bengal, Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158892. [PMID: 36411599 DOI: 10.1016/j.scitotenv.2022.158892] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Microplastic pollution in various ecosystems has gained significant attention across the globe. Due to ubiquitous abundance, terrestrial and aquatic ecosystems at regional scales are polluted via uncontrolled anthropogenic actions. Therefore, this study investigates microplastic pollution and distribution in sediments and surface water of the Moheshkhali channel of Bangladesh, Bay of Bengal, along with their shape, size, color, and polymeric analysis. It has been observed that both sediments and surface water are significantly contaminated with microplastics at 14 sediments and 12 surface water sampling sites. 291 particles of microplastic were observed in two quadrants, separated 10-m away from each other, across 14 sediment sampling sites, with average concentrations registered in the range of 6.66 to 138.33 particles/m2. At the same time, 163 particles were observed across 12 sampling sites in the surface water, ranging from 0 to ~0.1 particles/m3. Various shapes, like films, fragments, fiber/lines, foams, and pellets (resins), were observed extensively in the Moheshkhali channel. Besides, various risk assessments, like contamination factors, polymeric risk assessment, pollution risk index, and pollution load index, were analyzed for each sampling site across the channel. Pollution load index (PLI) of shore sediments and surface water were 2.51 and 1.67, respectively, indicating significant pollution in the Moheshkhali channel. This research investigation provides insight into anthropogenic activities and baseline microplastic pollution in the Moheshkhali channel of Bangladesh, which helps to prepare robust strategies for conservation and management to deal with such environmental issues.
Collapse
Affiliation(s)
- Sultan Al Nahian
- Bangladesh Oceanographic Research Institute, Ramu, Cox's Bazar, Bangladesh.
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh.
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, Bihar, India
| | | | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, Bihar, India
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 61431 Abha, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
24
|
Qian B, Zheng ZX, Yang L, Wang CQ, Lin YC, Lin ZN. Prenatal exposure to phthalates and polybrominated diphenyl ethers on neonatal health: A birth cohort study in Guangxi, China. ENVIRONMENTAL RESEARCH 2023; 216:114571. [PMID: 36243047 DOI: 10.1016/j.envres.2022.114571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Few epidemiological studies have focused on prenatal phthalates (PAEs) and polybrominated diphenyl ethers (PBDEs) exposure to neonatal health in China. This study aimed to assess the associations between prenatal PAEs and PBDEs exposure and neonatal health in Guangxi, a Zhuang autonomous region of China. Concentrations of 4 PAEs metabolites (mPAEs) and 5 PBDEs congeners were measured in the serum of 267 healthy pregnant women. Birth outcomes and clinical data of neonates were collected after delivery. Mono-(2-Ethylhexyl) phthalate (MEHP) (81.52%) and BDE47 (35.21%) were the mPAEs and PBDEs congeners with the highest detection rate in serum. Prenatal exposures to mono-n-butyl phthalate (MBP), MEHP, and ΣmPAEs were negatively associated with birth weight (BW), birth length (BL), and gestational age (GA). Higher exposures to MBP, MEHP, and ΣmPAEs were associated with an increased odds ratio (OR) for low birth weight (LBW), but exposure to BDE28 exhibited the opposite effect. Moreover, higher exposures to MBP, MEHP, ΣmPAEs, BDE99, and ΣPBDEswere associated with an increased OR for premature birth (PTB) (P < 0.05). In contrast to MBP exposure, BDE28 exposure was associated with a higher OR for neonatal jaundice (NNJ) (P < 0.05). The interaction analysis showed a positive interaction between monoethyl phthalate (MEP) and BDE28 on the risk of NNJ and positive interaction between ΣmPAEs and BDE47 on the risk of NNJ. In addition, there are ethnicity-specific associations of prenatal PBDEs exposure with neonatal health in individuals of Zhuang and Han nationalities, and boy neonates were more sensitive to prenatal PBDEs exposure than girl neonates. The results revealed that prenatal exposure to mPAEs and PBDEs might have adverse effects on neonatal development, and the effects might be ethnicity- and sex-specific.
