1
|
Peng M, Gan M, Zhao X, Zhu J, Zhang K. Self-modified iron-based materials for efficient chromium (VI) removal: Efficacy and mechanism. ENVIRONMENTAL RESEARCH 2025; 272:121193. [PMID: 39993617 DOI: 10.1016/j.envres.2025.121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Hexavalent chromium (Cr(VI)) is a typical carcinogenic contaminant, and the prerequisite for its efficient remediation is the low-cost and high-efficiency removal materials. Thus, in this study, we propose an outstanding Cr(VI) removal iron-based materials derived from the self-modification of secondary minerals by simple pyrolysis and explore their Cr(VI) removal mechanism. The resulting materials, C-AJ (from ammoniojarosite) and C-Jar (from jarosite) exhibited excellent Cr(VI) removal efficiencies, with maximum Cr(VI) removal capacities of 96.9 mg/g and 70.7 mg/g, respectively. Their excellent Cr(VI) removal capacities are mainly attributed to the self-modification of two minerals to form Fe(II) and the retained SO42-, and the N escape of ammoniojarosite [(NH4, H3O)Fe3(OH)6(SO4)2] further promotes the formation of active sites and brings higher Cr(VI) removal ability. Moreover, C-AJ and C-Jar have similar Cr(VI) removal mechanisms involving reduction and absorption. The reduction process, primarily driven by Fe(II), contributes significantly, while the adsorption process, mainly influenced by sulfate, plays a minor role. In addition, the iron-based material exhibits high resistance to interference from pH changes, maintains strong Cr(VI) removal ability in the presence of anions and organic acids, and does not pose a risk of secondary pollution. This study demonstrates that simple pyrolysis of iron-based minerals can induce self-modification, resulting in highly active Cr(VI) removal materials, which presents a potential low-cost and efficient Cr(VI) remediation solution.
Collapse
Affiliation(s)
- Minxian Peng
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China; Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Xinyi Zhao
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Ke Zhang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
2
|
Xia Y, Wen Y, Yang Y, Song X, Wang Y, Zhang Z. Exploring bio-remediation strategies by a novel bacteria Micrococcus sp. strain HX in Cr(VI)-contaminated groundwater from long-term industrial polluted. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117474. [PMID: 39644576 DOI: 10.1016/j.ecoenv.2024.117474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Hexavalent chromium (Cr(VI)) has emerged as a contaminant of heavy metal, owing to its wide use in industry. This study focuses on elucidating the interaction between microbial communities and environmental parameters in Cr(VI)-contaminated groundwater near a factory in Henan Province, and evaluating the bio-remediation potential of microorganisms toward Cr(VI) reduction. The highest concentration of Cr(VI) in the groundwater is 208.08 mg/L. The dominant microbes were Proteobacteria and Bacteroidota, closely positively related to Cr(VI) and SO42-. Many of these genus have been proven to be chromium tolerant or have the ability to reduce Cr(VI). Two strains, Micrococcus sp. HX and Bacillus sp. HX-2, were isolated from contaminated groundwater, and Micrococcus sp. HX was used for the first time to reduce Cr(VI) in groundwater. The reduced ability of HX reached 90.18 % at a Cr(VI) concentration of 100 mg/L, while HX-2 achieved a reduction capacity of 63.8 %. Micrococcus sp. HX shows the best reduction efficiency in alkaline environments (ph=8), which is close to the tannery industry wastewater. The reduction efficiency by Micrococcus sp. HX reached 67.26 % in groundwater samples (Cr(VI)= 26.08 mg/L). Transcriptome analyses revealed oxidoreductase activity, ATP binding and the NAD(P) binding region protein-related gene expression were up-regulated. Binding reduction experiments indicated that most of the Cr(III) was detected extracellular, which suggests that the reduction of Cr(VI) by HX was mainly extracellular enzyme-catalyzed.
Collapse
Affiliation(s)
- Yu Xia
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China; Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang University, Shenyang 110044, China; Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, China.
| | - Yuesuo Yang
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Yunlong Wang
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Sichuan 610000, China
| |
Collapse
|
3
|
Yang Y, Xu Y, Zhong D, Qiao Q, Zeng H. Efficient removal of Cr(VI) by chitosan cross-linked bentonite loaded nano-zero-valent iron composite: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136183. [PMID: 39418910 DOI: 10.1016/j.jhazmat.2024.136183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
A nano-zero-valent iron loaded with 2-aminoterephthalic acid cross-linked chitosan/bentonite (2ACB@nZVI) was developed to remove Cr(VI) from aqueous solution through adsorption-reduction. It was characterized by FTIR, XRD, TGA, BET, SEM, EDS, electrochemistry and XPS. This analysis showed that chitosan cross-linked bentonite not only enhanced the adsorption effect of chitosan and its chemical stability, but also provided a good carrier for loading nZVI and effectively improves its reaction activity. The optimal mass ratios of chitosan: bentonite and 2ACB:nZVI for synthesizing the 2ACB@nZVI composite were 3:1 and 1:4, respectively. The pH value had a great influence on the removal rate of Cr(VI), and its optimal value was 2.0. This is because nZVI was more susceptible to corrosion under acidic conditions, and a large amount of Fe(II) was leached to reduce the adsorbed Cr(VI) on the surface of 2ACB@nZVI. The Cr(VI) removal by 2ACB@nZVI constituted a spontaneous endothermic reaction, aligning with both the pseudo-second-order kinetic model and the Langmuir adsorption isotherm, with a maximum adsorption capacity reached 406.36 mg g-1 at 318 K. 2ACB@nZVI had a strong tolerance to co-existing ions, and the removal rate remained about 80 % after aging for 30 days or six cycles. The main mechanisms included electrostatic adsorption, complexation, reduction, and coprecipitation. Reduction contributed 86.67 % to the removal of Cr(VI), and Fe(II) was the key to Cr(VI) reduction. This study provided a new idea for the efficient treatment of Cr(VI) wastewater.
Collapse
Affiliation(s)
- Yuqin Yang
- School of College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yunlan Xu
- School of College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Dengjie Zhong
- School of College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Qingmei Qiao
- School of College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hanlu Zeng
- School of College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
4
|
Zhang X, Han C, Sun X, Yang S, Sun Y. Surfactant-assisted biodegradation of nitrobenzene in groundwater by sulfided nano-zero valent iron activated persulfate: Synergistic effect, mechanism, and application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123185. [PMID: 39515016 DOI: 10.1016/j.jenvman.2024.123185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Groundwater contamination by dense non-aqueous phase liquids (DNAPLs), particularly nitrobenzene, represents a significant environmental challenge due to their chemical stability, persistence, and low solubility. This study aims to develop a synergistic approach for the biodegradation of nitrobenzene in groundwater, leveraging a combined system of Tween 80-assisted solubilization, sulfidized nano-zero valent iron (S-nZVI), and persulfate (PS) activation. The reduction process is facilitated by S-nZVI, while PS activation generates strong oxidizing radicals, and Tween 80 enhances nitrobenzene solubilization, thus improving the overall treatment efficacy. Laboratory experiments, including both batch and column studies, were conducted to evaluate the performance of this approach. Furthermore, a persulfate slow-release gel system was introduced to provide sustained activation, leading to improved long-term degradation efficiency. The results demonstrated that the synergistic combination of S-nZVI, PS, and Tween 80 led to significantly enhanced degradation of nitrobenzene and its byproduct aniline, achieving degradation rates of up to 96.74% for nitrobenzene and 100% for aniline after 6 h under optimal conditions. Additionally, the oxidation rate of aniline reached 91.53% within 5 min when the optimal dosage of 1.2 mM PS was used. The Tween-80/S-nZVI/PS slow-release gel system further achieved cumulative degradation rates of 87.49% for nitrobenzene over 14 pore volumes in a column study, demonstrating its potential for practical applications in groundwater remediation. These findings provide a promising new direction for the remediation of contaminated groundwater.
Collapse
Affiliation(s)
- Xueyan Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Caohui Han
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Xiaoyin Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Shengke Yang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Yongchang Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China.
| |
Collapse
|
5
|
Zhou T, Shi C, Wang Y, Wang X, Lei Z, Liu X, Wu J, Luo F, Wang L. Progress of metal-loaded biochar-activated persulfate for degradation of emerging organic contaminants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:824-843. [PMID: 39141037 DOI: 10.2166/wst.2024.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
In recent years, studies on the degradation of emerging organic contaminants by sulfate radical (SO4-·) based advanced oxidation processes (SR-AOPs) have triggered increasing attention. Metal-loaded biochar (Me-BC) can effectively prevent the agglomeration and leaching of transition metals, and its good physicochemical properties and abundant active sites induce outstanding in activating persulfate (PS) for pollutant degradation, which is of great significance in the field of advanced oxidation. In this paper, we reviewed the preparation method and stability of Me-BC, the effect of metal loading on the physicochemical properties of biochar, the pathways of pollutant degradation by Me-BC-activated PS (including free radical pathways: SO4-·, hydroxyl radical (·OH), superoxide radicals (O2-·); non-free radical pathways: singlet oxygen (1O2), direct electron transfer), and discussed the activation of different active sites (including metal ions, persistent free radicals, oxygen-containing functional groups, defective structures, etc.) in the SR-AOPs system. Finally, the prospect was presented for the current research progress of Me-BC in SR-AOPs technology.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Chao Shi
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Eco-Environmental Science Center (Guangdong, Hong-Kong, Macau), Guangzhou 510555, China E-mail:
| | - Yangyang Wang
- Eco-Environmental Science Center (Guangdong, Hong-Kong, Macau), Guangzhou 510555, China; School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Xiaoshu Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Zhenle Lei
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xunjie Liu
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Jinyu Wu
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Fengxiang Luo
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Lei Wang
- Eco-Environmental Science Center (Guangdong, Hong-Kong, Macau), Guangzhou 510555, China; School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| |
Collapse
|
6
|
Duan Y, Liu F, Liu X, Li M. Removal of Cr(VI) by glutaraldehyde-crosslinked chitosan encapsulating microscale zero-valent iron: Synthesis, mechanism, and longevity. J Environ Sci (China) 2024; 142:115-128. [PMID: 38527878 DOI: 10.1016/j.jes.2023.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 03/27/2024]
Abstract
Microscale zero-valent iron (mZVI) has shown great potential for groundwater Cr(VI) remediation. However, low Cr(VI) removal capacity caused by passivation restricted the wide use of mZVI. We prepared mZVI/GCS by encapsulating mZVI in a porous glutaraldehyde-crosslinked chitosan matrix, and the formation of the passivation layer was alleviated by reducing the contact between zero-valent iron particles. The average pore diameter of mZVI/GCS was 8.775 nm, which confirmed the mesoporous characteristic of this material. Results of batch experiments demonstrated that mZVI/GCS exhibited high Cr(VI) removal efficiency in a wide range of pH (2-10) and temperature (5-35°C). Common groundwater coexisting ions slightly affected mZVI/GCS. The material showed great reusability, and the average Cr(VI) removal efficiency was 90.41% during eight cycles. In this study, we also conducted kinetics and isotherms analysis. Pseudo-second-order model was the most matched kinetics model. The Cr(VI) adsorption process was fitted by both Langmuir and Freundlich isotherms models, and the maximum Langmuir adsorption capacity of mZVI/GCS reached 243.63 mg/g, which is higher than the adsorption capacities of materials reported in most of the previous studies. Notably, the column capacity for Cr(VI) removal of a mZVI/GCS-packed column was 6.4 times higher than that of a mZVI-packed column in a 50-day experiment. Therefore, mZVI/GCS with a porous structure effectively relieved passivation problems of mZVI and showed practical application prospects as groundwater Cr(VI) remediation material with practical application prospects.
