1
|
Zheng R, Zhu J, Liao P, Wang D, Wu P, Mao W, Zhang Y, Wang W. Environmental colloid behaviors of humic acid - Cadmium nanoparticles in aquatic environments. J Environ Sci (China) 2025; 149:663-675. [PMID: 39181676 DOI: 10.1016/j.jes.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 08/27/2024]
Abstract
Humic acid (HA), a principal constituent of natural organic matter (NOM), manifests ubiquitously across diverse ecosystems and can significantly influence the environmental behaviors of Cd(II) in aquatic systems. Previous studies on NOM-Cd(II) interactions have primarily focused on the immobilization of Cd(II) solids, but little is known about the colloidal stability of organically complexed Cd(II) particles in the environment. In this study, we investigated the formation of HA-Cd(II) colloids and quantified their aggregation, stability, and transport behaviors in a saturated porous media representative of typical subsurface conditions. Results from batch experiments indicated that the relative quantity of HA-Cd(II) colloids increased with increasing C/Cd molar ratio and that the carboxyl functional groups of HA dominated the stability of HA-Cd(II) colloids. The results of correlation analysis between particle size, critical aggregation concentration (CCC), and zeta potential indicated that both Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions contributed to the enhanced colloidal stability of HA-Cd(II) colloids. Column results further confirmed that the stable HA-Cd(II) colloid can transport fast in a saturated media composed of clean sand. Together, this study provides new knowledge of the colloidal behaviors of NOM-Cd(II) nanoparticles, which is important for better understanding the ultimate cycling of Cd(II) in aquatic systems.
Collapse
Affiliation(s)
- Ruyi Zheng
- College of Resources and Environment Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Zhu
- College of Resources and Environment Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Peng Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China.
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Pan Wu
- College of Resources and Environment Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Wenjian Mao
- College of Resources and Environment Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yuqin Zhang
- College of Resources and Environment Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Weiwei Wang
- College of Resources and Environment Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Liu Y, Zeng H, Ding S, Hu Z, Tie B, Luo S. A new insight into the straw decomposition associated with minerals: Promoting straw humification and Cd immobilization. J Environ Sci (China) 2025; 148:553-566. [PMID: 39095188 DOI: 10.1016/j.jes.2024.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 08/04/2024]
Abstract
Organic matter (OM) derived from the decomposition of crop residues plays a key role as a sorbent for cadmium (Cd) immobilization. Few studies have explored the straw decomposition processes with the presence of minerals, and the effect of newly generated organo-mineral complexes on heavy metal adsorption. In this study, we investigated the variations in structure and composition during the rice straw decomposition with or without minerals (goethite and kaolinite), as well as the adsorption behavior and mechanisms by which straw decomposition affects Cd immobilization. The degree of humification of extracted straw organic matter was assessed using excitation-emission matrix (EEM) fluorescence and Ultraviolet-visible spectroscopy (UV-vis), while employing FTIR spectroscopy and XPS to characterize the adsorption mechanisms. The spectra analysis revealed the enrichment of highly aromatic and hydrophobic components, indicating that the degree of straw decomposition and humification were further intensified during incubation. Additionally, the existence of goethite (SG) accelerated the humification of OM. Sorption experiments revealed that the straw humification increased Cd adsorption capacity. Notably, SG exhibited significantly higher adsorption performance compared to the organic matter without minerals (RS) and the existence of kaolinite (SK). Further analysis using FT-IR spectroscopy and XPS verified that the primary mechanisms involved in Cd immobilization were complexion with -OH and -COOH, as well as the formation of Cd-π binds with aromatic C=C on the surface of solid OMs. These findings will facilitate understanding the interactions of the rice straw decomposing with soil minerals and its remediation effect on Cd-contaminated farmland.
Collapse
Affiliation(s)
- Yuling Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Haowei Zeng
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Siduo Ding
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhong Hu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Baiqing Tie
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Si Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Yin M, Li X, Guo C, Zhong Q, Li X, Zeng L, Zhou Y, Yang C, Dang Z. Effects of coexisting goethite or lepidocrocite on Fe(II)-induced ferrihydrite transformation pathways and Cd speciation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178321. [PMID: 39756299 DOI: 10.1016/j.scitotenv.2024.178321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/08/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
The efficacy of ferrihydrite in remediating Cd-contaminated soil is tightly regulated by Fe(II)-induced mineralogical transformations. Despite the common coexistence of iron minerals such as goethite and lepidocrocite, which can act as templates for secondary mineral formation, the impact of these minerals on Fe(II)-induced ferrihydrite transformation and the associated Cd fate have yet to be elucidated. Herein, we investigated the simultaneous evolution of secondary minerals and Cd speciation during Fe(II)-induced ferrihydrite transformation in the presence of goethite versus lepidocrocite. The presence of goethite resulted in a more pronounced ferrihydrite transformation than lepidocrocite because goethite facilitates electron transfer. Coexisting goethite promoted the production of secondary goethite with different morphology by triggering template-directed nucleation and growth of labile Fe(III) derived from ferrihydrite and intermediate lepidocrocite, respectively. However, coexisting lepidocrocite impeded goethite formation from ferrihydrite and acted as the template to facilitate secondary lepidocrocite production. Furthermore, variations in the crystallinity of coexisting lepidocrocite influenced the particle size and crystallinity of the secondary lepidocrocite, reflecting different dominant mechanisms in secondary lepidocrocite formation. Despite partial Cd mobilization into the solution due to Fe(II)-induced ferrihydrite transformation, secondary goethite and lepidocrocite re-sequestered Cd through lattice Fe(III) substitution, indicated by an increased structural Cd proportion, expanded lattice spacing, and reduced hyperfine field intensity. Additionally, secondary goethite was more effective than secondary lepidocrocite in sequestering Cd. Coexisting goethite increased the structural Cd proportion by 3.5-fold compared to coexisting lepidocrocite, demonstrating the superior ability of coexisting goethite in enhancing Cd stability during Fe(II)-induced ferrihydrite transformation in natural soils. These findings highlight the impact of template-driven mineralogical transformation on Cd fate in polluted soils and provide crucial implications for toxic metal remediation using mineral amendments.
