1
|
Fan XY, Zhang ZX, Li N, Li X. Molecular ecological insights into the synergistic response mechanism of nitrogen transformation, electron flow and antibiotic resistance genes in aerobic activated sludge systems driven by sulfamethoxazole and/or trimethoprim stresses. WATER RESEARCH 2025; 270:122853. [PMID: 39616686 DOI: 10.1016/j.watres.2024.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 01/06/2025]
Abstract
The prevalence of antibiotics poses a serious challenge to biological nitrogen removal in wastewater. In this study, the effects of sulfamethoxazole and/or trimethoprim (15 mg/L∼30 mg/L) on treatment performance, nitrogen transformation and antibiotic resistance genes (ARGs) were investigated in aerobic activated sludge systems to elucidate the metabolic mechanism under high antibiotic stress. 15 mg/L single antibiotic stress improved total nitrogen removal performance due to the persistence of nitrifiers and enrichment of denitrifiers, with an optimum removal efficiency of 96.5 %. Up-regulation of all denitrifying genes, coupled with enhanced electron transfer of Complex II and III, contributed to the emergence of aerobic denitrification. The increased expression of antioxidant genes also alleviated intracellular pressure. Whereas combined antibiotic stress induced the significant down-regulation of denitrifying bacteria and genes (nirKS and nosZ), and suppressed the electron supply for denitrification by restraining genes related to Complex Ⅰ and energy supply by tricarboxylic acid cycle, driving the collapse of activated sludge system, with ammonia and total nitrogen removal efficiencies dropping to below 40 % and 20 %, respectively. The dominant genera in system changed from TM7a to Thiothrix and Sphaerotilus with increasing antibiotic concentration and type. Moreover, antibiotic stress promoted a slight enrichment of ARGs, especially those encoding efflux mechanisms. Cooperative relationships (> 93 %) dominated among ARGs, and Klebsiella was identified as the crucial host. ARGs regulating antibiotic efflux were more likely to be co-expressed with functional genes. These results may provide a theoretical basis for establishing promising strategies to mitigate antibiotic-caused process deterioration.
Collapse
Affiliation(s)
- Xiao-Yan Fan
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China; Chongqing Research Institute of Beijing University of Technology, Chongqing 401121, PR China
| | - Zhong-Xing Zhang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Na Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China; China Architecture Design and Research Group, Beijing 100044, PR China.
| | - Xing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
2
|
Di X, Zeng X, Zhang X, Tang T, Zhao Z, Wang W, Liu Z, Jin L, Ji X, Shao X. Nitrogen-phosphorus codoped biochar prepared from tannic acid for degradation of trace antibiotics in wastewater. ENVIRONMENTAL RESEARCH 2024; 266:120589. [PMID: 39672491 DOI: 10.1016/j.envres.2024.120589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
This study was designed to develop a one-step pyrolysis process that could efficiently activate peroxymonosulfate (PMS) and degrade tetracycline hydrochloride (TCH) by producing N, and P codoped carbon materials (NPTC3-800). Furthermore, it exhibited a high specific surface area (658 cm2 g-1), a larger pore volume (0.3 cm3 g-1), and a certain content of heteroatoms (nitrogen and phosphorus). PMS-activated NPTC3-800 attained a TCH removal efficiency of over 90% within 40 min, with an observed rate constant (kobs) of 0.0307 min-1. Similarly, the materials exhibited strong resistance to ionic interferences and showed broad applicability across various water bodies. Mobility experiments were conducted to further assess the stability of catalyst (92%, 40 h). Non-radical oxidation pathways, particularly including the singlet oxygen (1O2), were evidenced to play dominant roles in TCH degradation, as demonstrated by electron paramagnetic resonance (EPR) observations and experiments with free radical quenching. Theoretical calculations demonstrated that the N and P codoped domains substantially improve TCH removal compared to pure biochar. Finally, the proposed degradation pathways for TCH were identified, and the resulting degradation products demonstrated reduced biological toxicity.
Collapse
Affiliation(s)
- Xixi Di
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Xia Zeng
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Xiaoyu Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Tian Tang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Zuoping Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Wei Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Zhifeng Liu
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China.
| | - Xiaohui Ji
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Xianzhao Shao
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China.
| |
Collapse
|
3
|
Ren H, Wang R, Ying L, Iyobosa E, Chen G, Zang D, Tong M, Li E, Nerenberg R. Removal of sulfamethoxazole in an algal-bacterial membrane aerated biofilm reactor: Microbial responses and antibiotic resistance genes. WATER RESEARCH 2024; 268:122595. [PMID: 39423786 DOI: 10.1016/j.watres.2024.122595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Antibiotics are frequently detected in wastewater, but often are poorly removed in conventional wastewater treatment processes. Combining microalgal and nitrifying bacterial processes may provide synergistic removal of antibiotics and ammonium. In this research, we studied the removal of the antibiotic sulfamethoxazole (SMX) in two different reactors: a conventional nitrifying bacterial membrane aerated biofilm reactor (bMABR) and algal-bacterial membrane aerated biofilm reactor (abMABR) systems. We investigated the synergistic removal of antibiotics and ammonium, antioxidant activity, microbial communities, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and their potential hosts. Our findings show that the abMABR maintained a high sulfamethoxazole (SMX) removal efficiency, with a minimum of 44.6 % and a maximum of 75.8 %, despite SMX inhibition, it maintained a consistent 25.0 % ammonium removal efficiency compared to the bMABR. Through a production of extracellular polymeric substances (EPS) with increased proteins/polysaccharides (PN/PS), the abMABR possibly allowed the microalgae-bacteria consortium to protect the bacteria from SMX inactivation. The activity of antioxidant enzymes caused by SMX was reduced by 62.1-98.5 % in the abMABR compared to the bMABR. Metagenomic analysis revealed that the relative abundance of Methylophilus, Pseudoxanthomonas, and Acidovorax in the abMABR exhibited a significant positive correlation with SMX exposure and reduced nitrate concentrations and SMX removal. Sulfonamide ARGs (sul1 and sul2) appeared to be primarily responsible for defense against SMX stress, and Hyphomicrobium and Nitrosomonas were the key carriers of ARGs. This study demonstrated that the abMABR system has great potential for removing SMX and reducing the environmental risks of ARGs.
Collapse
Affiliation(s)
- Haijing Ren
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rongchang Wang
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Luyao Ying
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Eheneden Iyobosa
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Gaoxiang Chen
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Di Zang
- The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Computer Science and Technology, College of Electronic and Information Engineering, Tongji University, Shanghai 200092, China
| | - Min Tong
- R&D Center of Baowu Group Environmental Resources Technology Co., Ltd, Shanghai 201999, China; R&D Center of Baowu Water Technology Co., Ltd, Shanghai 201999, China
| | - Enchao Li
- R&D Center of Baowu Group Environmental Resources Technology Co., Ltd, Shanghai 201999, China; R&D Center of Baowu Water Technology Co., Ltd, Shanghai 201999, China
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
4
|
Sathya PM, Mohan H, Park JH, Seralathan KK, Oh BT. Integrated bio-electrochemical approach to Norfloxacin (NFX) degradation: Efficacy, degradation mechanisms, and toxicological insights. CHEMOSPHERE 2024; 366:143479. [PMID: 39369744 DOI: 10.1016/j.chemosphere.2024.143479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Norfloxacin (NFX), a widely used fluoroquinolone antibiotic, poses significant environmental concerns due to its persistence in ecosystems and its potential to foster antibiotic resistance. This study explores the degradation of NFX using a bio-electrochemical system (BES) facilitated by Bacillus subtilis isolated from animal waste sludge. Experimental parameters were optimized to maximize removal efficiency, with the optimal conditions determined as an NFX concentration of 200 mg/L, pH 7, and an applied potential of 1.2 V. The degradation pathway was elucidated through the identification of intermediate products, ultimately leading to the complete mineralization of NFX. To assess the environmental impact of BES-treated water, a series of eco-toxicity assays were conducted. Microbial diversity analysis revealed that soil exposed to BES-treated water maintained a balanced microbial community, contrasting with the disruptions observed in soils exposed to untreated NFX-contaminated water. Phytotoxicity tests, earthworm toxicity assay, and Artemia hatchability & lethality assays further confirmed the reduced toxicity of the BES-treated water. These findings highlight the efficacy of BES in the degradation of NFX, demonstrating its potential as a sustainable strategy for the remediation of antibiotic-contaminated environments and the mitigation of associated ecological risks.