Collapse
Affiliation(s)
- Yijun Duan
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Fang Liu
- Transportation Institute of Inner Mongolia University, Hohhot 010070, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Tesnim D, Hédi BA, Ridha D, Cid-Samamed A. Green low-cost synthesis of zero-valent iron nanoparticles from Palm Petiole Extract for Cr(VI) removal from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44272-44288. [PMID: 38941052 PMCID: PMC11252226 DOI: 10.1007/s11356-024-34092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
One of the hottest research topics over the last decades was the valorization or/and recycling of agro-industrial wastes into different valuable liquid or solid products, which is considered a sustainable and low-cost approach. In this study, we developed zero-valent iron nanoparticles from Palm Petiole Extract (P-NZVI) using a green and straightforward approach. The as-synthesized P-NZVI was used to adsorb Cr(VI) in water. The physico-chemical characterizations of P-NZVI, including the particle size, crystalline structure, surface area, morphology, and functional groups, were investigated via several techniques such as UV-vis spectroscopy, SEM, TEM, XRD, FTIR, AFM, DLS, pHZPC measurement, and BET analysis. The adsorption performance of P-NZVI was studied under different operational parameters, including pollutant concentration, pH, temperature, and adsorbent mass. The adsorption rate was found to be 89.3% within 40 min, corresponding to the adsorption capacity of 44.47 mg/g under the following conditions: initial Cr(VI) concentration of 40 mg/L, pH 5, and a P-NZVI dosage of 1 g/L. It was found that the adsorption pattern follows the Langmuir and the pseudo-second-order kinetic models, indicating a combination of monolayer adsorption and chemisorption mechanisms. The thermodynamic study shows that the adsorption process is endothermic and spontaneous. The reusability of P-NZVI was carried out four times, showing a slight decrease from 89.3 to 87%. These findings highlight that P-NZVI's could be an effective green adsorbent for removing Cr(VI) or other types of toxic pollutants from water.
Collapse
Affiliation(s)
- Dhiss Tesnim
- National School of Engineers of Gabes, Laboratory of Research: Processes, Energy, Environment & Electrical Systems PEESE (LR18ES34), University of Gabes, Gabes, Tunisia
| | - Ben Amor Hédi
- National School of Engineers of Gabes, Laboratory of Research: Processes, Energy, Environment & Electrical Systems PEESE (LR18ES34), University of Gabes, Gabes, Tunisia
| | - Djellabi Ridha
- Department of Chemical Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Antonio Cid-Samamed
- Faculty of Sciences, Physical Chemistry Department, University of Vigo, 32004, Ourense, Spain.
| |
Collapse
|
8
|
Wang X, Zheng Y, Ning P, Lynch I, Guo Z, Zhang P, Wu L. Synergetic effect of green synthesized NZVI@Chitin-modified ZSM-5 for efficient oxidative degradation of tetracycline. ENVIRONMENTAL RESEARCH 2024; 258:119360. [PMID: 38852830 DOI: 10.1016/j.envres.2024.119360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The aggregation and limited activity of nanoscale zero-valent iron (NZVI) in aqueous media hinder its practical application. In this study, a cost-effective, environmentally friendly, robust, and efficient synthesis method for NZVI-based composite was developed. NZVI@Chitin-modified ZSM-5 (NZVI@C-ZSM) composite was facilely and greenly synthesized by loading NZVI into alkali-modified ZSM-5 molecular sieves after modifying with chitin as a surfactant and binder. NZVI@C-ZSM exhibited remarkable efficacy in TC removal, achieving a removal efficiency of 97.72% within 60 min. Compared with pristine NZVI, NZVI@C-ZSM demonstrated twice the removal efficiency, indicating that NZVI@C-ZSM effectively improved the dispersion and stability of NZVI. This enhancement provided more reactive sites for generating reactive oxygen species (ROS), significantly boosting catalytic activity and durability while reducing the potential risk of secondary pollution. An improved two-parameter pseudo-first-order kinetic model was used to effectively characterize the reaction kinetics. The mechanism for TC removal primarily involved an adsorption process and chemical oxidation-reduction reactions induced by hydroxyl radicals (•OH) and superoxide radicals (•O2-). Three potential degradation pathways for TC were suggested. Furthermore, NZVI@C-ZSM exhibited good resistance to interference, suggesting its broad potential for practical applications in complex environmental conditions. This study offers a viable material and method for addressing the issue of antibiotic-contaminated water, with potential applications in water resource management.
Collapse
Affiliation(s)
- Xiangyu Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yimin Zheng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lisi Wu
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
9
|
Deng T, Li H, Ding S, Chen F, Fu J, Zhao J. Enhanced Adsorptivity of Hexavalent Chromium in Aqueous Solutions Using CTS@nZVI Modified Wheat Straw-Derived Porous Carbon. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:973. [PMID: 38869598 PMCID: PMC11173464 DOI: 10.3390/nano14110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
Using KOH-modified wheat straw as the precursor, wheat straw biochar was produced through carbonization at 500 °C. Subsequently, a synthetic material containing nano-zero-valent iron (nZVI) was prepared via liquid phase reduction (nZVI-WSPC). To enhance its properties, chitosan (CTS) was used by crosslinking to form the new adsorbent named CTS@nZVI-WSPC. The impact of CTS on parameters such as mass ratio, initial pH value, and adsorbent dosage on the adsorption efficiency of Cr(VI) in solution was investigated through one-factor experiments. Isotherm adsorption and thermodynamic analysis demonstrated that the adsorption of Cr(VI) by CTS@nZVI-WSPC conforms to the Langmuir model, with a maximum adsorption capacity of 147.93 mg/g, and the adsorption process is endothermic. Kinetic analysis revealed that the adsorption process follows a pseudo-second-order kinetic model. The adsorption mechanism, as elucidated by SEM, FTIR, XPS, and XRD, suggests that the process may involve multiple mechanisms, including pore adsorption, electrostatic adsorption, chemical reduction, and surface chelation. The adsorption capacity of Cr(VI) by CTS@nZVI-WSPC remains high after five cycles. The adsorbent is simple to operate, economical, efficient, and reusable, making it a promising candidate for the treatment of Cr(VI) in water.
Collapse
Affiliation(s)
- Tiantian Deng
- School of Environmental and Biological Engineering, Henan University of Engineering, Zhengzhou 451191, China; (H.L.); (S.D.); (F.C.); (J.F.)
| | - Hansheng Li
- School of Environmental and Biological Engineering, Henan University of Engineering, Zhengzhou 451191, China; (H.L.); (S.D.); (F.C.); (J.F.)
- Faculty of Health Sciences, University of Technology MARA, Puncak Alam Campus, Puncak Alam 42300, Malaysia
| | - Su Ding
- School of Environmental and Biological Engineering, Henan University of Engineering, Zhengzhou 451191, China; (H.L.); (S.D.); (F.C.); (J.F.)
| | - Feng Chen
- School of Environmental and Biological Engineering, Henan University of Engineering, Zhengzhou 451191, China; (H.L.); (S.D.); (F.C.); (J.F.)
| | - Jingbao Fu
- School of Environmental and Biological Engineering, Henan University of Engineering, Zhengzhou 451191, China; (H.L.); (S.D.); (F.C.); (J.F.)
| | - Junwei Zhao
- College of Resources and Environment, Yangtze University, Wuhan 434023, China;
| |
Collapse
|
10
|
Abd El-Monaem EM, Omer AM, Hamad HA, Eltaweil AS. Construction of attapulgite decorated cetylpyridinium bromide/cellulose acetate composite beads for removal of Cr (VI) ions with emphasis on mechanistic insights. Sci Rep 2024; 14:12164. [PMID: 38806605 PMCID: PMC11133475 DOI: 10.1038/s41598-024-62378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
Eco-friendly and renewable composite beads were constructed for efficient adsorptive removal of Cr (VI) ions. Attapulgite (ATP) clay decorated with cetylpyridinium bromide (CPBr) was impregnated into cellulose acetate (CA) beads, which were formulated through a simple and cost-effective solvent-exchange approach. FTIR, XRD, SEM, Zeta potential, and XPS characterization tools verified the successful formation of ATP-CPBr@CA beads. The composite beads displayed a spherical and porous shape with a positively charged surface (26.6 mV) at pH 2. In addition, higher adsorption performance was accomplished by ATP-CPBr@CA composite beads with ease of separation compared to their components. Meanwhile, equilibrium isotherms pointed out that the Langmuir model was optimal for describing the adsorption process of Cr (VI) with a maximal adsorption capacity of 302 mg/g. Moreover, the D-R isotherm model verified the physical adsorption process, while adsorption data obeyed the pseudo-second-order kinetic model. Further, XPS results hypothesized that the removal mechanism involves adsorption via electrostatic interactions, redox reaction, and co-precipitation. Interestingly, the ATP-CPBr@CA composite beads reserved tolerable adsorption characteristics with a maximum removal present exceeding 70% after reuse for seven successive cycles, proposing its feasible applicability as a reusable and easy-separable candidate for removing heavy metals from aquatic bodies.
