1
|
Fang H, Guo H, Feng X, Chen Z, Ji W, Au CT. Facile synthesis of defect-rich interfacial Mo/MoO 2 for efficient peroxymonosulfate activation and refractory pollutants degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124788. [PMID: 39173860 DOI: 10.1016/j.envpol.2024.124788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Peroxymonosulfate-based advanced oxidation process (PMS-AOP) has shown great potential in sewage purification, and catalyst development capable of efficient PMS activation is a key while challenging element. Herein we reported a facile electro-explosive route to synthesize the oxygen vacancy (Vo)-enriched Mo/MoO2 without using chemical reagents. The detailed studies suggested that the synergy of Mo active site and Vo in the catalyst significantly boosted the activation kinetics of PMS. Evidently, the Mo site of different oxidation states contributed to chemical activation of PMS, while the Vo favored the activation of PMS and the generation of non-radical 1O2 species. As a result, the Mo/MoO2-10 h/PMS system delivered a complete removal of acid orange 7 (AO7) within 4 min, significantly exceeding the activity of Mo/PMS (16%), MoO2-H/PMS (25%) and most of other PMS-based systems. Moreover, the current system showed high potential for removal of different pollutants including antibiotics and organic dyes. Radical quenching experiments and electron paramagnetic resonance (EPR) studies revealed that the 1O2 species was significant for AO7 decomposition. This work provided a novel strategy to a batch-scale synthesis of high-performance PMS activator for water remediation in practice.
Collapse
Affiliation(s)
- Hongjun Fang
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hui Guo
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xinzhen Feng
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhaoxu Chen
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Weijie Ji
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Chak-Tong Au
- Department of Chemistry, Hong Kong Baptist University, Hong Kong
| |
Collapse
|
2
|
Han H, Chen M, Sun C, Han Y, Xu L, Zhao Y. Synergistic enhancement in hydrodynamic cavitation combined with peroxymonosulfate fenton-like process for bpa degradation: New insights into the role of cavitation bubbles in regulation reaction pathway. WATER RESEARCH 2024; 268:122666. [PMID: 39486149 DOI: 10.1016/j.watres.2024.122666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
The combination of hydrodynamic cavitation (HC) and Fenton-like oxidation technology can dramatically enhance the pollutant removal capacity, however, the synergistic effect of cavitation and catalysts on reactive oxygen species (ROS) generation remained enigmatic. In this study, we established a combined system based on HC and Ce-MnFe2O4 activated peroxymonosulfate (PMS) for BPA removal, and attentions were paid on the role of cavitation bubbles. The results show that the combination of HC in Ce-MnFe2O4 activated PMS could mediate the degradation of BPA from the non-radical pathway dominated by 1O2 to •O2- dominated radical pathway. Both controlled experiments and theoretical calculations revealed that the cavitation bubbles with different sizes play the dominant role in ROS generation. The microjets produced by the collapse of cavitation bubbles could create a large number of oxygen vacancy defects on Ce-MnFe2O4 surface, which modify the activation barrier of PMS and facilitate the generation of •O2- thermodynamically. The stable existing cavitation bubbles with the size of 100∼400 nm could create considerable gas-liquid interface. The molecular dynamics simulations show that the nano bubbles can concentrate the BPA and increase the probability of contacts between BPA and Ce-MnFe2O4, hence effectively solve the issues of short lifetime of •O2- radicals and limited mass transfer distance to strengthen the reaction. In addition, the PMS/Ce-MnFe2O4/HC system not only achieves the satisfied COD (95 %) and TOC (65 %) removal efficiency but also enabled the BPA-contaminated water with a low energy cost of 0.065 kWh·m-3 and oxidant cost, highlighting the application potential of the HC technology for contaminated water.
Collapse
Affiliation(s)
- Hongkun Han
- School of Environment, Liaoning University, Liaoning Province, Shenyang 110036, PR China
| | - Mengfan Chen
- School of Environment, Liaoning University, Liaoning Province, Shenyang 110036, PR China
| | - Congting Sun
- School of Environment, Liaoning University, Liaoning Province, Shenyang 110036, PR China.
| | - Yuying Han
- School of Environment, Liaoning University, Liaoning Province, Shenyang 110036, PR China
| | - Lanlan Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin Province, Changchun 130022, PR China
| | - Yingming Zhao
- Department of Biological Sciences, University of Windsor, Ontario, Windsor, Canada
| |
Collapse
|
3
|
Li N, Wang J, Liao T, Ma B, Chen Y, Li Y, Fan X, Peng W. Facilely tuning the coating layers of Fe nanoparticles from iron carbide to iron nitride for different performance in Fenton-like reactions. J Colloid Interface Sci 2024; 672:688-699. [PMID: 38865882 DOI: 10.1016/j.jcis.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
In this study, a series of Fe-based materials are facilely synthesized using MIL-88A and melamine as precursors. Changing the mass ratio of melamine and MIL-88A could tune the coating layers of generated zero-valent iron (Fe0) particles from Fe3C to Fe3N facilely. Compared to Fe/Fe3N@NC sample, Fe/Fe3C@NC exhibits better catalytic activity and stability to degrade carbamazepine (CBZ) with peroxymonosulfate (PMS) as oxidant. Free radical quenching tests, open-circuit potential (OCP) test and electron paramagnetic resonance spectra (EPR) prove that hydroxyl radicals (OH) and superoxide radical (O2-) are dominant reactive oxygen species (ROSs) with Fe/Fe3C@NC sample. For Fe/Fe3N@NC sample, the main ROSs are changed into sulfate radicals (SO4-) and high valent iron-oxo (Fe (IV)=O) species. In addition, the better conductivity of Fe3C is beneficial for the electron transfer from Fe0 to the Fe3C, thus could keep the activity of the surface sites and obtain better stability. DFT calculation reveals the better adsorption and activation ability of Fe3C than Fe3N. Moreover, PMS can also be adsorbed on the Fe sites of Fe3N with shorter FeO bonds and longer SO bonds than on Fe3C, the Fe (IV)=O is thus present in the Fe/Fe3N@NC/PMS system. This study provides a novel strategy for the development of highly active Fe-based materials for Fenton-like reactions and thus could promote their real application.