Collapse
Affiliation(s)
- Pavithra Muthukumar Sathya
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea.
| |
Collapse
|
5
|
Zhou Z, Xu J, Zou L, Wang X, Chen Y, Sun P, Zhu X, Sheng L, Lu N. Removal of sulfonamide antibiotics by constructed wetland substrate with NaOH-modified corn straw biochar under different operating conditions. BIORESOURCE TECHNOLOGY 2024; 410:131274. [PMID: 39147106 DOI: 10.1016/j.biortech.2024.131274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
This study examined the elimination of sulfonamide antibiotics (SAs) by constructed wetland substrates with NaOH-modified corn straw biochar and assessed the impact of environmental conditions on the effectiveness of SAs removal. The study demonstrated that the constructed wetland substrate with NaOH-modified biochar significantly eliminated eight SAs, with a removal rate of over 94 %. During the removal process, the intermediates will undergo regeneration of the parent compounds under low DO concentrations. This was based on the linear stepwise regression analysis and Geodetector models. The results showed that SA types COD, NH4+-N, TN, and DO had a stronger influence. The dominant bacteria in the constructed wetland system were mainly affected by antibiotic concentration, DO, NH4+-N and NO3--N, which affected the removal of antibiotics. Overall, the constructed wetland substrate with NaOH-modified corn straw biochar can be effectively employed as an ecological method for eliminating SAs from the environment.
Collapse
Affiliation(s)
- Zegang Zhou
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| | - Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China; Laboratory for Coastal Marine Eco-Environment Process and Carbon, Sink of Hainan Province/Yazhou Bay Innovation Institute/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China; JiLin Agricultural Science and Technology University, No. 77 Hanlin Road, Jilin Economic and Technological Development Zone, Jilin 132101, China.
| | - Li Zou
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| | - Xinyu Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| | - Yue Chen
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| | - Peng Sun
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| | - Xiaoguang Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China.
| | - Nan Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| |
Collapse
|
6
|
Chen Z, Hu Y, Qiu G, Liang D, Cheng J, Chen Y, Zhu X, Wang G, Xie J. Unraveling the effects and mechanisms of antibiotics on aerobic simultaneous nitrogen and phosphorus removal by Acinetobacter indicus CZH-5. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134831. [PMID: 38850942 DOI: 10.1016/j.jhazmat.2024.134831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
The effects of antibiotics, such as tetracycline, sulfamethoxazole, and ciprofloxacin, on functional microorganisms are of significant concern in wastewater treatment. This study observed that Acinetobacter indicus CZH-5 has a limited capacity to remove nitrogen and phosphorus using antibiotics (5 mg/L) as the sole carbon source. When sodium acetate was supplied (carbon/nitrogen ratio = 7), the average removal efficiencies of ammonia-N, total nitrogen, and orthophosphate-P increased to 52.46 %, 51.95 %, and 92.43 %, respectively. The average removal efficiencies of antibiotics were 84.85 % for tetracycline, 39.32 % for sulfamethoxazole, 18.85 % for ciprofloxacin, and 23.24 % for their mixtures. Increasing the carbon/nitrogen ratio to 20 further improved the average removal efficiencies to 72.61 % for total nitrogen and 97.62 % for orthophosphate-P (5 mg/L antibiotics). Additionally, the growth rate and pollutant removal by CZH-5 were unaffected by the presence of 0.1-1 mg/L antibiotics. Transcriptomic analysis revealed that the promoted translation of aceE, aarA, and gltA genes provided ATP and proton -motive forces. The nitrogen metabolism and polyphosphate genes were also affected. The expression of acetate kinase, dehydrogenase, flavin mononucleotide enzymes, and cytochrome P450 contributed to antibiotic degradation. Intermediate metabolites were investigated to determine the reaction pathways.
Collapse
Affiliation(s)
- Zuhao Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Donghui Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Zhongkai Road, Haizhu District, Guangzhou 510225, China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Xiaoqiang Zhu
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Guobin Wang
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Jieyun Xie
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| |
Collapse
|
7
|
Chen Y, Cheng M, Jin L, Yang H, Ma S, Lin Z, Dai G, Liu X. Heterogeneous activation of self-generated H 2O 2 by Pd@UiO-66(Zr) for trimethoprim degradation: Efficiency and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121868. [PMID: 39032257 DOI: 10.1016/j.jenvman.2024.121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
The Fenton reaction is recognized as an effective technique for degrading persistent organic pollutants, such as the emerging pollutant trimethoprim (TMP). Recently, due to the excellent reducibility of active hydrogen ([H]), Pd-H2 has been preferred for Fenton-like reactions and the specific H2 activation of Pd-based catalysts. Herein, a heterogeneous Fenton catalyst named the hydrogen-accelerated oxygen reduction Fenton (MHORF@UiO-66(Zr)) system was prepared through the strategy of building ships in the bottle. The [H] has been used for the acceleration of the reduction of Fe(III) and self-generate H2O2. The systematic characterization demonstrated that the nano Pd0 particle was highly dispersed into the UiO-66(Zr). The results found that 20 mg L-1 of TMP was thoroughly degraded within 90 min in the MHORF@UiO-66(Zr) system under conditions of initial pH 3, 30 mL min-1 H2, 2 g L-1 Pd@UiO-66(Zr) and 25 μM Fe2+. The hydroxyl radical as well as the singlet oxygen were evidenced to be the main reactive oxygen species by scavenging experiments and electron spin resonance. In addition, both reducing Fe(III) and self-generating H2O2 could be achieved due to the strong metal-support interaction (SMSI) between the nano Pd0 particles and UiO-66(Zr) confirmed by the correlation results of XPS and calculation of density functional theory. Finally, the working mechanism of the MHORF@UiO-66(Zr) system and the possible degradation pathway of the TMP have been proposed. The novel system exhibited excellent reusability and stability after six cyclic reaction processes.
Collapse
Affiliation(s)
- Yijun Chen
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Meina Cheng
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Long Jin
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Meixin Environmental Technology Co., Ltd., Suzhou, 215500, Jiangsu Province, China.
| | - Hailiang Yang
- Suzhou Cott Environmental Protection Co., Ltd., Suzhou, 215156, Jiangsu Province, China
| | - Sanjian Ma
- Suzhou Cott Environmental Protection Co., Ltd., Suzhou, 215156, Jiangsu Province, China
| | - Zixia Lin
- Testing Center, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Guoliang Dai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Xin Liu
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China.