Collapse
Affiliation(s)
- Bo Qian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; Department of Occupational and Environmental Health, Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Zhao-Xuan Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lei Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Cheng-Qiang Wang
- Department of Occupational and Environmental Health, Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Yu-Chun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Zhong-Ning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
25
|
Hung CM, Huang CP, Hsieh SL, Chen YT, Chen CW, Dong CD. The remediation of di-(2-ethylhexyl) phthalate-contaminated sediments by water hyacinth biochar activation of calcium peroxide and its effect on cytotoxicity. ENVIRONMENTAL RESEARCH 2023; 216:114656. [PMID: 36341791 DOI: 10.1016/j.envres.2022.114656] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The presence of di-(2-ethylhexyl) phthalate (DEHP) in the aquatic systems, specifically marine sediments has attracted considerable attention worldwide, as it enters the food chain and adversely affects the aquatic environment and subsequently human health. This study reports an efficient carbocatalytic activation of calcium peroxide (CP) using water hyacinth biochar (WHBC) toward the efficient remediation of DEHP-contaminated sediments and offer insights into biochar-mediated cellular cytotoxicity, using a combination of chemical and bioanalytical methods. The pyrolysis temperature (300-900 °C) for WHBC preparation significantly controlled catalytic capacity. Under the experimental conditions studied, the carbocatalyst exhibited 94% of DEHP removal. Singlet oxygen (1O2), the major active species in the WHBC/CP system and electron-rich carbonyl functional groups of carbocatalyst, played crucial roles in the non-radical activation of CP. Furthermore, cellular toxicity evaluation indicated lower cytotoxicity in hepatocarcinoma cells (HepG2) after exposure to WHBC (25-1000 μg mL-1) for 24 h and that WHBC induced cell cycle arrest at the G2/M phase. Findings clearly indicated the feasibility of the WHBC/CP process for the restoration of contaminated sediment and contributing to understanding the mechanisms of cytotoxic effects and apoptotic of carbocatalyst on HepG2.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
26
|
Xiang X, Dong K, Li Z. Vector effect of polystyrene film microplastic in enriching Sudan III from natural particles and its burst release into simulated digestive fluid containing fatty acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:91155-91164. [PMID: 35881288 DOI: 10.1007/s11356-022-22218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) have aroused tremendous attentions because of their ability in accumulating contaminants from adjacent environment. However, their capability of concentrating hydrophobic organic contaminants might be influenced by huge amounts of coexisting natural particles (NaPs). Yet, our knowledge about the relative concentrating capability of MPs versus NaPs is still rare. Herein, the distribution behavior of several hydrophobic pollutants was studied in simplified MPs/NaPs/pollutant/water quaternary systems. We found that 1-(4-(phenylzao)phenyl)azo-2-naphthol (Sudan III) had similar distribution behavior with many hydrophobic pollutants and thus was used as a model pollutant. Polyethylene (PE) film debris derived from disposable plastic wrap was the most efficient microplastic which concentrated tens of times Sudan III than coexisting NaPs including bentonite, kaolin, sawdust, and diatomite. An enrichment coefficient of over 1000 times was observed in the case of PE film debris versus quartz sand. The concentrating capability of PE film MPs was found approximately equal to biochar particles. MPs seem to have limited contribution on the long distance transportation of hydrophobic organic pollutants. However, notably, over 70% of the adsorbed Sudan III could be released back into water within 0.5 h in the presence of 0.5% sodium oleate, which is a common amphipathic matter forming micelles in digestive fluid. Microplastics might play an important vector-like role in increasing the biological accumulation of hydrophobic pollutants via intestine digestive absorption. Due to much bigger quantity of NaPs, the relative concentrating effect of MPs to hydrophobic organic pollutants over NaPs is possibly a more reasonable reference when considering their potential ecological risk.
