1
|
Huang W, Sun X, Sun H, Feng Y, Gong X, Ma Y, Jiang J, Xue L. Effects of biochar and wood vinegar co-application on composting ammonia and nitrous oxide losses and fertility. BIORESOURCE TECHNOLOGY 2024; 412:131388. [PMID: 39214175 DOI: 10.1016/j.biortech.2024.131388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/01/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Composting faces challenges with nitrogen (N) losses through ammonia (NH3) and nitrous oxide (N2O) emissions. In this study, wood vinegar (WV) and biochar (BC) were applied individually or combined into wheat straw and chicken manure composting. Results showed that BC and WV reduced NH3 volatilizations by 22-23 % individually, but their combined application achieved a 59 % reduction. However, this combination increased N2O emissions by 174 %. The BC + WV treatment improved compost quality, evidenced by increased total N content by 22 % and enhanced the biological index, promoting additional dissolved organic matter production. Overall, BC and WV applications improved compost quality, reduced gaseous N losses, and supported the re-utilization of agricultural residues. The combined use of BC and WV significantly enhances compost quality and reduces NH3 emissions, offering a promising solution for sustainable agricultural residue management.
Collapse
Affiliation(s)
- Wang Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaolong Sun
- Institute of Agricultural Economics and Development, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Haijun Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Xueliu Gong
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yaxin Ma
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jiang Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Lihong Xue
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Zhang Y, Yan D, Zhao Y, Li J, Wang J, Wang Y, Wang J, Zhang H, Chen L, Zhang M. Pressure-induced piezoelectric response for mitigating membrane fouling in surface water treatment: Insights from continuous operation and biofouling characterization. WATER RESEARCH 2024; 268:122554. [PMID: 39383804 DOI: 10.1016/j.watres.2024.122554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024]
Abstract
Organic fouling and biofouling represents a critical challenge encountered by the membrane-based water treatment process. Herein, a piezoelectric PVDF membrane (PEM), capable of generating electrical responses to hydraulic pressure stimuli, was synthesized and employed for mitigating the fouling in surface water treatment. The surface-hydrophobilized PEM demonstrated sensitive and enhanced underwater output performance in response to increasing transmembrane pressure (TMP) during constant-flux filtration, with signals reaching up to ∼800 mV at a TMP of ∼80 kPa. This in-situ piezoelectric response significantly reduced TMP growth in both short-term (1 h) and long-term (15 days) filtration trials, demonstrating a strong capability to mitigate membrane fouling. Moreover, continuous piezoelectric stimulation effectively inhibited microbial activity and the accumulation of extracellular polymeric substances (EPS) on PEM surface, surpassing the dominant electrokinetic repulsion mechanisms observed in short-term trials. Microbial community analysis suggests that this evolution is primarily due to the targeted impact of piezoelectric stimulation on microbial metabolic behavior. The piezoelectric-induced electrical microenvironment inhibited the growth of microbes associated with high EPS production while promoting the proliferation of electrically active microbes involved in biopolymer digestion. In addition, the PEM demonstrated enhanced permeate quality throughout the filtration process, with DOC and UV254 removal rates increasing from 11.7 % and 15.6 % initially to 28.6 % and 19.5 % by the 15th day, respectively. Given the performance and self-powered capability of PEM compared to current electrified antifouling methods that require an external power supply, these attributes are anticipated to hold practical significance in developing innovative and energy-efficient strategies for mitigating both organic fouling and biofouling.
Collapse
Affiliation(s)
- Yang Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Dongqing Yan
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Yuan Zhao
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Jian Li
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Jun Wang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Yue Wang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Jie Wang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Hongwei Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Lingling Chen
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Meng Zhang
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
3
|
Zhu X, Beiyuan J, Ju W, Qiu T, Cui Q, Chen L, Chao H, Shen Y, Fang L. Inoculation with Bacillus thuringiensis reduces uptake and translocation of Pb/Cd in soil-wheat system: A life cycle study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174032. [PMID: 38885714 DOI: 10.1016/j.scitotenv.2024.174032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Microbial inoculation is an important strategy to reduce the supply of heavy metals (HMs) in soil-crop systems. However, the mechanisms of microbial inoculation for the availability of HMs in soil and their accumulation/transfer in crops remain unclear. Here, the inhibitory effect of inoculation with Bacillus thuringiensis on the migration and accumulation of Pb/Cd in the soil-wheat system during the whole growth period was investigated by pot experiments. The results showed that inoculation with Bacillus thuringiensis increased soil pH and available nutrients (including carbon, nitrogen, and phosphorus), and enhanced the activities of nutrient-acquiring enzymes. Dominance analysis showed that dissolved organic matter (DOM) is the key factor affecting the availability of HMs. The content of colored spectral clusters and humification characteristics of DOM were significantly improved by inoculation, which is conducive to reducing the availability of Pb/Cd, especially during the flowering stage, the decrease was 12.8 %. Inoculation decreased Pb/Cd accumulation in the shoot and the transfer from root to shoot, with the greatest decreases at the jointing and seedling stages (27.0-34.1 % and 6.9-11.8 %), respectively. At the maturity stage, inoculation reduced the Pb/Cd accumulation in grain (12.9-14.7 %) and human health risk (4.1-13.2 %). The results of Pearson correlation analysis showed that the availability of Pb/Cd was positively correlated with the humification of DOM. Least square path model analysis showed that Bacillus thuringiensis could significantly reduce Pb/Cd accumulation in the grain and human health risks by regulating DOM spectral characteristics, the availability of HMs in soil and metals accumulation/transport in wheat at different growth stages. This study revealed the inhibition mechanism of Bacillus thuringiensis on migration of Pb/Cd in a soil-wheat system from a viewpoint of a full life cycle, which offers a valuable reference for the in-situ remediation of HM-contaminated soil and the safe production of food crops in field.
Collapse
Affiliation(s)
- Xiaozhen Zhu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Jingzi Beiyuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Wenliang Ju
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tianyi Qiu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Qingliang Cui
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Li Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Herong Chao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Yufang Shen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
4
|
Xu Q, Zhang T, Niu Y, Mukherjee S, Abou-Elwafa SF, Nguyen NSH, Al Aboud NM, Wang Y, Pu M, Zhang Y, Tran HT, Almazroui M, Hooda PS, Bolan NS, Rinklebe J, Shaheen SM. A comprehensive review on agricultural waste utilization through sustainable conversion techniques, with a focus on the additives effect on the fate of phosphorus and toxic elements during composting process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173567. [PMID: 38848918 DOI: 10.1016/j.scitotenv.2024.173567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/27/2024] [Accepted: 05/25/2024] [Indexed: 06/09/2024]
Abstract
The increasing trend of using agricultural wastes follows the concept of "waste to wealth" and is closely related to the themes of sustainable development goals (SDGs). Carbon-neutral technologies for waste management have not been critically reviewed yet. This paper reviews the technological trend of agricultural waste utilization, including composting, thermal conversion, and anaerobic digestion. Specifically, the effects of exogenous additives on the contents, fractionation, and fate of phosphorus (P) and potentially toxic elements (PTEs) during the composting process have been comprehensively reviewed in this article. The composting process can transform biomass-P and additive-born P into plant available forms. PTEs can be passivated during the composting process. Biochar can accelerate the passivation of PTEs in the composting process through different physiochemical interactions such as surface adsorption, precipitation, and cation exchange reactions. The addition of exogenous calcium, magnesium and phosphate in the compost can reduce the mobility of PTEs such as copper, cadmium, and zinc. Based on critical analysis, this paper recommends an eco-innovative perspective for the improvement and practical application of composting technology for the utilization of agricultural biowastes to meet the circular economy approach and achieve the SDGs.
Collapse
Affiliation(s)
- Qing Xu
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Zhang
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Yingqi Niu
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Santanu Mukherjee
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan, Himachal Pradesh 173229, India
| | - Salah F Abou-Elwafa
- Agronomy Department, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt
| | - Ngoc Son Hai Nguyen
- Faculty of Environment, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen 23000, Viet Nam
| | - Nora M Al Aboud
- Department of Biology, College of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yukai Wang
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mingjun Pu
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yiran Zhang
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Huu Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 700000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Viet Nam
| | - Mansour Almazroui
- Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Peter S Hooda
- Faculty of Engineering, Computing and the Environment, Kingston University London, UK
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| |
Collapse
|
5
|
Su J, Zhou K, Chen W, Xu S, Feng Z, Chang Y, Ding X, Zheng Y, Tao X, Zhang A, Wang Y, Li J, Ding G, Wei Y. Enhanced organic degradation and microbial community cooperation by inoculating Bacillus licheniformis in low temperature composting. J Environ Sci (China) 2024; 143:189-200. [PMID: 38644016 DOI: 10.1016/j.jes.2023.08.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 04/23/2024]
Abstract
Microbial activity and interaction are the important driving factors in the start-up phase of food waste composting at low temperature. The aim of this study was to explore the effect of inoculating Bacillus licheniformis on the degradation of organic components and the potential microbe-driven mechanism from the aspects of organic matter degradation, enzyme activity, microbial community interaction, and microbial metabolic function. The results showed that after inoculating B. licheniformis, temperature increased to 47.8°C on day 2, and the degradation of readily degraded carbohydrates (RDC) increased by 31.2%, and the bioheat production increased by 16.5%. There was an obvious enhancement of extracellular enzymes activities after inoculation, especially amylase activity, which increased by 7.68 times on day 4. The inoculated B. licheniformis colonized in composting as key genus in the start-up phase. Modular network analysis and Mantel test indicated that inoculation drove the cooperation between microbial network modules who were responsible for various organic components (RDC, lipid, protein, and lignocellulose) degradation in the start-up phase. Metabolic function prediction suggested that carbohydrate metabolisms including starch and sucrose metabolism, glycolysis / gluconeogenesis, pyruvate metabolism, etc., were improved by increasing the abundance of related functional genes after inoculation. In conclusion, inoculating B. licheniformis accelerated organic degradation by driving the cooperation between microbial network modules and enhancing microbial metabolism in the start-up phase of composting.
Collapse
Affiliation(s)
- Jing Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Wenjie Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Ziwei Feng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yuan Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Xiaoyan Ding
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yi Zheng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Xingling Tao
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Ake Zhang
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; Fuyang Academy of Agricultural Sciences, Fuyang 236065, China
| | - Yue Wang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Guochun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
6
|
Wang X, Wang Z, Su J, Li X, Wen G, Li X. Simultaneous removal of calcium, phosphorus, and bisphenol A from industrial wastewater by Stutzerimonas sp. ZW5 via microbially induced calcium precipitation (MICP): Kinetics, mechanism, and stress response. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134700. [PMID: 38788588 DOI: 10.1016/j.jhazmat.2024.134700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
The biological treatment of complex industrial wastewater has always been a research hotspot. In this experiment, a salt-tolerant strain Stutzerimonas sp. ZW5 with aerobic denitrification and biomineralization ability was screened, and the optimum conditions of ZW5 were explored by kinetics. The removal efficiencies of nitrate (NO3--N), bisphenol A (BPA), phosphorus (PO43--P), and calcium (Ca2+) were 94.47 %, 100 %, 98.87 %, and 83.04 %, respectively. The removal mechanism of BPA was the adsorption of microbial induced calcium precipitation (MICP) and extracellular polymeric substances (EPS). Moreover, BPA could weaken the electron transfer ability and growth metabolism of microorganisms and affect the structure of biominerals. At the same time, the stress response of microorganisms would increase the secretion of EPS to promote the process of biomineralization. Through nitrogen balance experiments, it was found that the addition of BPA would lead to a decrease in the proportion of gaseous nitrogen. This experiment offers novel perspectives on the treatment of industrial effluents and microbial stress response.