Collapse
Affiliation(s)
- Ningyuan Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Tao Liao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Biao Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ying Chen
- Department of Chemical Engineering, Tianjin Renai College, Tianjin 301636, China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang 312300, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang 312300, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang 312300, China.
| |
Collapse
|
4
|
Ma B, Lu B, Tang H, Wang H, Bian Z. Square-wave pulsed potential driven electrocatalytic degradation of 4-chlorophenol using Fe-Ni/rGO/PPy@NF three dimensional electrode. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136054. [PMID: 39368356 DOI: 10.1016/j.jhazmat.2024.136054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
To develop an energy-efficient system for the removal of chlorinated organic pollutants, Fe-Ni/reduced graphite oxide/polymerized polypyrrole@nickel foam was constructed as a catalytic cathode for pulsed electrocatalytic degradation, where cathode-catalyzed production of hydrogen radicals (H*) and hydroxyl radical (·OH) generated at the anode led to dechlorination of 4-chlorophenol (4-CP), and dechlorination products were mineralized and degraded under the action of·OH. When energy was continuously supplied to the reaction system in the constant potential mode, the 4-CP concentration near the electrode was insufficient, limiting the reaction rate. Conversely, in the square-wave pulsed potential mode, mass transfer limitations were mitigated, significantly enhancing reaction efficiency and reducing energy consumption. At -1.2 V (vs. Ag/AgCl), the 4-CP removal efficiency reached 93.79 % in the pulsed potential mode, surpassing the constant potential mode's performance of 81.40 %. The synergistic periodic oscillation of the potential, direct electron transfer, and catalytic generation of active free radicals in the pulsed potential mode reduced intermediate concentrations and increased 4-CP mineralization, while the degradation pathway remained unchanged. This research presents a method for the efficient treatment of chlorinated organic pollutants in water using pulsed electrocatalytic degradation.
Collapse
Affiliation(s)
- Bei Ma
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; China Association of Rural Energy Industry, Beijing 100125, PR China
| | - Bobing Lu
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Hanyu Tang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, PR China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education of China, Beijing Normal University, Beijing 100875, PR China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
5
|
Li J, Shang E, Li X, Tian J, Xu Z, Li J. Efficient ofloxacin degradation via peroxymonosulfate activation using an S-scheme MoS 2/Co 3O 4 heterojunction composite under visible light: Performance and mechanistic insights. ENVIRONMENTAL RESEARCH 2024; 262:119891. [PMID: 39218336 DOI: 10.1016/j.envres.2024.119891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Sulfate-radical-mediated photocatalysis technology peroxymonosulfate (PMS) activation via visible light irradiation shows great promise for water treatment applications. However, its effectiveness largely depends on the bifunctional performance of photocatalysis and PMS activation provided by the catalysts. In this study, we successfully synthesized a novel S-scheme MoS2/Co3O4 (MC) heterojunction composite by a hydrothermal method and employed it for the first time to activate PMS for ofloxacin (OFX) degradation under visible light irradiation. The MC-5/PMS/Vis system achieved an impressive 85.11% OFX degradation efficiency within 1 min and complete OFX removal within 15 min under optimal conditions, with an apparent first-order kinetics rate constant of 0.429 min-1. Reactive species trapping experiments and electron spin resonance analysis identified 1O2, h+, and •O2- as the primary active species responsible for OFX degradation. Photoelectrochemical analyses and density functional theory calculations indicated the formation of a built-in electric field between MoS2 and Co3O4, which enhanced the separation and migration of photoinduced carriers. Additionally, the Co-Mo interaction further increased the yield of dominant reactive species, thereby boosting photocatalytic activity. This work underscores the potential of visible-light-assisted PMS-mediated photocatalysis using Co3O4-based catalysts for effective pollutant control.
Collapse
Affiliation(s)
- Jianwei Li
- College of Science and Technology, Hebei Agricultural University, Huanghua, 61100, China
| | - Enxiang Shang
- College of Science and Technology, Hebei Agricultural University, Huanghua, 61100, China.
| | - Xuebing Li
- College of Science and Technology, Hebei Agricultural University, Huanghua, 61100, China
| | - Jiajia Tian
- College of Science and Technology, Hebei Agricultural University, Huanghua, 61100, China
| | - Zesheng Xu
- Chinese Academy for Environmental Planning, Beijing, 100041, China
| | - Jiwen Li
- College of Science and Technology, Hebei Agricultural University, Huanghua, 61100, China.
| |
Collapse
|
6
|
Lan MY, Li YH, Wang CC, Li XJ, Cao J, Meng L, Gao S, Ma Y, Ji H, Xing M. Multi-channel electron transfer induced by polyvanadate in metal-organic framework for boosted peroxymonosulfate activation. Nat Commun 2024; 15:7208. [PMID: 39174565 PMCID: PMC11341957 DOI: 10.1038/s41467-024-51525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
Catalytic peroxymonosulfate (PMS) activation processes don't solely rely on electron transfer from dominant metal centers due to the complicated composition and interface environment of catalysts. Herein the synthesis of a cobalt based metal-organic framework containing polyvanadate [V4O12]4- cluster, Co2(V4O12)(bpy)2 (bpy = 4,4'-bipyridine), is presented. The catalyst demonstrates superior degradation activity toward various micropollutants, with higher highest occupied molecular orbital (HOMO), via nonradical attack. The X-ray absorption spectroscopy and density functional theory (DFT) calculations demonstrate that Co sites act as both PMS trapper and electron donor. In situ spectral characterizations and DFT calculations reveal that the terminal oxygen atoms in the [V4O12]4- electron sponge could interact with the terminal hydrogen atoms in PMS to form hydrogen bonds, promoting the generation of SO5* intermediate via both dynamic pull and direct electron transfer process. Further, Co2(V4O12)(bpy)2 exhibits long-term water purification ability, up to 40 h, towards actual wastewater discharged from an ofloxacin production factory. This work not only presents an efficient catalyst with an electron sponge for water environmental remediation via nonradical pathway, but also provides fundamental insights into the Fenton-like reaction mechanism.
Collapse
Affiliation(s)
- Ming-Yan Lan
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, PR China
| | - Yu-Hang Li
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, PR China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, PR China.
| | - Xin-Jie Li
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, PR China
| | - Jiazhen Cao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Linghui Meng
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, PR China
| | - Shuai Gao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, PR China
| | - Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, PR China
| | - Haodong Ji
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, PR China.
| | - Mingyang Xing
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, PR China.
| |
Collapse
|
7
|
Yin W, Liu T, Chen J, Zhang L, Ji R, Xu Y, Xu J, Li N, Zhou X, Zhang Y. Using UV/peracetic acid as pretreatment for subsequent bio-treatment of antibiotic-containing wastewater treatment: Mitigating microbial inhibition and antibiotic resistance genes proliferation. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134166. [PMID: 38554511 DOI: 10.1016/j.jhazmat.2024.134166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
UV/peracetic acid (PAA) treatment presents a promising approach for antibiotic removal, but its effects on microbial community and proliferation of antibiotic resistance genes (ARGs) during the subsequent bio-treatment remain unclear. Thus, we evaluated the effects of the UV/PAA on tetracycline (TTC) degradation, followed by introduction of the treated wastewater into the bio-treatment system to monitor changes in ARG expression and biodegradability. Results demonstrated effective TTC elimination by the UV/PAA system, with carbon-centered radicals playing a significant role. Crucially, the UV/PAA system not only eliminated antibacterial activity but also inhibited potential ARG host growth, thereby minimizing the emergence and dissemination of ARGs during subsequent bio-treatment. Additionally, the UV/PAA system efficiently removed multi-antibiotic resistant bacteria and ARGs from the bio-treatment effluent, preventing ARGs from being released into the environment. Hence, we propose a multi-barrier strategy for treating antibiotic-containing wastewater, integrating UV/PAA pre-treatment and post-disinfection with bio-treatment. The inhibition of ARGs transmission by the integrated system was verified through actual soil testing, confirming its effectiveness in preventing ARGs dissemination in the surrounding natural ecosystem. Overall, the UV/PAA treatment system offers a promising solution for tackling ARGs challenges by controlling ARGs proliferation at the source and minimizing their release at the end of the treatment process.