| |
Collapse
|
8
|
Wu T, Ding J, Wang S, Pang JW, Sun HJ, Zhong L, Ren NQ, Yang SS. Insight into effect of polyethylene microplastic on nitrogen removal in moving bed biofilm reactor: Focusing on microbial community and species interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173033. [PMID: 38723954 DOI: 10.1016/j.scitotenv.2024.173033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Microplastics (MPs) pollution has emerged as a global concern, and wastewater treatment plants (WWTPs) are one of the potential sources of MPs in the environment. However, the effect of polyethylene MPs (PE) on nitrogen (N) removal in moving bed biofilm reactor (MBBR) remains unclear. We hypothesized that PE would affect N removal in MBBR by influencing its microbial community. In this study, we investigated the impacts of different PE concentrations (100, 500, and 1000 μg/L) on N removal, enzyme activities, and microbial community in MBBR. Folin-phenol and anthrone colorimetric methods, oxidative stress and enzyme activity tests, and high-throughput sequencing combined with bioinformation analysis were used to decipher the potential mechanisms. The results demonstrated that 1000 μg/L PE had the greatest effect on NH4+-N and TN removal, with a decrease of 33.5 % and 35.2 %, and nitrifying and denitrifying enzyme activities were restrained by 29.5-39.6 % and 24.6-47.4 %. Polysaccharide and protein contents were enhanced by PE, except for 1000 μg/L PE, which decreased protein content by 65.4 mg/g VSS. The positive links of species interactions under 1000 μg/L PE exposure was 52.07 %, higher than under 500 μg/L (51.05 %) and 100 μg/L PE (50.35 %). Relative abundance of some metabolism pathways like carbohydrate metabolism and energy metabolism were restrained by 0.07-0.11 % and 0.27-0.4 %. Moreover, the total abundance of nitrification and denitrification genes both decreased under PE exposure. Overall, PE reduced N removal by affecting microbial community structure and species interactions, inhibiting some key metabolic pathways, and suppressing key enzyme activity and functional gene abundance. This paper provides new insights into assessing the risk of MPs to WWTPs, contributing to ensuring the health of aquatic ecosystems.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing 100096, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
9
|
Xu H, Gao J, Cui Y, Wang Z, Zhao Y, Yuan Y, Zeng L, Fu X. The combination of ciprofloxacin and dialkyldimethyl ammonium compound synergistically proliferated intracellular resistance genes in nitrifying system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172715. [PMID: 38663595 DOI: 10.1016/j.scitotenv.2024.172715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Antibiotics and quaternary ammonium compounds (QACs) usually co-exist in wastewater treatment plants. Hence, three sequencing batch reactors were established and named as R1, R2 and R3, to investigate the effects of individual and combined exposure of different concentrations of ciprofloxacin (CIP) (0.2, 1.0 and 2.0 mg/L) and dialkyldimethyl ammonium compound (DADMAC) (0.4, 2.0 and 4.0 mg/L) on the performance, microbial community structures and resistance genes (RGs) in nitrifying system during 150 days. Results showed that CIP had a slight effect on ammonia oxidation activity, while 2.0 and 4.0 mg/L DADAMAC could obviously inhibit it, and the combination of CIP and DADMAC had a synergistic inhibitory effect. Besides, both CIP and DADMAC caused partial nitrification, and the order of nitrite accumulation rate was ranked as R3 > R2 > R1. The combination of CIP and DADMAC had an antagonistic effect on the increase of sludge particle size and α-Helix/(β-Sheet + Random coil) was lowest in R3 (0.40). The combination of CIP and DADMAC synergistically stimulated most intracellular RGs in sludge, and the relative abundances of target RGs (e.g., qacEdelta1-01, qacH-01 and qnrS) at the end of operation in R3 were increased by 4.61-18.19 folds compared with those in CK, which were 1.34-5.57 folds higher than the R1 and R2. Moreover, the combination of CIP and DADMAC also promoted the transfer of RGs from sludge to water and enriched more potential hosts of RGs, further promoting the spread of RGs in nitrifying system. Thus, the combined pollution of CIP and DADMAC in wastewaters should attract more attentions.
Collapse
Affiliation(s)
- Hongxin Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yingchao Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yukun Yuan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Liqin Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaoyu Fu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
10
|
Yang Y, Li G, Li Z, Lu L. The roles of typical emerging pollutants on N 2O emissions during biological nitrogen removal from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172851. [PMID: 38685430 DOI: 10.1016/j.scitotenv.2024.172851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
N2O as a potent greenhouse gas often generates in the biological nitrogen removal (BNR) processes during wastewater treatment, which makes BNR become an important greenhouse gas emission source. The emerging pollutants (EPs) are ubiquitous in wastewater and they have shown to influence the BNR processes. However, the deep discussion on potential impacts of EPs on N2O emissions during BNR is rare. Moreover, the experimental parameters for EPs investigation in most of literatures are generally not in line with real-world BNR processes, which calls for deep elucidating the roles of EPs on N2O production and emission. In this work, a critical review summarizes the existing literature about influences of typical EPs on N2O emissions and associated mechanisms during BNR, and it discusses the impacts of some easily overlooked factors, such as real EPs environmental concentrations, EPs bioaccumulation, and multiple EPs coexistence on N2O emissions. This review will provide an insight into exploring and mitigating threats posed by typical EPs on N2O emissions.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Guifeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Zhida Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
11
|
Fan XY, Zhang ZX, Li X, Liu YK, Cao SB, Geng WN, Wang YB, Zhang XH. Microecology of aerobic denitrification system construction driven by cyclic stress of sulfamethoxazole. BIORESOURCE TECHNOLOGY 2024; 402:130801. [PMID: 38710419 DOI: 10.1016/j.biortech.2024.130801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
The construction of aerobic denitrification (AD) systems in an antibiotic-stressed environment is a serious challenge. This study investigated strategy of cyclic stress with concentration gradient (5-30 mg/L) of sulfamethoxazole (SMX) in a sequencing batch reactor (SBR), to achieve operation of AD. Total nitrogen removal efficiency of system increased from about 10 % to 95 %. Original response of abundant-rare genera to antibiotics was changed by SMX stress, particularly conditionally rare or abundant taxa (CRAT). AD process depends on synergistic effect of heterotrophic nitrifying aerobic denitrification bacteria (Paracoccus, Thauera, Hypomicrobium, etc). AmoABC, napA, and nirK were functionally co-expressed with multiple antibiotic resistance genes (ARGs) (acrR, ereAB, and mdtO), facilitating AD process. ARGs and TCA cycling synergistically enhance the antioxidant and electron transport capacities of AD process. Antibiotic efflux pump mechanism played an important role in operation of AD. The study provides strong support for regulating activated sludge to achieve in situ AD function.
Collapse
Affiliation(s)
- Xiao-Yan Fan
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Zhong-Xing Zhang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China; Center for Situation Analysis and Planning and Assessment, Chinese Academy for Environmental Planning, Beijing 100041, PR China
| | - Xing Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yuan-Kun Liu
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Shen-Bin Cao
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Wen-Nian Geng
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Ya-Bao Wang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xiao-Han Zhang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
12
|
Ariyanto T, Pradana NY, Saif MHN, Prasetyo BA, Prasetyo I, Munoz M. Reusable adsorbent of magnetite in mesoporous carbon for antibiotic removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35824-35834. [PMID: 38744762 DOI: 10.1007/s11356-024-33658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
This study aims to evaluate the feasibility of an innovative reusable adsorbent through adsorption-degradation sequence for antibiotic removal from water. The magnetite/mesoporous carbon adsorbent was prepared using a two-step method of (i) in situ impregnation of magnetite precursor during resorcinol formaldehyde polymerization and (ii) pyrolysis at elevated temperature (800 °C). XRD spectra confirmed that magnetite (Fe3O4) was the only iron oxide species present in the adsorbent, and thermogravimetric analysis revealed that its content was 10 wt%. Nitrogen sorption analysis showed that Fe3O4/carbon features a high fraction of mesopores (> 80 vol.%) and a remarkable specific surface area value (246 m2 g-1), outstanding properties for water treatment. The performance of the adsorbent was examined in the uptake of three relevant antibiotics. The maximum adsorption uptakes were ca. 76 mg g-1, ca. 70 mg g-1, and ca. 44 mg g-1 for metronidazole, sulfamethoxazole, and ciprofloxacin, respectively. All adsorption curves were successfully fitted with Langmuir equilibrium model. The regeneration of adsorbent was carried out using Fenton oxidation under ambient conditions. After three consecutive runs of adsorption-regeneration, Fe3O4/carbon maintained its performance almost unchanged (up to 95% of its adsorption capacity), which highlights the high reusability of the adsorbent.