Collapse
Affiliation(s)
- Xinjie Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Xue Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
7
|
Zhou L, Xie Y, Wang X, Wang Z, Sa R, Li P, Yang X. Effect of microbial inoculation on nitrogen transformation, nitrogen functional genes, and bacterial community during cotton straw composting. BIORESOURCE TECHNOLOGY 2024; 403:130859. [PMID: 38777228 DOI: 10.1016/j.biortech.2024.130859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The effects of microbial agents on nitrogen (N) conversion during cotton straw composting remains unclear. In this study, inoculation increased the germination index and total nitrogen (TN) by 24-29 % and 7-10 g/kg, respectively. Inoculation enhanced the abundance of nifH, glnA, and amoA and reduced that of major denitrification genes (nirK, narG, and nirS). Inoculation not only produced high differences in the assembly process and strong community replacement but also weakened environmental constraints. Partial least squares path modelling demonstrated that enzyme activity and bacterial community were the main driving factors influencing TN. In addition, network analysis and the random forest model showed distinct changing patterns of bacterial communities after inoculation and identified keystone microorganisms in maintaining network complexity and synergy, as well as system function to promote nitrogen preservation. Findings provide a novel perspective on high-quality resource recovery of agricultural waste.
Collapse
Affiliation(s)
- Liuyan Zhou
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Yuqing Xie
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Xiaowu Wang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Zhifang Wang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Renna Sa
- Research Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Pengbing Li
- Comprehensive Testing Ground, Xinjiang Academy of Agricultural Sciences, Urumqi 830013, China.
| | - Xinping Yang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| |
Collapse
|
8
|
Wang M, Song G, Zheng Z, Song Z, Mi X, Hua J, Wang Z. Effect of humic substances on the fraction of heavy metal and microbial response. Sci Rep 2024; 14:11206. [PMID: 38755178 PMCID: PMC11099172 DOI: 10.1038/s41598-024-61575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Contamination of soils by Molybdenum (Mo) has raised increasing concern worldwide. Both fulvic acid (FA) and humic acid (HA) possess numerous positive properties, such as large specific surface areas and microporous structure that facilitates the immobilization of the heavy metal in soils. Despite these characteristics, there have been few studies on the microbiology effects of FA and HA. Therefore, this study aimed to assess the Mo immobilization effects of FA and HA, as well as the associated changes in microbial community in Mo-contaminated soils (with application rates of 0%, 0.5% and 1.0%). The result of the incubation demonstrated a decrease in soil pH (from 8.23 ~ 8.94 to 8.05 ~ 8.77). Importantly, both FA and HA reduced the exchangeable fraction and reducible fraction of Mo in the soil, thereby transforming Mo into a more stable form. Furthermore, the application of FA and HA led to an increase in the relative abundance of Actinobacteriota and Firmicutes, resulting in alterations to the microbial community structure. However, it is worth noting that due to the differing structures and properties of FA and HA, these outcomes were not entirely consistent. In summary, the aging of FA and HA in soil enhanced their capacity to immobilization Mo as a soil amendment. This suggests that they have the potential to serve as effective amendments for the remediation of Mo-contaminated soils.
Collapse
Affiliation(s)
- Mengmeng Wang
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, People's Republic of China
| | - Gangfu Song
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, People's Republic of China.
| | - Zhihong Zheng
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, People's Republic of China
| | - Zhixin Song
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, People's Republic of China
| | - Xiao Mi
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, People's Republic of China.
| | - Jiajun Hua
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, People's Republic of China
| | - Zihang Wang
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, People's Republic of China
| |
Collapse
|
9
|
Qu T, Zhao X, Yan S, Liu Y, Ameer MJ, Zhao L. Interruption after Short-Term Nitrogen Additions Improves Ecological Stability of Larix olgensis Forest Soil by Affecting Bacterial Communities. Microorganisms 2024; 12:969. [PMID: 38792798 PMCID: PMC11123698 DOI: 10.3390/microorganisms12050969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Atmospheric nitrogen deposition can alter soil microbial communities and further impact the structure and function of forest ecosystems. However, most studies are focused on positive or negative effects after nitrogen addition, and few studies pay attention to its interruption. In order to investigate whether interruption after different levels of short-term N additions still benefit soil health, we conducted a 2-year interruption after a 4-year short-term nitrogen addition (10 and 20 kg N·hm-2·yr-1) experiment; then, we compared soil microbial diversity and structure and analyzed soil physicochemical properties and their correlations before and after the interruption in Larix olgensis forest soil in northeast China. The results showed that soil ecological stabilization of Larix olgensis forest further improved after the interruption compared to pre-interruption. The TN, C:P, N:P, and C:N:P ratios increased significantly regardless of the previous nitrogen addition concentration, and soil nutrient cycling was further promoted. The relative abundance of the original beneficial microbial taxa Gemmatimonas, Sphingomonas, and Pseudolabrys increased; new beneficial bacteria Ellin6067, Massilia, Solirubrobacter, and Bradyrhizobium appeared, and the species of beneficial soil microorganisms were further improved. The results of this study elucidated the dynamics of the bacterial community before and after the interruption of short-term nitrogen addition and could provide data support and a reference basis for forest ecosystem restoration strategies and management under the background of global nitrogen deposition.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China; (T.Q.); (X.Z.); (S.Y.); (Y.L.); (M.J.A.)
| |
Collapse
|
10
|
Zhuo Cai J, Lan Yu Y, Biao Yang Z, Xun Xu X, Chun Lv G, Lian Xu C, Yin Wang G, Qi X, Li T, Bon Man Y, Hung Wong M, Cheng Z. Synergistic improvement of humus formation in compost residue by fenton-like and effective microorganism composite agents. BIORESOURCE TECHNOLOGY 2024; 400:130703. [PMID: 38631654 DOI: 10.1016/j.biortech.2024.130703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Improving the humification of compost through a synergistic approach of biotic and abiotic methods is of great significance. This study employed a composite reagent, comprising Fenton-like agents and effective microorganisms (EM) to improve humification. This composite reagent increased humic-acid production by 37.44 %, reaching 39.82 g kg-1, surpassing the control group. The composite reagent synergistically promoted micromolecular fulvic acid and large humic acid production. Collaborative mechanism suggests that Fenton-like agents contributed to bulk residue decomposition and stimulated the evolution of microbial communities, whereas EMs promoted highly aromatic substance synthesis and adjusted the microbial community structure. Sequencing analysis indicates the Fenton-like agent initiated compost decomposition by Firmicutes, and EM reduced the abundance of Virgibacillus, Lentibacillus, and Alcanivorax. Applied as an organic fertilizer in Brassica chinensis L. plantations, the composite reagent considerably improved growth and photosynthetic pigment content. This composite reagent with biotic and abiotic components provides a learnable method for promoting humification.
Collapse
Affiliation(s)
- Jun Zhuo Cai
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Ying Lan Yu
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Zhan Biao Yang
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Xiao Xun Xu
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Guo Chun Lv
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Chang Lian Xu
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Gui Yin Wang
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Xin Qi
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Ting Li
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Yu Bon Man
- Consortium on Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Zhang Cheng
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
11
|
Wang Y, Han Z, Liu J, Song C, Wei Z. The biotic effects of lignite on humic acid components conversion during chicken manure composting. BIORESOURCE TECHNOLOGY 2024; 398:130503. [PMID: 38442847 DOI: 10.1016/j.biortech.2024.130503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Targeted regulation of composting to convert organic matter into humic acid (HA) holds significant importance in compost quality. Owing to its low carbon content, chicken manure compost often requires carbon supplements to promote the humification progress. The addition of lignite can increase HA content through biotic pathways, however, its structure was not explored. The Parallel factor analysis revealed that lignite can significantly increase the complexity of highly humified components. The lignite addition improved phenol oxidase activity, particularly laccase, during the thermophilic and cooling phases. The abundance and transformation functions of core bacteria also indicated that lignite addition can influence the activity of microbial transformation of HA components. The structural equation model further confirmed that lignite addition had a direct and indirect impact on enhancing the complexity of HA components through core bacteria and phenol oxidase. Therefore, lignite addition can improve HA structure complexity during composting through biotic pathways.
Collapse
Affiliation(s)
- Yumeng Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ziyi Han
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Junping Liu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
12
|
He W, Rong S, Wang J, Zhao Y, Liang Y, Huang J, Meng L, Feng Y, Xue L. Different crystalline manganese dioxide and biochar co-conditioning aerobic composting: Reduced ammonia volatilization and improved organic fertilizer quality. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133127. [PMID: 38056255 DOI: 10.1016/j.jhazmat.2023.133127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Aerobic composting is a sustainable and effective waste disposal method. However, it can generate massive amounts of ammonia (NH3) via volatilization. Effectively reducing NH3 volatilization is vital for advancing aerobic composting and protecting the ecological environment. Herein, two crystal types of MnO2 (α-MnO2 and δ-MnO2) are combined with biochar (hydrochar (WHC) and pyrochar (WPC), respectively) and used as conditioners for the aerobic composting of chicken manure. Results reveal that α-MnO2 (34.6%) can more effectively reduce NH3 accumulation than δ-MnO2 (27.1%). Moreover, the combination of WHC and MnO2 better reduces NH3 volatilization (48.5-58.9%) than the combination of WPC and MnO2 (15.8-40.1%). The highest NH3 volatilization reduction effect (58.9%) is achieved using the combination of WHC and δ-MnO2. Because the added WHC and δ-MnO2 promote the humification of the compost, the humic acid to fulvic acid ratio (HA/FA ratio) dramatically increases. The combination of WHC and δ-MnO2 doubled the HA/FA ratio and resulted in a net economic benefit of 130.0 RMB/t. Therefore, WHC and δ-MnO2 co-conditioning can promote compost decomposition, improving the quality of organic fertilizers and substantially reducing NH3 volatilization.