Collapse
Affiliation(s)
- Wenjun Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Longlong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruicheng Ji
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Yue C, Zhou H, Chen L, Wang H, Wu X, Yan Q, Zhang H, Yang S. Efficient visible light-driven photodegradation of glyphosate utilizing Bi 2WO 6 with oxygen vacancies: Performance, mechanism, and toxicity assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123876. [PMID: 38552773 DOI: 10.1016/j.envpol.2024.123876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Global environmental deterioration poses a major risk to ecological security and human health, and emerging technologies are urgently needed to deal with it. Therefore, the exploitation of photocatalysts with favorable activity for efficient degradation of pesticide contaminants is one of the strategies to achieve environmental remediation. Herein, oxygen vacancy-rich Bi2WO6 (Ov-BWO) was prepared through a solvothermal method utilizing ethylene glycol (EG), which exhibited excellent photocatalytic efficiency in photodegradation of glyphosate. The formation of oxygen vacancies (Ovs) in Ov-BWO was demonstrated utilizing XPS and EPR. PL, TRPL, photocurrent tests, and EIS analyses revealed that Ovs accelerated effective transfer of photogenerated charge, extended lifetime of charge carriers, promoted production of active species and significantly improved the photocatalytic performance. Compared with the low-activity Bi2WO6 (BWO, 59.6%), Ov-BWO showed outstanding photocatalytic activity, achieving a degradation efficiency of 91% for glyphosate at 120 min of visible light irradiation. Moreover, Ov-BWO also displayed outstanding recyclable stability after four repeated uses. Based on the characterization of photoelectric properties, a feasible photocatalytic reaction was put forth, along with glyphosate degradation pathways. Furthermore, the degradation intermediates of glyphosate were analyzed in detail employing HPLC-MS. The toxicity assessment indicated that degraded products had been proven to be non-toxic to the ecological system. This work presents the potential of photocatalysts with Ovs for the photodegradation of pesticides, providing a viable strategy for environmental renovation.
Collapse
Affiliation(s)
- Caiyan Yue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Heng Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Long Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hao Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xu Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Qiong Yan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Heng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
9
|
Zhang S, Liu Y, Mohisn A, Zhang G, Wang Z, Wu S. Biodegradation of penicillin G sodium by Sphingobacterium sp. SQW1: Performance, degradation mechanism, and key enzymes. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133485. [PMID: 38377898 DOI: 10.1016/j.jhazmat.2024.133485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
Biodegradation is an efficient and cost-effective approach to remove residual penicillin G sodium (PGNa) from the environment. In this study, the effective PGNa-degrading strain SQW1 (Sphingobacterium sp.) was screened from contaminated soil using enrichment technique. The effects of critical operational parameters on PGNa degradation by strain SQW1 were systematically investigated, and these parameters were optimized by response surface methodology to maximize PGNa degradation. Comparative experiments found the extracellular enzyme to completely degrade PGNa within 60 min. Combined with whole genome sequencing of strain SQW1 and LC-MS analysis of degradation products, penicillin acylase and β-lactamase were identified as critical enzymes for PGNa biodegradation. Moreover, three degradation pathways were postulated, including β-lactam hydrolysis, penicillin acylase hydrolysis, decarboxylation, desulfurization, demethylation, oxidative dehydrogenation, hydroxyl reduction, and demethylation reactions. The toxicity of PGNa biodegradation intermediates was assessed using paper diffusion method, ECOSAR, and TEST software, which showed that the biodegradation products had low toxicity. This study is the first to describe PGNa-degrading bacteria and detailed degradation mechanisms, which will provide new insights into the PGNa biodegradation.
Collapse
Affiliation(s)
- Sinan Zhang
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; Department of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - YuXuan Liu
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ali Mohisn
- Department of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guohui Zhang
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Zejian Wang
- Department of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shiyong Wu
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
10
|
Jiang R, Zhong D, Xu Y, Chang H, He Y, Zhang J, Liao P. Chitosan derived N-doped carbon anchored Co 3O 4-doped MoS 2 nanosheets as an efficient peroxymonosulfate activator for degradation of dyes. Int J Biol Macromol 2024; 265:130519. [PMID: 38553393 DOI: 10.1016/j.ijbiomac.2024.130519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/18/2024]
Abstract
Peroxymonosulfate (PMS), which is dominated by non-free radical pathway, has a good removal effect on organic pollutants in complex water matrices. In this article, a biodegradable cobalt-based catalyst (Co3O4/MoS2@NCS) was synthesized by a simple hydrothermal method with chitosan (CS) as nitrogen‑carbon precursor and doped with Cobaltic‑cobaltous oxide (Co3O4) and Molybdenum disulfide (MoS2), and was used to activate PMS to degrade dye wastewater. Electrochemical tests showed that Co3O4/MoS2@NCS exhibited higher current density and cycling area than MoS2@NCS and MoS2. In the Co3O4/MoS2@NCS/PMS system, the degradation rate of 30 mg·L-1 rhodamine B (RhB) reached 97.75 % within 5 min, and kept as high as 94.34 % after 5 cycles. Its rate constant was 1.91 and 8.37 times that of MoS2@NCS/PMS and MoS2/PMS, respectively. It had good complex background matrices and acid-base anti-interference ability, and had good universality and reusability. The degradation rate of methyl orange (MO) and methylene blue (MB) were more than 91 % within 5 min at pH 4.8. The experimental results demonstrated that MoS2-modified CS as a carrier exposed a large number of active sites, which not only dispersed Co3O4 nanoparticles and improved the stability of the catalyst, but also provided abundant electron rich groups, and promoted the activation of PMS and the production of reactive oxygen species (ROS). PMS was effectively activated by catalytic sites (Co3+/Co2+, Mo4+/Mo5+/Mo6+, CO, pyridine N, pyrrole N, hydroxyl group and unsaturated sulfur), producing a large number of radicals that attack RhB molecules, causing chromophore cleavage, ring opening, and mineralization. Among them, non-free radical 1O2 was the main ROS for RhB degradation. This work is expected to provide a new idea for the design and synthesis of environmentally friendly and efficient MoS2-modified cobalt-based catalysts.