Collapse
Affiliation(s)
- Teguh Ariyanto
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, 55281, Yogyakarta, Indonesia.
| | - Nova Yoga Pradana
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, 55281, Yogyakarta, Indonesia
| | - Muhammad Hafish Nur Saif
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, 55281, Yogyakarta, Indonesia
| | - Bagus Adjie Prasetyo
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, 55281, Yogyakarta, Indonesia
| | - Imam Prasetyo
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, 55281, Yogyakarta, Indonesia
| | - Macarena Munoz
- Department of Chemical Engineering, Universidad Autonoma de Madrid, Ctra. Colmenar Km 15, 28049, Madrid, Spain
| |
Collapse
|
13
|
Chen J, Zhang J, Wang C, Wang P, Gao H, Zhang B, Feng B. Nitrate input inhibited the biodegradation of erythromycin through affecting bacterial network modules and keystone species in lake sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120530. [PMID: 38452622 DOI: 10.1016/j.jenvman.2024.120530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/01/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Antibiotic contamination and excessive nitrate loads are generally concurrent in aquatic ecosystems. However, little is known about the effects of nitrate input on the biodegradation of antibiotics. In this study, the effects of nitrate input on microbial degradation of erythromycin, a typical macrolide antibiotic widely detected in lake sediments, were investigated. The results showed that the nitrate input significantly inhibited the erythromycin removal and such an inhibitory effect was strengthened with the increased input dosages. Nitrate input significantly increased sediment nitrite concentration, indicating enhanced denitrification under high nitrate pressure. Bacterial network module and keystone species analysis showed that nitrate input enriched the keystone species involved in denitrification (e.g., Simplicispira and Denitratisoma). In contrast, some potential erythromycin-degrading bacteria (e.g., Desulfatiglandales, Pseudomonadales, Nitrospira) were inhibited by nitrate input. The variations in dominant bacterial groups implied competition between denitrification and erythromycin degradation in response to nitrate input. Based on the partial least squares path modeling analysis, keystone species (total effect: 0.419) and bacterial module (total effect: 0.403) showed strong association with erythromycin removal percentage. This indicated that the inhibitory effect of nitrate input on erythromycin degradation was mainly explained by bacterial network modules and keystone species. These findings will help us to assess the bioremediation potential of antibiotic-contaminated sediments suffering from excessive nitrogen discharge concurrently.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bo Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
14
|
Li L, Hu Y, Li B, Kuang K, Peng L, Xu Y, Song K. Effect and microbial mechanism of pharmaceutical and personal care product exposure on partial nitrification process and nitrous oxide emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166286. [PMID: 37586526 DOI: 10.1016/j.scitotenv.2023.166286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
This study focused on the short- and long-term exposure of pharmaceutical and personal care products (PPCPs) to the partial nitrification process and nitrous oxide emission. The corresponding microbial mechanisms were also explored. The results revealed a concentration-dose effect on the partial nitrification process. Moreover, the PPCP concentration of ≥2 μg/L featured inhibitory effects on the process. The solo effect of PPCP on the partial nitrification process was analyzed through microcosmic experiments, and the results revealed significant variations in PN. A dose-effect relationship existed between the PPCP concentration and N2O emission intensity. After exposure to PPCPs, the N2O emission released during the partial nitrification process was significantly reduced. Different PPCPs featured various effects in mitigating N2O emissions. Low PPCP concentrations led to a reduction in the richness and diversity of microbes, but their community structure remained significantly unchanged. High PPCP concentrations (≥5 μg/L) resulted in increased species richness and diversity, but their microbial community composition was significantly affected. The function prediction and nitrogen metabolic pathway analysis indicated that PPCP exposure led to the inhibition of the ammonia oxidation process. However, all genes encoding denitrification enzymes were upregulated. The microorganisms in the microbial community featured modular structural properties and wide synergistic relationships between genera. This study provides valuable insights into the effect of PPCP exposure on the particle nitrification process and corresponding changes in the microbial community.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yikun Hu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Biqing Li
- Guangzhou Sewage Purification Co. Ltd., Guangzhou 510655, China
| | - Ke Kuang
- Guangzhou Sewage Purification Co. Ltd., Guangzhou 510655, China
| | - Lai Peng
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Yifeng Xu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Xie J, Pan X, Jiang C, Zhao L, Gong X, Liu Y. Enhanced conversion of superoxide radical to singlet oxygen in peroxymonosulfate activation by metal-organic frameworks derived heteroatoms dual-doped porous carbon catalyst. ENVIRONMENTAL RESEARCH 2023; 236:116745. [PMID: 37500040 DOI: 10.1016/j.envres.2023.116745] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The activation of persulfate technology using carbon-based materials doped with heteroatoms has been extensively researched for the elimination of refractory pollutants in wastewater. In this study, metal-organic frameworks were utilized as precursors to synthesize P, N dual-doped carbon material (PNC), which was employed to activate peroxymonosulfate (PMS) for the degradation of tetracycline hydrochloride (TCH). The results demonstrated a 90.2% removal efficiency of total organic carbon within 60 min. The significant increase of surface defects on the nitrogen self-doped porous carbon materials anchored with phosphorus promoted the conversion of superoxide radical to singlet oxygen during PMS activation, which was identified as the key active species of PNC/PMS system. Additionally, the enhanced direct electron transfer also facilitated the degradation of TCH. Consequently, TCH was successfully degraded into nontoxic and harmless inorganic small molecules. The findings of this research provide valuable insights into improving the performance of heteroatom-doped carbon materials for pollutant degradation by activating PMS and transforming the non-radical pathway. The results highlight the potential of metal-organic frameworks derived heteroatoms dual-doped porous carbon catalysts for the development of advanced treatment technologies in wastewater treatment.
Collapse
Affiliation(s)
- Jinling Xie
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China
| | - Xiaofang Pan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China
| | - Chenming Jiang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China
| | - Li Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China
| | - Xiaobo Gong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Key Laboratory of Special Waste Water Treatment of Sichuan Province Higher Education System, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Chengdu, Sichuan, 610068, China.
| | - Yong Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Key Laboratory of Special Waste Water Treatment of Sichuan Province Higher Education System, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Chengdu, Sichuan, 610068, China
| |
Collapse
|
16
|
Gao L, Wei D, Ismail S, Wang Z, El-Baz A, Ni SQ. Combination of partial nitrification and microbial fuel cell for simultaneous ammonia reduction, organic removal, and energy recovery. BIORESOURCE TECHNOLOGY 2023; 386:129558. [PMID: 37499920 DOI: 10.1016/j.biortech.2023.129558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The chemical oxygen demand (COD) in municipal wastewater has become an obstacle for anammox in mainstream applications. In this study, the single chamber microbial fuel cell (MFC) was installed as an influent device for a partial nitrification-sequencing batch reactor (PN-SBR) to realize integrating COD removal and partial nitrification. After 80 days of operation, the nitrite accumulation rate reached 93%, while the COD removal efficiency was 56%. The output voltage and the power density of MFC were 66.62 mV and 2.40 W/m3, respectively. The content of EPS, especially polysaccharides in the stable phase, has increased compared with the seed sludge. The most dominant genus in MFC anode biofilm and SBR granular sludge was Thauera, which has organic compounds degradation capacity and could degrade nitrate. This study revealed the microbial interaction between MFC and partial nitrification and provided a new strategy for stable ammonia and nitrite supply for mainstream anammox plants.