Collapse
Affiliation(s)
- Weijiang He
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Shaopeng Rong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jixiang Wang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yingjie Zhao
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, PR China
| | - Yunyi Liang
- College of Materials Science and Engineering Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China
| | - Junxia Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Lin Meng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| |
Collapse
|
13
|
Huang J, Jiang Z, Li A, Jiang F, Tang P, Cui J, Feng W, Fu C, Lu Q. Role of keystone drives polycyclic aromatic hydrocarbons degradation and humification especially combined with aged contaminated soil in co-composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120323. [PMID: 38417356 DOI: 10.1016/j.jenvman.2024.120323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024]
Abstract
Accumulation of persistent organic pollutants polycyclic aromatic hydrocarbons (PAHs) in soil has become a global problem. Composting is considered one of the more economical methods of soil remediation and is important for the resourceful use of wastes. Agroforestry waste is produced in huge amounts and is utilized at low rates, hence there is an urgent need to manage it. Here, leaf (LVS) or rice straw (SVS) was co-composting with aged contaminated soil to investigate bacteria interaction to PAHs degradation and humus formation. The degradation rate of high molecular weight PAHs (HMW-PAHs) in LVS and SVS reached 58.9% and 52.5%, and the low molecular weight PAHs (LMW-PAHs) were 77.5% and 65%. Meanwhile, the humus increased by 44.8% and 60.5% in LVS and SVS at the end of co-composting. The topological characteristics and community assembly of the bacterial community showed that LVS had higher complexity and more keystones than SVS, suggesting that LVS might more beneficial for the degradation of PAHs. The stability of the co-occurrence network and stochastic processes (dispersal limitation) dominated community assembly made SVS beneficial for humus formation. Mantel test and structural equation models indicated that the transformation of organic matter was important for PAHs degradation and humus formation. Degradation of HMW-PAHs led to bacterial succession, which affected the formation of precursors and ultimately increased the humus content. This study provided potential technology support for improving the quality of agroforestry organic waste composting and degrading PAHs in aged contaminated soil.
Collapse
Affiliation(s)
- Jiayue Huang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ziwei Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Anyang Li
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Fangzhi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Pengfei Tang
- Heilongjiang Provincial Ecological Environment Monitoring Center, Harbin, 150056, China
| | - Jizhe Cui
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Wenxuan Feng
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Chang Fu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Qian Lu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
14
|
Chen Y, Tian Z, Wang Y, Zhang C, He L, Zhao X. Response of fulvic acid linking to redox characteristics on methane and short-chain fatty acids in anaerobic digestion of chicken manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120357. [PMID: 38354611 DOI: 10.1016/j.jenvman.2024.120357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Fulvic acids (FAs) is formed during the bioconversion of organic matter (OM) to biogas during anaerobic digestion (AD) and has a complex structure and redox function. However, the evolutionary mechanisms of FAs during AD and its interactions with acid and methane production have not been sufficiently investigated, especially at different stages of AD. Intermittent AD experiments by chicken manure and rice husk showed significant structural changes and reduced aromatization of FAs (e.g., O-H stretch6, 14.10-0%; SR, 0.22-0.60). The electron donating capacity (EDC) [9.76-45.39 μmole-/(g C)] and electron accepting capacity (EAC) [2.55-5.20 μmole-/(g C)] of FAs showed a tendency of decreasing and then increasing, and FAs had a stronger electron transfer capacity (ETC) in the methanogenic stage. Correlation analysis showed that the EDC of FAs was influenced by their own structure (C-O stretch2, C-H bend1, C-H bend4, and N-H bend) and also had an inhibitory effect on propionic production, which further inhibited acetic production. The EAC of FAs was affected by molecular weight and had a promoting effect on methane production. Structural equation modelling identified three possible pathways for AD. The C-O stretch2 structure of FAs alone inhibits the production of propionic. In addition, pH can directly affect the EDC of FAs. This study provides a theoretical basis for the structural and functional evolution of FAs in AD of chicken manure on the mechanism of methane production.
Collapse
Affiliation(s)
- Yating Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Zebin Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Chuanyan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Liangzi He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
15
|
Li C, Zhang C, Ran F, Yao T, Lan X, Li H, Bai J, Lei Y, Zhou Z, Cui X. Effects of microbial deodorizer on pig feces fermentation and the underlying deodorizing mechanism. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:174-186. [PMID: 38056366 DOI: 10.1016/j.wasman.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Microbial deodorization is a novel strategy for reducing odor in livestock and poultry feces. Herein, 12 strains of ammonia (NH3) and 15 hydrogen sulfide (H2S) removing bacteria were obtained with a removal efficiency of 65.20-79.80% and 34.90-79.70%, respectively. A novel bacteria deodorant named MIX (Bacillus zhangzhouensis, Bacillus altitudinis, and Acinetobacter pittii at a ratio of 1:1:2) were obtained. MIX can shorten the temperature rising stage by 2 days and prolong the thermophilic stage by 4 days. The ability of MIX to remove NH3, H2S, and volatile fatty acids (VFAs) and the underlying removal mechanism were analyzed during pig feces fermentation. MIX can significantly reduce the concentrations of NH3 and H2S by 41.82% and 66.35% and increase the concentrations of NO3--N and SO42- by 7.80% and 8.83% (P < 0.05), respectively, on the 25th day. Moreover, the concentrations of acetic, propionate, iso-valerate, and valerate were significantly reduced. The dominant bacteria communities at the phylum level were Firmicutes, Proteobacteria, Bacteroidetes, and Spirochaetes. B. zhangzhouensis and B. altitudinis could convert NH4+-N to NO3--N, and A. pittii could transfer H2S to SO42-. This study revealed that bacteria deodorant can reduce the concentrations of NH3, H2S, and VFAs in pig feces and increase those of NH4+, NO3-, and SO42- and has excellent potential in deodorizing livestock and poultry feces composting.
Collapse
Affiliation(s)
- Changning Li
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou, 730070 Gansu, China; College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Chen Zhang
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Fu Ran
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Tuo Yao
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou, 730070 Gansu, China; College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China.
| | - Xiaojun Lan
- Agricultural College, Anshun University, Anshun 561000, Guizhou, China
| | - Haiyun Li
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jie Bai
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Yang Lei
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Ze Zhou
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Xiaoning Cui
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| |
Collapse
|
16
|
Jiang Z, Zhang P, Wu Y, Wu X, Ni H, Lu Q, Zang S. Long-term surface composts application enhances saline-alkali soil carbon sequestration and increases bacterial community stability and complexity. ENVIRONMENTAL RESEARCH 2024; 240:117425. [PMID: 37875172 DOI: 10.1016/j.envres.2023.117425] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023]
Abstract
Organic composts could remediate saline-alkali soils on agricultural land by amending soil micro-environment which is one of the main strategies for resourceful treatment and recycling of livestock manure. However, it was still unknown how long-term surface application of organic composts affects the microhabitat and bacterial community characteristics and assembly processes on the profile. We examined the features of the soil properties, bacterial community, and assembly models after 7-years composts application. Physicochemical indicators, enzyme activities, and bacterial diversity of the saline-alkali farmland were all enhanced by the surface composts application, particularly in the 0-20 cm. The network analysis showed that the surface application of composts significantly enhanced the robustness and topological characteristics of the bacterial community and that bacteria from Acidobacteriota were the keystone of the saline-alkali soils improvement. Composts also greatly increased the ecological niche of the bacterial community, while stochastic processes (mainly dispersal limitation) significantly shaped the bacterial community compared to the control. Structural equation modeling indicated that composts application promoted bacterial community succession, which in turn promoted elevated total organic carbon and improved saline-alkali soils properties. Overall, the study linked the ecological characteristics of soil microhabitats and bacterial communities during the restoration of saline-alkali soils by long-term surface application of composts, providing the management and remediation of saline-alkali agricultural soil with a theoretical foundation and technological support.
Collapse
Affiliation(s)
- Ziwei Jiang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Pengfei Zhang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Yufei Wu
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Xiaodong Wu
- Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongwei Ni
- Heilongjiang Academy of Forestry, Harbin 150040, China
| | - Qian Lu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| | - Shuying Zang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China.
| |
Collapse
|
17
|
Efremenko E, Stepanov N, Senko O, Lyagin I, Maslova O, Aslanli A. Artificial Humic Substances as Biomimetics of Natural Analogues: Production, Characteristics and Preferences Regarding Their Use. Biomimetics (Basel) 2023; 8:613. [PMID: 38132553 PMCID: PMC10742262 DOI: 10.3390/biomimetics8080613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Various processes designed for the humification (HF) of animal husbandry wastes, primarily bird droppings, reduce their volumes, solve environmental problems, and make it possible to obtain products with artificially formed humic substances (HSs) as analogues of natural HSs, usually extracted from fossil sources (coal and peat). This review studies the main characteristics of various biological and physicochemical methods of the HF of animal wastes (composting, anaerobic digestion, pyrolysis, hydrothermal carbonation, acid or alkaline hydrolysis, and subcritical water extraction). A comparative analysis of the HF rates and HS yields in these processes, the characteristics of the resulting artificial HSs (humification index, polymerization index, degree of aromaticity, etc.) was carried out. The main factors (additives, process conditions, waste pretreatment, etc.) that can increase the efficiency of HF and affect the properties of HSs are highlighted. Based on the results of chemical composition analysis, the main trends and preferences with regard to the use of HF products as complex biomimetics are discussed.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia; (N.S.); (O.S.)
| | | | | | | | | | | |
Collapse
|
18
|
Pan C, Gao W, Mi J, Xie L, Wei Z, Song C. Effect of ferrous ions combined with zeolite on humification degree during food waste composting. BIORESOURCE TECHNOLOGY 2023; 389:129826. [PMID: 37806361 DOI: 10.1016/j.biortech.2023.129826] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The research aims to clarify role of ferrous sulfate (FeSO4) combined with zeolite (Z) on humification degree based on investigation of concentration and structural stability of humic acid (HA) during food waste composting. Four treatments were set up, namely CK (control), Fe (5 %), Z (5 %) and Fe + Z (2.5 %+2.5 %). Results demonstrated that concentration and polymerization degree of HA were 53.4 % and 97.3 % higher in composting amended with Fe + Z than in the control, respectively. Meanwhile, formation of aromatic functional groups and recalcitrant fluorescent components (HAC3) was significantly promoted, indicating that Fe + Z treatment enhanced HA structure stability. The bacterial networks became tighter, and the proportion of core bacteria in dominant modules increased at Fe + Z treatment. Additionally, key factors affecting HAC3 and product quality were identified by structural equation models, which verified potential mechanism of humification enhancement. Overall, this study provided theoretical support for improving humification degree and product quality.
Collapse
Affiliation(s)
- Chaonan Pan
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Jiaying Mi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
19
|
Li X, Wang S, Zhao S, Chang H, Li Y, Zhao Y. Effects of an assistive electric field on heavy metal passivation during manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165909. [PMID: 37524182 DOI: 10.1016/j.scitotenv.2023.165909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Composting is one of main technologies for treating and thus utilizing livestock manure and sludge. However, heavy metals are major concerns in compost utilization due to their potential environmental hazards and health risks. This study aimed to investigate the effects of electric field-assisted composting on the variations of heavy metals and the affecting factors. The results showed that electric field significantly reduced the contents of bioavailable heavy metals including Mn, Zn, Cu, Ni, and Cd, with their bioavailable concentrations decreasing by 61.7, 63.8, 64.9, 83.7, and 63.8 %, respectively. The heavy metals being transformed into stable states were increased, indicating that the electric field also passivated these heavy metals and reduced their biological toxicity and stabilized their forms. Spearman's correlation analysis revealed that the changes in substances, temperature, and organic matter were the dominant environmental factors affecting the forms of heavy metals. Microbial community analysis indicated an increase in the abundance of metal-resistant bacteria such as Pseudomonas and Bacillus during electric field-assisted composting, with their relative abundances being increased to 2.66 % and 15.63 % in the pile of electric field-assisted composting, respectively, compared to the values of 1.88 % and 4.36 % respectively in the conventional composting. The current study suggests that electric field-assisted composting can significantly reduce the availability of heavy metals in the compost, and thus mitigate the health risks associated with its application.