Collapse
Affiliation(s)
- Meiling Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xin Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Qiaohui Zhong
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Lijuan Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuting Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chen Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Li Y, Zhang S, Fu H, Sun Y, Tang S, Xu J, Li J, Gong X, Shi L. Immobilization or mobilization of heavy metal(loid)s in lake sediment-water interface: Roles of coupled transformation between iron (oxyhydr)oxides and natural organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 959:178302. [PMID: 39740622 DOI: 10.1016/j.scitotenv.2024.178302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/06/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Iron (Fe) (oxyhydr)oxides and natural organic matter (NOM) are active substances ubiquitously found in sediments. Their coupled transformation plays a crucial role in the fate and release risk of heavy metal(loid)s (HMs) in lake sediments. Therefore, it is essential to systematically obtain relevant knowledge to elucidate their potential mechanism, and whether HMs provide immobilization or mobilization effect in this ternary system. In this review, we summarized (1) the bidirectional effect between Fe (oxyhydr)oxides and NOM, including preservation, decomposition, electron transfer, adsorption, reactive oxygen species production, and crystal transformation; (2) the potential roles of coupled transformation between Fe and NOM in the environmental behavior of HMs from kinetic and thermodynamic processes; (3) the primary factors affecting the remediation of sediments HMs; (4) the challenges and future development of sediment HM control based on the coupled effect between Fe and NOM from theoretical and practical perspectives. Overall, this review focused on the biogeochemical coupling cycle of Fe, NOM, and HMs, with the goal of providing guidance for HMs contamination and risk control in lake sediment.
Collapse
Affiliation(s)
- Yuanhang Li
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China; School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
| | - Shaokang Zhang
- School of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, China
| | - Hang Fu
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Yuheng Sun
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Shoujuan Tang
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Jinwen Xu
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Jun Li
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Xiaofeng Gong
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Lei Shi
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
5
|
Zhu N, Yu Q, Tang L, Xie R, Hua L, Wang J, Xing J, Pan X, Rene ER, Wang Y. Aggravation of Cd availability in the plastisphere of paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176948. [PMID: 39414048 DOI: 10.1016/j.scitotenv.2024.176948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/06/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Soil plastisphere has attracted many concerns, however, its influence on cadmium (Cd) availability in paddy soil was still unclear. This study carried out batch microcosmic and bagging experiments to explore the influence of microplastic (MPs) on Cd availability in paddy soil under flooding conditions in the view of plastisphere. Results showed that the presence of MPs could act as plastisphere micro-environment. The bacterial community composition changed dramatically around the plastisphere compared with MPs-contaminated bulk soil and control soil. The relative abundance of Symbiobacteraceae, Rhodocyclaceae and Bryobacteraceae was improved in the plastisphere which contributed to the enhanced the reduction of Fe(III) and sulfate in flooding paddy soil. The higher content of Fe(II) and S content contributed to the enrichment of Cd in the plastisphere which aggravated Cd availability in paddy soil under flooding conditions. The partial least squares structure equation modeling results confirmed the presence of MPs in paddy soil could act as plastisphere which could change the bacterial community composition and improve the content Fe and S that was conductive to gather Cd in plastisphere. This study shed lights on the understanding of the role of plastisphere on Cd availability in paddy field ecosystem under flooding conditions.
Collapse
Affiliation(s)
- Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Quanbo Yu
- Shanghai Engineering Research Center of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
| | - Li Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Rongxin Xie
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Li Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jing Wang
- Robert R. McCormick School of Engineering and Applied Science, Northwestern University, 633 Clark Street, Evanston, IL 60208, United States.
| | - Jun Xing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xia Pan
- College of Optoelectronic Manufacturing, Zhejiang Industry & Trade Vocational College, Wenzhou 325003, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands.
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
6
|
Li Q, Li L, Yin B, Lin X, Xiao A, Xue W, Liu H, Li Y. Accumulation and distribution of cadmium at organic-mineral micro-interfaces across soil aggregates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117457. [PMID: 39644565 DOI: 10.1016/j.ecoenv.2024.117457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Soil amendments are crucial in regulating cadmium (Cd) distribution as aggregates of varying sizes have different capacities to retain soil Cd. Directly observing the Cd distribution within aggregates and understanding their interactions with minerals and carbon at the submicron scale remain significant challenges. Pot experiments were conducted to assess the impacts of mineral, organic, and microbial amendments on the Cd distribution in soil aggregates using synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectroscopy and nano-scale secondary ion mass spectrometry (NanoSIMS). Our results revealed that different soil amendments exerted varying effects on Cd accumulation in soil aggregates. The mineral and microbial amendments facilitated the Cd transfer from the macroaggregates to the silt+clay fraction, while the organic amendment increased the Cd loading in the macroaggregates. Additionally, the mineral and microbial amendments reduced the binding of Fe oxides with microbial-derived peptides in the macroaggregates and enhanced the interaction of Fe oxides with plant-derived lignin in the silt+clay fractions. Furthermore, NanoSIMS analysis provided direct evidence that the mineral and microbial amendments decreased the association between Cd with carbon and minerals in the macroaggregates, while they enhanced the binding of Cd and Fe oxides in the silt+clay fractions. Collectively, our findings revealed that the mineral and microbial amendments promoted Cd transfer, enhancing the stability of Cd in the finer soil fractions and offering essential insights for developing agricultural management strategies to alleviate Cd contamination in paddy soils.