Collapse
Affiliation(s)
- Linjie Gao
- Shandong Key Laboratory of Environmental Processes and Health, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Dong Wei
- School of Resources and Environment, University of Jinan, Jinan 250022, China.
| | - Sherif Ismail
- Shandong Key Laboratory of Environmental Processes and Health, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
| | - Zhibin Wang
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Amro El-Baz
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
| | - Shou-Qing Ni
- Shandong Key Laboratory of Environmental Processes and Health, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
17
|
Zhang Y, Dong W, Li C, Wang H, Wang H, Ling Y, Yan G, Chang Y. Effects of antibiotics on corncob supported solid-phase denitrification: Denitrification and antibiotics removal performance, mechanism, and antibiotic resistance genes. J Environ Sci (China) 2023; 130:24-36. [PMID: 37032040 DOI: 10.1016/j.jes.2022.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 06/19/2023]
Abstract
Solid-phase denitrification (SPD) has been used in wastewater treatment plant effluent to enhance nitrate removal, and antibiotics co-existing in the effluent is a common environmental problem. In this study, it was systematically investigated the effect of single trace sulfamethoxazole (SMX)/trimethoprim (TMP) and their mixture on microbial denitrification performance, the antibiotics removal, and antibiotics resistance genes (ARGs) in corncob supported SPD system. The average denitrification rate was improved by 46.90% or 61.09% with single 50 µg/L SMX or TMP, while there was no significant inhibition with mixed SMX and TMP. The abundance of dominant denitrifiers (Comamonadaceae family and Azospia) and fermentation bacteria (Ancalomicrobium) were consistent with the denitrification performance of different antibiotics groups. Single SMX and TMP achieved relatively higher denitrification gene and enzyme abundance. Mixed SMX and TMP improved the denitrification gene copies, but they reduced the key denitrification enzymes except for EC 1.7.7.2. Additionally, the removal efficiency of TMP (56.70% ± 3.18%) was higher than that of SMX (25.44% ± 2.62%) in single antibiotic group, and the existence of other antibiotics (i.e. SMX or TMP) had no significant impact on the TMP or SMX removal performance. Biodegradation was the main removal mechanism of SMX and TMP, while sludge and corncob adsorption contributed a little to their removal. SMX had the risk of sulfanilamide resistance genes (SRGs) dissemination. Furthermore, network analysis indicated that Niveibacterium and Bradyrhizobium were the potential hosts of SRGs, which promoted the horizontal transmission of ARGs.
Collapse
Affiliation(s)
- Yanjie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Weiyang Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Congyu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Huan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yu Ling
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| |
Collapse
|
18
|
Zhong J, Liu J, Hu R, Pan D, Shao S, Wu X. Performance of nitrification-denitrification and denitrifying phosphorus removal driven by in-situ generated biogenic manganese oxides in a moving bed biofilm reactor. BIORESOURCE TECHNOLOGY 2023; 377:128957. [PMID: 36965588 DOI: 10.1016/j.biortech.2023.128957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Simultaneous removal of NH4+-N, NO3--N, COD, and P by manganese redox cycling in nutrient wastewater was established with two moving bed biofilm reactors (MBBRs) with in-situ generated biogenic manganese oxides (BioMnOx) and non-BioMnOx. In-situ generated BioMnOx preferentially promoted the denitrification, and the average removal of NO3--N, NH4+-N, and TN in the experimental MBBR with BioMnOx increased to 89.00%, 70.64%, and 76.06% compared with the control MBBR with non-BioMnOx. The relevant enzymes activity, extracellular polymeric substance (EPS), electron transport system activity (ETSA), and reactive oxygen species (ROS) were investigated. The element valence and morphology of purified BioMnOx were characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM), as well as the effect of BioMnOx on nitrogen and phosphorus removal. The results suggested that BioMnOx could improve nitrogen conversion. Electrochemical characteristic and microbial community were detected. This study provided a new strategy for nutrients removal in BioMnOx-mediated wastewater treatment.
Collapse
Affiliation(s)
- Jinfeng Zhong
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Jiamin Liu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Rui Hu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Dandan Pan
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Sicheng Shao
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China.
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| |
Collapse
|
19
|
Zhang L, Ma X, Li Q, Cui H, Shi K, Wang H, Zhang Y, Gao S, Li Z, Wang AJ, Liang B. Complementary Biotransformation of Antimicrobial Triclocarban Obviously Mitigates Nitrous Oxide Emission toward Sustainable Microbial Denitrification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7490-7502. [PMID: 37053517 DOI: 10.1021/acs.est.2c08732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Sustainable nitrogen cycle is an essential biogeochemical process that ensures ecosystem safety and byproduct greenhouse gas nitrous oxide reduction. Antimicrobials are always co-occurring with anthropogenic reactive nitrogen sources. However, their impacts on the ecological safety of microbial nitrogen cycle remain poorly understood. Here, a denitrifying bacterial strain Paracoccus denitrificans PD1222 was exposed to a widespread broad-spectrum antimicrobial triclocarban (TCC) at environmental concentrations. The denitrification was hindered by TCC at 25 μg L-1 and was completely inhibited once the TCC concentration exceeded 50 μg L-1. Importantly, the accumulation of N2O at 25 μg L-1 of TCC was 813 times as much as the control group without TCC, which attributed to the significantly downregulated expression of nitrous oxide reductase and the genes related to electron transfer, iron, and sulfur metabolism under TCC stress. Interestingly, combining TCC-degrading denitrifying Ochrobactrum sp. TCC-2 with strain PD1222 promoted the denitrification process and mitigated N2O emission by 2 orders of magnitude. We further consolidated the importance of complementary detoxification by introducing a TCC-hydrolyzing amidase gene tccA from strain TCC-2 into strain PD1222, which successfully protected strain PD1222 against the TCC stress. This study highlights an important link between TCC detoxification and sustainable denitrification and suggests a necessity to assess the ecological risks of antimicrobials in the context of climate change and ecosystem safety.
Collapse
Affiliation(s)
- Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Qian Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
20
|
Mao Q, Bao J, Du J, He T, Zhang Y, Cheng B. Biochar enhanced the stability and microbial metabolic activity of aerobic denitrification system under long-term oxytetracycline stress. BIORESOURCE TECHNOLOGY 2023; 382:129188. [PMID: 37196743 DOI: 10.1016/j.biortech.2023.129188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Reactors were established to study the feasibility of the direct addition of modified biochar to alleviate the long-term stress of oxytetracycline (OTC) on aerobic denitrification (AD) and improve the stability of the system. The results showed that OTC stimulated at μg/L, and inhibited at mg/L. The higher the concentration of OTC, the longer the system was affected. The addition of biochar, without immobilization, improved the tolerance of community, alleviated the irreversible inhibition effect of OTC, and maintained a high denitrification efficiency. Overall, the main mechanisms of AD enhancement by biochar under OTC stress were: enhancing the bacteria metabolic activity, strengthening sludge structure and substrate transport, and improving the community stability and diversity. This study confirmed that direct addition of biochar could effectively alleviate the negative effect of antibiotics on the microorganisms, strengthen the AD, which provided a new idea to broaden the application of AD technology in livestock wastewater.
Collapse
Affiliation(s)
- Qidi Mao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Jianguo Bao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Jiangkun Du
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Ting He
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Yi Zhang
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Benai Cheng
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
21
|
Nguyen AH, Oh S. Effect of antibiotic cocktail exposure on functional disturbance of nitrifying microbiome. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131571. [PMID: 37178533 DOI: 10.1016/j.jhazmat.2023.131571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/17/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
The present study quantitatively determined the degree and type of functional disturbance in the nitrifying microbiome caused by exposure to a single oxytetracycline (OTC) and a two-antibiotic mixture containing OTC and sulfamethoxazole (SMX). While the single antibiotic had a pulsed disturbance on nitritation that was recoverable within three weeks, the antibiotic mixture caused a more significant pulsed disturbance on nitritation and a potential press disturbance on nitratation that was not recoverable for over five months. Bioinformatic analysis revealed significant perturbations for both canonical nitrite-oxidizing (Nitrospira defluvii) and potential complete ammonium-oxidizing (Ca. Nitrospira nitrificans) populations that were strongly associated with the press perturbation on nitratation. In addition to this functional disturbance, the antibiotic mixture reduced the biosorption of OTC and altered its biotransformation pathways, resulting in different transformation products compared with those produced when OTC was treated as a single antibiotic. Collectively, this work elucidated how the antibiotic mixture can affect the degree, type, and duration of the functional disturbance on nitrifying microbiome and offer new insights into the environmental consequences of antibiotic residues (e.g., their fate, transformation, and ecotoxicity) when present as an antibiotic mixture rather than single antibiotics.