Collapse
Affiliation(s)
- Xiang Li
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shengwei Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Silan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Huiming Chang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yanxia Li
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
20
|
Lu Q, Jiang Z, Tang P, Yu C, Jiang F, Huang J, Feng W, Wei Z. Identify the potential driving mechanism of reconstructed bacterial community in reduce CO 2 emissions and promote humus formation during cow manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118896. [PMID: 37666131 DOI: 10.1016/j.jenvman.2023.118896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
The mineralization of organic components releases CO2 during composting, which not only leads to the loss of organic carbon, but has a direct negative impact on the environment. Malonic acid as a competitive inhibitor of succinate dehydrogenase could affect the tricarboxylic acid (TCA) cycle and reduce CO2 emissions. However, the bacterial interaction and organic component transformation has less known how to malonic acid reduce CO2 and improve of humus synthesis in complex composting. The aim of this study was to investigated the malonic acid on organic carbon sequestration and transforming cow manure waste into products with high humus content. Humus content was elevated by 16.8% and cumulative CO2 emissions (30 d)d reduced by 13.6% after malonic acid addition compared to the CK. SparCC analysis of bacterial interaction presented that the network complexity and stability was more higher with malonic acid addition, while a greater concentration of keystones and their ecological metabolic functions was observed, suggesting they weaken the influence of TCA cycle inhibition by enhancing interactions. PICRUSt predictions indicate that malonic acid might enhance humus content by promoting the synthesis of polyphenols and polymerization with amino acids. This study investigated the potential mechanism of regulators to enhance quality and reduce emissions during humification process, providing a new strategy for the resource utilization of organic solid waste.
Collapse
Affiliation(s)
- Qian Lu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ziwei Jiang
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Pengfei Tang
- Heilongjiang Provincial Ecological Environment Monitoring Center, Harbin, 150056, China
| | - Chunjing Yu
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Fangzhi Jiang
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Jiayue Huang
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Wenxuan Feng
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Zimin Wei
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
21
|
Wu S, Tursenjan D, Sun Y. Independent and combined effects of sepiolite and palygorskite on humus spectral properties and heavy metal bioavailability during chicken manure composting. CHEMOSPHERE 2023; 329:138683. [PMID: 37059193 DOI: 10.1016/j.chemosphere.2023.138683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The effects of the independent and combined addition strategies of sepiolite and palygorskite on humification and heavy metals (HMs) during chicken manure composting were evaluated. Results showed that clay mineral addition showed a favorable effect on composting, prolonged the duration of the thermophilic phase (5-9 d) and improved the TN content (14%-38%) compared to CK. Independent strategy enhanced the humification degree in equal measures with the combined strategy. Carbon nuclear magnetic resonance spectroscopy (13C NMR) and fourier transform infrared spectroscopy (FTIR) confirmed that aromatic carbon species increased by 31%-33% during composting process. Excitation-emission matrix (EEM) fluorescence spectroscopy showed that humic acid-like compounds increased by 12%-15%. In addition, the maximum passivation rate of Cr, Mn, Cu, Zn, As, Cd, Pb and Ni were 51.35%, 35.98%, 30.39%, 32.46%, -87.02%, 36.61% and 27.62%, respectively. The independent addition of palygorskite exhibits the most potent effects for most HMs. Pearson correlation analysis indicated that pH and aromatic carbon were the key determinants of the HMs passivation. This study provided preliminary evidence and perspective of the application of clay minerals on the humification and safety of composting.
Collapse
Affiliation(s)
- Shihang Wu
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Dina Tursenjan
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China.
| |
Collapse
|
22
|
Sun Q, Zhang Y, Ming C, Wang J, Zhang Y. Amended compost alleviated the stress of heavy metals to pakchoi plants and affected the distribution of heavy metals in soil-plant system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117674. [PMID: 36967696 DOI: 10.1016/j.jenvman.2023.117674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
With the development of the social economy, soil heavy metal pollution has become a common worldwide issue. Therefore, the remediation of soil heavy metal pollution is imminent. This study aimed to investigate the effect of amended compost on reducing heavy metal bioavailability in soil and relieving heavy metals stress on plants under Cu and Zn stress in a pot experiment. To model the restoration of heavy metal-polluted farming soil, conventional compost (CKw), activated carbon compost (ACw), modified biochar compost (BCw) and rhamnolipid compost (RLw) were utilized. The results showed that the application of amended compost could promote the growth and quality of pakchoi and enhance the stress ability of malondialdehyde and antioxidant enzymes to heavy metals. The distribution of Cu and Zn in different subcellular parts of pakchoi was also affected. The application of amended compost significantly reduced the heavy metals content in the shoot of pakchoi, among which the content of Cu and Zn in the shoot of pakchoi in RLw was significantly decreased by 57.29% and 60.07%, respectively. Our results can provide a new understanding for efficient remediation of contaminated farmland soil by multiple heavy metals.
Collapse
Affiliation(s)
- Qinghong Sun
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China; School of Resource and Environment, Northeast Agricultural University, Harbin, China
| | - Yuxin Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin, China
| | - Chenshu Ming
- School of Resource and Environment, Northeast Agricultural University, Harbin, China
| | - Jianmin Wang
- School of Resource and Environment, Northeast Agricultural University, Harbin, China
| | - Ying Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
23
|
Li J, Zhou Y, Liu S, Wen X, Huang Y, Li K, Li Q. The removal performances and evaluation of heavy metals, antibiotics, and resistomes driven by peroxydisulfate amendment during composting. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131819. [PMID: 37307729 DOI: 10.1016/j.jhazmat.2023.131819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
This study aimed to explore the effect of peroxydisulfate on the removal of heavy metals, antibiotics, heavy metal resistance genes (HMRGs), and antibiotic resistance genes (ARGs) during composting. The results showed that peroxydisulfate achieved the passivation of Fe, Mn, Zn, and Cu by promoting their speciation variations, thus reducing their bioavailability. And the residual antibiotics were better degraded by peroxydisulfate. In addition, metagenomics analysis indicated that the relative abundance of most HMRGs, ARGs, and MGEs was more effectively down-regulated by peroxydisulfate. Network analysis confirmed Thermobifida and Streptomyces were dominant potential host bacteria of HMRGs and ARGs, whose relative abundance was also effectively down-regulated by peroxydisulfate. Finally, mantel test showed the significant effect of the evolution of microbial communities and strong oxidation of peroxydisulfate on the removal of pollutants. These results suggested that heavy metals, antibiotics, HMRGs, and ARGs shared a joint fate of being removed driven by peroxydisulfate during composting.
Collapse
Affiliation(s)
- Jixuan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yucheng Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Shuaipeng Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Kecheng Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
24
|
Liu X, Zubair M, Kong L, Shi Y, Zhou H, Tong L, Zhu R, Lv Y, Li Z. Shifts in bacterial diversity characteristics during the primary and secondary fermentation stages of bio-compost inoculated with effective microorganisms agent. BIORESOURCE TECHNOLOGY 2023; 382:129163. [PMID: 37224888 DOI: 10.1016/j.biortech.2023.129163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Microbial inoculation was an effective way to improve product quality of composting and solve traditional composting shortage. However, the effect mechanism of microbial inoculation on compost microorganisms remains unclear. Here, Shifts in bacterial community, metabolic function and co-occurrence network during the primary and secondary fermentation stages of bio-compost inoculated with effective microorganisms (EM) agent were analyzed by high-throughput sequencing and network analysis. Microbial inoculation promoted organic carbon transformation in early stage of secondary fermentation (days 27 to 31). The beneficial biocontrol bacteria were main dominant genera at the second fermentation stage. Microbial inoculation can be good for the survival of beneficial bacteria. Inoculation with microbes promoted amino acid, carbohydrate and lipid metabolism, and inhibited energy metabolism and citrate cycle (TCA cycle). Microbial inoculation could enhance complexity of bacterial network and enhance mutual cooperation among bacteria during composting.
Collapse
Affiliation(s)
- Xiayan Liu
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing 100193, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Muhammad Zubair
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Lingyu Kong
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Hu Zhou
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihong Tong
- XState Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, 100084 Beijing, China
| | - Rongsheng Zhu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Yizhong Lv
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Zhaojun Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
| |
Collapse
|
25
|
Teng Z, Zhao X, Jia B, Ye L, Tian S, Guo H, Guo Y, Ji X, Li T, Li M. Bioremediation system consisted with Leclercia adecarboxylata and nZVI@Carbon/Phosphate for lead immobilization: The passivation mechanisms of chemical reaction and biological metabolism in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117888. [PMID: 37087891 DOI: 10.1016/j.jenvman.2023.117888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Bioremediation is one of the most promising strategies for heavy metal immobilization. A new remediation system was demonstrated in this research, which combined phosphate solubilizing bacteria (PSB) with nZVI@Carbon/Phosphate (nZVI@C/P) composite to remediate lead contaminated soil. Experimental results indicated that the new system (nZVI@C/P + PSB) could effectively convert the labile Pb into the stable fraction after 30 days of incubation, which increased the maximum residual fraction percentage of Pb by 70.58%. The characterization results showed that lead may exist in the forms of Pb5(PO4)3Cl, PbSO4 and 3PbCO3·2Pb(OH)2·H2O in the soil treated with nZVI@C/P + PSB. Meanwhile, soil enzyme activities and Leclercia abundance were enhanced in the treated soil compared with CK during the incubation time. In addition, the specialized functions (e.g. ABC transporters, siderophore metabolism, sulfur metabolism and phosphorus metabolism) in PSB and nZVI@C/P + PSB group were also enhanced. These phenomena proved that the key soil metabolic functions may be maintained and enhanced through the synergistic effect of incubated PSB and nZVI@C/P. The study demonstrated that this new bioremediation system provided feasible way to improve the efficacy for lead contaminated soil remediation.