Collapse
Affiliation(s)
- Qi Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Linfeng Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Bohao Yin
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xiaoyang Lin
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Anwen Xiao
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hengjie Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yichun Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China.
| |
Collapse
|
7
|
Huang L, Meng Y, Pan B, Pan B, Wei J, Ding J, Deng Y, Su X, Yuan Z, Zhang M. Multidimensional effects of green waste vermicomposting on cadmium contaminated soil ecosystems: From physicochemical properties to microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136429. [PMID: 39522223 DOI: 10.1016/j.jhazmat.2024.136429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Soil heavy metal pollution and green waste accumulation have emerged as two major environmental challenges, necessitating the development of sustainable remediation and management technologies. This study investigated the remediation effects of vermicomposted green waste (JE) on cadmium (Cd)-polluted soil. Batch adsorption tests and soil microcosm experiments were conducted to examine the impact of JE on soil quality, microbial community structure, and Cd biotransformation. Results demonstrated that, compared with untreated green waste, JE significantly increased the Cd2+ adsorption capacity by 55.94 %. This enhancement was attributed primarily to increased surface functional groups and altered crystal structure through vermicomposting. JE treatment effectively improved the soil physicochemical properties, increased the nutrient content and elemental exchangeability, and increased soil enzyme activities. At the microbial level, JE drove the assembly and modification of soil microbial communities, increasing their diversity and abundance, particularly those of beneficial bacterial groups. Environmental matrix analysis revealed complex interactions among soil properties, enzyme activities, and soil microbial communities in terms of Cd biotransformation. Overall, vermicomposted green waste rapidly improved the Cd adsorption efficiency and, upon its soil application, effectively enhanced the Cd-polluted soil quality while optimizing soil microbial community structure and function. This ultimately led to Cd immobilization and inert transformation in the soil. This study provides a solid theoretical and practical foundation for the safe utilization and sustainable remediation of heavy metal-polluted agricultural soils, as well as the resource utilization of green waste.
Collapse
Affiliation(s)
- Li Huang
- Dongguan Polytechnic, Dongguan 523808, China; College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yurui Meng
- Dongguan Polytechnic, Dongguan 523808, China
| | - Boyou Pan
- Department of Mathematics, College of Information Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Bogui Pan
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Junyu Wei
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jinhua Ding
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | | | - Xianglan Su
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Ziwei Yuan
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Menghao Zhang
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| |
Collapse
|
8
|
Yang P, Wu B, Zheng S, Shangguan Y, Liang L, Zheng Q, Hu J. Effective cadmium immobilization in paddy soil by the interaction of sulfate reducing bacteria and manganese fertilizer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123261. [PMID: 39536571 DOI: 10.1016/j.jenvman.2024.123261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Manganese fertilizer (MnSO4) was widely applied to control the Cadmium (Cd) uptake by rice, but the overall process of microbial activities controlling Cd mobilization in paddy soil is poorly understood. This study investigated the stimulation effect of sulfate reducing bacteria (SRB) on Cd bioavailability with the input of different doses MnSO4 (0.5, 1.0, 2.0 g/kg) under the anaerobic paddy soil. The results show that the input of MnSO4 generated soil H+ release. However, the stimulation of SRB remarkedly increased soil pH and reduced the redox potential (Eh) by inhibiting the exchange of Mn2+ and H+, resulting in the available Cd decreased and the amorphous Fe/Mn Oxide-Cd increased significantly. In the co-existed SRB and 1.0 g/kg MnSO4, the available Cd decreased remarkedly by 40.18%, which was transformed to reducible Cd. Meanwhile, the addition of MnSO4 and SRB enhanced the abundance of Cd immobilization related bacteria, including Desulfobacterota, Chloroflexi, Bacteroidota, and Myxococcota. KEGG results showed that MnSO4 and SRB treatment enhanced the ability of microbial sulfur and secondary metabolites. Furthermore, the sulfate reduction related genes (i.e. aprA, sat) obviously enriched in soils. Structural equation modeling showed that Mn, Fe, DOC, Eh, and pH are the key factors affecting available Cd. These findings add to the current knowledge of how MnSO4 and microorganisms affect the mobilization and availability of Cd under paddy soil media, providing new ideas and a theoretical basis for reducing the environmental risk of Cd.
Collapse
Affiliation(s)
- Peng Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Bin Wu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China; Agricultural and livestock products engineering technology research center of XIZANG Autonomous Region, Institute of Agricultural Quality Standard and Testing, XIZANG Academy of Agricultural and Animal Husbandry Sciences, Lhasa, XIZANG, 850032, China.
| | - Shuai Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Yuxian Shangguan
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Lujie Liang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Qingjuan Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Junqi Hu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| |
Collapse
|
9
|
Ge Y, Jia P, Tian S, Lu L. Cadmium distribution in rice: Understanding the role of plant nodes and growth stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124919. [PMID: 39251124 DOI: 10.1016/j.envpol.2024.124919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/18/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Cadmium (Cd) contamination in farmland poses a significant threat to food security in staple crops, especially rice. Using a mix of hydroponic and soil culture methods, stable isotope tracers, and advanced analytical techniques, this study elucidated the mechanisms of Cd uptake, translocation, and accumulation in rice throughout different growth stages. Despite a notable linear correlation between soil DTPA (diethylene-triaminepentaacetic acid)-Cd and the total Cd concentration of rice, our findings showed that the influence of soil Cd level on the proportion of Cd in grain was negligible. The study highlighted the dynamic response of Cd distribution within plant nodes to changes in DTPA-extractable Cd. Heading stage (HS) and mature stage (MS) were critical for Cd uptake and upward transport in rice, and the contribution of Cd absorption in brown rice was 28.61% and 40.16%, respectively. Moreover, the distribution of Cd in nodes showed how important nodes are for controlling and redistributing Cd in rice. In the HS, the lower node had a function in re-transporting, whereas in the MS, there was a considerable redistribution of Cd in the upper node. These insights can help us understand rice Cd dynamics and develop agronomic techniques and rice cultivars that minimize Cd accumulation.