Collapse
Affiliation(s)
- Xiangmei Xiang
- School of Environment, Jinan University, Guangzhou, 510632, China
| | - Kangyu Dong
- School of Environment, Jinan University, Guangzhou, 510632, China
| | - Zhanjun Li
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
27
|
Jin M, Zhang S, Ye N, Zhou S, Xu Z. Distribution and source of and health risks associated with polybrominated diphenyl ethers in dust generated by public transportation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119700. [PMID: 35780998 DOI: 10.1016/j.envpol.2022.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Carcinogenic and neurotoxic polybrominated diphenyl ethers (PBDEs) are environmentally ubiquitous and have been widely investigated. However, little is understood regarding their pollution status, sources, and potential risk to persons in public transportation microenvironments (PTMs). We collected 60 dust samples from PTMs and then selected four materials typical of bus interiors to determine the sources of PBDEs in dust using principal component analysis coupled with Mantel tests. We then evaluated the risk of PBDEs to public health using Monte Carlo simulations. We found that PBDE concentrations in dust were 2-fold higher in buses than at bus stops and that brominated diphenyl ether (BDE)-209 was the main pollutant. The number of buses that passed through a bust stop contributed to the extent of PBDE pollution, and the primary potential sources of PBDEs in dust were plastic handles and curtains inside buses; BDE-209 and BDE-154 were the main contributors of pollution. We found that health risk was 8-fold higher in toddlers than in adults and that the reference doses of PBDEs in dust were far below the United States Environmental Protection Agency limits. Our findings provide a scientific basis that may aid in preventing PBDE pollution and guiding related pollution management strategies in PTMs.
Collapse
Affiliation(s)
- Mantong Jin
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Shunfei Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Nanxi Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shanshan Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ziyu Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
28
|
Palacio-Cortés AM, Horton AA, Newbold L, Spurgeon D, Lahive E, Pereira MG, Grassi MT, Moura MO, Disner GR, Cestari MM, Gweon HS, Navarro-Silva MA. Accumulation of nylon microplastics and polybrominated diphenyl ethers and effects on gut microbial community of Chironomus sancticaroli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155089. [PMID: 35398126 DOI: 10.1016/j.scitotenv.2022.155089] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MP) are emerging contaminants with the capacity to bind and transport hydrophobic organic compounds of environmental concern, such as polybrominated diphenyl ethers (PBDEs). The aim of this study was to investigate the ingestion of nylon (polyamide) MP alone and when associated with PBDEs and their effects on Chironomus sancticaroli larvae survival and microbiome structure. Survival, PBDE uptake and microbial community composition were measured in fourth instar larvae exposed for 96 h to BDEs- 47, 99, 100 and 153 in the presence and absence of 1% w/w MP in sediment. Microbiome community structures were determined through high throughput sequencing of 16S small subunit ribosomal RNA gene (16S rRNA). Initial experiments showed that larvae ingested MP faster at 0.5% w/w MP, while depuration was more efficient at 1% w/w MP, although retention of MP was seen even after 168 h depuration. No mortality was observed as a result of PBDEs and MP exposure. MP had a negative effect on PBDE concentration within larvae (η2 = 0.94) and a negative effect on sediment concentrations (η2 = 0.48). In all samples, microbial communities were dominated by Alphaproteobacteria, Betaproteobacteria, Actinobacteria and Gammaproteobacteria. Bacterial alpha diversity was not significantly affected by PBDEs or MP exposure. However, the abundance of discrete bacterial taxa was more sensitive to MP (X2 = 45.81, p = 0.02), and PBDE exposure. Our results highlight that C. sancticaroli showed no acute response to MPs and PBDEs, but that MPs influenced bacterial microbiome structure even after only short-term acute exposure.
Collapse
Affiliation(s)
| | - Alice A Horton
- UK Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK; National Oceanography Centre, European Way, Southampton SO14 3ZH, UK.
| | - Lindsay Newbold
- UK Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK.
| | - David Spurgeon
- UK Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK.
| | - Elma Lahive
- UK Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK.
| | | | - Marco Tadeu Grassi
- Chemistry Department, Federal University of Paraná, CP 19032, CEP 81531-990 Curitiba, PR, Brazil.
| | - Mauricio Osvaldo Moura
- Zoology Department, Federal University of Paraná, CP 19020, CEP 81531-980 Curitiba, PR, Brazil.
| | - Geonildo Rodrigo Disner
- Genetic Department, Federal University of Paraná, CP 19031, CEP 81531-980 Curitiba, PR, Brazil
| | - Marta Margaret Cestari
- Genetic Department, Federal University of Paraná, CP 19031, CEP 81531-980 Curitiba, PR, Brazil.
| | - Hyun S Gweon
- School of Biological Sciences, University of Reading, Reading RG6 6UR, UK.