Collapse
Affiliation(s)
- Zedong Teng
- Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China; Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Xin Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Bojie Jia
- Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liangjun Ye
- Ganjiang Innovation Academy, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Shaojing Tian
- Ganjiang Innovation Academy, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Huiyuan Guo
- Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yali Guo
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Xiaonan Ji
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Tinggang Li
- Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China; Ganjiang Innovation Academy, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
26
|
Klein P, Gunkel-Grillon P, Juillot F, Feder F, Kaplan H, Thery G, Pain A, Bloc M, Léopold A. Behavior of trace metals during composting of mixed sewage sludge and tropical green waste: a combined EDTA kinetic and BCR sequential extraction study in New Caledonia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:589. [PMID: 37074478 DOI: 10.1007/s10661-023-11151-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
The aim of the study was to assess the impact of composting on the release dynamics and partitioning of geogenic nickel (Ni), chromium (Cr) and anthropogenic copper (Cu) and zinc (Zn) in a mixture of sewage sludge and green waste in New Caledonia. In contrast to Cu and Zn, total concentrations of Ni and Cr were very high, tenfold the French regulation, due to their sourcing from Ni and Cr enriched ultramafic soils. The novel method used to assess the behavior of trace metals during composting involved combining EDTA kinetic extraction and BCR sequential extraction. BCR extraction revealed marked mobility of Cu and Zn: more than 30% of the total concentration of these trace metals was found in the mobile fractions (F1 + F2) whereas Ni and Cr were mainly found in the residual fraction (F4). Composting increased the proportion of the stable fractions (F3 + F4) of all four trace metals studied. Interestingly, only EDTA kinetic extraction was able to identify the increase in Cr mobility during composting, Cr mobility being driven by the more labile pool (Q1). However, the total mobilizable pool (Q1 + Q2) of Cr remained very low, < 1% of total Cr content. Among the four trace metals studied, only Ni showed significant mobility, the (Q1 + Q2) pool represented almost half the value given in the regulatory guidelines. This suggests possible environmental and ecological risks associated with spreading our type of compost that require further investigation. Beyond New Caledonia, our results also raise the question of the risks in other Ni-rich soils worldwide.
Collapse
Affiliation(s)
- Perrine Klein
- IAC Institut Agronomique Néo-Calédonien, Équipe SolVeg, 98848, Noumea, New Caledonia, France.
- Institut Des Sciences Exactes Et Appliquées, UNC Université de La Nouvelle-Calédonie, BP R4, 98851, Noumea Cedex, New Caledonia, France.
| | - Peggy Gunkel-Grillon
- Institut Des Sciences Exactes Et Appliquées, UNC Université de La Nouvelle-Calédonie, BP R4, 98851, Noumea Cedex, New Caledonia, France
| | - Farid Juillot
- IRD Institut de Recherche Pour Le Développement, ERL 206 IMPMC, 98848, Noumea, New Caledonia, France
- Institut de Minéralogie, de Physique Des Matériaux Et de Cosmochimie (IMPMC), Sorbonne Université, UMR 7590 CNRS, MNHN, IRD, 75252Cedex 5, Paris, France
| | - Frédéric Feder
- Cirad, UPR Recyclage Et Risque, 34398, Montpellier, France
- Recyclage Et Risque, Univ Montpellier, Cirad, 34398, Montpellier, France
| | - Hélène Kaplan
- IAC Institut Agronomique Néo-Calédonien, Équipe SolVeg, 98848, Noumea, New Caledonia, France
| | - Gaël Thery
- GEOPS UMR 8148 CNRS Université Paris-Saclay, GEOPS, Géosciences Paris-Saclay, Orsay, 91400, France
| | - Anthony Pain
- IAC Institut Agronomique Néo-Calédonien, Équipe SolVeg, 98848, Noumea, New Caledonia, France
| | - Meryle Bloc
- CDE Calédonienne Des Eaux, 98845, Noumea Cedex, New Caledonia, France
| | - Audrey Léopold
- IAC Institut Agronomique Néo-Calédonien, Équipe SolVeg, 98848, Noumea, New Caledonia, France.
| |
Collapse
|
27
|
Pei F, Cao X, Sun Y, Kang J, Ren Y, Ge J. Manganese dioxide eliminates the phytotoxicity of aerobic compost products and converts them into a plant friendly organic fertilizer. BIORESOURCE TECHNOLOGY 2023; 373:128708. [PMID: 36746215 DOI: 10.1016/j.biortech.2023.128708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
This study mainly confirmed the exogenous substances (pomace, biochar, MnO2) and the quorum sensing of bacterial communities jointly regulate the metabolic conversion of toxic substances in manures and agricultural wastes, and converts them into a plant-friendly organic fertilizer through aerobic composting and pot experiment. The results showed the composting products had positive performance in bacterial communities, physicochemical indicators, and phytotoxicity. Meanwhile, the addition of exogenous substances could significantly improve seed germination index, promote metabolites conversion, and optimize bacterial community structure. Furthermore, the exogenous substances mainly regulated the functions of the three bacterial communities by quorum sensing system, then promoted the beneficial metabolites, and inhibited the harmful metabolites. Finally, pot experiments suggested compost products could significantly promote plant growth. Thus, these important discoveries extend the knowledge of the previous work and provide an economical and simple method to convert wastes into organic fertilizers that are friendly to plants and soil.
Collapse
Affiliation(s)
- Fangyi Pei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China; Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China
| | - Xinbo Cao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Yangcun Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - YanXin Ren
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
28
|
Wang L, Sun K, Pan S, Wang S, Yan Z, Zhu L, Yang X. Exogenous microbial antagonism affects the bioaugmentation of humus formation under different inoculation using Trichoderma reesei and Phanerochaete chrysosporium. BIORESOURCE TECHNOLOGY 2023; 373:128717. [PMID: 36773812 DOI: 10.1016/j.biortech.2023.128717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
This study was aimed at exploring the effect of antagonism of Trichoderma reesei (T.r) and Phanerochaete chrysosporium (P.c) on humification during fermentation of rice (RS) and canola straw (CS). Results showed that exogeneous fungi accelerated straw degradation and enzyme activities of CMCase, xylanase and LiP. P.c inhibited the activity of LiP when co-existing with T.r beginning, it promoted the degradation of lignin and further increased the production of humus-like substances (HLS) and humic-like acid (HLA) in later fermentation when nutrients were insufficient. The HLS of RTP was 54.9 g/kg RS, higher than the other treatments, and displayed more complex structure and higher thermostability. Brucella and Bacillus were the main HLA bacterial producers. P.c was the HLA fungal producer, while T.r assisted FLA and polyphenol transformation. Therefore, RTP was recommended to advance technologies converting crop straw into humus resources.
Collapse
Affiliation(s)
- Lili Wang
- School of Life Science, Anhui University 230601, China.
| | - Kai Sun
- School of Life Science, Anhui University 230601, China
| | - Shuai Pan
- School of Life Science, Anhui University 230601, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhongkang Yan
- Institute of Physical Science and Information Technology, Anhui University 230601, China
| | - Lianlian Zhu
- School of Life Science, Anhui University 230601, China
| | - Xingyuan Yang
- Institute of Physical Science and Information Technology, Anhui University 230601, China
| |
Collapse
|
29
|
Yan J, Kong N, Liu Q, Wang M, Lv K, Zeng H, Chen W, Luo J, Lou H, Song L, Wu J. Ti 3C 2Tx MXene nanosheets enhance the tolerance of Torreya grandis to Pb stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130647. [PMID: 37056011 DOI: 10.1016/j.jhazmat.2022.130647] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 06/19/2023]
Abstract
As a 2D nanomaterial, MXene (Ti3C2Tx) has shown enormous potential for use in fields such as biomedical and environmental pollution. However, the utilization of MXene materials in plants has received little attention thus far. The efficient use of MXene materials in agriculture and forestry is first highlighted in this study. Phenotypic and physiological analyses indicated that MXene application significantly enhanced the tolerance of Torreya grandis to Pb stress by reducing Pb accumulation. Furthermore, we illustrated two independent mechanisms of MXene material in reducing Pb accumulation in T. grandis: 1) MXene converted the available form of Pb into stable forms via its strong Pb adsorption ability, resulting in a decrease of the available form of Pb in soils, and 2) MXene application obviously increased the cell wall pectin content to restrict more Pb in the cell wall by regulating the expression of pectin synthesis/metabolism-related genes (TgPLL2, TgPLL11, TgPG5, TgPG30, TgGAUT3 and TgGAUT12) in T. grandis roots. Overall, this finding provides insight into the application of MXene material in modern agriculture and forestry, which will facilitate the rapid development of nanotechnology in sustainable agriculture and forestry.
Collapse
Affiliation(s)
- Jingwei Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Na Kong
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Qiumei Liu
- Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Mengmeng Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Ke Lv
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Hao Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Weijie Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jiali Luo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
30
|
Liang X, Su Y, Wang X, Liang C, Tang C, Wei J, Liu K, Ma J, Yu F, Li Y. Insights into the heavy metal adsorption and immobilization mechanisms of CaFe-layered double hydroxide corn straw biochar: Synthesis and application in a combined heavy metal-contaminated environment. CHEMOSPHERE 2023; 313:137467. [PMID: 36481172 DOI: 10.1016/j.chemosphere.2022.137467] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Biochar is an emerging eco-friendly and high-efficiency heavy metal (HM) adsorbent that exhibits satisfactory HM remediation effects in both water and soil environments. However, few studies have investigated the mechanisms and application of biochar in the remediation of combined HM-contaminated environments. Therefore, in the present study, a novel corn straw biochar-loaded calcium-iron layered double hydroxide composite (CaFe-LDH@CSB) was synthesized via the coprecipitation method and applied as a remediation adsorbent to remove HMs in both water and soil environments. The results indicated that the HM adsorption mechanism of CaFe-LDH@CSB in the aquatic phase involved a chemical endothermic adsorption process of functional group-complexed monolayers, dominated by precipitation, ion exchange, complexation and π bond interactions. The maximum adsorption capacity for Cd(II), Pb(II), Zn(II) and Cu(II) in the aqueous phase reached 24.58, 240.96, 57.57 and 39.35 mg g-1, respectively. In addition, application of CaFe-LDH@CSB in the combined HM-contaminated soil treatment helped to increase the soil pH, which increased by 5.1-17.9% in low-contamination (LC) soil and by 7.0-13.9% in high-contamination (HC) soil. Moreover, application of CaFe-LDH@CSB effectively decreased the acid-soluble fraction of HMs and increased the HM residual fraction. The immobilization mechanism of CaFe-LDH@CSB in the soil was concluded to involve pore filling, functional group action and electrostatic interactions. Overall, this study provided a novel LDH biochar composite that can be effectively applied in the remediation of combined HM-contaminated water and soil environments.
Collapse
Affiliation(s)
- Xin Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China.
| | - Yanlan Su
- College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Xinnuo Wang
- College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Chuntao Liang
- College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Chijian Tang
- College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Jiayu Wei
- College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Life Science, Guangxi Normal University, 541004, Guilin, China
| | - Jiangming Ma
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Life Science, Guangxi Normal University, 541004, Guilin, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China.
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China.
| |
Collapse
|
31
|
Gao L, Huang D, Cheng M, Yan M, Wei Z, Xiao R, Du L, Wang G, Li R, Chen S, Yin L. Effect of Phanerochaete chrysosporium inoculation on manganese passivation and microbial community succession during electrical manganese residue composting. BIORESOURCE TECHNOLOGY 2023; 370:128497. [PMID: 36535618 DOI: 10.1016/j.biortech.2022.128497] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Electrolytic manganese residue poses potentially threats to the environment and therefore needs eco-friendly treatment. Composting has been reported to effectively passivate heavy metals and alleviate their ecotoxicity. Observation of the Mn concentration during composting indicated that the mobility of Mn was significantly reduced, with the easily extraction fraction (acid extractable and easily reduction fraction) of Mn in the control pile (pile 1 without Phanerochaete chrysosporium inoculation) and treat pile (pile 2 with Phanerochaete chrysosporium inoculation) decreasing by 17% and 29%, respectively. The inoculation of Phanerochaete chrysosporium prompted the passivation of manganese, prolonged the thermophilic period, and enriched the microbial community structure, which was attributed to the rapid growth and reproduction of thermophilic bacteria. Moreover, Phanerochaete chrysosporium inoculation promoted the effect of pH on the stabilization of Mn, but the opposite contribution of organic matter. This study would provide a new perspective for remediating EMR contaminated soil via composting.