Collapse
Affiliation(s)
- Yining Ge
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peihan Jia
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengke Tian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Yang W, Li J, Nie K, Zhao P, Xia H, Li Q, Liao Q, Li Q, Dong C, Yang Z, Si M. Machine learning-based identification of critical factors for cadmium accumulation in rice grains. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 47:2. [PMID: 39607579 DOI: 10.1007/s10653-024-02312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The aggregation of Cadmium (Cd) in rice grains is a significant threat to human healthy. The complexity of the soil-rice system, with its numerous influencing parameters, highlights the need to identify the crucial factors responsible for Cd aggregation. This study uses machine learning (ML) modeling to predict Cd aggregation in rice grains and identify the influencing factors. Data from 474 data points from 77 published works were analyzed, and eight ML models were established using different algorithms. The input variables were total soil Cd concentration (TS Cd) and extractable Cd concentration (Ex-Cd), while rice Cd concentration (Cdrice) was the output variable. Among the models, the Extremely Randomized Trees (ERT) model performed the best (TS Cd: R2 = 0.825; Ex-Cd: R2 = 0.792), followed by Random Forest (TS Cd: R2 = 0.721; Ex-Cd: R2 = 0.719). The ERT feature importance ranking analysis revealed that the essential factors responsible for Cd aggregation are cation exchange capacity (CEC), TS Cd, Water Management Model (WMM), and pH for total soil Cd as input variables. For extractable Cd as an input variable, the vital factors are CEC, Ex-Cd, pH, and WMM. The study highlights the importance of the Water Management Model and its impact on Cd concentration in rice grains, which has been overlooked in previous research.Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.The authors and their respective affiliations are correct.Author details: Kindly check and confirm whether the corresponding author is correctly identified.It is correct.
Collapse
Affiliation(s)
- Weichun Yang
- School of Metallurgy and Environment, Institute of Environmental Science and Engineering, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Jiaxin Li
- School of Metallurgy and Environment, Institute of Environmental Science and Engineering, Central South University, Changsha, 410083, China
| | - Kai Nie
- School of Metallurgy and Environment, Institute of Environmental Science and Engineering, Central South University, Changsha, 410083, China
| | - Pengwei Zhao
- School of Metallurgy and Environment, Institute of Environmental Science and Engineering, Central South University, Changsha, 410083, China
| | - Hui Xia
- School of Metallurgy and Environment, Institute of Environmental Science and Engineering, Central South University, Changsha, 410083, China
| | - Qi Li
- School of Metallurgy and Environment, Institute of Environmental Science and Engineering, Central South University, Changsha, 410083, China
| | - Qi Liao
- School of Metallurgy and Environment, Institute of Environmental Science and Engineering, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Qingzhu Li
- School of Metallurgy and Environment, Institute of Environmental Science and Engineering, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Chunhua Dong
- Soil and Fertilizer Institute of Hunan Province, Changsha, 410125, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Institute of Environmental Science and Engineering, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Mengying Si
- School of Metallurgy and Environment, Institute of Environmental Science and Engineering, Central South University, Changsha, 410083, China.
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.
| |
Collapse
|
11
|
Wang Y, Wang K, Liang T, Wang T, Liu J, Chen X, Xu C, Cao W, Fan H. Milk vetch returning combined with lime materials alleviates soil cadmium contamination and improves rice quality in soil-rice system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175770. [PMID: 39182782 DOI: 10.1016/j.scitotenv.2024.175770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Milk vetch (Astragalus sinicus L.) returning and lime materials is employed as an effective strategy for remediating cadmium (Cd)-contaminated paddy fields. However, the combined effects of them on alleviating Cd pollution and the underlying mechanisms remain poorly explored. Therefore, this study investigated the impact of these combined treatments on soil properties, iron oxides, iron plaque, mineral elements, and amino acids through a field experiment. The following treatments were employed: lime (LM), limestone (LS), milk vetch (MV), MV + LM (MVLM), and MV + LS (MVLS), and a control (CK) group with no materials. Results demonstrated that treatments significantly decreased soil available Cd by 19.40-32.55 %, 10.20-39.58 %, and 25.36-40.66 % at tillering, filling, and maturing stages compared to CK, respectively. Moreover, exchangeable Cd was transformed into more stable fractions. Compared with individual treatments, MVLM and MVLS treatments further decreased available Cd and exchangeable Cd. Overall, Cd in brown rice was reduced by 18.97-77.39 % compared with CK. And the Cd in iron plaque decreased by 14.12-31.14 %, 24.65-61.60 %, 2.6-38.28 % across three stages. Furthermore, soil pH, dissolved organic carbon, and cation exchange capacity increased, along with 0.22-62.09 % and 0.57-10.66 % increases in free and amorphous iron oxide contents at all stages, respectively. Compared with lime alone, the integration of MV returning facilitated increased formation of Fed, Feo and enhanced the antagonistic effect among grain Ca with Cd; Additionally, it increased AAs in brown rice, improving rice quality and potentially reducing Cd transport. Mantel tests and Partial least squares path modeling revealed a significant positive correlation between Cd in IP and rice Cd uptake and a significant negative correlation between available Cd, Fed and Feo. These findings provide valuable insights into the mechanisms involved in mitigating soil Cd bioavailability using integrated approaches with MV returning and lime materials.