Collapse
Affiliation(s)
- Ran Jiang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Dengjie Zhong
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yunlan Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Haixing Chang
- School of Resources & Environmental Science, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Yuanzhen He
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jiayou Zhang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Pengfei Liao
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
11
|
Wen L, Li X, Na Y, Chen H, Liu M, Yang S, Ding D, Wang G, Liu Y, Chen Y, Chen R. Surface reconstructed Fe@C 1000 for enhanced Fenton-like catalysis: Sustainable ciprofloxacin degradation and toxicity reduction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123534. [PMID: 38342432 DOI: 10.1016/j.envpol.2024.123534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
The Fe-based catalysts typically undergo severe problems such as deactivation and Fe sludge emission during the peroxymonosulfate (PMS) activation, which commonly leads to poor operation and secondary pollution. Herein, an S-doped Fe-based catalyst with a core-shell structure (Fe@CT, T = 1000°C) was synthesized, which can solve the above issues via the dynamic surface evolution during the reaction process. Specifically, the Fe0 on the surface of Fe@C1000 could be consumed rapidly, leaving numerous pores; the Fe3C from the core would subsequently migrate to the surface of Fe@C1000, replenishing the consumed active Fe species. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses demonstrated that the reaction surface reconstructed during the PMS activation, which involved the FeIII in-situ reduction by S species as well as the depletion/replenishment of effective Fe species. The reconstructed Fe@C1000 achieved near-zero Fe sludge emission (from 0.59 to 0.08-0.23 mg L-1) during 5 cycles and enabled the dynamic evolution of dominant reactive oxygen species (ROS) from SO4·- to FeIVO, sustainably improving the oxidation capacity (80.0-92.5% in following four cycles) to ciprofloxacin (CIP) and reducing the toxicity of its intermediates. Additionally, the reconstructed Fe@C1000/PMS system exhibited robust resistance to complex water matrix. This study provides a theoretical guideline for exploring surface reconstruction on catalytic activity and broadens the application of Fe-based catalysts in the contaminants elimination.
Collapse
Affiliation(s)
- Lanxuan Wen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoping Li
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Na
- Qinghai Provincial Ecological Environment Planning and Environmental Protection Technology Center, No. 116, Nanshan East Road, Xining, 810007, China
| | - Huanyu Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Liu
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjiong Yang
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shanxi, 710055, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gen Wang
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shanxi, 710055, China
| | - Yu Liu
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongzhi Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
12
|
Wang F, Li YH, Gao Y, Chai Y, Wei Y, Wang CC, Wang P, Fu H, Zhao C. Ultrafast removal of organics via peroxymonosulfate activation over Co 2P/TD hollow spheres derived from ZIF-67. Chem Commun (Camb) 2024. [PMID: 38477555 DOI: 10.1039/d4cc00280f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Co2P/tetrasodium diphosphate (TD) derived from ZIF-67/sodium phytate was newly developed and synthesized, and exhibited excellent degradation ability toward various refractory organics via peroxymonosulfate activation. A corresponding reaction mechanism was proposed. In addition, a continuous-flow operation of phenol degradation was realized.
Collapse
Affiliation(s)
- Fei Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Yu-Hang Li
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Ya Gao
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Yutong Chai
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Yuwei Wei
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Huifen Fu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Chen Zhao
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
13
|
Zheng M, Li Y, Cao M, Guo Y, Qiu G, Tu S, Xiong S, Fang D. Amino acid promoted oxidation of atrazine by Fe 3O 4/persulfate. Heliyon 2024; 10:e23371. [PMID: 38163114 PMCID: PMC10757014 DOI: 10.1016/j.heliyon.2023.e23371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
In the present study, we demonstrated that the presence of cysteine could remarkably enhance the degradation of atrazine by Fe3O4/persulfate system. The results of electron paramagnetic resonance (EPR) spectra confirmed the combination of cysteine and Fe3O4 exhibited much higher activity on activation of persulfate to generate more SO4•- and •OH than Fe3O4 alone. At pH of 3.0, SO4•- and •OH contributed to about 58.2 % and 41.8 % of atrazine removal respectively, while •OH gradually dominated the oxidation of atrazine from neutral condition to alkaline condition. The co-existing Cl- and HCO3- could quench SO4•-, resulting in the inhibition of atrazine degradation. The presence of low natural organic matters (NOM) concentration (0-2 mg L-1) could enhance the atrazine removal, and high concentration (>5 mg L-1) of NOM restrained the atrazine degradation. During the Cysteine/Fe3O4/Persulfate process, cysteine served as a complexing reagent and reductant. Through acidolysis and complexation, Fe3O4 could release dissolved and surface bound Fe2+, both of which contributed to the activation of persulfate together. Meanwhile, cysteine was not rapidly consumed due to a regeneration process, which was beneficial for maintaining Fe2+/Fe3+ cycle and constantly accelerating the activation of persulfate for atrazine degradation. The reused Fe3O4 and cysteine in the Cysteine/Fe3O4/Persulfate process exhibited high stability for the atrazine degradation after three cycles. The degradation pathway of atrazine included alkylic-oxidation, dealkylation, dechlorination-hydroxylation processes. The present study indicates the novel Cysteine/Fe3O4/Persulfate process might be a high potential for treatment of organic polluted water.
Collapse
Affiliation(s)
- Mingming Zheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Yinghao Li
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Menghua Cao
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuxin Guo
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Guohong Qiu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuxin Tu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuanglian Xiong
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dun Fang
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, 445000, PR China
| |
Collapse
|
14
|
Yang D, Pu H, Dai P, Jiang W, Yi Y, Zhang T, Zhang S, Guo X, Li Y. Mechanism of p-Type Heteroatom Doping of Lithium Stannate for the Photodegradation of 2,4-Dichlorophenol: Enhanced Hole Oxidative Capability and Concentrations. Inorg Chem 2024; 63:1236-1246. [PMID: 38174906 DOI: 10.1021/acs.inorgchem.3c03636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A systematic evaluation of enhancing photocatalysis via aliovalent cation doping is conducted. Cation In3+, being p-type-doped, was chosen to substitute the Sn site (Sn4+) in Li2SnO3, and the photodegradation of 2,4-dichlorophenol was applied as a model reaction. Specifically, Li2Sn0.90In0.10O3 exhibited superior catalytic performance; the photodegradation efficiency reached about 100% within only 12 min. This efficiency is far greater than that of pure Li2SnO3 under identical conditions. Density functional theory calculations reveal that introducing In3+ increased the electron mobility, yet decreased the hole mobility, leading to photogenerated carrier separation. However, photoluminescence and time-resolved photoluminescence suggest that In3+ induced nonradiative coupling in the matrix, reducing the photogenerated carrier separation ratio compared with that of Li2SnO3. The optical band gap of Li2Sn0.90In0.10O3 was almost unchanged compared with that of Li2SnO3 via ultraviolet-visible absorption. The increased photocatalytic efficiency was ascribed to the lower valence band position and enhanced hole concentrations by valence band X-ray photoelectron spectroscopy and electrochemical measurements. Finally, a 2,4-dichlorophenol degradation pathway, an intermediate toxicity assessment, and a photocatalytic mechanism were proposed. This work offers insights into designing and optimizing semiconductor photocatalysts with high performance.