Collapse
Affiliation(s)
- Lan Gao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhen Wei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
32
|
Yu F, Liang X, Li Y, Su Y, Tang S, Wei J, Liu K, Ma J, Li Y. A modified diatomite additive alleviates cadmium-induced oxidative stress in Bidens pilosa L. by altering soil microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41766-41781. [PMID: 36637652 DOI: 10.1007/s11356-023-25216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023]
Abstract
In the present study, a modified silicon adsorbent (MDSA) was used as a passivator, and we explored the mechanism by which the MDSA helps B. pilosa L. alleviate Cd-induced oxidative stress and its effect on the rhizosphere microbial community. Therefore, a field study was conducted, and MDSA was applied at four levels (control (0 mg m-2), A1 (100 mg m-2), A2 (200 mg m-2), and A3 (400 mg m-2)). The application of MDSA significantly increased the soil pH and decreased the acid-soluble Cd content, which decreased by 30.3% with A3 addition. The addition of MDSA increased the relative abundance of Sordariomycetes due to the increased invertase activity and total nitrogen (TN) and total phosphorus (TP) contents, and the increased soil pH led to increased relative abundances of Alphaproteobacteria and Thermoleophilia. Meanwhile, MDSA addition significantly decreased the Cd concentrations in leaves and stems, which decreased by 19.7 to 39.5% in stems and 24.6 to 43.2% in leaves. All MDSA additions significantly decreased the translocation factor (TF) values of Cd, which decreased by 30.5% (A1), 50.9% (A2), and 52.7% (A3). Moreover, peroxidase (POD) from the antioxidant enzyme system and glutathione (GSH) from the nonenzymatic system played vital roles in scavenging reactive oxygen intermediates (ROIs) such as H2O2 and ⋅O2- in leaves, thereby helping B. pilosa L. alleviate Cd-induced oxidative stress and promote plant growth. Hence, our study indicated that MDSA application improved the rhizosphere soil environment, reconstructed the soil microbial community, helped B. pilosa L. alleviate Cd-induced oxidative stress, and promoted plant growth.
Collapse
Affiliation(s)
- Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, China.,College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China
| | - Xin Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China
| | - Yanying Li
- College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China
| | - Yanlan Su
- College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China
| | - Shuting Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China
| | - Jiayu Wei
- College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, China.,College of Life Science, Guangxi Normal University, Guilin, 541004, China
| | - Jiangming Ma
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, China.,College of Life Science, Guangxi Normal University, Guilin, 541004, China
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China. .,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, China. .,College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China.
| |
Collapse
|
33
|
Yang H, Ma L, Fu M, Li K, Li Y, Li Q. Mechanism analysis of humification coupling metabolic pathways based on cow dung composting with ionic liquids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116426. [PMID: 36240639 DOI: 10.1016/j.jenvman.2022.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/22/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
This study focused on how adding ionic liquids (IL) affects composting humification. During the warming and thermophilic phases, addition of IL increased precursors content, and increased the polymerization of humus (HS) at later stages. Furthermore, the final HS and humic acid (HA) content of experimental groups (T) groups 129.79 mg/g and 79.91 mg/g were higher than in control group (CK) 118.57 mg/g and 74.53 mg/g, respectively (p < 0.05). IL up-regulated the gene abundance of metabolism for carbohydrate and amino acid (AA), and promoted the contributions of Actinobacteria and Proteobacteria, which affected humification. The redundancy analysis (RDA) results showed that the citrate-cycle (TCA cycle)(ko0020), pentose phosphate pathway (ko00030), pyruvate metabolism (ko00620), glyoxylate and dicarboxylate metabolism (ko00630), propanoate metabolism (ko00640), butanoate metabolism (ko00650) positively correlated with HA and HI. HA and humification index (HI) positively correlated with AA metabolic pathways, and fulvic acid (FA) was negatively correlated with these pathways. Overall, metabolism for carbohydrate and AA metabolism favored compost humification. ILs improved metabolism for carbohydrate and amino acid metabolism, thus enhancing humification.
Collapse
Affiliation(s)
- Hongxiang Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Liangcai Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Mengxin Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Kecheng Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yinzhong Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
34
|
HongE Y, Wan Z, Kim Y, Yu J. Submerged zone and vegetation drive distribution of heavy metal fractions and microbial community structure: Insights into stormwater biofiltration system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158367. [PMID: 36049683 DOI: 10.1016/j.scitotenv.2022.158367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 05/27/2023]
Abstract
Biofiltration system is a widely used stormwater treatment option that is effective in removing heavy metals. The concentration and distribution of heavy metal fractions in biofiltration filter media, as well as the microbiota composition affected by the design parameters, are relatively novel concepts that require further research. A laboratory-scale column study was conducted to investigate the microbial community and the fractionation of heavy metals (Pb, Cu, Cr, and Cd) extracted from filter media samples, subjected to the presence of vegetation, submerged zone (SZ), and major environmental parameters (pH, water content). Sequential extractions revealed that, compared to the three other fractions (exchangeable fraction, reducible fraction, and oxidizable fraction), the residual fraction was the most represented for each metal (41 - 82 %). As a result, vegetation was found to reduce pH value, and significantly decrease the concentration of the exchangeable fraction of Pb in the middle layer, and the oxidizable fraction of Pb, Cu, Cd, and Cr in the middle and bottom layers (p < 0.05). The formation of an anoxic environment by submerged zone settlements resulted in a significant decrease in the concentration of reducible fractions and a significant increase in the concentration of oxidizable fractions for four heavy metals (p < 0.05). In addition, the analysis of the microbiota showed that the diversity and richness of microorganisms increased in the presence of SZ and plants. The dominant phylum in biofiltration was Proteobacteria, followed by Firmicutes, Bacteroidetes, Acidobacteria, and Actinobacteria as major phyla. Heavy metal fractions could regulate the structure of microbial communities in biofiltration. The findings of this study would enrich our understanding of the improvement of multi-metal-contaminated runoff treatment and highlight the impact of design parameters and heavy metal fractionation on microbial community structure in the biofiltration system.
Collapse
Affiliation(s)
- Yusheng HongE
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zeyi Wan
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Youngchul Kim
- Department of Environmental Engineering, Hanseo University, Seosan City 356-706, Republic of Korea.
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
35
|
Wu R, Long M, Tai X, Wang J, Lu Y, Sun X, Tang D, Sun L. Microbiological inoculation with and without biochar reduces the bioavailability of heavy metals by microbial correlation in pig manure composting. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114294. [PMID: 36402075 DOI: 10.1016/j.ecoenv.2022.114294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Biochar provides a suitable microenvironment for the growth of microorganisms. It may directly or indirectly affect changes in the population of microorganisms, thus affecting heavy metal bioavailability. This study aims to explore the effects of microbiological inoculation with and without biochar on microorganisms and on the bioavailability of heavy metals during pig manure composting. Three composting experiments were conducted under various conditions including no treatment (CK), only microbiological inoculation (TA), and integration with biochar (TB). Compared with raw materials before compost, TA reduced the bioavailability of Cu by 25.1%, Zn by 25.64%, and both Pb and Cr by 1.75%. TB reduced the bioavailability of Cu by 35.38%, Zn by 19.34%, Pb by 0.81%, and Cr by 3.9%. Furthermore, correlation analysis demonstrated that Debaryomyces were the primary fungi, possibly controlling the passivation of Cr. Bacillus, Fusarium, Pseudogracilibacillus, Sinibacillus, and Botryotrichum were the primary bacteria and fungi potentially governing the passivation of Zn, Lastly, Debaryomyces and Penicillium were the primary bacteria and fungi potentially controlling the passivation of Pb and Cu, respectively. Overall, we demonstrated that pig manure added to the microbial inoculum and biochar effectively reduced the bioavailability of heavy metals, thereby offering an applicable technology for reducing heavy metal contamination during pig manure composting.
Collapse
Affiliation(s)
- Renfei Wu
- College of Animal Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Min Long
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xisheng Tai
- College of Urban Environment, Lanzhou City University, Lanzhou 730070, China.
| | - Jiali Wang
- College of Animal Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yongli Lu
- College of Animal Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xuchun Sun
- College of Animal Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Defu Tang
- College of Animal Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Likun Sun
- College of Animal Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
36
|
Mei J, Zhao F, Hou Y, Ahmad S, Cao Y, Yang Z, Ai H, Sheng L. Two novel phosphorus/potassium-degradation bacteria: Bacillus aerophilus SD-1/Bacillus altitudinis SD-3 and their application in two-stage composting of corncob residue. Arch Microbiol 2022; 205:17. [PMID: 36480050 DOI: 10.1007/s00203-022-03357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
For effective utilization of corncob residue to realize green circular production, using composting to obtain a high-quality and low-cost biomass fertilizer has become a very important transformation avenue. In this paper, two novel phosphorus/potassium-degradation bacterial strains were isolated from tobacco straw and identified as Bacillus aerophilus SD-1/Bacillus altitudinis SD-3 (abbreviated as SD-1/SD-3). These identified two novel bacteria SD-1/SD-3 show that the soluble phosphorus content of SD-1/SD-3 reached 360.89 mg L-1/403.56 mg L-1 in the shake flask test, and the mass concentration of soluble potassium is 136.56 mg L-1/139.89 mg L-1. In addition, the Laccase (Lac), Lignin peroxidase (LiP), and Manganese peroxidase (MnP) activities of SD-1 and SD-3 are 54.45 U L-1/394.84 U L-1/222.79 U L-1 and 46.27 U L-1/395.26 U L-1/203.98 U L-1 respectively, with the carboxy-methyl cellulase (CMCase) of 72.07 U mL-1 and 52.69 U mL-1. Meanwhile, the effects of three different combinations of cultures, i.e., no inoculation (K1), inoculation of SD-1/SD-3 on day 21 (K2) and on day 0 (G) are investigated to understand the influence on the degradation degree of corncob residue compost. The results of K2 compost treatment showed that the effective P/K content increased nearly 3.1/2.4 times, the degradation of cellulose/lignin was 49.1/68.0%, and the germination rate was 110.23%, which were higher than other experiment groups K1/G. In conclusion, knowledge of this paper will be very useful for the industrial sector for the treatment of complex corncob residue.
Collapse
Affiliation(s)
- Jinfei Mei
- Engineering Research Centre of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang, 236037, People's Republic of China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, People's Republic of China
| | - Fengbei Zhao
- Engineering Research Centre of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang, 236037, People's Republic of China
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, People's Republic of China
| | - Yumei Hou
- Engineering Research Centre of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang, 236037, People's Republic of China
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, People's Republic of China
| | - Sajjad Ahmad
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yujie Cao
- Engineering Research Centre of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang, 236037, People's Republic of China
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, People's Republic of China
| | - Zheng Yang
- Engineering Research Centre of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang, 236037, People's Republic of China
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, People's Republic of China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Liangquan Sheng
- Engineering Research Centre of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang, 236037, People's Republic of China.