Collapse
Affiliation(s)
- Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M Omer
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Hesham A Hamad
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Abdelazeem S Eltaweil
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences, Ibra, 400, Sultanate of Oman.
| |
Collapse
|
11
|
Wang Y, Yang Y, Shi J, An W, Lyu T, Zhang P. Processes and mechanisms in remediation of aqueous chromium contamination by sulfidated nano-scale zerovalent iron (S-nZVI): Experimental and computational investigations. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134031. [PMID: 38518701 DOI: 10.1016/j.jhazmat.2024.134031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Sulfidated nano-scale zerovalent iron (S-nZVI) has emerged as an advanced functional nanomaterial for efficiently remediating Cr(VI) contamination in aqueous environments. However, there is an insufficient understanding of its coherent process, removal pathway, and hydrochemical reactive mechanisms, presenting potential challenges for its future environmental applications. To address this gap, this study successfully synthesized S-nZVI through a chemical precipitation method and effectively applied it for the removal of Cr(VI). Additional characterization revealed that the removal of Cr(VI) followed a sequence of rapid chemisorption and intraparticle diffusion processes, concomitant with an increase in pH and a decrease in oxidation-reduction potential. The remediation mechanism encompassed a synergistic reduction of Cr(VI) to Cr(III) and simultaneous immobilization via Cr2FeO4 coprecipitation. The highest Cr(VI) removal capacity of 75 mg/g was attained during dynamic removal experiments in the sand column packed with S-nZVI. Further computational analysis, employing density functional theory calculations based on the experimental data, revealed the involvement of multiple molecular orbitals of Cr(VI) in the removal process. It also elucidated a step-by-step reduction pathway for Cr(VI) characterized by decreasing free energy. These findings provide evidence-based insights into Cr(VI) remediation using S-nZVI and can serve as valuable technical support for future environmental management of heavy metals.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau
| | - Yuesuo Yang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Jinyu Shi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Wengang An
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau.
| |
Collapse
|
12
|
Xu Y, Liu H, Wen S, Guo J, Shi X, He Q, Lin W, Gao Y, Wang R, Xue W. High performance self-assembled sulfidized nanoscale zero-valent iron for the immobilization of cadmium in contaminated sediments: Optimization, microbial response, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134022. [PMID: 38484662 DOI: 10.1016/j.jhazmat.2024.134022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Sulfidized nanoscale zero-valent iron (S-nZVI) showed excellent removal capacity for cadmium (Cd) in aqueous phase. However, the remediation effects of S-nZVI on Cd-contaminated sediment and its interactions with microorganisms in relation to Cd fate remain unclear. The complexity of the external environment posed a challenge for Cd remediation. This study synthesized S-nZVI with different S and Fe precursors to investigate the effect of precursors and applied the optimal material to immobilize Cd in sediments. Characterization analysis revealed that the precursor affected the morphology, Fe0 crystallinity, and the degree of oxidation of the material. Incubation experiments demonstrated that the immobilization efficiency of Cd using S-nZVIFe3++S2- (S/Fe = 0.14) reached the peak value of 99.54%. 1% and 5% dosages of S-nZVI significantly reduced Cd concentration in the overlying water, DTPA-extractable Cd content, and exchangeable (EX) Cd speciation (P < 0.05). Cd leaching in sediment and total iron in the overlying water remained at low levels during 90 d of incubation. Notably, each treatment maintained a high Cd immobilization efficiency under different pH, water/sediment ratio, organic acid, and coexisting ion conditions. Sediment physicochemical properties, functional bacteria, and a range of adsorption, complexation and precipitation of CdS effects dominated Cd immobilization.
Collapse
Affiliation(s)
- Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Hongdou Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Qi He
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Weilong Lin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Rongzhong Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
13
|
Yuan X, Yu S, Liu Y, Zhang X, Zhang S, Xue N, Hu X. Optimizing soil tetrabromobisphenol A remediation through iron-based activation of persulfate: A comparative analysis of homogeneous and heterogeneous systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120302. [PMID: 38401492 DOI: 10.1016/j.jenvman.2024.120302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/12/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
Tetrabromobisphenol A (TBBPA) that widely exists in soil and poses a potential threat to ecological environment urgently needs economically efficient remediation techniques. This study utilized both homogeneous Fe2⁺ solution and heterogeneous iron-based nanomaterials (chemically synthesized nano zero-valence iron (nZVI) and green-synthesized iron nanoparticles (G-Fe NPs)) to activate persulfate (PS) and assess their efficacy in degrading TBBPA in soil. The results demonstrate the superior performance of heterogeneous catalytic systems (WG-Fe NPs/PS (82.07%) and WnZVI/PS (78.32%)) over homogeneous catalytic system (WFe2+/PS (71.69%)), In addition, G-Fe NPs and nZVI effectively controlled the slow release of Fe2+. The optimization analysis using response surface methodology (RSM) reveal the remarkable significance of the experimental model based on the box-behnken design. RSM show that G-Fe NPs/PS exhibited optimal process parameters and predicted the maximum soil TBBPA degradation efficiency reaching 98.77%. The results of density functional theory calculations suggest that C-Br are the primary targets for electrophilic substitution reactions. Based on the f0 value and △G, the degradation pathway of TBBPA is inferred to involve a sequential debromination process, followed by the cleavage of intermediate carbon-carbon bonds and subsequent oxidation reactions. Hence, G-Fe NPs/PS not only facilitate waste resource utilization but also hold significant application potential.
Collapse
Affiliation(s)
- Xuehong Yuan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Shuntao Yu
- Technical Center for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, PR China
| | - Yiwei Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Xinfei Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Sai Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, PR China
| | - Nandong Xue
- Technical Center for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, PR China.
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| |
Collapse
|
14
|
Gu K, Yang X, Yan X, He C, Mao W, Xiao F, Wei X, Fu X, Jiang Y. Effectiveness of a novel composite filler to enhance phosphorus removal in constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17052-17063. [PMID: 38334929 DOI: 10.1007/s11356-024-32191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
Improving the adsorption performance of wetland fillers is of great significance for enhancing pollutant removal in constructed wetlands. Currently, limited by complex preparation processes and high costs, large numbers of high adsorption fillers studied in lab are difficult to be applied in practical engineering. In this study, a newly low-cost and efficient phosphorus removal composite wetland filler (CFB) is prepared by using industrial and agriculture waste (steel slag and oyster shells) and natural ore (volcanic rock) as raw materials. The results show that phosphorus removal efficiency was largely enhanced by synergistic effects of steel slag, oyster shells, and volcanic rock, and it was mainly influenced by the proportion of each component of CFB. Based on the fitting of the classical isothermal equation, the adsorption capacity of CFB is 18.339 mg/g. The adsorption of phosphorus by CFB is endothermic and spontaneous, and there are heterogeneous surfaces and multi-layer adsorption processes, as well as pH value and temperature, are free from the influence on CFB phosphorus removal. During the practical wastewater application experiments, the phosphorus removal rate of the CFB-filled constructed wetland apparatus (CW-A) can reach 94.89% and is free from the influence on the removal of other pollutants (COD, TN, and NH3-N) by the system. Overall, the prepared CFB is of excellent decontamination effect, an extremely simple preparation process, low cost, and sound practical engineering application potential, providing new ideas and approaches for enhancing the phosphorus removal capacity and waste resource utilization of constructed wetland systems.
Collapse
Affiliation(s)
- Kaiyuan Gu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Xiongwei Yang
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Xing Yan
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Chenggang He
- College of Tobacco Science, Yunnan Agricultural University, Kunming, 650000, China
| | - Wanchong Mao
- Sichuan Management & Monitoring Center Station of Radioactive Environment, Chengdu, 611139, China
| | - Fengkun Xiao
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, China
| | - Xiaomeng Wei
- College of Natural Resources & Environment, Northwest Agriculture & Forestry University, Xianyang, 712100, China
| | - Xinxi Fu
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yonglei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China.
| |
Collapse
|
15
|
Phiri Z, Moja NT, Nkambule TT, de Kock LA. Utilization of biochar for remediation of heavy metals in aqueous environments: A review and bibliometric analysis. Heliyon 2024; 10:e25785. [PMID: 38375270 PMCID: PMC10875440 DOI: 10.1016/j.heliyon.2024.e25785] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
Biochar usage for removing heavy metals from aqueous environments has emerged as a promising research area with significant environmental and economic benefits. Using the PICO approach, the research question aimed to explore using biochar to remove heavy metals from aqueous media. We merged the data from Scopus and the Web of Science Core Collection databases to acquire a comprehensive perspective of the subject. The PRISMA guidelines were applied to establish the search parameters, identify the appropriate articles, and collect the bibliographic information from the publications between 2010 and 2022. The bibliometric analysis showed that biochar-based heavy metal remediation is a research field with increasing scholarly attention. The removal of Cr(VI), Pb(II), Cd(II), and Cu(II) was the most studied among the heavy metals. We identified five main clusters centered on adsorption, water treatment, adsorption models, analytical techniques, and hydrothermal carbonization by performing keyword co-occurrence analysis. Trending topics include biochar reusability, modification, acid mine drainage (AMD), wastewater treatment, and hydrochar. The reutilization of heavy metal-loaded spent biochar includes transforming it into electrodes for supercapacitors or stable catalyst materials. This study provides a comprehensive overview of biochar-based heavy metal remediation in aquatic environments and highlights knowledge gaps and future research directions.
Collapse
Affiliation(s)
- Zebron Phiri
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Nathaniel T. Moja
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Thabo T.I. Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Lueta-Ann de Kock
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| |
Collapse
|
16
|
Wang B, Zhao C, Feng Q, Lee X, Zhang X, Wang S, Chen M. Biochar supported nanoscale zerovalent iron-calcium alginate composite for simultaneous removal of Mn(II) and Cr(VI) from wastewater: Sorption performance and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123148. [PMID: 38104766 DOI: 10.1016/j.envpol.2023.123148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Heavy metal pollution in water caused by industrial activities has become a global environmental issue. Among them, manganese mining and smelting activities have caused the combined pollution of Cr(VI) and Mn(II) in water, posing a serious ecotoxicological risk to ecological environments and human health. To efficiently remove Cr(VI) and Mn(II) from wastewater, a novel biochar supported nanoscale zerovalent iron-calcium alginate composite (CA/nZVI/RSBC) was synthesized by liquid-phase reduction and calcium alginate embedding methods. The adsorption performance and mechanisms of Cr(VI) and Mn(II) by CA/nZVI/RSBC were investigated. The maximum adsorption capacities of Cr(VI) and Mn(II) onto CA/nZVI/RSBC fitted by the Langmuir model were 5.38 and 39.78 mg/g, respectively, which were much higher than the pristine biochar. The iron release from CA/nZVI/RSBC was comparatively lower than that of nZVI/RSBC. Mn(II) presence enhanced the reduction of Cr(VI) by CA/nZVI/RSBC. The results of XRD, XPS, and site energy distribution analysis indicated that redox was the predominant mechanism of Cr(VI) adsorption, while electrostatic attraction dominated Mn(II) adsorption. This study provides a novel alternative way for the simultaneous removal of Cr(VI) and Mn(II) in wastewater.