Collapse
Affiliation(s)
- Yikun Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ting Liang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianshu Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Xiaofen Chen
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Changxu Xu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Weidong Cao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongli Fan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
12
|
Zhang C, Guan DX, Williams PN, Lin GB, Chen XL, Ma LQ. DGT and kinetic analyses differentiate Se and Cd bioavailability in naturally enriched paddy soils. CHEMOSPHERE 2024; 368:143791. [PMID: 39577802 DOI: 10.1016/j.chemosphere.2024.143791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
Naturally selenium (Se)-rich soils often contain elevated cadmium (Cd) levels, complicating safe production of Se-enriched rice. This study employed diffusive gradients in thin-films (DGT) and DGT-induced fluxes in soils (DIFS) model to determine Se and Cd bioavailability in paddy soils. We investigated desorption kinetics and accumulation patterns in rice using paired rhizosphere and grain samples from 65 field sites in Guangxi, China, encompassing Se-enriched karst and non-karst soils. Despite greater total Se and Cd contents in karst soils, their elevated pH, along with greater soil organic matter and total Fe, Mn, and Ca contents, constrained Se and Cd bioavailability, resulting in similar accumulation levels in rice grains from both soil categories. DIFS-derived kinetic data revealed that Se was replenished 75.4 times faster than Cd, but Cd had an 83.2 times larger labile pool, leading to a stronger overall Cd resupply capacity. DGT-based labile Se:Cd molar ratios showed that rice Cd content declined sharply as the ratio increased from 0.7 to 4.0, stabilizing at its lowest level when exceeding 20. Moreover, DGT measurements demonstrated stronger correlations with grain Se and Cd concentrations compared to traditional methods. Our findings highlight the effectiveness of DGT and kinetic analyses in determining Se and Cd bioavailability in high-background paddy soils, offering insights for balancing Se fortification and Cd risk mitigation in rice production.
Collapse
Affiliation(s)
- Chao Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Paul N Williams
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT9 5DL, United Kingdom
| | - Guo-Bing Lin
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Lei Chen
- Engineering Technology Innovation Center for Ecological Evaluation and Restoration of Farmland of Plain District in Ministry of Natural Resources, Zhejiang Institute of Geosciences, Hangzhou, 311203, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
13
|
Kong F, Guan DX, Huang P, Lu S, Xu J, Wang H. Unveiling the barriers of Cd translocation from soil to rice: Insights from continuous flooding. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174265. [PMID: 38936739 DOI: 10.1016/j.scitotenv.2024.174265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Understanding the spatiotemporal processes governing Cd behavior at the soil-solution-root interface is crucial for developing effective remediation strategies. This study examined the processes of chemical remediation in Cd-contaminated paddy soil using rhizotrons over the entire rice growth period. One-dimensional profile sampling with a 10 cm resolution revealed that during the initial flooding, paddy soil was strongly stimulated, followed by stabilization of porewater properties. X-ray diffraction of freeze-dried porewater confirmed the generation of submicron-precipitates such as CdS under continuous flooding, resulting in low ion levels of water-soluble Cd (<1 μg/L) and sulfate (<10 mg/L) in porewater. Two-dimensional imaging technologies indicated the maximum iron‑manganese plaque (IP) within 20-110 μm of the root surface. Subsequently, monitoring O2 in the rhizosphere with a planar optode by two 100 cm2 membranes for a consecutive month revealed significant circadian O2 variations between the root base and tip. Destructive sampling results showed that acid-soluble Cd in soils, as available Cd, is crucial for Cd uptake by rice roots under continuous flooding. The IP deposited on the root surface, as the barriers of Cd translocation, increased with rice growth and blocked Cd translocation from soil to rice by about 18.11 %-25.43 % at maturity. A Si-Ca-Mg compound amendment reduced available Cd by about 10 % and improved Cd blocking efficiency by about 7.32 % through increasing IP concentration, resulting in the absorption ratio of Cd in the amendment group being half that of the control group. By unveiling the complex Cd interactions at the soil-rice interface, this study lays the groundwork for developing effective agricultural practices to mitigate Cd-contaminated paddy and ensure food safety.
Collapse
Affiliation(s)
- Fanyi Kong
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pengwu Huang
- Agricultural and Rural Development Center of Yueqing, Yueqing 325699, Zhejiang Province, China
| | - Shenggao Lu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haizhen Wang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Ge J, Wu S, Wu H, Lin J, Cai Y, Zhou D, Gu X. Prediction of As and Cd dissolution in various soils under flooding condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174853. [PMID: 39038669 DOI: 10.1016/j.scitotenv.2024.174853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Although the mobility of arsenic (As) and cadmium (Cd) in soils during the flooding-drainage process has been intensively studied, predicting their dissolution among various soils still remains a challenge. After comprehensively monitoring multiple parameters related to As and Cd dissolution in 8 soils for a 60-day anaerobic incubation, the redundancy analysis (RDA) and structural equation model (SEM) were employed to identify the key factors and influencing pathways controlling the dynamic release of As and Cd. Results showed that pH alone explained 90.5 % Cd dissolution, while the dissolved-Fe(II) and 5 M-HCl extractable Fe(II) jointly only explained 50.6 % As dissolution. After data normalization, the ratio of Fe(II) to 5 M-HCl extracted total Fe (i.e. FetotII/Fetot) significantly improved the correlation to R2 = 0.824 (p < 0.001) with a fixed slope of 0.393 among the 8 soils. Our results highlight the crucial role played by the reduction degree of total iron contents in determining both the reduction and dissolution of As during flooding. In contrast, dissolved-Fe(II) was too vulnerable to soil properties to be a stable indicator of As dissolution. Therefore, we propose to replace the dissolved-Fe(II) with this novel ratio as the key index to quantitatively assess the kinetic change of As solubility potential across various soils under flooding conditions.
Collapse
Affiliation(s)
- Jingwen Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Song Wu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
| | - Haotian Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Jianyu Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Yijun Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China.