Collapse
Affiliation(s)
- Anh H Nguyen
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Seungdae Oh
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
22
|
Ibrahim SAEM, El-Bialy HA, Gomaa OM. Biodegradation of COVID19 antibiotic; azithromycin and its impact on soil microbial community in the presence of phenolic waste and with temperature variation. World J Microbiol Biotechnol 2023; 39:154. [PMID: 37037954 PMCID: PMC10085964 DOI: 10.1007/s11274-023-03591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/23/2023] [Indexed: 04/12/2023]
Abstract
The increase in using antibiotics, especially Azithromycin have increased steadily since the beginning of COVID19 pandemic. This increase has led to its presence in water systems which consequently led to its presence upon using this water for irrigation. The aim of the present work is to study the impact of irrigation using Azithromycin containing water on soil microbial community and its catabolic activity in the presence of phenolic wastes as compost. Wild berry, red grapes, pomegranate, and spent tea waste were added to soil and the degradation was monitored after 5 and 7 days at ambient and high temperatures. The results obtained show that at 30 °C, soil microbial community collectively was able to degrade Azithromycin, while at 40 °C, addition of spent tea as compost was needed to reach higher degradation. To ensure that the degradation was biotic and depended on degradation by indigenous microflora, a 25 kGy irradiation dose was used to kill the microorganisms in the soil and this was used as negative control. The residual antibiotic was assayed using UV spectroscopy and High Performance Liquid Chromatography (HPLC). Indication of Azithromycin presence was studied using Fourier Transform Infrared Spectroscopy (FTIR) peaks and the same pattern was obtained using the 3 used detection methods, the ability to assign the peaks even in the presence of soil and not to have any overlaps, gives the chance to study this result in depth to prepare IR based sensor for quick sensing of antibiotic in environmental samples.
Collapse
Affiliation(s)
- Shaimaa Abd El Mohsen Ibrahim
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), 3 Ahmad El Zomor St, Cairo, Egypt
| | - Heba Abdalla El-Bialy
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), 3 Ahmad El Zomor St, Cairo, Egypt
| | - Ola M Gomaa
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), 3 Ahmad El Zomor St, Cairo, Egypt.
| |
Collapse
|
23
|
Xu Y, Gu Y, Peng L, Wang N, Chen S, Liang C, Liu Y, Ni BJ. Unravelling ciprofloxacin removal in a nitrifying moving bed biofilm reactor: Biodegradation mechanisms and pathways. CHEMOSPHERE 2023; 320:138099. [PMID: 36764613 DOI: 10.1016/j.chemosphere.2023.138099] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/13/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Although moving bed biofilm reactors (MBBRs) have shown excellent antibiotic removal potentials, the information on underlying mechanisms is yet limited. This work assessed the removal of ciprofloxacin in an enriched nitrifying MBBR by clarifying the contribution of adsorption and microbial-induced biodegradation. Results demonstrated the considerable biomass adsorption (55%) in first 30 min. Limiting nitrite oxidizing bacteria growth or inhibiting nitrification would lead to lower adsorption capacities. The highest ciprofloxacin biodegradation rate constant was 0.082 L g SS-1 h-1 in the presence of ammonium, owing to ammonia oxidizing bacteria (AOB)-induced cometabolism, while heterotrophs played an insignificant role (∼9%) in ciprofloxacin biodegradation. The developed model also suggested the importance of AOB-induced cometabolism and metabolism over heterotrophs-induced biodegradation by analyzing the respective biodegradation coefficients. Cometabolic biodegradation pathways of ciprofloxacin mainly involved the piperazine ring cleavage, probably alleviating antimicrobial activities. It implies the feasibility of nitrifying biofilm systems towards efficient antibiotic removal from wastewater.
Collapse
Affiliation(s)
- Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, 518000, Guangdong, China
| | - Ying Gu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, 518000, Guangdong, China.
| | - Ning Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Shi Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, 518000, Guangdong, China.
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
24
|
Qiao X, Fu C, Chen Y, Fang F, Zhang Y, Ding L, Yang K, Pan B, Xu N, Yu K, Tao H, Zhang L. Molecular insights into enhanced nitrogen removal induced by trace fluoroquinolone antibiotics in an anammox system. BIORESOURCE TECHNOLOGY 2023; 374:128784. [PMID: 36849099 DOI: 10.1016/j.biortech.2023.128784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
It has been widely reported that fluoroquinolones (FQs) can affect the anaerobic ammonium oxidization (anammox) microorganisms, which interferes with the performance of nitrogen removal from wastewater. However, the metabolic mechanism of anammox microorganisms responding to FQs has rarely been explored. In this study, it was found that 20 μg/L FQs promoted the nitrogen removal performance of anammox microorganisms in batch exposure assays, and 36-51% of FQs were removed simultaneously. Combined metabolomics and genome-resolved metagenomic analysis revealed up-regulated carbon fixation in anammox bacteria (AnAOB), while purine and pyrimidine metabolism, protein generation and transmembrane transport were enhanced in AnAOB and symbiotic bacteria by 20 μg/L FQs. Consequently, hydrazine dehydrogenation, nitrite reduction, and ammonium assimilation were bolstered, improving the nitrogen removal efficiency of the anammox system. These results revealed the potential roles of specific microorganisms in response to emerging FQs and provided further information for practical application of anammox technology in wastewater treatment.
Collapse
Affiliation(s)
- Xuejiao Qiao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Chenkun Fu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Yizhen Chen
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Fang Fang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Yaoyu Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Lingyun Ding
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Kai Yang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China; China MCC5 Group Corp. Ltd, Chengdu 610023, Sichuan, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Ke Yu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Huchun Tao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Lijuan Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
25
|
Simultaneous removal of typical antibiotics and nitrogen by SWIS assisted by iron carbon micro-electrolysis. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
26
|
Guan X, He R, Zhang B, Gao C, Liu F. Seasonal variations of microbial community structure, assembly processes, and influencing factors in karst river. Front Microbiol 2023; 14:1133938. [PMID: 37032860 PMCID: PMC10075313 DOI: 10.3389/fmicb.2023.1133938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
The physicochemical properties and microbial communities have significant annual and seasonal changes in karst aquifers. To explore the changes of microbial community and their relationships with environmental factors, water samples were collected from a typical karst river. Microbial communities in winter (Jan-2017 and Jan-2019) were stable with high similarity in spite of the 2 years sampling interval, but the microbial communities in Aug-2017 was different from that in Aug-2018. In four sampling times, there were 275 shared genera, whose average relative abundance ranging from 89.04 to 96.27%. The winter and summer specific genera were mainly from the recharge of tributary site K6 and discharge of waste water treatment plant (K2 and K3), respectively. The deterministic processes had a more significant effect on the microbial community assembly in winter than that in summer, which was affected by environmental pressure from pollution. Furthermore, antibiotics and inorganic nitrogen pollution affected element cycles of nitrogen and sulfur indirectly through microbial ecological modules in karst river, and the denitrification and desulfurization processes were potentially inhibited. These findings contributed to understand the changes and its assembly mechanism of microbial community, as well as the feedback to environment in polluted karst river.