Collapse
Affiliation(s)
- Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Chenxi Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Xueyang Zhang
- School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
17
|
Xue W, Chen X, Liu H, Li J, Wen S, Guo J, Shi X, Gao Y, Wang R, Xu Y. Activation of persulfate by biochar-supported sulfidized nanoscale zero-valent iron for degradation of ciprofloxacin in aqueous solution: process optimization and degradation pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10950-10966. [PMID: 38214863 DOI: 10.1007/s11356-024-31931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
The pollution of antibiotics, specifically ciprofloxacin (CIP), has emerged as a significant issue in the aquatic environment. Advanced oxidation processes (AOPs) are capable of achieving stable and efficient removal of antibiotics from wastewater. In this work, biochar-supported sulfidized nanoscale zero-valent iron (S-nZVI/BC) was adopted to activate persulfate (PS) for the degradation of CIP. The impacts of different influencing factors such as S/Fe molar ratios, BC/S-nZVI mass ratios, PS concentration, S-nZVI/BC dosage, CIP concentration, initial pH, coexisting anions, and humic acid on CIP degradation efficiency were explored by batch experiments. The results demonstrated that the highest degradation ability of S-nZVI/BC was achieved when the S/Fe molar ratio was 0.07 and the BC/S-nZVI mass ratio was 1:1. Under the experimental conditions with 0.6 g/L S-nZVI/BC, 2 mmol/L PS, and 10 mg/L CIP, the degradation rate reached 97.45% after 90 min. The S-nZVI/BC + PS system showed significant degradation in the pH range from 3 to 9. The coexisting anions affected the CIP degradation efficiency in the following order: CO32- > NO3- > SO42- > Cl-. The radical quenching experiments and electron paramagnetic resonance (EPR) revealed that oxidative species, including SO4•-, HO•, •O2-, and 1O2, all contribute to the degradation of CIP, in which •O2- plays a particularly prominent role. Furthermore, the probable degradation pathway of CIP was explored according to the 12 degradation intermediates identified by LC-MS. This study provides a new idea for the activation method of PS and presents a new approach for the treatment of aqueous antibiotics with highly catalytic active nanomaterials.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xinyu Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Hongdou Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jun Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, People's Republic of China
| | - Rongzhong Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
18
|
Zhang R, Zhu Y, Dong J, Yao Z, Zeng G, Sheng X, Xu Z, Lyu S. Fluoranthene degradation in a persulfate system activated by sulfidated nano zero-valent iron (S-nZVI): performance and mechanisms. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:225-240. [PMID: 39219127 PMCID: wst_2024_007 DOI: 10.2166/wst.2024.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fluoranthene (FLT) has received mounting focus due to its hazardous properties and frequent occurrence in groundwater. In this study, sulfidated nano zero-valent iron (S-nZVI) was selected as an efficient catalyst for activating persulfate (PS) to degrade FLT. The effects of reagent doses, various water conditions (pH, anions, and humic acid), and the presence of surfactants on FLT degradation were investigated. Radical probe experiments, electron paramagnetic resonance (EPR) spectrum detection, and scavenging tests were performed to identify the major reactive oxygen species (ROS) in the system. The results showed that in the PS/S-nZVI system, 96.2% of FLT was removed within 120 min at the optimal dose of PS = 0.07 mM and S-nZVI = 0.0072 g L-1. S(-II) in the S-nZVI surface layer promoted Fe(II) regeneration. Furthermore, HO• and SO4-• were identified as the main contributors to FLT degradation. The intermediates of FLT degradation were detected by gas chromatograph-mass spectrometry (GC-MS) and a possible FLT degradation pathway was proposed. Finally, the effective degradation of two other common polycyclic aromatic hydrocarbons (PAHs) (naphthalene and phenanthrene) demonstrated the broad-spectrum reactivity of the PS/S-nZVI process. In conclusion, these findings strongly demonstrate that the PS/S-nZVI process is a promising alternative for the remediation of PAH-contaminated groundwater.
Collapse
Affiliation(s)
- Ruzhuang Zhang
- Shanghai Chengtou Environmental Ecological Remediation Technology Co., LTD, Shanghai 200331, China E-mail:
| | - Yi Zhu
- Shanghai Chengtou Environmental Ecological Remediation Technology Co., LTD, Shanghai 200331, China
| | - Jiaqi Dong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zhennan Yao
- Shanghai Chengtou Environmental Ecological Remediation Technology Co., LTD, Shanghai 200331, China
| | - Guilu Zeng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Xianxian Sheng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Ziqian Xu
- Shanghai Chengtou Environmental Ecological Remediation Technology Co., LTD, Shanghai 200331, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
19
|
Mahmoud ME, Ibrahim GAA. Cr(VI) and doxorubicin adsorptive capture by a novel bionanocomposite of Ti-MOF@TiO 2 incorporated with watermelon biochar and chitosan hydrogel. Int J Biol Macromol 2023; 253:126489. [PMID: 37625740 DOI: 10.1016/j.ijbiomac.2023.126489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Biodegradable polymers, biochars and metal organic frameworks (MOFs) have manifested as top prospects for elimination of harmful pollutants. In the current study, Ti-MOF was synthesized and decorated with TiO2 nanoparticles, then embedded into watermelon peel biochar and functionalized with chitosan hydrogel to produce Ti-MOF@TiO2@WMPB@CTH. Various instruments were employed to assure the effective production of the bionanocomposite. The HR-TEM and SEM studies referred to excellent surface porosity and homogeneity of Ti-MOF@TiO2@WMPB@CTH bionanocomposite, with 51.02-74.23 nm. Based on the BET analysis, the mesoporous structure has a significant surface area of 366.04 m2 g-1 and a considerable total pore volume of 11.38 × 10-2 cm3 g-1, with a mean pore size of 12.434 nm. Removal of doxorubicin (DOX) and hexavalent chromium (Cr(VI)) was examined under various experimentations. Pseudo-second order kinetic models in addition to Langmuir isotherm offered the best fitting. Thermodynamic experiments of the two contaminants demonstrated spontaneous and endothermic interactions. After five subsequent adsorption and desorption cycles, Ti-MOF@TiO2@WMPB@CTH bionanocomposite demonstrated an exceptional recyclability for the elimination of DOX and Cr(VI) ions, reaching 97.96 % and 95.28 %, respectively. Finally, the newly designed Ti-MOF@TiO2@WMPB@CTH bionanocomposite demonstrated a high removing efficiency of Cr(VI) ions and DOX from samples of real water.
Collapse
Affiliation(s)
- Mohamed E Mahmoud
- Faculty of Sciences, Chemistry Department, Alexandria University, Moharem Bey, Alexandria, Egypt.
| | - Ghada A A Ibrahim
- Faculty of Education, Physics and Chemistry Department, Alexandria University, Alexandria, Egypt
| |
Collapse
|
20
|
Xie L, Chen Q, Liu Y, Ma Q, Zhang J, Tang C, Duan G, Lin A, Zhang T, Li S. Enhanced remediation of Cr(VI)-contaminated soil by modified zero-valent iron with oxalic acid on biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167399. [PMID: 37793443 DOI: 10.1016/j.scitotenv.2023.167399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Hexavalent chromium (Cr(VI)) is carcinogenic and widely presented in soil. In this study, modified zero-valent iron (ZVI) with oxalic acid on biochar (OA-ZVI/BC) was prepared using wet ball milling method for the remediation of Cr(VI)-contaminated soil. Microscopic characterizations showed that ZVI were distributed on the biochar uniformly and confirmed the enhanced interface interaction between biochar and ZVI by wet ball milling. Electrochemical analysis indicated the strong electron transfer ability and enhanced corrosion behavior of OA-ZVI/BC. Moreover, inhibitory efficiencies of Cr(VI) removal with the addition of 1,10-phenanthroline suggested abundant Fe2+ generation in OA-ZVI/BC, which might facilitate the reduction of Cr(VI) to Cr(III). Theory calculation further demonstrated the ZVI modified by oxalic acid was more susceptible to solid-solid interfacial reactions with Cr(VI), and more electrons were transferred to Cr(VI). When applied to Cr(VI)-contaminated soil, OA-ZVI/BC could passivate 96.7 % total Cr(VI) and maintained for 90 days. The toxicity characteristic leaching procedure (TCLP) and simple based extraction test (SBET) were used to evaluate the leaching toxicity and bioaccessibility of Cr(VI), respectively. The TCLP-Cr(VI) decreased to 0.11 mg·L-1 after OA-ZVI/BC treatment, much lower than that of soils with ZVI/BC and OA-ZVI remediation (1.5 mg·L-1 and 4.1 mg·L-1). The bioaccessibility of Cr(VI) reduced by 93.5 % after 3-month remediation. Sequential extraction showed that Cr fractions in the soil after OA-ZVI/BC remediation was converted from acetic acid-extractable (HOAc-extractable) to more stable forms (e.g., residual and oxidizable forms). Benefiting from the synergies of oxalic acid, biochar and wet ball milling, OA-ZVI/BC exhibited an excellent performance on the remediation of Cr(VI)-contaminated soil, whose mechanisms involved adsorption, reduction (Fe0/Fe2+, Fe2+/Fe3+) and co-precipitation. This study herein develops a promising ZVI technology in the remediation of heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Lihong Xie
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingjun Chen
- China National Petroleum and Chemical Planning Institute, Beijing 100013, China
| | - Yiyang Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiyan Ma
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinlan Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chenliu Tang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aijun Lin
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shangyi Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
21
|
Liu N, Zhang Y, Zheng C, Tang C, Guan J, Guo Y. Sulfidated nanoscale zero valent iron for in situ immobilization of hexavalent chromium in soil and response of indigenous microbes. CHEMOSPHERE 2023; 344:140343. [PMID: 37788746 DOI: 10.1016/j.chemosphere.2023.140343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/05/2023]
Abstract
This study aimed to investigate the immobilization efficiency of sulfidated nanoscale zero valent iron on Cr(VI) in soil. Reactions between sulfidated nanoscale zero valent iron and Cr(VI) in soil system and effects of sulfidated nanoscale zero valent iron on microbes had been demonstrated. Solid characterization results confirmed the incorporation of sulfur into nanoscale zero valent iron. Furthermore, the main oxidation products of iron after the reactions were magnetite, goethite and lepidocrocite. Fe-Cr complexes indicated that Cr(VI) was reduced to Cr(III). The results of 16 S rRNA gene analysis indicated that the sulfidated nanoscale zero valent iron had a limited bactericidal effect but further stimulated the sulfite reductase gene population, representing its positive effect for the soil remediation. The study showed that some microflora such as Protobacteria were promoted, while others community such as Firmicutes, were depressed. Furthermore, Cr mainly converted from a high toxic state such as exchangeable (EX) to less bioavailable state such as iron-manganese oxides bound (OX) and organic matter-bound (OM), thus reducing the toxicity of Cr when sulfidated nanoscale zero valent iron was added. High immobilization efficiency of the Cr(VI) compared to nanoscale zero valent iron indicated an improvement on selectivity and reactivity after sulfidation. Overall, sulfidated nanoscale zero valent iron was promising for the immobilization of Cr(VI) immobilization soil.