Collapse
Affiliation(s)
- Dingfeng Yang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd., Lijiatuo, Banan District, Chongqing 400054, People's Republic of China
- Chongqing Precision Medicine Industrial Technology Research Institute, Chongqing 400799, People's Republic of China
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Hongzheng Pu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd., Lijiatuo, Banan District, Chongqing 400054, People's Republic of China
| | - Peng Dai
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
| | - Wen Jiang
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
| | - Yuanxue Yi
- Chongqing Precision Medicine Industrial Technology Research Institute, Chongqing 400799, People's Republic of China
| | - Tao Zhang
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
| | - Shuming Zhang
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
| | - Xichuan Guo
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
| | - Yuanyuan Li
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
- Chongqing Precision Medicine Industrial Technology Research Institute, Chongqing 400799, People's Republic of China
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
15
|
Peng Y, Bian Z, Wang F, Li S, Xu S, Wang H. Electrocatalytic degradation of p-nitrophenol on metal-free cathode: Superoxide radical (O 2•-) production via molecular oxygen activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132797. [PMID: 37865078 DOI: 10.1016/j.jhazmat.2023.132797] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
Although metal-free electrodes in molecular oxygen-activated Fenton-like wastewater treatment technologies have been developed, the reactive oxygen species (ROS) generation mechanisms are still not sufficiently clear. As a typical example of refractory phenolic wastewater, p-nitrophenol (PNP) has been widely studied. This study demonstrated the critical role of superoxide radicals (O2•-) in PNP degradation by metal-free electrodes through electron spin resonance (ESR), ROS quenching, and density functional theory (DFT) tests. The most superior metal-free electrode exhibited a mass activity of approximately 133.5 h-1 gcatalyst-1. Experimental and theoretical studies revealed the mechanism of O2•- generation via oxygen activation, including one- and three-electron transfer pathways, and found that O2•- mainly attacked the nitro group of PNP to degrade and transform the pollutant. This study enhances the mechanistic understanding of metal-free materials in the electrochemical degradation of refractory pollutants.
Collapse
Affiliation(s)
- Yiyin Peng
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Feng Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Shunlin Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Shiwei Xu
- Beijing Capital Eco-Environment Protection Group Co., Ltd., Beijing 100044, PR China
| | - Hui Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
16
|
Zhang M, Ruan J, Wang X, Shao W, Chen Z, Chen Z, Gu C, Qiao W, Li J. Selective oxidation of organic pollutants based on reactive oxygen species and the molecular structure: Degradation behavior and mechanism analysis. WATER RESEARCH 2023; 246:120697. [PMID: 37837899 DOI: 10.1016/j.watres.2023.120697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
The selective and rapid elimination of refractory organic pollutants from surface water is significant. However, the relationship of between reactive oxygen species (ROSs) and diversified pollutants molecular structures still needs to be further clarified. Here, we utilize polydopamine (PDA)-assisted coating strategy to prepare hollow 2D carbon nanosheet (ZPL-HCNS) and 2D Co3O4 nanosheet (ZPL-Co3O4) by thermolysis of PDA coated ZIF-L (ZIF-L@PDA) precursor under different gas atmosphere, which realizes the controlled generation of radicals and non-radicals. Organic pollutants including bisphenols, sulfonamides, quinolones, tetracyclines, and azo dyes are applied to assess the catalytic performance. Results show that dyes containing azo structure are more likely to be degraded by radical process, which is due to that the energy (ΔE) requirements to break the azo bond is higher than energy released from singlet oxygen to oxygen molecule and lower than that of sulfate radical to sulfate. Frontier molecular orbital theory HOMO-LUMO and Fukui function expounded the possible selectivity mechanism. In addition, the degradation pathway and biotoxicity test are carried out. This work provides a reference to illustrate the selective degradation for ROSs and molecular structure of pollutants.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jingqi Ruan
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Weizhen Shao
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglin Chen
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
17
|
Zhang X, Zhang W, Zhang X, Li J, Wang T, Fan Q, Zhu H, Yang Z, Kong C. Deep mineralization of VOCs in an embedded hybrid structure CoFe 2O 4/MoS 2/PMS wet scrubber system. iScience 2023; 26:108054. [PMID: 37822502 PMCID: PMC10563051 DOI: 10.1016/j.isci.2023.108054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023] Open
Abstract
Peroxymonosulfate (PMS)-based advanced oxidation processes in liquid phase systems can actively degrade toluene. In this work, the catechol structural surfactant was introduced to synthesize the dispersed and homogeneous CoFe2O4 nanospheres and embedded into MoS2 nanoflowers to form magnetically separable heterojunction catalysts. The innovative approach effectively mitigated the traditionally low reduction efficiency of transition metal ions during the heterogeneous activation process. In CoFe2O4/MoS2/PMS system, the toluene removal efficiency remained 95% within 2 h. The contribution of SO4⋅-, ·O2-, ·OH, and 1O2 was revealed by radical quenching experiment and electron paramagnetic resonance spectroscopy. The results illustrated that MoS2 offers ample reduction sites for facilitating PMS activation via Fe3+/Fe2+ redox interactions. Furthermore, an investigation into the toluene degradation pathway within the CoFe2O4/MoS2/PMS system revealed its capability to suppress the formation of toxic byproducts. This ambient-temperature liquid-phase method presented promising route for the removal of industrial volatile organic pollutants.