| |
Collapse
|
15
|
Zheng Y, Pan Y, Wang Z, Jiang F, Wang Y, Yi X, Dang Z. Temporal and spatial evolution of different heavy metal fractions and correlation with environmental factors after prolonged acid mine drainage irrigation: A column experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173136. [PMID: 38734110 DOI: 10.1016/j.scitotenv.2024.173136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Acid mine drainage (AMD) has global significance due to its low pH and elevated heavy metal content, which have received widespread attention. After AMD irrigation in mining areas, heavy metals are distributed among soil layers, but the influencing factors and mechanisms remain unclear. AMD contamination of surrounding soil is primarily attributed to surface runoff and irrigation and causes significant environmental degradation. A laboratory soil column experiment was conducted to investigate the temporal and spatial distribution of the heavy metals Cd and Cu, as well as the impact of key environmental factors on the migration and transformation of these heavy metals following long-term soil pollution by AMD. After AMD addition, the soil exhibited a significant increase in acidity, accompanied by notable alterations in various environmental parameters, including soil pH, Eh, Fe(II) content, and iron oxide content. Over time, Cd and Cu in the soil mainly existed in the exchangeable and carbonate-bound fractions. In spatial terms, exchangeable Cu increased with increasing depth. Pearson correlation analysis indicated significant negative correlations between pH and Cu, Cd, and Eh in pore water, as well as negative correlations between pH and the exchangeable fraction of Cd (F1), carbonate-bound fraction of Cd (F2), and exchangeable fraction of Cu (F1) in the solid phase. Additionally, a positive correlation was observed between pH and the residual fraction of Cu (F5). Furthermore, the soil total Cd content exhibited a positive correlation with pyrophosphate-Fe (Fep) and dithionite-Fe (Fed), while CdF1, CdF2, total Cu, and CuF1 displayed positive correlations with Fep. Our findings indicate that the presence of AMD in soil leads to alterations in the chemical fractions of Cd and Cu, resulting in enhanced bioavailability. These results offer valuable insights for developing effective remediation strategies for soils near mining sites.
Collapse
Affiliation(s)
- Yanjie Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yan Pan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221000, China
| | - Zufei Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Feng Jiang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yaozhong Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaoyun Yi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
16
|
Hou R, Zhu B, Wang L, Gao S, Wang R, Hou D. Mechanism of clay mineral modified biochar simultaneously immobilizes heavy metals and reduces soil carbon emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121252. [PMID: 38820793 DOI: 10.1016/j.jenvman.2024.121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/21/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
Heavy metal pollution in farmland soil has become increasingly severe, and multi-element composite pollution has brought enormous harm to human production and life. Environmental changes in cold regions (such as freeze-thaw cycles and dry-wet alternations) may increase the potential physiological toxicity of heavy metals and exacerbate pollution risks. In order to reveal the effectiveness of sepiolite modified biochar in the remediation of the soil contaminated with lead (Pb), cadmium (Cd), and chromium (Cr), the rice husk biochar pyrolyzed at 500 and 800 °C were selected for remediation treatment (denoted as BC500 and BC800). Meanwhile, different proportions of sepiolite were used for modification (biochar: sepiolite = 1: 0.5 and 1: 1), denoted as MBC500/MBC800 and HBC500/HBC800, respectively. The results showed that modified biochar with sepiolite can effectively improve the immobilization of heavy metals. Under natural conservation condition, the amount of diethylenetriaminepentaacetic acid (DTPA) extractable Pb in BC500, MBC500, and HBC500 decreased by 5.95, 12.39, and 13.55%, respectively, compared to CK. Freeze-thaw cycles and dry-wet alternations activated soil heavy metals, while modified biochar increased adsorption sites and oxygen-containing functional groups under aging conditions, inhibiting the fractions transformation of heavy metals. Furthermore, freeze-thaw cycles promoted the decomposition and mineralization of soil organic carbon (SOC), while sepiolite hindered the release of active carbon through ion exchange and adsorption complexation. Among them, and the soil dissolved organic carbon (DOC) content in HBC800 decreased by 49.39% compared to BC800. Additionally, the high-temperature pyrolyzed biochar (BC800) enhanced the porosity richness and alkalinity of material, which effectively inhibited the migration and transformation of heavy metals compared to BC500, and reduced the decomposition of soil DOC.
Collapse
Affiliation(s)
- Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Bingyu Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shijun Gao
- Heilongjiang Water Conservancy Research Institute, Harbin, Heilongjiang, 150080, China
| | - Rui Wang
- Heilongjiang Province Five Building Construction Engineering Co., LTD, Harbin, Heilongjiang, 150090, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
17
|
Tuo P, Zhang Z, Du P, Hu L, Li R, Ren J. Changes in coal waste DOM chemodiversity and Fe/Al oxides during weathering drive the fraction conversion of heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172063. [PMID: 38552975 DOI: 10.1016/j.scitotenv.2024.172063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The long-term accumulation of coal waste on the surface during natural weathering leads to the inevitable migration of heavy metals contained in the coal waste, which increases the likelihood of environmental contamination and health risks. Dissolved organic matter (DOM) and Fe/Al oxides play crucial roles in the transformation and bioavailability of heavy metals. Thus, we analyzed the Fe/Al oxide content and DOM molecular composition in coal waste with different degrees of weathering and explored the influence of DOM chemical diversity and Fe/Al oxides on the potential mobility of heavy metals. Results showed that weathering-driven decrease in Fe oxides (Fed, FeO, and Fep decreased from 82.4, 37.5, and 3.6 mg∙L-1 to 41.3, 24.7, and 2.3 mg∙L-1, respectively) led to decreases in the reducible fractions of V and Cr. The potential environmental risks of more toxic metals of Cd and As, also increased as a result of the residual fractions decreased to 32.6 % and 41.3 %, respectively. Weathering caused an increase in oxygen-to‑carbon ratio, double-bond equivalent, modified aromaticity index, nominal oxidation state of carbon, and molecular diversity and a decrease in (m/z)w and (H/C)w, suggesting that the DOM of highly weathered coal waste possessed high unsaturation, aromatic structures, hydrophilicity, and strong oxidative characteristics. Additionally, although VMF and CrMF showed significant negative correlations with O/C ratio, polyphenolic, carbohydrates, and condensed aromatics, pH remained a key environmental factor determining the potential environmental risks of V and Cr by changing the residual fractions. The mobilities of Cd and As were significantly negatively correlated with those of Fe/Al oxides, particularly Fed, FeO, Fep, and Alp. Our findings contribute to the understanding of the impact of weathering on the geochemical cycling of different coal waste components, providing priority options for environmental risk prevention and control in coal mining areas.