Collapse
Affiliation(s)
- Nuo Liu
- Shanghai Collaborative Innovation Centre for WEEE Recycling, School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Yufei Zhang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chunli Zheng
- Shanghai Collaborative Innovation Centre for WEEE Recycling, School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jie Guan
- Shanghai Collaborative Innovation Centre for WEEE Recycling, School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Yaoguang Guo
- Shanghai Collaborative Innovation Centre for WEEE Recycling, School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China.
| |
Collapse
|
22
|
Bhattacharya M, Barbhuiya NH, Singh SP. Performance evaluation of sulfidated nanoscale iron for hexavalent chromium removal from groundwater in sequential batch study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123055-123066. [PMID: 37979111 DOI: 10.1007/s11356-023-30960-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Chromium [Cr] contamination in groundwater is one of the serious environmental concerns due to the carcinogenicity of its water-soluble and mobile hexavalent [Cr(VI)] form. In spite of the existence of multiple precipitation and adsorption-based Cr(VI) remediation technologies, the usage of sulfidated nano zerovalent iron (S-nZVI) has recently attracted researchers due to its high selectivity. Although S-nZVI effectively immobilized Cr(VI), its long-term performance in multiple shifted equilibrium has not been explored. In this contribution, influences of S-nZVI dosage, initial concentration of Cr(VI), pH, ionic strength, total hardness, sulfate, carbonate, and silicate were probed in ultrapure water. Further experiments were performed in synthetic groundwater to investigate the effects of initial concentration of Cr(VI) in the pH range of 4-8 for 1 g L-1 S-nZVI dosage. Cr(VI) removal rate was quantified in groundwater without pH fixation. Finally, a comparative study between conventional nano zerovalent iron (nZVI) and S-nZVI was conducted in sequential batch reactors to investigate their respective efficiencies during repeated usage. Mechanistic interpretation of the processes governing the immobilization of Cr(VI) was done by integrating the results of these experiments with the metadata. While aggregation due to magnetic properties and rapid oxidation of Fe decreased the efficiency of nZVI with repeated usage, sulfidation minimized the passivation and favored an extended reducing environment because of continuous electron transfer from iron and sulfur components.
Collapse
Affiliation(s)
- Mainak Bhattacharya
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Najmul Haque Barbhuiya
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Centre of Excellence On Membrane Technologies for Desalination, Brine Management, and Water Recycling (DeSaltM), Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
23
|
Chen A, Huang Y, Liu H. Fabrication of Chitin microspheres supported sulfidated nano zerovalent iron and their performance in Cr (VI) removal. CHEMOSPHERE 2023; 338:139609. [PMID: 37482322 DOI: 10.1016/j.chemosphere.2023.139609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Sulfidated nanoscale zerovalent iron (S-nZVI) has been extensively studied for the reductive removal of Cr(VI), but its applicability is limited by agglomeration and unexpected efficiency reduction. In this study, chitin microsphere supported sulfidated nanoscale zero-valent iron (S-nZVI@Chi-M) was prepared by in-situ one-step reduction method and used to remove Cr(VI) from water. Compared to chitin and chitosan powder, Chi-M with nanofibrous structure and large surface area performed best in stabilizing S-nZVI with a Fe0 loading content of 3.01 wt%. The S-nZVI particles were homogeneously distributed on the surface of Chi-M, effectively avoiding agglomeration. Compared with bare nanoparticles and supported nZVI, S-nZVI@Chi-M showed significantly enhanced Cr(VI) removal capacity (924.5 mg Cr(VI) for per gram of effective Fe0). The influences of sulfidation degree, dosages, initial Cr(VI) concentration, pH, DO, humic acid and typical ions on Cr(VI) removal kinetics were further studied. S-nZVI@Chi-M could be recycled for at least 4 times with acceptable reactivity. The mechanism investigation results indicated that the Cr(VI) removal was a complex process of reduction, adsorption and co-precipitation under the synergistic effect of Chi-M and S-nZVI. This work provides new ideas for the continuous fabrication of highly reactive nanoparticles, hopefully expanding the application scope of biomass resources in pollution remediation.
Collapse
Affiliation(s)
- Aikui Chen
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
| | - Yao Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
| | - Hui Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| |
Collapse
|
24
|
Shi L, Deng Q, Guo alidation L, Du Y, Du D, Zhang TC. Efficient removal of Cd(II), Cu(II), and Pb(II) in aqueous solutions by exhausted copper slag supported sulfidized nanoscale zerovalent iron. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
25
|
Zhang X, Wang X, Zhu R, Tan Q, Li C, Sun Z. Morphology regulation of zero-valent iron nanosheets supported on microsilica for promoting peroxymonosulfate activation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116894. [PMID: 36527804 DOI: 10.1016/j.jenvman.2022.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Combing the assisted dispersion strategy of support with the wet chemical reduction method, a novel nano-zero valent iron/microsilica (nZVI/M) composite was successfully fabricated, where the 2D nZVI nanosheets were uniformly anchored and covered on the surface of microsilica. The introduction of microsilica notably relieved the agglomeration effect of nZVI nanosheets, which induced the improvement of specific surface area (45.68 m2/g) and pore volume (0.172 cm3/g), and thereby exposing more active sites for bisphenol A (BPA) removal. The optimized nZVI/M-0.6 displayed the superior catalytic performance in the presence of peroxymonosulfate (PMS) with the degradation rate of BPA reached above 97% within 3 min and a higher constant rate of 0.659 min-1, which was approximately 3.9 times as high as that of nZVI/PMS system. The homogeneously dispersion of nZVI nanosheets on microsilica benefited for the assembly of the pollutants and boosting the kinetics of the catalytic degradation process. As a highly efficient PMS activator, it could well maintain the catalytic activity in different real water samples. The quenching experiments verified that SO4•- played the dominate role for BPA removal. This work offered novel insights for designing and preparing iron-based persulfate activator for wastewater treatment.
Collapse
Affiliation(s)
- Xiangwei Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Xinlin Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Rui Zhu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Qi Tan
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou, 450006, China; National Engineering Research Center for Multipurpose Utilization of Nonmetallic Mineral Resources, Zhengzhou, 450006, China
| | - Chunquan Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Zhiming Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| |
Collapse
|
26
|
Yan G, Gao Y, Xue K, Qi Y, Fan Y, Tian X, Wang J, Zhao R, Zhang P, Liu Y, Liu J. Toxicity mechanisms and remediation strategies for chromium exposure in the environment. FRONTIERS IN ENVIRONMENTAL SCIENCE 2023; 11. [DOI: 10.3389/fenvs.2023.1131204] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Chromium (Cr) is the seventh most abundant chemical element in the Earth’s crust, and Cr(III) and Cr(VI) are common stable valence states of Cr. Several Cr-containing substances, such as FeOCr2O3 and stainless-steel products, exist in nature and in life. However, Cr(VI) is toxic to soil, microorganisms, and plants and poses a serious threat to human health through direct and indirect exposure. By collecting published journal literature, we found that Cr(VI) can cause acute and chronic toxicity in organisms and has carcinogenic effects, and the mechanisms causing these toxicity include endoplasmic reticulum stress, autophagy and apoptosis. However, the relationship between these mechanisms remains unclear. Many methods have been researched to purify chromium, but each of these methods has its own advantages and disadvantages. Therefore, this review summarizes the hazards of chromium and the mechanisms of chromium toxicity after entering cells and provides a number of methods for chromium contamination management, providing a direction for the next step in chromium toxicology and contamination decontamination research.
Collapse
|
27
|
Song H, Liang W, Luo K, Wang G, Li Q, Ji X, Wan J, Shao X, Gong K, Zhang W, Peng C. Simultaneous stabilization of Pb, Cd, and As in soil by rhamnolipid coated sulfidated nano zero-valent iron: Effects and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130259. [PMID: 36335901 DOI: 10.1016/j.jhazmat.2022.130259] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/27/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Sulfidation effectively improves the electron transfer efficiency of nanoscale zero-valent iron (nZVI), but decreases the specific surface area of nZVI. In this study, sulfidated nZVI (S-nZVI) coated with rhamnolipid (RL-S-nZVI) was synthesized and used to stabilize Pb, Cd, and As in combined polluted soil. The stabilization efficiency of 0.3% (wt) RL-S-nZVI to water soluble Pb, Cd, and As in soil reached 88.76%, 72%, and 63%, respectively. Rhamnolipid coating inhibited the reduction of specific surface area and successfully encapsulated nZVI, thus reducing the oxidation of Fe0. The types of iron oxides in RL-S-nZVI were reduced compared to S-nZVI, but the content and strength of Fe0 iron were obviously enhanced. Furthermore, rhamnolipid functional groups (-COOH and -COO-) were also involved in the stabilization process. In addition, the stabilization efficiency of RL-S-nZVI to the bioavailable Pb, Cd, and As in soil increased by 41%, 41%, and 50%, respectively, compared with nZVI. The presence of organic acids, especially citric acid, improved the stabilization efficiency of RL-S-nZVI to the three metals. The result of BCR sequential extraction indicated that RL-S-nZVI increased the residual state of Pb, Cd, and As and reduced the acid-soluble and reducible state after 28 days of soil incubation. XRD and XPS analyses showed that the stabilization mechanisms of RL-S-nZVI on heavy metals involved in ion exchange, surface complexation, adsorption, co-precipitation, chemisorption, and redox.