Collapse
Affiliation(s)
- Xiai Zhang
- Ministry of Education Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Wenquan Zhang
- Shaanxi Coal and Chemical Industry Technology Development Center Co., Ltd., Xi’an 710100, Shaanxi, P.R. China
| | - Xinwei Zhang
- Ministry of Education Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Jun Li
- Ministry of Education Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Tong Wang
- Ministry of Education Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Qikui Fan
- Ministry of Education Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Hao Zhu
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education) and Gansu Engineering Research Center of Fine Particles Pollution Control Technology and Equipment, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhimao Yang
- Ministry of Education Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Chuncai Kong
- Ministry of Education Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| |
Collapse
|
18
|
Zhang Y, Sun M, Lu Y, Peng M, Du E, Xu X. Nitrogen-Doped Carbon Dots Encapsulated a Polyoxomolybdate-Based Coordination Polymer as a Sensitive Platform for Trace Tetracycline Determination in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2676. [PMID: 37836317 PMCID: PMC10574045 DOI: 10.3390/nano13192676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
The requirement of simple, efficient and accurate detection of tetracycline (TC) in water environments poses new challenges for sensing platform development. Here, we report a simple method for TC sensing via fluorescence detection based on metal-organic coordination polymers (MOCPs, (4-Hap)4(Mo8O26)) coated with nitrogen-doped carbon dots (NCDs). These NCDs@(4-Hap)4(Mo8O26) composites showed excellent luminescence features of NCDs with stable bright-blue emission under UV light. The results of the sensing experiment showed that the fluorescence of NCDs@(4-Hap)4(Mo8O26) can be quenched by TC (166 µM) with 94.1% quenching efficiency via the inner filter effect (IFE) in a short time (10 s), with a detection limit (LOD) of 33.9 nM in a linear range of 8-107 µM. More significantly, NCDs@(4-Hap)4(Mo8O26) showed a high selectivity for TC sensing in the presence of anions and metal cations commonly found in water environments and can be reused in at least six cycles after washing with alcohol. The potential practicality of NCDs@(4-Hap)4(Mo8O26) was verified by sensing TC in real water samples with the standard addition method, and satisfactory recoveries from 91.95% to 104.72% were obtained.
Collapse
Affiliation(s)
- Yanqiu Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Minrui Sun
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Yang Lu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Mingguo Peng
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Xia Xu
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| |
Collapse
|
19
|
Song G, Wu H, Jing J, Zhang X, Wang X, Li S, Zhou M. Insights into Electrochemical Dehalogenation by Non-Noble Metal Single-Atom Cobalt with High Efficiency and Low Energy Consumption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14482-14492. [PMID: 37699122 DOI: 10.1021/acs.est.3c06021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
It is critical to discover a non-noble metal catalyst with high catalytic activity capable of replacing palladium in electrochemical reduction. In this work, a highly efficient single-atom Co-N/C catalyst was synthesized with metal-organic frameworks (MOFs) as a precursor for electrochemical dehalogenation. X-ray absorption spectroscopy (XAS) revealed that Co-N/C exhibited a Co-N4 configuration, which had more active sites and a faster charge-transfer rate and thus enabled the efficient removal of florfenicol (FLO) at a wide pH, achieving a rate constant 3.5 and 2.1 times that of N/C and commercial Pd/C, respectively. The defluorination and dechlorination efficiencies were 67.6 and 95.6%, respectively, with extremely low Co leaching (6 μg L-1), low energy consumption (22.7 kWh kg-1), and high turnover frequency (TOF) (0.0350 min-1), demonstrating excellent dehalogenation performance. Spiking experiments and density functional theory (DFT) verified that Co-N4 was the active site and had the lowest energy barrier for forming atomic hydrogen (H*) (ΔGH*). Capture experiments, electron paramagnetic resonance (EPR), electrochemical tests, and in situ Fourier transform infrared (FTIR) proved that H* and direct electron transfer were responsible for dehalogenation. Toxicity assessment indicated that FLO toxicity decreased significantly after dehalogenation. This work develops a non-noble metal catalyst with broad application prospects in electrocatalytic dehalogenation.
Collapse
Affiliation(s)
- Ge Song
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huizhong Wu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiana Jing
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuyang Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuechun Wang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuaishuai Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
20
|
Zhou YH, Yang SY, Wang MX, Guan YH, Ma J. Fast degradation of atrazine by nZVI-Cu 0/PMS: Re-evaluation and quantification of reactive species, generation pathways, and application feasibility. WATER RESEARCH 2023; 243:120311. [PMID: 37459795 DOI: 10.1016/j.watres.2023.120311] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/28/2023] [Accepted: 07/03/2023] [Indexed: 09/07/2023]
Abstract
Additive metal to zero-valent iron (ZVI) could enhance the reduction ability and the additive Cu0 was incorporated to ZVI to accelerate PMS activation with atrazine (ATZ) as target compound. The efficiencies of ATZ degradation and PMS decomposition climbed up firstly and then declined as Cu0 loading increased from 0.01 to 1.00 wt% with the maximums at 0.10 wt%. SO4•-, HO•, Fe(IV), O2•- and 1O2 were generated by nZVI-Cu0/PMS based on the results of electron paramagnetic resonance (EPR) and simultaneous degradation of nitrobenzene, ATZ, and methyl phenyl sulfoxide (PMSO). The rate constant of Fe(IV) and ATZ was estimated as 7 × 104 M-1∙s-1 via the variation of methyl phenyl sulfone (PMSO2)formation at different ATZ concentrations. However, Fe(IV) contributed negligibly to ATZ degradation due to the strong scavenging of Fe(IV) by PMS. SO4•- and HO• were the reactive species responsible for ATZ degradation and the yield ratio of SO4•- and HO• was about 8.70 at initial stage. Preliminary thermodynamic calculation on the possible activation ways revealed that the dominant production of SO4•- might originate from the atomic H reduction of PMS in the surface layer of nZVI-Cu0. Ten products of ATZ degradation were identified by HPLC/ESI/QTOF and the possible degradation pathways were analyzed combined with theoretical calculation on ATZ structure. The decrease of temperature or increase of solution pH led to the decline of ATZ degradation, as well as the individual addition of common ions (HCO3-, Cl-, SO42-, NH4+, NO3- and F-) and natural organic matters (NOM). In real water, ATZ was still efficiently degraded with the decontamination efficiency decreasing in the sequence of tap water > surface water > simulated wastewater > groundwater. For the treatment of ATZ-polluted continuous flow, nZVI-Cu0 in double-layer layout had a higher capacity than the single-layer mode. Meanwhile, the leaching TFe and TCu were limited. The results indicate nZVI-Cu0/PMS is applicable and the multiple-layer layout of nZVI-Cu0 is suggested for ATZ-polluted ground water and soil remediation.