Collapse
Affiliation(s)
- Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences, Beijing, China
| | - Ruoxue He
- School of Ocean Sciences, China University of Geosciences, Beijing, China
- Department of Discipline Construction and Technology Development, Chengdu Technological University, Chengdu, China
| | - Biao Zhang
- School of Ocean Sciences, China University of Geosciences, Beijing, China
| | - Chengjie Gao
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, China
| | - Fei Liu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing, China
- *Correspondence: Fei Liu,
| |
Collapse
|
27
|
Yun Y, Su T, Gui Z, Tian X, Chen Y, Cao Y, Yang S, Xie J, Anwar N, Li M, Li G, Ma T. Stress-responses of microbes in oil reservoir under high tetracycline exposure and their environmental risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120355. [PMID: 36243187 DOI: 10.1016/j.envpol.2022.120355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/10/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
As the groundwater ecosystem is connected with surface, antibiotics and antibiotic resistance genes (ARGs) in aquatic environments will gradually infiltrate into the deep environment, posing a potential threat to groundwater ecosystem. However, knowledge on the environmental risk of antibiotics and ARGs in groundwater ecosystem and their ecological process still remains unexplored. In this study, lab-scale oil reservoirs under high tetracycline stress were performed to evaluate the dynamics of microbial communities, ARGs and potential functions by using 16S rRNA gene sequencing and metagenomics analysis. Although the presence of antibiotics remarkably reduced the microbial abundance and diversity in a short term, but remain stable or even increased after a long-term incubation. Antibiotic stress caused a greater diversity and abundance of ARGs, and higher numbers of ARGs-related species with the capacity to transfer ARGs to other microbes through horizontal gene transfer. Thus, a much more frequent associations of microbial community at both node- and network-level and a selective pressure on enrichment of antibiotic resistant bacteria related to "anaerobic n-alkane degradation" and "methylotrophic methanogenesis" were observed. It is important to emphasize that high antibiotic stress could also prevent some microbes related to "Sulfate reduction", "Fe(II) oxidation", "Nitrate reduction", and "Xylene and Toluene degradation". This study provides an insight into the long-term stress-responses of microbial communities and functions in oil reservoir under tetracycline exposure, which may help to elucidate the effect of antibiotic stress on biogeochemical cycling with microbial involvement in groundwater ecosystem.
Collapse
Affiliation(s)
- Yuan Yun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Tianqi Su
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ziyu Gui
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xuefeng Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yunke Cao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shicheng Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinxia Xie
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Nusratgul Anwar
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingchang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
28
|
Han W, Chen S, Tan X, Li X, Pan H, Ma P, Wu Z, Xie Q. Microbial community succession in response to sludge composting efficiency and heavy metal detoxification during municipal sludge composting. Front Microbiol 2022; 13:1015949. [PMID: 36274704 PMCID: PMC9581145 DOI: 10.3389/fmicb.2022.1015949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
This study researched microbial community succession in response to sludge composting efficiency and heavy metal detoxification during municipal sludge co-composting with spent mushroom and spent bleaching. The change law of key physicochemical properties, the heavy metals contents and forms during composting were analyzed, and the passivation of heavy metals after composting was explored. High-throughput sequencing was used to analyze the microbial community structure of treat 2 during composting, and the correlation analysis of microbial community structure with heavy metal contents and forms were carried out. The results showed that the sludge of each treatment reached composting maturity after 26 days of composting. Organic matter content, electrical conductivity, pH and seed germination index of treat 2 were all in line with the standard limit of agricultural sludge. Because of the presence of compost bacteria addition, the passivating heavy metals performance of treat 2 satisfied the standard limit of agricultural sludge after composting, which was superior to that of treat 1 and treat 3. The diversity of microbial communities in treat 2 decreased during composting. Extensive bacteria such as Bacillus, Geobacter, Lactobacillus, and Pseudomonas, which possessed the abilities of heavy metal passivation and organic oxidizing, were dominant in treat 2 during the heating stage. However, as composting proceeded, Tuberibacillus with ability of organic oxidizing gradually became the most dominant species at the thermophilic and cooling stages. Changes in microbial function varied from changes of microbial community in treat 2, subsequently affected the performances of heavy metal passivation and organic oxidizing during composting.
Collapse
Affiliation(s)
- Weijiang Han
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Shuona Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, China
| | - Xiao Tan
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Xin Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Hua Pan
- Nanhai Branch of Foshan Ecological Environment Bureau, Foshan, China
| | - Peijian Ma
- Qingyuan Solid Waste Treatment Center, Qingyuan, China
| | - Zhihua Wu
- Qingyuan Solid Waste Treatment Center, Qingyuan, China
| | - Qilai Xie
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, China
- *Correspondence: Qilai Xie,
| |
Collapse
|
29
|
Shao S, Zhong J, Wang C, Pan D, Wu X. Performance of simultaneous nitrification-denitrification and denitrifying phosphorus and manganese removal by driving a single-stage moving bed biofilm reactor based on manganese redox cycling. BIORESOURCE TECHNOLOGY 2022; 362:127846. [PMID: 36031132 DOI: 10.1016/j.biortech.2022.127846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Simultaneous removal of NH4+-N, NO3--N, COD, and P by manganese redox cycling in nutrient wastewater was established with a single-stage moving bed biofilm reactor (MBBR) under low C/N ratio. When sodium succinate replaced the conventional denitrifying carbon source, removal efficiencies of TN, NO3--N, NH4+-N, TP, and Mn2+ were 65.13 %, 79.63 %, 92.79 %, 51.57 %, and 68.10 %, respectively. Based on modified Stover-Kincannon model, 11.03 and 10.05 mg TN·L-1·h-1 of Umax values were obtained with sodium acetate and sodium succinate as substrates. Extracellular polymeric substances were used to evaluate the characteristics of biofilm, and microbial community of biofilm was identified. Transformation processes of NO3--N, NH4+-N, Mn2+, and P were investigated, suggesting that the main functional groups (e.g., CO, Mn-O, and CN bonds) participated in N, P, and Mn2+ removal, and MnO2 was the main component of biogenic manganese oxides. This study provides a new strategy for nutrients removal by Mn2+ driven MBBR.
Collapse
Affiliation(s)
- Sicheng Shao
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Jinfeng Zhong
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Chunxiao Wang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Dandan Pan
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China.
| |
Collapse
|
30
|
Chen J, Wan J, Li C, Wei Y, Shi H. Synthesis of novel Fe 0-Fe 3O 4/CeO 2/C composite cathode for efficient heterogeneous electro-Fenton degradation of ceftriaxone sodium. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129393. [PMID: 35728318 DOI: 10.1016/j.jhazmat.2022.129393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Fe0-Fe3O4 nanoparticles and cerium dioxide hollow spheres as efficient heterogeneous electro-Fenton reagents were rationally designed to be embedded in porous carbon derived from skimmed cotton for the electrocatalytic degradation of ceftriaxone sodium. Skimmed cotton porous carbon material has a hollow tubular structure, and cerium dioxide is dispersed on the surface of the carbon material in a hollow sphere structure of uniform size. Fe0-Fe3O4 nanoparticles were wrapped in irregular particle shapes on the surface of cerium dioxide hollow spheres, and the remaining part was laid flat on the surface of porous carbon material. The as-synthesized Fe0-Fe3O4/CeO2/C showed excellent degradation efficiency of 95.59 % for ceftriaxone sodium within 120 mins and obtained a COD removal rate of 95.21 % at 240 mins. The zero-valent iron as a reducing agent effectively accelerated the Fe3+/Fe2+ cycle, allowing the composites to exhibit higher catalytic activity and further reducing the possibility of secondary contamination. Moreover, the existence of cerium dioxide further promoted the redox cycle of Ce4+/Ce3+ and accelerated the electron transfer in the interface of the catalyst. The synergistic effect of iron and cerium greatly facilitated the production of hydroxyl radicals and increased the yield of hydroxyl radicals in the reaction system.