Collapse
Affiliation(s)
- Huihui Song
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailun Luo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gehui Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qiannan Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaowen Ji
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiang Wan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuechun Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
28
|
Sun Y, Wang T, Han C, Bai L, Sun X. One-step preparation of lignin-based magnetic biochar as bifunctional material for the efficient removal of Cr(VI) and Congo red: Performance and practical application. BIORESOURCE TECHNOLOGY 2023; 369:128373. [PMID: 36423759 DOI: 10.1016/j.biortech.2022.128373] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The lignin-based magnetic biochar (LMB) was fabricated with a facile one-step solvothermal method. The spherical Fe3O4 was successfully loaded on the lignin-based biochar. LMB could efficiently remove Cr(VI) and Congo red (CR) synergistically with the adsorption of biochar and the catalytic/reduction of Fe3O4. LMB showed a removal efficiency of 100 % for Cr(VI) (100 mg/L) at 30 min. The LMB could be a catalyst to activate persulfate (PS) to degrade CR. The LMB + PS system showed a removal efficiency of 94.3 % for CR at 60 min. Moreover, LMB could simultaneously remove 41.5 % of Cr(VI) and 91.5 % of CR in the mixed Cr(VI) and CR solution. The simulated wastewater studies showed that LMB exhibited superior high Cr(VI) (100 %) and CR (82 %) removal efficiencies with the coexistent of anions, cations, and organic matter. LMB can be effectively applied to remove Cr(VI) and CR and purify different contaminated water bodies.
Collapse
Affiliation(s)
- Yongchang Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China.
| | - Tingting Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Caohui Han
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Lu Bai
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Xiaoyin Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| |
Collapse
|
29
|
Li H, Ren Z, Huang D, Jing Q, Tang H. Removal of Hexavalent Chromium in Aqueous Solution by Cellulose Filter Paper Loaded with Nano-Zero-Valent Iron: Performance Investigation and Numerical Modeling. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1867. [PMID: 36767247 PMCID: PMC9915128 DOI: 10.3390/ijerph20031867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Cr(VI) pollution in water bodies is very harmful to human health and the environment. Therefore, it is necessary to remove Cr(VI) from water. In this study, the composite (FP-nZVI) was prepared by loading nano-zero-valent iron (nZVI) onto cellulose filter paper (FP) using a liquid-phase reduction method to improve the dispersibility and oxidation resistance of nZVI. In batch experiments, the effects of iron loading of FP-nZVI, initial concentration of Cr(VI), temperature, and pH on Cr(VI) removal were particularly investigated. The maximum removal rate of 98.6% was achieved at 25 °C, pH = 5, initial concentration of Cr(VI) of 20 mg/L, and FeCl3·6H2O solution concentration of 0.8 mol/L. The removal of Cr(VI) by FP-nZVI conformed to a pseudo-second-order kinetic model and Langmuir isotherm model. The mechanism of Cr(VI) removal was a multi-step removal mechanism, involving adsorption, reduction, and coprecipitation. Column experiments investigated the effect of flow rate (1 mL/min, 3 mL/min, and 5 mL/min) on Cr(VI) removal. We found that increasing flow rate slightly decreased the removal rate of Cr(VI). The transport of Cr(VI) in composite porous media was simulated using HYDRUS-1D, and the results show that the two-site model can well simulate the reactive transport of Cr(VI). This study may provide a useful reference for the remediation of groundwater contaminated with Cr(VI) or other similar heavy metals using FP-nZVI.
Collapse
Affiliation(s)
- Huali Li
- Institute of Water Resources and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhongyu Ren
- Institute of Water Resources and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Dan Huang
- Songliao Water Conservancy Commission, Songliao Basin Water and Soil Conservation Monitoring Center Station, Changchun 130021, China
| | - Qi Jing
- Institute of Water Resources and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Haokai Tang
- Institute of Water Resources and Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
30
|
Yang K, Wang X, Lynch I, Guo Z, Zhang P, Wu L, Ma J. Design of cryogel based CNTs-anchored polyacrylonitrile honeycomb film with ultra-high S-NZVI incorporation for enhanced synergistic reduction of Cr(VI). JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129923. [PMID: 36206708 DOI: 10.1016/j.jhazmat.2022.129923] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
An ultra-high NZVI-loaded PAN film (S-CPN) with a unique 3D honeycomb structure was designed based on the cryogel method of green solvent-induced pores and confinement of the spatially free conformation of films by anchoring carbon nanotubes (CNTs), supplemented sulfidation for removing hexavalent chromium (Cr(VI)), and characterized by SEM, AFM, BET, XRD, XPS, and electrochemical corrosion. The doping amounts of the compounds for S-CPN synthesis were optimized to be 0.075 g CNTs, 0.25 g Na2S, and 0.3 M FeSO4. S-CPN possessed a 175.247 m2/g specific surface area, -0.365 V reduction potential, and 46.54 mg/g ultra-high NZVI-loading. S-CPN had the strong activity of Cr(VI) removal and tolerance to coexisting ions. The removal efficiency remained at 80 % after age for 30 days or 5 cycles. The pseudo-first-order kinetics and Langmuir model were more favorable to simulate the adsorption of Cr(VI) on S-CPN. The thermodynamics show that S-CPN removing Cr(VI) was a spontaneous exothermic reaction. The reasons for these excellent properties were that CNTs improve the film porosity and ultra-high NZVI-loading, and synergistic the FeSX layer to chelates-reduces Cr(VI). This was the first time that honeycomb film with 3D structure and potential applications in heavy metal removal was developed via an eco-friendly strategy.
Collapse
Affiliation(s)
- Kaini Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiangyu Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Lisi Wu
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
31
|
Li S, Feng D, Liu J, Liu Q, Tang J. Surfactant-enhanced reduction of soil-adsorbed nitrobenzene by carbon-coated nZVI: Enhanced desorption and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159186. [PMID: 36202351 DOI: 10.1016/j.scitotenv.2022.159186] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The reduction process of pollutants by nano zero-valent iron (nZVI) is limited by mass transfer and its effective utilization, and previous studies have ignored the electron loss caused by its oxidative passivation. The carbon-coated structure can effectively inhibit the oxidation of nZVI, but the effectiveness of carbon-coated nZVI (Fe0@C) as a reducing agent in soil remediation is unclear. Therefore, in this study, the Fe0@C/surfactant system was used to remove soil-adsorbed nitrobenzene (NB) to simultaneously enhance the mass transfer process and effective utilization of nZVI. The results showed that the use of surfactants effectively promoted the desorption of NB adsorbed by the soil, and the desorption process was affected by factors such as the type and concentration of surfactants, water-soil ratio, and soil organic matter (SOM) content. The enhanced desorption of NB by the surfactant in the soil system promoted the effective contact between the composite and NB, thereby enhancing the reduction of NB by the composite. In addition, Fe0@C exhibited excellent performance for the reduction of soil-adsorbed NB compared with the conventional nZVI, and this advantage was more obvious in the potting soil system. However, the composite will be gradually passivated due to the alkaline environment during the reduction process, and this phenomenon was especially obvious in the campus soil system. When the pH value decreased from 9 to 3, the proportion of aniline (AN) generated in the campus soil system increased from 19.37 % to 69.29 %. In addition, in potting soil systems with high SOM content, the adsorption of soil particles to the composite and the high dissolved organic matter (DOM) content resulting from the high SOM content also negatively affected the reduction process. The conclusions of this study demonstrate the great potential of the Fe0@C/surfactant system for in-situ contaminated site remediation applications.
Collapse
Affiliation(s)
- Song Li
- College of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, Jiangsu, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Di Feng
- Shandong Facility Horticulture Bioengineering Research Center/Weifang University of Science and Technology, Weifang 262700, Shandong, China
| | - Juncheng Liu
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Qinglong Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
32
|
Zhang J, Yu H, Xu W, Shi H, Hu X, Xu J, Lou L. Adsorption-reduction coupling mechanism and reductive species during efficient florfenicol removal by modified biochar supported sulfidized nanoscale zerovalent iron. ENVIRONMENTAL RESEARCH 2023; 216:114782. [PMID: 36395864 DOI: 10.1016/j.envres.2022.114782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Sulfidized nanoscale zerovalent iron (S-nZVI) was a promising material for degrading halogenated contaminants, but the easy aggregation limits its application for in-situ groundwater remediation. Hence, S-nZVI was decorated onto modified biochar (mBC) to obtain better dispersity and reactivity with florfenicol (FF), a widely used antibiotic. Uniform dispersion of S-nZVI particles were achieved on the mBC with plentiful oxygen-containing functional groups and negative surface charge. Thus, the removal rate of FF by S-nZVI@mBC was 2.5 and 3.1 times higher than that by S-nZVI and S-nZVI@BC, respectively. Adsorption and dechlorination of FF showed synergistic effect under appropriate mBC addition (e.g., C/Fe mass ratio = 1:3, 1:1), probably due to the enrichment of FF facilitates its reduction. In contrast, the contact between FF and S-nZVI could be hindered under more mBC addition, significantly decrease the reduction rate of FF and the reduction capacity of per unit Fe0. In addition, sulfur dose altered the surface species of surface Fe and S, and removal rates of FF correlated well with surface reductive species, i.e., FeS (r = 0.90, p < 0.05) and Fe0 (r = 0.98, p < 0.01). These mechanistic insights indicate the importance of rational design for biochar supported S-nZVI, which can lead to more efficient FF degradation.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Hao Yu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Weijian Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Hongyu Shi
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Xiaohong Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Jiang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, China.