Collapse
Affiliation(s)
- Yue-Han Zhou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Song-Yu Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Ming-Xuan Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Ying-Hong Guan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
21
|
Wang FX, Zhang ZW, Wang F, Li Y, Zhang ZC, Wang CC, Yu B, Du X, Wang P, Fu H, Zhao C. Fe-Cu bimetal metal-organic framework for efficient decontamination via Fenton-like process: Synthesis, performance and mechanism. J Colloid Interface Sci 2023; 649:384-393. [PMID: 37354795 DOI: 10.1016/j.jcis.2023.06.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Constructing Fe-Cu bimetal catalysts is an efficient strategy to promote Fe(III)/Fe(II) cycle, whereas there is still a long way to go before fully understanding the role of the Cu in the catalysts. Herein, a new Fe-MOF namely BUC-96(Fe) was fabricated from FeSO4·7H2O, 4,4'-bipyridine (bpy) and 2,5-dihydroxyterephthalic acid (H4dhtp) by both hydrothermal reaction and microwave-assisted method. Also, bimetal BUC-96(FeCu-x) were obtained when the CuSO4 was added into the system identical to the synthesis process of BUC-96(Fe). Series BUC-96 MOFs showed good organics elimination performance via Fenton-like process, where 88.1% (k = 0.0672 min-1) of chloroquine phosphate (CQ, 20 mg/L) was decomposed over pristine BUC-96(Fe) within 30 min. Interestingly, nearly 100% CQ was degraded over BUC-96(FeCu-5) as catalyst under the identical conditions within 5 min, whose reaction rate (1.3527 min-1) was 20.1-fold higher than that of BUC-96. Additionally, BUC-96(FeCu-5) exhibited excellent Fenton-like oxidation degradation performance for 10 selected emerging organic pollutants. The reaction mechanism was studied in detail by experiments, and density functional theory (DFT) calculation. The results revealed that the introduced Cu not only accelerated Fe(III)/Fe(II) cycles, hydroxyl radical (·OH) generation, electron transfer, but also lowered H2O2 dissociated energy barrier. This work advanced the bimetal MOFs construction and application in wastewater treatment via Fenton-like process.
Collapse
Affiliation(s)
- Fu-Xue Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Zi-Wei Zhang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Fei Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ya Li
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Zi-Chen Zhang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Baoyi Yu
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Sciences Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Xuedong Du
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Huifen Fu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chen Zhao
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
22
|
Kang Z, Yang Y, Wang C, Kang Y, Wang T, Zhu G, Han X, Yu H. Atrazine decontamination by a newly screened psychrotroph Paenarthrobacter sp. KN0901 in an aquatic system: Metabolic pathway, kinetics, and hydroponics experiment. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131764. [PMID: 37320906 DOI: 10.1016/j.jhazmat.2023.131764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Atrazine residues running off the fields and entering water resources are a major threat to food security and the ecosystem. In this study, a psychrotrophic functional strain named KN0901 to remove atrazine residues was screened. KN0901 could degrade 30 mg·L-1 atrazine in 4 days at 15ºC with 105 CFU·mL-1 incubation. The phylogenetic results showed KN0901 belonged to Paenarthrobacter sp. PCR results showed that the functional genes consist of trzN, atzB, and atzC, suggesting atrazine was transformed to cyanuric acid by KN0901. KN0901 could degrade atrazine without adding exogenous carbon and nitrogen sources. What's more, KN0901 could tolerate extreme low temperature (5ºC) and high atrazine concentration (100 mg·L-1). When growth and degradation curves were compared, the results indicated the length of lag time showed significant correlation to atrazine degradation rate. The hydroponic experiments showed that the toxicity of atrazine was significantly reduced with KN0901 treatment. The study provided an effective, economic, and eco-friendly bioremediation measure to address atrazine contamination.
Collapse
Affiliation(s)
- Zhichao Kang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Resources and Environment, University of Chinese Academy of Science, Beijing 101400, China
| | - Yang Yang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Resources and Environment, University of Chinese Academy of Science, Beijing 101400, China
| | - Chenxu Wang
- Public Technical Service Center, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yuanyuan Kang
- Shenzhen CAPCHEM Technology Co. Ltd., Shabo Tongfuyu Industry Zone, Pingshan New District, Shenzhen 518118, China
| | - Tianye Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guopeng Zhu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Resources and Environment, University of Chinese Academy of Science, Beijing 101400, China
| | - Xuerong Han
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
23
|
Du A, Fu H, Wang P, Wang CC. Enhanced photo-Fenton activity and stability for sulfamethoxazole degradation by FeS 2@TiO 2 heterojunction derived from MIL-125. CHEMOSPHERE 2023; 322:138221. [PMID: 36828116 DOI: 10.1016/j.chemosphere.2023.138221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/26/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
FT-x composites with core-shell structure (FT = FeS2@TiO2, x represents the mass ratio of the used FeCl3·6H2O to MIL-125) were fabricated by a hydrothermal method using MIL-125(Ti) as a self-sacrificing template. Both the photo-Fenton activity and stability of the FT-1 were improved greatly in comparison with its counterparts due to the unique core-shell structure and synergistic effect between FeS2 and TiO2. Especially, the Fe leaching concentration of FT-1 was approximately 1/10 of the individual FeS2, benefiting from the protection effect of TiO2 shell. Under dark condition, the formed FeOOH occupied active sites and inhibited iron cycle as well as H2O2 decomposition, leading to the inactivation of FT-1. UV light irradiation not only boosted the catalytic activity but also prevented the FT-1 from reactivity decline owning to the regeneration of Fe2+ by photogenerated electrons and continuous generation of ·OH. Experimental and DFT calculation results indicated that a type-II heterojunction was formed, in which photogenerated electrons were transferred from FeS2 core to TiO2 shell, accelerating charge separation and further boosting sulfamethoxazole (SMX) degradation. FT-1 displayed outstanding photo-Fenton activity in wide pH ranged from 2 to 6 and good anti-interfering ability toward impurities in water matrix. Besides, the reusability of FT-1 was good, in which 90% SMX degradation was maintained even after 5 runs. Noteworthy, the photo-Fenton activity was recovered via a revulcanization process, in which FeOOH was completely transformed into FeS2. This founding provided insights for the design and construction of heterojunction with both excellent photo-Fenton activity and stability.
Collapse
Affiliation(s)
- Aofei Du
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Huifen Fu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
24
|
Liu J, Huang L, Li Y, Shi J, Deng H. Bi 3.64Mo 0.36O 6.55 nanoparticles anchored in BiOI: A p-n heterojunction photocatalyst to enhance water purification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121645. [PMID: 37088256 DOI: 10.1016/j.envpol.2023.121645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Selective constructing of heterojunctions enables directional electron-hole migration and favorable charge separation. In this study, a novel p-n junction Bi3.64Mo0.36O6.55 (BMO) nanoparticles anchored in BiOI construct by hydrothermal and subsequent in-situ synthesis. The construction of tight heterojunctions that enhance the characteristic absorption of visible light by Bi3.64Mo0.36O6.55/BiOI (BIMO) and expose more reactive sites can be used to facilitate the rapid degradation of antibiotics (Tetracycline, TC), endocrine disruptors (Bisphenol A, BPA) and dyes in water. In addition, the BIMO catalyst maintained the rapid degradation rate of TC despite the interference of inorganic anions and aqueous substrates. The charge transfer pathways and radical species between the heterojunction components were investigated. In addition, the intermediates and toxicological analysis showed that TC was further mineralized and the small molecule products were generated significantly less toxic and less contaminated. In conclusion, this study synthesized photocatalysts based on p-n heterojunctions, which have potential applications for the degradation of TC.