| | | |
Collapse
|
29
|
Xia E, Yang T, Zhu X, Jia Q, Liu J, Huang W, Ni J, Tang H. Facile and Selective Determination of Total Phthalic Acid Esters Level in Soft Drinks by Molecular Fluorescence Based on Petroleum Ether Microextraction and Selective Derivation by H2SO4. Molecules 2022; 27:molecules27134157. [PMID: 35807403 PMCID: PMC9268297 DOI: 10.3390/molecules27134157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Determining the level of phthalic acid esters (PAEs) in packaged carbonated beverages is a current need to ensure food safety. High-selectivity and -accuracy identification of individual PAEs can be achieved by chromatographic and mass spectrometric (MS) techniques. However, these methods are slow; involve complicated, expensive instruments in professional laboratories; and consume a large amount of organic solvents. As such, a food analysis method is needed to conveniently and rapidly evaluate multiple contaminants on site. In this study, with the assistance of ultrasound, we quickly determined the total PAEs in soft drinks using 1.5 mL of petroleum ether in one step. Then, we determined the characteristic molecular fluorescence spectrum of all PAEs in samples (excitation (Ex)/emission (Em) at 218/351 nm) using selectively concentrated sulfuric acid derivatization. The relative standard deviations of the fluorescent intensities of mixed solutions with five different PAEs were lower than 7.1% at three concentration levels. The limit of detection of the proposed method is 0.10 μmol L−1, which matches that of some of the chromatographic methods, but the proposed method uses less organic solvent and cheaper instruments. These microextraction devices and the fluorescence spectrometer are portable and provide an instant result, which shows promise for the evaluation of the total level of PAEs in beverages on site. The proposed method successfully detected the total level of PAEs in 38 kinds of soft drink samples from local supermarkets, indicating its potential for applications in the packaged beverage industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jindong Ni
- Correspondence: (H.T.); (J.N.); Tel.: +86-769-22896569 (H.T.); +86-769-22896572 (J.N.)
| | - Huanwen Tang
- Correspondence: (H.T.); (J.N.); Tel.: +86-769-22896569 (H.T.); +86-769-22896572 (J.N.)
| |
Collapse
|
30
|
|
31
|
Deng H, Su L, Zheng Y, Du F, Liu QX, Zheng J, Zhou Z, Shi H. Crack Patterns of Environmental Plastic Fragments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6399-6414. [PMID: 35510873 DOI: 10.1021/acs.est.1c08100] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Secondary microplastics usually come from the breakdown of larger plastics due to weathering and environmental stress cracking of plastic wastes. In the present study, 5013 plastic fragments were collected from coastal beaches, estuary dikes, and lake banks in China. The fragment sizes ranged from 0.2 to 17.1 cm, and the dominant polymers were polypropylene and polyethylene. Cracks were observed on the surfaces of 49-56% of the fragments. Based on the extracted crack images, we proposed a general crack pattern system including four crack types with specific definitions, abbreviations, and symbols. The two-dimensional spectral analysis of the cracks suggests that the first three patterns showed good regularity and supported the rationality of the pattern system. Some crack metrics (e.g., line density) were closely correlated with the carbonyl index and additives (e.g., phthalate esters) of fragments. For crack investigation in field, we proposed a succinct protocol, in which five crack ranks were established to directly characterize the degree of cracking based on the line density values. The system was successfully applied to distinguish the differences in crack features at two representative sites, which indicates that crack pattern is a useful tool to describe the morphological changes of plastic surfaces in the environment.