| |
Collapse
|
33
|
Lin Z, Liu F, Zheng C, Zhu A, Li H, Wang Z, He C. Highly efficient removal of Cd(II) in aqueous solution by attapulgite-loaded amorphous zero-valent Iron. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Shamshirgaran R, Malakooti R, Akbarpoor A, Moghaddam AZ. Fabrication of Polyvinylpyrrolidone‐Stabilized Nano Zero‐Valent Iron Supported by Hydrophilic Biochar for Efficient Cr (VI) Removal from Groundwater. ChemistrySelect 2022. [DOI: 10.1002/slct.202202927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Wei J, Duan Y, Li M, Lin H, Lv J, Chen Z, Lin J, Song H, Zhang R, Li L, Huang L. A novel manganese sulfide encapsulating biochar-dispersed zero-valent iron composite for high removal ability of Cr(VI) in water and its mechanism. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Zr4+ cross-linked chitosan-thiourea composite for efficient detoxification of Cr(VI) ions in aqueous solution. Carbohydr Polym 2022; 296:119872. [DOI: 10.1016/j.carbpol.2022.119872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 01/04/2023]
|
37
|
Phyu Mon P, Phyu Cho P, Chanadana L, Ashok Kumar K, Dobhal S, Shashidhar T, Madras G, Subrahmanyam C. Bio-waste assisted phase transformation of Fe3O4/carbon to nZVI/graphene composites and its application in reductive elimination of Cr(VI) removal from aquifer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Wang T, Sun Y, Bai L, Han C, Sun X. Ultrafast removal of Cr(VI) by chitosan coated biochar-supported nano zero-valent iron aerogel from aqueous solution: Application performance and reaction mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Gao W, Chen Y, Rao J, Hu Z, Tan Y, Wen Y, Wang Y, Zhou Z, Zhu Y, Zhou N. BC OFGs loaded with nano-Fe xS y for the catalytic degradation of QNC: Contribution and mechanism of OFGs for reductive iron regeneration. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129741. [PMID: 35985217 DOI: 10.1016/j.jhazmat.2022.129741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Biochar currently served as the support for dispersed metal nanoparticles and cooperated with pyrite to generate more reactive radicals in organic pollution degradation system. But the mechanism of interaction between biochar and pyrite has not been elucidated. In this paper, biochar with oxygen-containing functional groups (OFGs) served as a stable dispersant to prepare nano-FexSy loaded biochar materials (BCOFGs@nano-FexSy). BCOFGs coordinated with nano-FexSy to overcome its drawbacks, boosting QNC removal efficiency from 28.64% to 100%. The XPS and the linear sweep voltammetry (LSV) results revealed higher Fe(II) content and higher electron transfer rate on used BCOFGs@nano-FexSy, further validating that hydroxyl functional groups on biochar surface provided electrons to Fe(III) to achieve efficient Fe(II)/Fe(III) cycling. Based on comparative experiments and studies on the roles of iron, S(II) species and OFGs, we clearly revealed that OFGs on biochar materials surface coordinated with nano-FexSy to catalyze the degradation of QNC. The degradation efficiency of BCOFGs@nano-FexSy for QNC was still as high as 91.39% after five cycles, providing full demonstrations that OFGs and S(II) as the abundant electron donor coordinated with Fe species for QNC catalytic degradation and further enhanced the catalytic performance and stability of nano-FexSy.
Collapse
Affiliation(s)
- Wenbin Gao
- Hunan Engineering Research Center for Biochar, College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Yuzhen Chen
- Hunan Engineering Research Center for Biochar, College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Jiahao Rao
- Hunan Engineering Research Center for Biochar, College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Zhan Hu
- Hunan Engineering Research Center for Biochar, College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Yan Tan
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yujiao Wen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yifan Wang
- Hunan Engineering Research Center for Biochar, College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Zhi Zhou
- Hunan Engineering Research Center for Biochar, College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Nan Zhou
- Hunan Engineering Research Center for Biochar, College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
40
|
Huang X, Niu X, Zhang D, Li X, Li H, Wang Z, Lin Z, Fu M. Fate and mechanistic insights into nanoscale zerovalent iron (nZVI) activation of sludge derived biochar reacted with Cr(VI). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115771. [PMID: 35982569 DOI: 10.1016/j.jenvman.2022.115771] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
While nanoscale zero-valent iron modified biochar (nZVI-BC) have been widely investigated for the removal of heavy metals, the corrosion products of nZVI and their interaction with heavy metals have not been revealed yet. In this paper, nZVI-BC was synthesized and applied for the removal of Cr(VI). Batch experiments indicated that the adsorption of Cr(VI) fit Langmuir isotherm, with the maximum removal capacity at 172.4 mg/g at pH 2.0. SEM-EDS, BET, XRD, FT-IR, Raman and XPS investigation suggested that reduction of Cr(VI) to Cr(III) was the major removal mechanism. pH played an important role on the corrosion of nZVI-BC, at pH 4.5 and 2.0, FeOOH and Fe3O4 were detected as the major iron oxide, respectively. Therefore, FeOOH-BC and Fe3O4-BC were further prepared and their interaction with Cr were studied. Combining with DFT calculations, it revealed that Fe3O4 has higher adsorption capacity and was responsible for the effective removal of Cr(VI) through electrostatic attraction and reduction under acidic conditions. However, Fe3O4 will continue to convert to the more stable FeOOH, which is the key to for the subsequent stabilization of the reduced Cr(III). The results showed that the oxide corrosion products of nZVI-BC were subjected to the environment, which will eventually affect the fate and transport of the adsorbed heavy metal.
Collapse
Affiliation(s)
- Xuyin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China.
| | - Xiaoqin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Haoshen Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Ziyuan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhang Lin
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
41
|
Kinetics and Mechanisms of Cr(VI) Removal by nZVI: Influencing Parameters and Modification. Catalysts 2022. [DOI: 10.3390/catal12090999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, single-spherical nanoscale zero valent iron (nZVI) particles with large specific sur-face area were successfully synthesized by a simple and rapid chemical reduction method. The XRD spectra and SEM–EDS images showed that the synthesized nZVI had excellent crystal struc-ture, but oxidation products, such as γ-Fe2O3 and Fe3O4, were formed on the surface of the parti-cles. The effect of different factors on the removal of Cr(VI) by nZVI were studied, and the opti-mum experimental conditions were found. Kinetic and thermodynamic equations at different temperatures showed that the removal of Cr(VI) by nZVI was a single-layer chemical adsorption, conforming to pseudo-second-order kinetics. By applying the intraparticle diffusion model, the ad-sorption process was composed of three stages, namely rapid diffusion, chemical reduction, and in-ternal saturation. Mechanism analysis demonstrated that the removal of Cr(VI) by nZVI in-volved adsorption, reduction, precipitation and coprecipitation. Meanwhile, Cr(VI) was reduced to Cr(III) by nZVI, while FeCr2O4, CrxFe1−xOOH, and CrxFe1−x(OH)3 were formed as end products. In addition, the study found that ascorbic acid, starch, and Cu modified nZVI can promote the removal efficiency of Cr(VI) in varying degrees due to the enhanced mobility of the particles. These results can provide new insights into the removal mechanisms of Cr(VI) by nZVI.
Collapse
|
42
|
Sinha R, Kumar R, Sharma P, Kant N, Shang J, Aminabhavi TM. Removal of hexavalent chromium via biochar-based adsorbents: State-of-the-art, challenges, and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115356. [PMID: 35623129 DOI: 10.1016/j.jenvman.2022.115356] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Chromium originates from geogenic and extensive anthropogenic activities and significantly impacts natural ecosystems and human health. Various methods have been applied to remove hexavalent chromium (Cr(VI)) from aquatic environmental matrices, including adsorption via different adsorbents, which is considered to be the most common and low-cost approach. Biochar materials have been recognized as renewable carbon sorbents, pyrolyzed from various biomass at different temperatures under limited/no oxygen conditions for heavy metals remediation. This review summarizes the sources, chemical speciation & toxicity of Cr(VI) ions, and raw and modified biochar applications for Cr(VI) remediation from various contaminated matrices. Mechanistic understanding of Cr(VI) adsorption using different biochar-based materials through batch and saturated column adsorption experiments is documented. Electrostatic interaction and ion exchange dominate the Cr(VI) adsorption onto the biochar materials in acidic pH media. Cr(VI) ions tend to break down as HCrO4-, CrO42-, and Cr2O72- ions in aqueous solutions. At low pH (∼1-4), the availability of HCrO4- ions attributes the electrostatic forces of attraction due to the available functional groups such as -NH4+, -COOH, and -OH2+, which encourages higher adsorption of Cr(VI). Equilibrium isotherm, kinetic, and thermodynamic models help to understand Cr(VI)-biochar interactions and their adsorption mechanism. The adsorption studies of Cr(VI) are summarized through the fixed-bed saturated column experiments and Cr-contaminated real groundwater analysis using biochar-based sorbents for practical applicability. This review highlights the significant challenges in biochar-based material applications as green, renewable, and cost-effective adsorbents for the remediation of Cr(VI). Further recommendations and future scope for the implications of advanced novel biochar materials for Cr(VI) removal and other heavy metals are elegantly discussed.
Collapse
Affiliation(s)
- Rama Sinha
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803 116, India
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803 116, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803 116, India.
| | - Nishi Kant
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826 004, Jharkhand, India
| | - Jianying Shang
- Department of Soil and Water Science, China Agricultural University, Beijing, 100083, China
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; School of Engineering, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, 248 007, India; Department of Chemistry, Karnatak University, Dharwad, 580 003, India.
| |
Collapse
|
43
|
Sun P, Wang Z, An S, Zhao J, Yan Y, Zhang D, Wu Z, Shen B, Lyu H. Biochar-supported nZVI for the removal of Cr(VI) from soil and water: Advances in experimental research and engineering applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115211. [PMID: 35561491 DOI: 10.1016/j.jenvman.2022.115211] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Over the past decade, biochar-supported nZVI composites (nZVI/biochar) have been developed and applied to treat various pollutants due to their excellent physical and chemical properties, especially in the field of chromium (VI) removal. This paper reviewed the factors influencing the preparation and experiments of nZVI/biochar composites, optimization methods, column experimental studies and the mechanism of Cr(VI) removal. The results showed that the difference in raw materials and preparation temperature led to the difference in functional groups and electron transfer capabilities of nZVI/biochar materials. In the experimental process, pH and test temperature can affect the surface chemical properties of materials and involve the electron transfer efficiency. Elemental doping and microbial coupling can effectively improve the performance of nZVI/biochar composites. In conclusion, biochar can stabilize nZVI and enhance electron transfer in nZVI/biochar materials, enabling the composite materials to remove Cr(VI) efficiently. The study of column experiments provides a theoretical basis for applying nZVI/biochar composites in engineering. Finally, the future work prospects of nZVI/biochar composites for heavy metal removal are introduced, and the main challenges and further research directions are proposed.