Collapse
Affiliation(s)
- Pinpeng Tuo
- Collaborative Innovation Center for Grassland Ecological Security Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zongpeng Zhang
- Collaborative Innovation Center for Grassland Ecological Security Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ping Du
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Lijuan Hu
- Collaborative Innovation Center for Grassland Ecological Security Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Renyou Li
- Collaborative Innovation Center for Grassland Ecological Security Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Jie Ren
- Collaborative Innovation Center for Grassland Ecological Security Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
18
|
Li Q, Chang J, Li L, Lin X, Li Y. Soil amendments alter cadmium distribution and bacterial community structure in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171399. [PMID: 38458464 DOI: 10.1016/j.scitotenv.2024.171399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
Soil amendments play a pivotal role in ensuring the safety of food production by inhibiting the transfer of heavy metal ions from soils to crops. Nevertheless, their impact on soil characteristics and the microbial community and their role in reducing cadmium (Cd) accumulation in rice remain unclear. In this study, pot experiments were conducted to investigate the effects of three soil amendments (mineral, organic, and microbial) on the distribution of Cd speciation, organic components, iron oxides, and microbial community structure. The application of soil amendments resulted in significant reductions in the soil available Cd content (16 %-51 %) and brown rice Cd content (16 %-78 %), facilitating the transformation of Cd from unstable forms (decreasing 10 %-20 %) to stable forms (increasing 77 %-150 %) in the soil. The mineral and organic amendments increased the soil cation exchange capacity (CEC) and plant-derived organic carbon (OC), respectively, leading to reduced Cd accumulation in brown rice, while the microbial amendment enhanced OC complexity and the abundances of Firmicutes and Bacteroidota, contributing to the decreased rice Cd uptake. The synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectroscopy indicated that soil amendments regulated soil Cd species by promoting iron oxides and OC coupling. Moreover, both organic and microbial amendments significantly reduced the diversity and richness of the bacterial communities and altered their compositions and structures, by increasing the relative abundances of Bacteroidota and Firmicutes and decreasing those of Acidobacteria, Actinobacteria, and Myxococcota. Soil microbiome analysis revealed that the increase of Firmicutes and Bacteroidota associated with Cd adsorption and sequestration contributed to the suppression of soil Cd reactivity. These findings offer valuable insights into the potential mechanisms by which soil amendments regulate the speciation and bioavailability of Cd, and improve the bacterial communities, thereby providing guidance for agricultural management practices.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jingjing Chang
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Linfeng Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaoyang Lin
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yichun Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
19
|
Lyu C, Li Z, Chen P, Jing X, Zhang R, Liu Y. Straw with different fermentation degrees mediate Se/Cd bioavailability by governing the putative iron reducing bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123496. [PMID: 38316253 DOI: 10.1016/j.envpol.2024.123496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Straw returning is a crucial agronomic practice in fields due to its various benefits. However, effects and mechanisms of straw with different fermentation degrees on Se and Cd bioavailability have not been sufficiently investigated. In this study, straw with different fermentation degrees were applied to a Cd-contaminated seleniferous soil to investigate their effects on Se and Cd bioavailability. Results revealed that the effects of straw application on Se/Cd bioavailability in soil depended on the fermentation degrees of straw. Both original and slightly fermented straw had pronounced impacts on microbial iron reduction compared to fully fermented straw, and thus led to a significant increase in Se and Cd bioavailability. The linear discriminant analysis effect size (LEfSe) showed that norank_f_Symbiobacteraceae, Micromonospora, WCHB1-32, Ruminiclostrdium, and Cellulomonas were the major biomarkers at genus level in straw application soils, additional network analysis and random forest analysis suggested that Ruminiclostrdium and Cellulomonas might be implicated in microbial iron reduction. Furthermore, the microbial iron reduction had negative effects on mineral-associated Se with coefficient of -0.81 and positive effects on mineral-associated Cd with coefficient of 0.72, while Mn fractions exhibited positive effects on mineral-associated Se with a coefficient of 0.53 and negative effects on mineral-associated Cd. In conclusion, straw with different fermentation degrees governed Se and Cd mobility by regulating abundance of Ruminiclostrdium and Cellulomonas, subsequently affecting Fe and Mn fractions and consequently influencing Se and Cd bioavailability.
Collapse
Affiliation(s)
- Chenhao Lyu
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| | - Zhiguo Li
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| | - Peng Chen
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| | - Xinxin Jing
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| | - Runqin Zhang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| | - Yi Liu
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China.
| |
Collapse
|
20
|
Lin L, Wu X, Deng X, Lin Z, Liu C, Zhang J, He T, Yi Y, Liu H, Wang Y, Sun W, Xu Z. Mechanisms of low cadmium accumulation in crops: A comprehensive overview from rhizosphere soil to edible parts. ENVIRONMENTAL RESEARCH 2024; 245:118054. [PMID: 38157968 DOI: 10.1016/j.envres.2023.118054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal often found in soil and agricultural products. Due to its high mobility, Cd poses a significant health risk when absorbed by crops, a crucial component of the human diet. This absorption primarily occurs through roots and leaves, leading to Cd accumulation in edible parts of the plant. Our research aimed to understand the mechanisms behind the reduced Cd accumulation in certain crop cultivars through an extensive review of the literature. Crops employ various strategies to limit Cd influx from the soil, including rhizosphere microbial fixation and altering root cell metabolism. Additional mechanisms include membrane efflux, specific transport, chelation, and detoxification, facilitated by metalloproteins such as the natural resistance-associated macrophage protein (Nramp) family, heavy metal P-type ATPases (HMA), zinc-iron permease (ZIP), and ATP-binding cassette (ABC) transporters. This paper synthesizes differences in Cd accumulation among plant varieties, presents methods for identifying cultivars with low Cd accumulation, and explores the unique molecular biology of Cd accumulation. Overall, this review provides a comprehensive resource for managing agricultural lands with lower contamination levels and supports the development of crops engineered to accumulate minimal amounts of Cd.