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, People's Republic of China.
| |
Collapse
|
37
|
Yu C, Lu Q, Fu C, Jiang Z, Huang J, Jiang F, Wei Z. Exploring the internal driving mechanism underlying bacterial community-induced organic component conversion and humus formation during rice straw composting with tricarboxylic acid cycle regulator addition. BIORESOURCE TECHNOLOGY 2022; 365:128149. [PMID: 36265785 DOI: 10.1016/j.biortech.2022.128149] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to investigate the effect of tricarboxylic acid (TCA) cycle regulators on CO2 emissions, the conversion of organic components and humus formation during composting. The addition of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NADH) reduced CO2 emissions during rice straw composting. According to co-occurrence networks results, ATP enhanced the connectivity and complexity of the network; NADH enhanced microbial interactions. The different kind of TCA cycle regulators had different effect on humus formation pathway. The structural equation model showed that ATP might promote lignin transformation into humus via the sugar-amine condensation pathway and lignin-protein pathway while NADH may promote cellulose degradation into soluble sugar and organic matter, which are transformed into humus. This work will provide valuable guidance for exploring the mechanism of TCA cycle regulators in promoting organic carbon fixation and reducing inorganic carbon mineralization.
Collapse
Affiliation(s)
- Chunjing Yu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Qian Lu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Chang Fu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Ziwei Jiang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Jiayue Huang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Fangzhi Jiang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Zimin Wei
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; College of Life Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
38
|
Wang M, Wu Y, Zhao J, Liu Y, Gao L, Jiang Z, Zhang J, Tian W. Comparison of composting factors, heavy metal immobilization, and microbial activity after biochar or lime application in straw-manure composting. BIORESOURCE TECHNOLOGY 2022; 363:127872. [PMID: 36084764 DOI: 10.1016/j.biortech.2022.127872] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Composting is an efficient way of disposing agricultural solid wastes as well as passivating heavy metals (HMs). Herein, equivalent (3%) biochar (BC) or lime (LM) were applied in rice straw and swine manure composting, with no additives applied as control group (CK). The results indicated that both the additives increased NO3--N content, organic matter degradation, humus formation, and HM immobilization in composting, and the overall improvement of lime was more significant. In addition, the additives optimized the bacterial community of compost, especially for thermophilic and mature phase. Lime stimulated the growth of Bacillus, Peptostreptococcus, Clostridium, Turicibacter, Clostridiaceae and Pseudomonas, which functioned well in HM passivation via biosorption, bioleaching, or promoting HM-humus formation by secreting hydrolases. Lime (3%) as additive is recommended in swine manure composting to promote composting maturity and reduce HM risk. The study present theoretical guidance in improving composting products quality for civil and industrial composting.
Collapse
Affiliation(s)
- Mengmeng Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuncheng Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jiayin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yu Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Li Gao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhongkun Jiang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Jibing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Wei Tian
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
39
|
Bao H, Chen Z, Wen Q, Wu Y, Fu Q. Effect of calcium peroxide dosage on organic matter degradation, humification during sewage sludge composting and application as amendment for Cu (II)-polluted soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129592. [PMID: 35872452 DOI: 10.1016/j.jhazmat.2022.129592] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/18/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
In this research, it was the first time to investigate the effect of two dosages (5% (T1) and 10% (T2), w/w) of calcium peroxide (CP) on organic matter degradation, humification during sewage sludge composting. Additionally, the complexation of Cu to humic substance (HS) derived from CP-compost compared to no CP addition-compost (CK) was also studied. Results showed that compared to CK, T1 and T2 significantly enhanced organic matter degradation and promoted the formation of HS. Two-dimensional correlation Fourier transform infrared spectroscopy (2D-FTIR-COS) and Parallel factor (PARAFAC) analysis revealed that the addition of CP accelerated the synthesis of HS with high aromatization degree and molecular weight than those in CK, owing to the oxidation of small molecules to form carboxyl. The stability constant (log KM) of Cu with CP-derived HS (log KM = 4.22-5.13) indicated a greater complexation ability than CK-derived HS (log KM = 4.05-4.45), due to the faster response of polysaccharides binding to Cu (II) and the higher humification degree of CP-derived HS. This study revealed the potential mechanisms of CP addition on the synthesis of HS and utilization of CP-compost product might provide an effective way to remedy Cu (II)-contaminated soils.
Collapse
Affiliation(s)
- Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yiqi Wu
- Research Institute of Standards and Norms, Ministry of Housing and Urban-Rural Development, Beijing 100835, PR China
| | - Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
40
|
Li H, Wei Z, Song C, Chen X, Zhang R, Liu Y. Functional keystone drive nitrogen conversion during different animal manures composting. BIORESOURCE TECHNOLOGY 2022; 361:127721. [PMID: 35914672 DOI: 10.1016/j.biortech.2022.127721] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
In this study, nitrogen transformation of chicken manure (CM) and cattle dung (CD) during composting was analyzed and its related functional keystones were identified. The results showed that chicken manure showed more severe nitrogen conversion during composting. The main N conversion factors in cattle dung were nitrite nitrogen (NO2--N) and ammonium nitrogen (NH4+-N), while the main N conversion factors in chicken manure were NH4+-N and nitrate nitrogen (NO3--N). The nitrogen-transforming bacterial community in chicken manure was more diverse. Variations in functional keystone abundances in cattle dung tended to be confined to the cooling and maturation periods, whereas changes in chicken manure persisted throughout the composting process. Environmental factors affected the functional keystones of nitrogen transformation. This study may provide directions for regulating nitrogen conversion in animal manure composting.
Collapse
Affiliation(s)
- Huiying Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ruju Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yumeng Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
41
|
Liu X, Wang Y, Zhou S, Cui P, Wang W, Huang W, Yu Z, Zhou S. Differentiated strategies of animal-derived and plant-derived biochar to reduce nitrogen loss during paper mill sludge composting. BIORESOURCE TECHNOLOGY 2022; 360:127583. [PMID: 35797902 DOI: 10.1016/j.biortech.2022.127583] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
This work aimed to reveal the differences of nitrogen (N) transformation between animal-derived and plant-derived biochar during paper mill sludge composting. Three treatments were established, including CK (no biochar), ABC (animal-derived biochar), and PBC (plant-derived biochar). Results showed that N loss was reduced by 24.43% and 35.50% in ABC and PBC, respectively, compared with CK. Moreover, the contents of acid-insoluble N (AIN) in ABC and bioavailable organic N (BON) in PBC were 6.180 g/kg and 9.269 g/kg higher than in CK (2.602 g/kg and 8.988 g/kg). The protease activity and bacterial abundance associated with the generation of humic N-containing precursors increased in ABC. Low urease activity and a more complex bacterial N-cycling network were found in PBC. Structural equation model confirmed that AIN formation and BON retention were the dominant strategies for animal-derived and plant-derived biochar, respectively. The findings provided multiple pathways to produce N-enriched compost products.
Collapse
Affiliation(s)
- Xiaoming Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Science, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yueqiang Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Science, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Shaoqi Zhou
- College of Resources and Environmental Engineering, Guizhou University, Guizhou 550025, China
| | - Peng Cui
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weiwu Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Science, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wenfeng Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Science, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Science, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Shungui Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Science, Guangdong Academy of Sciences, Guangzhou 510650, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
42
|
Wang X, Tian L, Li Y, Zhong C, Tian C. Effects of exogenous cellulose-degrading bacteria on humus formation and bacterial community stability during composting. BIORESOURCE TECHNOLOGY 2022; 359:127458. [PMID: 35700902 DOI: 10.1016/j.biortech.2022.127458] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to reveal the potential mechanism of influence exogenous cellulose-degrading bacteria (ECDB) exerted on humus synthesis during the co-composting of corn straw and cattle manure. By measuring the changes in physicochemical factors and bacterial communities, it was revealed that inoculation with ECDB enhanced the driving force of cellulose degradation and humus synthesis. ECDB not only directly participated in cellulose degradation as degrading bacteria, but also changed the bacterial community succession, and increased the abundance of bacterial communities associated with cellulose degradation. The results showed that ECDB stimulated the potential functions and interactions of bacterial communities. Structural equation modeling confirmed that ECDB acted mainly as a bioactivator to promote humus formation in co-composting of corn straw and cattle manure. Taken together, these findings offered new strategies which can be effectively utilized to increase the efficiency and quality of corn straw composting.
Collapse
Affiliation(s)
- Xinguang Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China
| | - Yingxin Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China
| | - Cheng Zhong
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China.
| |
Collapse
|
43
|
Niu Q, Li K, Yang H, Zhu P, Huang Y, Wang Y, Li X, Li Q. Exploring the effects of heavy metal passivation under Fenton-like reaction on the removal of antibiotic resistance genes during composting. BIORESOURCE TECHNOLOGY 2022; 359:127476. [PMID: 35714777 DOI: 10.1016/j.biortech.2022.127476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
This study aims to explore the succession of microbes carrying antibiotic resistance genes (ARGs), the relationship between heavy metal speciation and ARGs via Fenton-like reaction during composting. The results indicated that the passivation of Cu and Ni was more prominent, and the Fenton-like reaction promoted exceptionally the passivation of Zn, Ni and Mn. The removals of macrolides-lincosamids-streptogramins (MLS), aminoglycoside and tetracycline resistance genes were induced with the composting process, but the relative abundance of bacitracin resistance genes increased. Additionally, Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were main carriers and disseminators of ARGs, and the Fenton-like reaction improved the contribution degree of Proteobacteria to bacitracin, tetracycline and aminoglycoside resistance genes. Redundancy analysis revealed the passivation of heavy metal contributed to the removal of tetracycline, MLS and aminoglycoside resistance genes. Conclusively, the Fenton-like reaction promoted the passivation of Zn, Ni and Mn, and controlled the abundance of bacitracin resistance genes in composting.
Collapse
Affiliation(s)
- Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Kecheng Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hongxiang Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yiwu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaolan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
44
|
Wang W, Lu T, Liu L, Yang X, Li X, Qiu G. Combined remediation effects of biochar, zeolite and humus on Cd-contaminated weakly alkaline soils in wheat farmland. CHEMOSPHERE 2022; 302:134851. [PMID: 35533934 DOI: 10.1016/j.chemosphere.2022.134851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/16/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Threats posed by Cd-contaminated arable soils to food security have attracted increasing attention. The combination of organic and inorganic amendments has been extensively applied to immobilize Cd in paddy soils. However, the regulatory mechanism of Cd fractionation under these combined amendments and the effect on wheat Cd accumulation remain unclear in upland soils. In this work, different combinations of organic and inorganic amendments were prepared with biochar, zeolite and humus, and the Cd-immobilization mechanism was also investigated in field experiments. The results demonstrated that the mixture of biochar, zeolite and humus had excellent Cd immobilization performance in highly Cd-contaminated (4.26 ± 1.25 mg kg-1) weakly alkaline soils, resulting in 76.5-84.8% decreases in soil available Cd. The contribution of single components to Cd immobilization in the combined amendment follows the order of humus > biochar > zeolite. The combined amendment converted the acid soluble Cd to the Cd bound to the reducible fraction with higher stability, thereby decreasing Cd bioavailability. The maximum Cd decrease rate in wheat roots, straw and grains could reach 68.2%, 45.0% and 59.3%, respectively, and the Cd content in grains (0.098 mg kg-1) was lower than the food security standards of China (0.1 mg kg-1). Wheat planting for two successive years in a large-scale field further verified the superior Cd immobilization performance and stability of the combined amendment in moderately to slightly Cd-contaminated soil. The present study provides references for the remediation of Cd-contaminated weakly alkaline upland soils and certain guidance for safe food production.