Collapse
Affiliation(s)
- Hua Deng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Lei Su
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yifan Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Fangni Du
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Quan-Xing Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jia Zheng
- Shimadzu China Co. Ltd., Shanghai 200233, China
| | - Zhiwei Zhou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
32
|
Turner A. PBDEs in the marine environment: Sources, pathways and the role of microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118943. [PMID: 35150801 DOI: 10.1016/j.envpol.2022.118943] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Brominated flame retardants (BFRs) are an important group of additives in plastics that increase resistance to ignition and slow down the rate of burning. Because of concerns about their environmental and human health impacts, however, some of the most widely employed BFRs, including hexabromocyclododecane (HBCD) and commercial mixtures of penta-, octa- and deca- (poly)bromodiphenyl ethers (PBDEs), have been restricted or phased out. In this review, the oceanic sources and pathways of PBDEs, the most widely used BFRs, are evaluated and quantified, with particular focus on emissions due to migration from plastics into the atmosphere versus emissions associated with the input of retarded or contaminated plastics themselves. Calculations based on available measurements of PBDEs in the environment suggest that 3.5 and 135 tonnes of PBDEs are annually deposited in the ocean when scavenged by aerosols and through air-water gas exchange, respectively, with rivers contributing a further ∼40 tonnes. Calculations based on PBDE migration from plastic products in use or awaiting or undergoing disposal yield similar net inputs to the ocean but indicate a relatively rapid decline over the next two decades in association with the reduction in the production and recycling of these chemicals. Estimates associated with the input of PBDEs to the ocean when "bound" to marine plastics and microplastics range from about 360 to 950 tonnes per year based on the annual production of plastics and PBDEs over the past decade, and from about 20 to 50 tonnes per annum based on the abundance and distribution of PBDEs in marine plastic litter. Because of the persistence and pervasiveness of plastics in the ocean and diffusion coefficients for PBDEs on the order of 10-20 to 10-27 m2 s-1, microplastics are likely to act as a long-term source of these chemicals though gradual migration. Locally, however, and more important from an ecotoxicological perspective, PBDE migration may be significantly enhanced when physically and chemically weathered microplastics are exposed to the oily digestive fluids conditions of fish and seabirds.
Collapse
Affiliation(s)
- Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| |
Collapse
|
33
|
Zhao T, Tang X, Li D, Zhao J, Zhou R, Shu F, Jia W, Fu W, Xia H, Liu G. Prenatal exposure to environmentally relevant levels of PBDE-99 leads to testicular dysgenesis with steroidogenesis disorders. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127547. [PMID: 34879533 DOI: 10.1016/j.jhazmat.2021.127547] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a widely used class of brominated flame retardants. Exposure to PBDEs could induce testicular damage in mammals, but the effects and potential mechanism of action of prenatal exposure to environmentally relevant PBDEs on testicular development remain unclear. For the in vivo study, pregnant ICR mice were exposed to environmentally relevant levels of 2,2',4,4',5-pentabromodiphenyl ether (PBDE-99), a major component of commercial PBDE mixtures. We found that the anogenital index and testicular organ coefficient were significantly decreased, the incidence of cryptorchidism was increased, and testicular histology was disturbed in male offspring. Transcriptomic profiling showed that steroidogenesis disorders were significant in all PBDE-99 exposure groups. The testosterone levels, expressions of testosterone regulators, and the number of CYP11A1-positive and 11β-HSD1-positive Leydig cells were significantly decreased after PBDE-99 exposure. For the in vitro study, TM3 Leydig cells were exposed to PBDE-99 at gradient concentrations. Transcriptomic profiling and validation experiments showed that PBDE-99 upregulated reactive oxygen species, activated the ERK1/2 pathway, inhibited the ubiquitination degradation pathway, and finally induced Leydig cell apoptosis. Cumulatively, these findings revealed that prenatal exposure to environmentally relevant levels of PBDE-99 leads to steroidogenesis disorders by inducing the apoptosis of Leydig cells, causing testicular dysgenesis.