Collapse
Affiliation(s)
- Jie Chen
- School of Chemistry and Material science, Heilongjiang University, Xuefu Road 74, Harbin 150080, China
| | - Jiafeng Wan
- School of Chemistry and Material science, Heilongjiang University, Xuefu Road 74, Harbin 150080, China.
| | - Chi Li
- School of Chemistry and Material science, Heilongjiang University, Xuefu Road 74, Harbin 150080, China
| | - Yuhan Wei
- School of Chemistry and Material science, Heilongjiang University, Xuefu Road 74, Harbin 150080, China
| | - Haolin Shi
- School of Chemistry and Material science, Heilongjiang University, Xuefu Road 74, Harbin 150080, China
| |
Collapse
|
31
|
Sun F, Xu D, Xie Y, Liu F, Wang W, Shao H, Ma Q, Yu H, Yu W, Dong X. Tri-functional aerogel photocatalyst with an S-scheme heterojunction for the efficient removal of dyes and antibiotic and hydrogen generation. J Colloid Interface Sci 2022; 628:614-626. [PMID: 36027772 DOI: 10.1016/j.jcis.2022.08.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
Abstract
A novel three-dimensional (3D) S-scheme S-gC3N4/TiO2/SiO2/PAN aerogel heterojunction photocatalyst (denoted as S-gTAHP) is rationally devised and manufactured by combining electrospinning, calcination, hydrothermal and freeze-drying techniques. The synthesized S-gC3N4 molecule is different from traditional g-C3N4, which has a small molecular structure similar to melamine. S-gC3N4 is embedded in the interwoven network structure of TiO2/PAN short fibers, and the catalytic system of the S-scheme heterojunction is formed with SiO2 as a crosslinking agent. S-gTAHP achieves perfect tri-functional photocatalytic capability, including remarkable hydrogen release capacity (806.7 μmol∙h-1∙g-1), efficient removal of three colored dyes with removal efficiencies up to 99.43% (MB, 15 min), 96.13% (RhB, 30 min) and 91.32% (MO, 40 min), and a degradation rate of the colorless antibiotic TCH reaching 84.20% in 40 min driven by simulated sunlight. Meanwhile, the effects of pH values and concentrations of contaminant solutions on the removal rates are explored, and the S-scheme mechanism of S-gTAHP strengthening photocatalytic activity is elucidated. The apparently heightened photocatalytic activities of S-gTAHP can be ascribed to the fact that the 3D hierarchical porous structure of the aerogel endows more active centers and enhanced light-harvesting capacity, and the S-scheme heterojunction supplies effective charge migrating channels, thereby affording the carriers with strong redox capability. Furthermore, S-gTAHP holds prominent reusability and is light weight. Hence, efficient and recyclable 3D aerogel photocatalysts with S-scheme heterojunctions have broad application prospects in practical sewage treatment and energy conversion fields.
Collapse
Affiliation(s)
- Feng Sun
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Da Xu
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Yunrui Xie
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Feng Liu
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Wenling Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Hong Shao
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Qianli Ma
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Hui Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Wensheng Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Xiangting Dong
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China.
| |
Collapse
|
32
|
Sun Q, Zhu G. Simultaneous denitrification and antibiotic degradation of low-C/N-ratio wastewater by a three-dimensional biofilm-electrode reactor: Performance and microbial response. ENVIRONMENTAL RESEARCH 2022; 210:112856. [PMID: 35150713 DOI: 10.1016/j.envres.2022.112856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Three-dimensional biofilm-electrode reactors (3D-BERs) were fabricated and used to simultaneously remove nitrate and metronidazole (MNZ) from low-C/N-ratio wastewater. The results showed that 1 mg/L MNZ significantly promoted nitrate removal. After MNZ was added to the reactor, the removal efficiencies of total nitrogen (TN) and NO3--N increased significantly from 18.97% and 52.09% to 71.63% and 99.98% within 6 h, respectively. The MNZ-removal kinetics conformed to a pseudo-first-order model, and the removal rate constant reached a maximum value of 0.853 h-1, which was 4.1 and 2.8 times higher than that of pure microorganisms and pure electrochemical reactors, respectively. This indicated that the 3D-BERs constructed in this study were capable of simultaneous MNZ degradation and denitrification. In the presence of nitrate, six MNZ-degradation intermediates were identified, and four MNZ transformation pathways were proposed, including cleavage of hydroxyethyl groups, reduction of nitro groups, N-denitration, and deprotonation of side-chain hydroxyl groups. High-throughput sequencing revealed that the reactor was rich in various MNZ-degraders and denitrifiers, such as Hydrogenophaga, Methylomonas, Crenohrix, Dechloromonas, and Methylophilus. A function prediction analysis of nitrogen metabolism showed that the 3D-BER reactor with MNZ had higher denitrification activity than the other reactors tested. It was speculated that the intermediates produced by MNZ could act as carbon sources allowing denitrifying bacteria to perform denitrification, which made a nonnegligible contribution to the removal of nitrogen.
Collapse
Affiliation(s)
- Qi Sun
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
33
|
Xiong JQ, Qi X, Qin JY. Transcriptomics unveiled metabolic perturbations in Desmodesmus quadricauda by sulfacetamide: Key functional genes involved in the tolerance and biodegradation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154436. [PMID: 35276146 DOI: 10.1016/j.scitotenv.2022.154436] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic contamination in the environment has significant adverse effects on benthic microorganisms, which causes dysfunction of normal ecological processes. However, in-depth molecular mechanisms underlying the potential ecological impacts of these emerging pollutants are poorly understood. In this study, metabolic perturbations in a freshwater microalga, Desmodesmus quadricauda by sulfacetamide (SFM) were investigated using transcriptomics. The results found 28 genes in the tricarboxylic acid cycle and oxidative phosphorolysis pathways were significantly downregulated by 3.97 to 6.07, and 2.47 to 5.99 folds by 0.1 and 1 mg L-1 SFM, respectively. These results indicated that SFM disrupted the microalgal cellular activities through inhibition of energy metabolism. Whilst, the upregulated genes have been most enriched in porphyrin and chlorophyll metabolism (hemE, hemL, hemY, chlD, chlP, PAO, and CAO), and arachidonic acid metabolism (GGT1_5 and gpx). Expression of these genes was significantly upregulated by up to 3.36 times for tolerance against SFM. Moreover, the genes encoding decarboxylase, oxidoreductases, α-amylase, hydrolases, O-acetyltransferase, and lyase were upregulated by >2 folds, which can induce di/hydroxylation, decarboxylation, bond cleavage and deamination. These findings provide insights into the molecular mechanisms of the ecotoxicological effects of antibiotics on microalgae, and supply useful information for their environmental risk assessment and management.
Collapse
Affiliation(s)
- Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Yushan, Qingdao, Shandong, China.
| | - Xin Qi
- College of Marine Life Sciences, Ocean University of China, Yushan, Qingdao, Shandong, China
| | - Jing-Yu Qin
- College of Marine Life Sciences, Ocean University of China, Yushan, Qingdao, Shandong, China
| |
Collapse
|
34
|
Pan D, Shao S, Zhong J, Wang M, Wu X. Performance and mechanism of simultaneous nitrification-denitrification and denitrifying phosphorus removal in long-term moving bed biofilm reactor (MBBR). BIORESOURCE TECHNOLOGY 2022; 348:126726. [PMID: 35093525 DOI: 10.1016/j.biortech.2022.126726] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The long-term moving bed biofilm reactor (MBBR) with carrier-attached biofilm was successfully operated for simultaneous removal of nitrogen, phosphorus, and COD at various C/N ratios. Results indicated that 99.60%, 63.58%, 78.94%, and 59.64% of NH4+-N, NO3--N, TN, and TP were removed at C/N ratio, hydraulic retention time (HRT), and carrier film amount of 5, 40 h, and 1.2 mg·g-1. Nitrogen balance analysis showed that more than 89% of nitrogen (C/N = 20, 15, 10, 5) was converted to gas products. Extracellular polymeric substances (EPS), electron transport system activity (ETSA), and enzyme activity of biofilm were evaluated. Protein (PN)/polysaccharose (PS) values and ETSA decreased with the decrease of C/N ratios. Metagenomics sequencing further revealed that the prominent phyla for nitrogen and phosphorus removal were identified including Proteobacteria, Acidobacteria, Nitrospirae, and Chloroflexi. Proteobacteriaand Gammaproteobacteria were identified as the dominant denitrifying phosphate accumulating organisms (PAO) at the phylum and class level, respectively.
Collapse
Affiliation(s)
- Dandan Pan
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Sicheng Shao
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Jinfeng Zhong
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Minghui Wang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China.
| |
Collapse
|
35
|
Xie J, Chen L, Luo X, Huang L, Li S, Gong X. Degradation of tetracycline hydrochloride through efficient peroxymonosulfate activation by B, N co-doped porous carbon materials derived from metal-organic frameworks: Nonradical pathway mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119887] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|