Collapse
Affiliation(s)
- Weihua Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Tao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Xiong Yang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Xuanzhen Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
45
|
Liu Y, Ma R, Tang R, Kong Y, Wang J, Li G, Yuan J. Effects of phosphate-containing additives and zeolite on maturity and heavy metal passivation during pig manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155727. [PMID: 35523334 DOI: 10.1016/j.scitotenv.2022.155727] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/12/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the effects of the combination of phosphogypsum with calcium oxide (PPG + CaO), superphosphate with calcium oxide (SSP + CaO) and zeolite (Zeolite) on composting maturity and heavy metal passivation in pig manure composting. The results showed that all treatments reached the maturity requirements and the phosphorus-containing additive treatments had higher final germination indices (GIs). Compared with CK, additive treatments enhanced the compost maturity by promoting volatile fatty acids (VFAs) decomposition (26.4%-30.5%) and formation of stable humus substances. All additive amendment treatments increased humic acid-like substances by over 20%, and the PPG + CaO treatment had the highest level of humus. Composting process reduced the bioavailability of Cu (49.2%), Cd (5.0%), Cr (54.3%), and Pb (26.6%). Correlation analysis found that the heavy mental passivation rate was significantly negatively correlated with the contents of VFAs and nitrogenous substances, and positively correlated with the pH, GI, humic acid content and the ratio of humic acid to fulvic acid (HA/FA). Therefore, the PPG + CaO treatment further increased the passivation rates of Cu (65.6%), Cd (21.7%), and Pb (48.7%) and decreased the mobilization of Zn by promoting maturity and humification during composting.
Collapse
Affiliation(s)
- Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruolan Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jiani Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
46
|
Yousif Abdellah YA, Shi ZJ, Luo YS, Hou WT, Yang X, Wang RL. Effects of different additives and aerobic composting factors on heavy metal bioavailability reduction and compost parameters: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119549. [PMID: 35644429 DOI: 10.1016/j.envpol.2022.119549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Additives are considered a promising approach to accelerate the composting process and alleviate the dissemination of pollutants to the environment. However, nearly all previous articles have focused on the impact of additive amounts on the reduction of HMs, which may not fully represent the main factor shaping HMs bioavailability status during composting. Simultaneously, previous reviews only explored the impacts, speciation, and toxicity mechanism of HMs during composting. Hence, a global-scale meta-analysis was conducted to investigate the response patterns of HMs bioavailability and compost parameters to different additives, composting duration, and composting factors (additive types, feedstock, bulking agents, and composting methods) by measuring the weighted mean values of the response ratio "[ln (RR)]" and size effect (%). The results revealed that additives significantly lessened HMs bioavailability by ≥ 40% in the final compost products than controls. The bioavailability decline rates were -40%, -60%, -57%, -55%, -42%, and -44% for Zn, Pb, Ni, Cu, Cr, and Cd. Simultaneously, additives significantly improved the total nitrogen (TN) (+16%), pH (+5%), and temperature (+5%), and decreased total organic carbon (TOC) (-17%), moisture content (MC) (-18%), and C/N ratio (-19%). Furthermore, we found that the prolongation of composting time significantly promoted the effect of additives on declining HMs bioavailability (p < 0.05). Nevertheless, increasing additive amounts revealed an insignificant impact on decreasing the HMs bioavailability (p > 0.05). Eventually, using zeolite as an additive, chicken manure as feedstock, sawdust as a bulking agent, and a reactor as composting method had the most significant reduction effect on HMs bioavailability (p < 0.05). The findings of this meta-analysis may contribute to the selection, modification, and application of additives and composting factors to manage the level of bioavailable HMs in the compost products.
Collapse
Affiliation(s)
| | - Zhao-Ji Shi
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Sen Luo
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Tao Hou
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Xi Yang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Rui-Long Wang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, 517000, China.
| |
Collapse
|
47
|
Liu C, Li B, Chen X, Dong Y, Lin H. Insight into soilless revegetation of oligotrophic and heavy metal contaminated gold tailing pond by metagenomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128881. [PMID: 35489315 DOI: 10.1016/j.jhazmat.2022.128881] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Soilless revegetation is an efficient way for gold tailing remediation, and micro-ecological environments in plant rhizosphere are important for vegetation establishment and pollution removal. In the present study, a field experiment of soilless revegetation has been carried out in a gold tailings pond, and the key genera and functional genes in the plant rhizosphere of gold mine tailings were revealed by metagenomics analysis. Soilless revegetation significantly decreased rhizosphere tailing pH from 8.54 to 7.43-7.87, reduced heavy metal (HM) concentration by 29.81-44.02% and enhanced the nutrient content by 50.30-169.50% averagely. Such improvements were strongly and closely correlated to microbial community and functional gene composition variation. The relative abundance of ecologically beneficial genus such as Actinobacteria (increased 9.7-18.8%) and functional genes involved in carbon, nitrogen and phosphorus cycling such as pyruvate metabolism (relatively increased 8.7-15.0%), assimilatory (increased to 1.44-2.08 times), phosphate ester mineralization (increased to 1.12-1.29 times) and phosphate transportation (increased to 1.28-1.85 times) were significantly increased. Moreover, the relative abundance of most As and Zn resistance genes were reduced, which may relate to the decrease of As and Zn concentration in the rhizosphere tailings. These results revealed the correlation among HM concentrations, microbial composition and functional genes, and provided clear strategies for improving gold mine tailing ecological restoration efficiency.
Collapse
Affiliation(s)
- Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Xu Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
48
|
Chen Y, Luo X, Li Y, Liu Y, Chen L, Jiang H, Chen Y, Qin X, Tang P, Yan H. Effects of CaO 2 based Fenton - like reaction on heavy metals and microbial community during co-composting of straw and sediment. CHEMOSPHERE 2022; 301:134563. [PMID: 35413365 DOI: 10.1016/j.chemosphere.2022.134563] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/12/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
In this study, a Fenton-like system was constructed by CaO2 and nano-Fe3O4 in the co-composting system of straw and sediment. Its effect on the passivation of heavy metals and the evolution of microbial community were investigated. The results showed that the establishment of CaO2-Fenton-like system increased the residual Cu and residual Zn by 27.62% and 16.80%, respectively. In addition, the CaO2-Fenton-like system facilitated the formation of humic acid (HA) up to 20.84 g·kg-1. Redundancy analysis (RDA) showed that the CaO2-Fenton-like system accelerated bacterial community succession and promoted the passivation of Cu and Zn. Structural equation models (SEMs) indicated that Fenton reaction affected Cu and Zn passivation by affecting pH, bacterial communities, and HA. This study shows that the CaO2-Fenton-like system could promote the application of composting in the remediation of heavy metals contamination in sediment.
Collapse
Affiliation(s)
- Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Xinli Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan, 413000, China.
| | - Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha, 410205, China
| | - Xiaoli Qin
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha, 410004, China
| | - Ping Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Haoqin Yan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
49
|
Zheng X, Zou D, Wu Q, Wang H, Li S, Liu F, Xiao Z. Review on fate and bioavailability of heavy metals during anaerobic digestion and composting of animal manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:75-89. [PMID: 35809372 DOI: 10.1016/j.wasman.2022.06.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 05/16/2023]
Abstract
Anaerobic digestion and composting are attracting increasing attention due to the increased production of animal manure. It is essential to know about the fate and bioavailability of heavy metals (HMs) for further utilisation of animal manure. This review has systematically summarised the migration of HMs and the transformation of several typical HMs (Cu, Zn, Cd, As, and Pb) during anaerobic digestion and composting. The results showed that organic matter degradation increased the HMs content in biogas residue and compost (with the exception of As in compost). HMs migrated into biogas residue during anaerobic digestion through various mechanisms. Most of HMs in biogas residue and compost exceeded relevant standards. Then, anaerobic digestion increased the bioavailable fractions proportion in Zn and Cd, decreased the F4 proportion, and raised them more than moderate environmental risks. As (III) was the main species in the digester, which extremely increased As toxicity. The increase of F3 proportion in Cu and Pb was due to sulphide formation in biogas residue. Whereas, the high humus content in compost greatly increased the F3 proportion in Cu. The F1 proportion in Zn decreased, but the plant availability of Zn in compost did not reduce significantly. Cd and As mainly converted the bioavailable fractions into stable fractions during composting, but As (V) toxicity needs to be concerned. Moreover, additives are only suitable for animal manure treated with slightly HM contaminated. Therefore, it is necessary to combine more comprehensive methods to improve the manure treatment and make product utilisation safer.
Collapse
Affiliation(s)
- Xiaochen Zheng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Qingdan Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Hua Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| | - Shuhui Li
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Fen Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| |
Collapse
|
50
|
Wang Z, Yao Y, Yang Y. Fulvic acid-like substance-Ca(II) complexes improved the utilization of calcium in rice: Chelating and absorption mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113502. [PMID: 35447470 DOI: 10.1016/j.ecoenv.2022.113502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Water-soluble chelated calcium has been widely used in agriculture as a fertilizer to improve the absorption and utilization of calcium by plants. This paper prepared a new organic mineral fertilizer, based on fulvic acid-like substance chelated calcium (PFA-Ca2+ complex), using optimal parameters (i.e., pH, time, temperature, and Ca2+ concentration) to achieve a high chelation efficiency. The absorption, utilization, and distribution of the PFA-Ca2+ complex in rice roots were analyzed using laser scanning confocal microscopy (LSCM). Our results demonstrated that the optimal PFA-Ca2+ complex chelating efficiency (87%) was achieved at an initial Ca2+ concentration of 0.1 mol L-1, an equilibration time of 120 min, a pH of 5.0, and a temperature of 40 °C. The chelating reaction of a fulvic acid-like substance with Ca2+ primarily occurred on phenol hydroxyl, alcohol hydroxyl, and carboxyl groups. The PFA-Ca2+ complex was primarily enriched in the roots' pericycle, cortical, and epidermis cells, in both chelating and non-chelating forms. To our knowledge, this is the first report investigating how the PFA-Ca2+complex affects transformation in plants, which has significant implications for research on plant nutrition and nutrient distribution.
Collapse
Affiliation(s)
- Zhonghua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled-Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Road No. 61, Taian, Shandong 271018, China
| | - Yuanyuan Yao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled-Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Road No. 61, Taian, Shandong 271018, China
| | - Yuechao Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled-Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Road No. 61, Taian, Shandong 271018, China; Department of Soil and Water Science, Tropical Research and Education Center, University of Florida, Homestead, FL 33031, United States.
| |
Collapse
|