Collapse
Affiliation(s)
- Tianxin Zhao
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiangliang Tang
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dian Li
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinglu Zhao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Rui Zhou
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fangpeng Shu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wen Fu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guochang Liu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
34
|
Wang H, Yu P, Schwarz C, Zhang B, Huo L, Shi B, Alvarez PJJ. Phthalate Esters Released from Plastics Promote Biofilm Formation and Chlorine Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1081-1090. [PMID: 34991317 DOI: 10.1021/acs.est.1c04857] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phthalate esters (PAEs) are commonly released from plastic pipes in some water distribution systems. Here, we show that exposure to a low concentration (1-10 μg/L) of three PAEs (dimethyl phthalate (DMP), di-n-hexyl phthalate (DnHP), and di-(2-ethylhexyl) phthalate (DEHP)) promotes Pseudomonas biofilm formation and resistance to free chlorine. At PAE concentrations ranging from 1 to 5 μg/L, genes coding for quorum sensing, extracellular polymeric substances excretion, and oxidative stress resistance were upregulated by 2.7- to 16.8-fold, 2.1- to 18.9-fold, and 1.6- to 9.9-fold, respectively. Accordingly, more biofilm matrix was produced and the polysaccharide and eDNA contents increased by 30.3-82.3 and 10.3-39.3%, respectively, relative to the unexposed controls. Confocal laser scanning microscopy showed that PAE exposure stimulated biofilm densification (volumetric fraction increased from 27.1 to 38.0-50.6%), which would hinder disinfectant diffusion. Biofilm densification was verified by atomic force microscopy, which measured an increase of elastic modulus by 2.0- to 3.2-fold. PAE exposure also stimulated the antioxidative system, with cell-normalized superoxide dismutase, catalase, and glutathione activities increasing by 1.8- to 3.0-fold, 1.0- to 2.0-fold, and 1.2- to 1.6-fold, respectively. This likely protected cells against oxidative damage by chlorine. Overall, we demonstrate that biofilm exposure to environmentally relevant levels of PAEs can upregulate molecular processes and physiologic changes that promote biofilm densification and antioxidative system expression, which enhance biofilm resistance to disinfectants.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, United States
| | - Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, United States
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lixin Huo
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, United States
| |
Collapse
|
35
|
Kong X, Bai Z, Jin T, Jin D, Pan J, Yu X, Cernava T. Arthrobacter is a universal responder to di-n-butyl phthalate (DBP) contamination in soils from various geographical locations. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126914. [PMID: 34419851 DOI: 10.1016/j.jhazmat.2021.126914] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Plasticizer phthalic acid esters (PAEs) are commonly found as contaminants in various soils. Previous studies indicated that their natural degradation can substantially differ among soil types; however, potential implications of the soil microbiome remained largely unexplored. Here, we have collected ten soil types from nine different geographical regions of China to investigate the degradation of DBP therein and role of bacteria in this process. Results showed that the degradation rate of DBP was lowest in nutrient-poor red soils from Jiangxi Province, while it was highest in fluvo-aquatic soil from Hebei Province. Bacterial community responses to DBP substantially differed in each of the analyzed soils. Arthrobacter is known for its broad-spectrum activity in terms of DBP degradation in soil and was therefore implemented as bioremediating inoculant in many polluted environments. In the present study, network analyses indicated that synergism between soil bacteria increased following exposure to DBP. Arthrobacter and Sphingomonas were found to expand their positive interactions with other members of the microbiome in DBP-contaminated soils. The overall findings of our study provide a basis for biomarker development for detection of DBP contaminations and an extended basis for future bioremediation approaches based on beneficial bacteria.
Collapse
Affiliation(s)
- Xiao Kong
- School of Public Health, Qingdao University, Qingdao 266021, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhanbing Bai
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tuo Jin
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiangang Pan
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria
| |
Collapse
|
36
|
Zhang Q, Wang R, Shen Y, Zhan L, Xu Z. An ignored potential microplastic contamination of a typical waste glass recycling base. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126854. [PMID: 34391974 DOI: 10.1016/j.jhazmat.2021.126854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The service life of glass is limited, leading to a large amount of waste glass generated. The waste glass recycling base, as an essential municipal supporting facility of a sustainable city, has a significant impact on the surrounding ecological environment. This study conducted a comprehensive investigation and analysis of the potential pollutants in a large waste glass terminal recycling base. It was found that the waste glass treatment process may produce various pollutants such as particulate matter, heavy metals and so on, which might cause pollution to surrounding areas. Microplastics (MPs) of particulate matter, which were widely distribute in the study area, had high abundance and interact with heavy metals. Its release is related with different treatment processes. MPs were found in all sampling sites, a total of 59 polymer types were identified. The relationship between MPs and process characteristics is mainly reflected on the polymer types. The crushing and screening process are more likely to produce Acrylic, while the label-eliminate process is more likely to produce PMMA. It was estimated that the annual load of MPs in the waste glass recycling site is about 3.211 tons.
Collapse
Affiliation(s)
- Qi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, China
| | - Rui Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, China
| | - Yaqi Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, China
| | - Lu Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, China.