Collapse
Affiliation(s)
- Jiawei Liu
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Liying Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yeping Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jun Shi
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Huiping Deng
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
25
|
Du R, Zhu H, Zhao H, Lu H, Dong C, Liu M, Yang F, Yang J, Wang J, Pan J. Modulating photothermal properties by integration of fined Fe-Co in confined carbon layer of SiO 2 nanosphere for pollutant degradation and solar water evaporation. ENVIRONMENTAL RESEARCH 2023; 222:115365. [PMID: 36706906 DOI: 10.1016/j.envres.2023.115365] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Environmental governance by photothermal materials especially for the separation of organic pollutants and regeneration of freshwater afford growing attention owing to their special solar-to-heat properties. Here, we construct a special functional nanosphere composed of an internal silica core coated by a thin carbon layer encapsulated plasmonic bimetallic FeCo2O4 spinel (SiO2@CoFe/C) by a facile self-assembled approach and tuned calcination. Through combining the advantage of bimetallic Fe-Co and carbon layer, this obtained nanosphere affords improved multiple environmental governing functions including peroxymonosulfate (PMS) activation to degrade pollutants and photothermal interfacial solar water evaporation. Impressively, fined bimetal (FeCo) species (20 nm) acted as main catalytic substance were distributed on the N-doping carbon thin layer, which favors electron transfer and reactive accessibility of active metals. The increasing treatment temperature of catalysts caused the optimization of the surface active metal species and tuning catalytic properties in the AOPs. Besides, the incorporation of Co in the SiO2@CoFe/C-700 could enable the improved PMS activation efficiency compared to SiO2@Fe/C-700 and the mixed SiO2@Co/C-700 and SiO2@Fe/C-700, hinting a synergetic promotion effect. The bimetal coupled catalyst SiO2@CoFe/C-700 affords enhanced photothermal properties compared to SiO2@Co/C-700. Furthermore, photothermal catalytic PMS activation using optimal SiO2@CoFe/C-700 was further explored in addressing stubborn pollutants including oxytetracycline, sulfamethoxazole, 2, 4-dichlorophenol, and phenol. The free radical quenching control suggests that both the sulfate radical, hydroxyl radical, superoxide radical, and singlet oxygen species are involved in the degradation, while the hydroxyl radical and singlet oxygen play a dominant role. Furthermore, the implementation of a solar-driven interfacial water evaporation model using SiO2@CoFe/C-700 was further studied to obtain freshwater regeneration (1.26 kg m-2 h-1, 76.81% efficiency), indicating the comprehensive ability of the constructed nanocomposites for treating complicated environmental pollution including organics removal and freshwater regeneration.
Collapse
Affiliation(s)
- Rongrong Du
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Hongyang Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Hongyao Zhao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Hao Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Chang Dong
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Mengting Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, China.
| | - Jun Yang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Jun Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
26
|
Lu H, Gao W, Deng C, Liu X, Li W, Yu Z, Ding H, Zhang L. Degradation of atrazine in river sediment by dielectric barrier discharge plasma (DBDP) combined with a persulfate (PS) oxidation system: response surface methodology, degradation mechanisms, and pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51303-51313. [PMID: 36809616 DOI: 10.1007/s11356-022-24927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/19/2022] [Indexed: 04/16/2023]
Abstract
Single degradation systems based on dielectric barrier discharge plasma (DBDP) or persulfate (PS) oxidation cannot achieve the desired goals (high degradation efficiency, high mineralization rate, and low product toxicity) of degrading atrazine (ATZ) in river sediment. In this study, DBDP was combined with a PS oxidation system (DBDP/PS synergistic system) to degrade ATZ in river sediment. A Box-Behnken design (BBD) including five factors (discharge voltage, air flow, initial concentration, oxidizer dose, and activator dose) and three levels (- 1, 0, and 1) was established to test a mathematical model by response surface methodology (RSM). The results confirmed that the degradation efficiency of ATZ in river sediment was 96.5% in the DBDP/PS synergistic system after 10 min of degradation. The experimental total organic carbon (TOC) removal efficiency results indicated that 85.3% of ATZ is mineralized into CO2, H2O, and NH4+, which effectively reduces the possible biological toxicity of the intermediate products. Active species (sulfate (SO4•-), hydroxy (•OH), and superoxide (•O2-) radicals) were found to exert positive effects in the DBDP/PS synergistic system and illustrated the degradation mechanism of ATZ. The ATZ degradation pathway, composed of 7 main intermediates, was clarified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS). This study indicates that the DBDP/PS synergistic system is a highly efficient, environmentally friendly, novel method for the remediation of river sediment containing ATZ pollution.
Collapse
Affiliation(s)
- Hongyu Lu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- Heifei Engineering Research Center for Soil and Groundwater Remediation, Hefei, 230088, China
| | - Wei Gao
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
| | - Chengxun Deng
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China.
- Heifei Engineering Research Center for Soil and Groundwater Remediation, Hefei, 230088, China.
| | - Xiaowei Liu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- Heifei Engineering Research Center for Soil and Groundwater Remediation, Hefei, 230088, China
| | - Weiping Li
- Heifei Engineering Research Center for Soil and Groundwater Remediation, Hefei, 230088, China
- Anhui Guozhen Environmental Remediation Co., Ltd, Hefei, 230088, China
| | - Zhimin Yu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- Heifei Engineering Research Center for Soil and Groundwater Remediation, Hefei, 230088, China
| | - Haitao Ding
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
| | - Ling Zhang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- Heifei Engineering Research Center for Soil and Groundwater Remediation, Hefei, 230088, China
| |
Collapse
|
27
|
Yu J, Afzal S, Zeng T, Wang H, Fu H. Degradation of bisphenol A by peroxymonosulfate activated with MIL-88B(Fe) derived CC-Fe/C catalysts: Effect of annealing temperature, performance and mechanism. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
28
|
Zhang ZC, Wang FX, Wang F, Wang CC, Wang P. Efficient atrazine degradation via photoactivated SR-AOP over S-BUC-21(Fe): The formation and contribution of different reactive oxygen species. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Hao R, Du L, Gu X, Li S. Facile synthesis of N-rich carbon nanosheets derived from antibiotic mycelial dregs as efficient catalysts for peroxymonosulfate activation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|