Collapse
Affiliation(s)
- Peng Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhiqiang Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shengwei An
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jian Zhao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yichen Yan
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Daijie Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhineng Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Boxiong Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
44
|
Hao T, Liu K, Gao B, Hocking R, Fang L. Phase transformation of nanosized zero-valent iron modulated by As(III) determines heavy metal passivation. WATER RESEARCH 2022; 221:118804. [PMID: 35797817 DOI: 10.1016/j.watres.2022.118804] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Nanoscale zero-valent iron (nZVI) has been extensively used for the passivation of cadmium (Cd) or arsenic (As) from wastewaters, while the underlying mechanisms of nZVI reaction with coexisting Cd and As are largely overlooked. Herein, the interactions of Cd and As during the course of nZVI transformation and the corresponding effects on respective pollutant removal have been systematically investigated. Batch experiments results show that As(III) addition significantly promotes the passivation of Cd(II) by nZVI, and the removal capacity increases by 7.8 times compared to that of Cd(II) alone. However, the adsorption and oxidative transformation of As(III) are barely affected under a relatively low Cd(II) concentration. It is conducive to the adsorption of Cd(II) and As(III) using nZVI under neutral conditions. The transformation of nZVI to lepidocrocite dominates in the Cd(II) single system, while it mainly converts to amorphous Fe oxyhydroxide with the addition of As(III). As(III) notably reduces the surface charge of Fe oxyhydroxide intermediates and to form the ternary complexes with Cd (Fe-As-Cd), which is the predominant mechanism for the promoted Cd(II) passivation. This work provides new understanding of nZVI transformation coupled to Cd(II) and As(III) passivation, which are likely contributing to the heavy metalloids regulation in waters and subsurface environments.
Collapse
Affiliation(s)
- Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Kai Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Baolin Gao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Rosalie Hocking
- Department of Chemistry and Biotechnology and Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
45
|
Zhu H, Yao J, Zhang Z, Jiang X, Zhou Y, Bai Y, Hu X, Ning H, Hu J. Sulfidised nanoscale zerovalent iron-modified pitaya peel-derived carbon for enrofloxacin degradation and swine wastewater treatment: Combination of electro-Fenton and bio-electro-Fenton process. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128767. [PMID: 35398695 DOI: 10.1016/j.jhazmat.2022.128767] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
In this study, a new Fenton system combining electro-Fenton and bio-electro-Fenton (EF-BEF) processes was proposed for ENR degradation and swine wastewater treatment, and pitaya peel-derived carbon modified with sulfidised nanoscale zerovalent iron (SnZVI) was developed as a catalyst for the system. The as-prepared PPC-800 carbon displayed a hierarchical porous structure (693.5 m2/g), abundant oxygen-containing groups, and carbon defects, which endowed it with a good adsorption capacity, high H2O2 generation capacity (151.9 ± 10.5 mg/L) during the EF period, and good power production performance (194.3 ± 12.50 mW/m2) during the BEF period. When modified with SnZVI, despite the decrease in the adsorption capacity and power output (102.05 ± 4.05 mW/m2), the SnZVI@PPC-2 exhibited the best ENR removal performance with that of 98.9 ± 0.2% in the EF period and 86.2 ± 5.6% during the BEF period. An increase in the current intensity and air flow rate promoted ENR degradation. Finally, swine wastewater was treated using the SnZVI@PPC-2 EF-BEF system, and 97.9 ± 1.3% of the TOC was removed using the combined system.
Collapse
Affiliation(s)
- Hongyi Zhu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Juanjuan Yao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Xu Jiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yingying Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yun Bai
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xueli Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Haoming Ning
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jiawei Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
46
|
Zhao R, Wang B, Zhang X, Lee X, Chen M, Feng Q, Chen S. Insights into Cr(VI) removal mechanism in water by facile one-step pyrolysis prepared coal gangue-biochar composite. CHEMOSPHERE 2022; 299:134334. [PMID: 35307391 DOI: 10.1016/j.chemosphere.2022.134334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The acceleration of industrialization has increased the discharge of chromium-containing wastewater, posing serious threat to the eco-environment and human health. To remove Cr(VI) in wastewater and improve resource utilization of solid waste, coal gangue and rape straw were initially used to prepare coal gangue-rape straw biochar (CG-RS) composite. The effects of pyrolysis temperatures, solution pH, coexisting ions of Cr(VI) adsorption were investigated. Different adsorption models combined with site energy analysis were used to explore the adsorption behaviors and mechanisms. The results showed higher pyrolysis temperature (600 °C) prepared CG-RS had a larger adsorption capacity (9.2 mg/g) for Cr(VI) (pH = 5.0). Analysis of XPS indicated that CG-RS successfully loaded with Fe-O and Al-O functional groups, which mainly participated in the reduction of Cr(VI). Site energy analysis further proved that reduction and surface complexation were the main adsorption mechanisms. This study shows an effective removal of Cr(VI) by CG-RS, providing a new way for resource utilization of solid waste.
Collapse
Affiliation(s)
- Ruohan Zhao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221000, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Shiwan Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
47
|
Liu N, Gong Y, Peng X, Li S, Zhang WX. A win-win solution to chromate removal by sulfidated nanoscale zero-valent iron in sludge. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128683. [PMID: 35303665 DOI: 10.1016/j.jhazmat.2022.128683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
This study investigates the reaction between sulfidated nanoscale zero valent iron (S-nZVI) and Cr(VI) in the sludge system and explores the effect of S-nZVI on microbes. Results of the batch experiments indicated that the optimal Cr(VI) removal capacity (35.3 mg/g) was reached when the S/Fe ratio was at 0.05. It was about 20-time higher than that of nanoscale zero valent iron (nZVI) (<2.0 mg/g). However, the removal efficiency decreased as the S/Fe molar ratio further increased. Solid characterizations revealed that the S-nZVI consisted of a Fe0 core encapsulated by a flake FeS shell and had a similar "core-shell" structure to that of the nZVI. X-ray photoelectron spectroscopy (XPS) indicated that Cr(VI) was reduced to less toxic Cr(III). In addition, the 16 S rRNA gene and cryo-scanning electron microscopy (cryo-SEM) results showed S-nZVI mildly influenced the initial microbial diversity. Some microflora including Caldiserica, Planctomycetes were promoted, while others groups such as Actinobacteria, Bacteroidetes and Chloroflexi were inhibited: specifically, bacteria such as Proteobacteria (possibly related to sulfide oxidization) began to develop after the S-nZVI feeding. The high Cr(VI) removal efficiency and the mildly influenced microbial diversity make the usage of S-nZVI a win-win solution for Cr(VI) removal in sludge.
Collapse
Affiliation(s)
- Nuo Liu
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, China
| | - Yuxiu Gong
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong, China
| | - Shaolin Li
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, China.
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, China.
| |
Collapse
|
48
|
Liu Y, Chen Y, Li Y, Chen L, Jiang H, Li H, Luo X, Tang P, Yan H, Zhao M, Yuan Y, Hou S. Fabrication, application, and mechanism of metal and heteroatom co-doped biochar composites (MHBCs) for the removal of contaminants in water: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128584. [PMID: 35359100 DOI: 10.1016/j.jhazmat.2022.128584] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The potential risk of various contaminants in water has recently attracted public attention. Biochars and modified biochars have been widely developed for environmental remediation. Metal and heteroatom co-doped biochar composites (MHBCs) quickly caught the interest of researchers with more active sites and higher affinity for contaminants compared to single-doped biochar by metal or heteroatoms. This study provides a comprehensive review of MHBCs in wastewater decontamination. Firstly, the main fabrication methods of MHBCs were external doping and internal doping, with external doping being the most common. Secondly, the applications of MHBCs as adsorbents and catalysts in water treatment were introduced emphatically, which mainly included the removal of metals, antibiotics, dyes, pesticides, phenols, and other organic contaminants. Thirdly, the removal mechanisms of contaminants by MHBCs were deeply discussed in adsorption, oxidation and reduction, and degradation. Furthermore, the influencing factors for the removal of contaminants by MHBCs were also summarized, including the physicochemical properties of MHBCs, and environmental variables of pH and co-existing substance. Finally, futural challenges of MHBCs are proposed in the leaching toxicity of metal from MHBCs, the choice of heteroatoms on the fabrication for MHBCs, and the application in the composite system and soil remediation.
Collapse
Affiliation(s)
- Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, China
| | - Xinli Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ping Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Haoqin Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Mengyang Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yu Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Suzhen Hou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
49
|
Li W, Liang L, Li Y, Tian Y, Chen J, Chen S, Zhang J. Individual effects of different co-existing ions and polystyrene (PS) microplastics on the reactivity of sulfidated nanoscale zero-valent iron (S-nZVI) toward EDTA-chelated CdII removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Wei X, Zhu N, Huang J, Kang N, Li F, Wu P, Dang Z. Rapid and efficient reduction of chromate by novel Pd/Fe@biomass derived from Enterococcus faecalis. ENVIRONMENTAL RESEARCH 2022; 204:112005. [PMID: 34499894 DOI: 10.1016/j.envres.2021.112005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Efficient reduction of chromate is highly desirable for its detoxification and remediation of the contaminated environment. This study described a fusion of the concepts of precious metal biorecovery and fabrication of Pd/Fe@biomass derived from simulated wastewater. The effectiveness of Pd/Fe@biomass during reduction process of Cr(VI) was evaluated by comparing with pure nZVI, E. faecalis and Pd@biomass. Results showed that Pd(II) could be recovered by E. faecalis with Fe(II) as the electron donor, and precipitation could yield nZVI anchored onto Pd-loaded E. faecalis. The nano particles (NPs) on Pd/Fe@biomass were well-dispersed, which provided 2.70 folds specific surface area comparing with nZVI. Efficient Cr(VI) reduction could be achieved at a higher catalyst dosage, the most appropriated Pd/Fe molar ratio of 2% and a wide pH range. Typically, 0.5 mM Cr(VI) could be completely reduced in 5 min driven by Pd/Fe@biomass under the conditions of dosage of 1.0 g/L and pH 3. Moreover, the mechanisms of Cr(VI) reduction by Pd/Fe@biomass were proposed, which intimately related to nZVI electron donating capacities, Pd catalysis for hydrogenation and galvanic cell effects between Fe and Pd. Therefore, Pd/Fe@biomass could be an alternative for rapid and complete reduction of Cr(VI).
Collapse
Affiliation(s)
- Xiaorong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, PR China.
| | - Junlin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Naixin Kang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Fei Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| |
Collapse
|