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, China
| |
Collapse
|
37
|
Wang G, Liu Y, Wang X, Dong X, Jiang N, Wang H. Application of dual carbon-bromine stable isotope analysis to characterize anaerobic micro-degradation mechanisms of PBDEs in wetland bottom-water. WATER RESEARCH 2022; 208:117854. [PMID: 34800854 DOI: 10.1016/j.watres.2021.117854] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), one kind of persistent organic pollutants, were widely detected in coastal wetlands. Microbial reductive debromination is one of the most important attenuation processes for PBDEs in anaerobic environment, whereas the underlying reaction mechanisms remain elusive. Dual-element stable isotope analysis was recently recognized to distinguish different reaction mechanism for degradation of organic pollutants. In this study, the dual carbon-bromine isotope effects associated with the anaerobic microbial degradation were first investigated to characterize the reaction mechanisms for BDE-47 and BDE-153. Presence of lower brominated congeners indicated stepwise debromination as the main degradation pathway, with the preferential removal of bromine in para position > meta/ortho position. The pronounced isotope fractionation was observed for both carbon and bromine, with similar carbon (εC) and bromine isotope enrichment factor (εBr) between BDE-47 (εC = -5.98‰, εBr = -2.44‰) and BDE-153 (εC = -5.57‰, εBr = -2.06‰) during the microbial degradation. Compared to εC and εBr, the correlation of carbon and isotope effects (ΛC/Br = Δδ81Br/Δδ13C) was almost the same between BDE-47 (0.436) and BDE-153 (0.435), indicating the similar reaction mechanism. The calculated carbon and bromine apparent kinetic isotope effects (AKIEC and AKIEBr) were 1.0773 and 1.0098 for BDE-47 and 1.0716 and 1.0125 for BDE-153, within range reported for degradation of halogenated compounds following nucleophilic substitution. Combination analysis of degradation products, ΛC/Br and AKIE, all the results pointed to that the anaerobic reductive debromination of BDE-47 and BDE-153 followed the nucleophilic aromatic substitution, with the addition of cofactor to the benzene ring concomitant with dissociation of carbon-bromine bond via the inner-sphere electron transfer, and the cleavage of C-Br bond was the rate-determining step. This study contributed to the development of dual carbon-bromine isotope analysis as a robust approach to probe the fate of PBDEs in contaminated sites.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; Environmental Information Institute, Dalian Maritime University, Dalian 116026, China.
| | - Xu Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xu Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Na Jiang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
38
|
Chen Q, Zhang X, Xie Q, Lee YH, Lee JS, Shi H. Microplastics habituated with biofilm change decabrominated diphenyl ether degradation products and thyroid endocrine toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112991. [PMID: 34798360 DOI: 10.1016/j.ecoenv.2021.112991] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are rapidly colonized by microbial biofilms in a natural aquatic environment, and the nature of the microbial community and type of MP can result in different degradation products of organic pollutants. Here, we quantified the degradation products of a ubiquitously detected pollutant, decabrominated diphenyl ether (BDE-209), under both light-only and biota conditions and in the absence or presence of three kinds of MPs, styrofoam polystyrene, hard polyamide, and polypropylene film. The results showed that the BDE-209 concentration increased by 0.7-2.8 fold in the presence of MPs, probably due to the "sustained release" desorption effect. Under light-only conditions, the penta- and hexa-BDE concentrations in the presence of styrofoam or hard MPs were significantly reduced, which can be deemed a beneficial effect. However, when biota were present, the debromination products increased with the addition of MPs, particularly in the presence of styrofoam MPs. These products caused a 1.7-fold upregulation in triiodothyronine content and a 5.9-fold upregulation of thyroid stimulating hormone β expression in zebrafish larvae. The increase in debromination products could be attributed to the distinct high abundance of the bacteria Chloroflexi, Proteobacteria, and Basidiomycotina on styrofoam MPs that can participate in pollutant degradation. Collectively, our results indicate that MPs can alter the degradation pathways of BDE-209 and increase the toxicity to the endocrine system and the thyroid in aquatic organisms.
Collapse
Affiliation(s)
- Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University, Zhuhai 519000, China
| | - Qiang Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University, Zhuhai 519000, China
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|