Collapse
Affiliation(s)
- Lihong Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xinyue Wu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xingying Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zheng Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Chunguang Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China
| | - Jiexiang Zhang
- GRG Metrology& Test Group Co., Ltd., Guangzhou, 510656, China
| | - Tao He
- College of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, China
| | - Yunqiang Yi
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Zhimin Xu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
21
|
Zhang C, Guan DX, Jiang YF, Menezes-Blackburn D, Yu T, Yang Z, Ma LQ. Insight into the availability and desorption kinetics of Se and Cd in naturally-rich soils using diffusive gradients in thin-films technique. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133330. [PMID: 38147757 DOI: 10.1016/j.jhazmat.2023.133330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Cadmium (Cd) contamination of selenium (Se)-rich soils may jeopardize the nutritional benefits of Se-biofortified crops. This study employed diffusive gradients in thin-films (DGT) technique and DIFS (DGT-induced fluxes in soils) model to understand the interdependency and driving factors of Se and Cd distribution and desorption kinetics across 50 soils from south China with naturally elevated levels. DGT-labile Se was the highest (up to 2.66 μg L-1) in non-carbonate/shale-derived soils, while Cd was maximal (5.53 μg L-1) in carbonate-based soils, reflecting soil background concentrations and soil characteristics. Over one-third of the soils showed labile Se:Cd molar ratio below 0.7, suggesting Cd phytotoxicity risks. The DIFS-derived response times (Tc) and desorption rate constants (k-1) suggested that Se was resupplied to the soil solution faster than Cd in soils with higher pH and SOM level, but Se resupply was still restricted due to the rapid depletion of its labile pool. As the first study of Se and Cd release kinetics in soils, our results reveal dependence on soil parent materials, with low labile Se:Cd soils presenting greater Cd hazards. By elucidating Se and Cd lability and interactions in soils, our findings help to inform management strategies to balance reduced Cd risk with adequate Se availability.
Collapse
Affiliation(s)
- Chao Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yi-Fan Jiang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daniel Menezes-Blackburn
- Department of Soils, Water and Agricultural Engineering, CAMS, Sultan Qaboos University, PO Box 34, Al-khod 123, Sultanate of Oman
| | - Tao Yu
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
Wang Y, Tang L, Chen J, Joseph A, Wu Y, Rene ER, Tang J, Zhu N, Wang P. Susceptibility of Cd availability in microplastics contaminated paddy soil: Influence of ferric minerals and sulfate reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133343. [PMID: 38147753 DOI: 10.1016/j.jhazmat.2023.133343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The combined contamination of cadmium (Cd) and microplastics (MPs) in paddy soil always occurred, while its influence on Cd availability remained unclear. This study investigated the Cd availability in Cd-MPs co-contaminated paddy soil in consideration of both ferric minerals and sulfate reduction under flooding conditions. The presence of MPs resulted in a higher Cd releasing risk, as represented by the increase in the available Cd and decrease in Fe-Mn oxide-bound Cd contents, especially on the 7th and 14th days based on the sequential extraction results. MPs facilitated the formation of Fe-organic ligands, which accelerated the reductive dissolution of iron minerals but decreased the amounts of amorphous iron minerals due to the release of dissolved organic substances into pore water. Furthermore, MPs promoted the relative abundance of sulfate-reducing bacteria (such as Streptomyces and Desulfovibrio genera), thus increasing the contents of reductive S species, which was advantageous to the co-precipitation of Fe, S, and Cd on the surface of MPs based on our experimental and statistical results. Taken together, both iron and sulfate reduction under anaerobic conditions played a critical role in Cd mobilization in Cd-MPs co-contaminated paddy fields.
Collapse
Affiliation(s)
- Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Li Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Akaninyene Joseph
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Department of Biosciences and Biotechnology, Faculty of Science, University of Medical Sciences, Ondo City 351101, Nigeria
| | - Yunjin Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | - Jun Tang
- Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
23
|
Chen Y, Yang W, Zou Y, Wu Y, Mao W, Zhang J, Zia-Ur-Rehman M, Wang B, Wu P. Quantification of the effect of biochar application on heavy metals in paddy systems: Impact, mechanisms and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168874. [PMID: 38029988 DOI: 10.1016/j.scitotenv.2023.168874] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Biochar (BC) has shown great potential in remediating heavy metal(loid)s (HMs) contamination in paddy fields. Variation in feedstock sources, pyrolysis temperatures, modification methods, and application rates of BC can result in great changes in its effects on HM bioavailability and bioaccumulation in soil-rice systems and remediation mechanisms. Meanwhile, there is a lack of application guidelines for BC with specific properties and application rates when targeting rice fields contaminated with certain HMs. To elucidate this topic, this review focuses on i) the effects of feedstock type, pyrolysis temperature, and modification method on the properties of BC; ii) the changes in bioavailability and bioaccumulation of HMs in soil-rice systems applying BC with different feedstocks, pyrolysis temperatures, modification methods, and application rates; and iii) exploration of potential remediation mechanisms for applying BC to reduce the mobility and bioaccumulation of HMs in rice field systems. In general, the application of Fe/Mn modified organic waste (OW) derived BC for mid-temperature pyrolysis is still a well-optimized choice for the remediation of HM contamination in rice fields. From the viewpoint of remediation efficiency, the application rate of BC should be appropriately increased to immobilize Cd, Pb, and Cu in rice paddies, while the application rate of BC for immobilizing As should be <2.0 % (w/w). The mechanism of remediation of HM-contaminated rice fields by applying BC is mainly the direct adsorption of HMs by BC in soil pore water and the mediation of soil microenvironmental changes. In addition, the application of Fe/Mn modified BC induced the formation of iron plaque (IP) on the root surface of rice, which reduced the uptake of HM by the plant. Finally, this paper describes the prospects and challenges for the extension of various BCs for the remediation of HM contamination in paddy fields and makes some suggestions for future development.
Collapse
Affiliation(s)
- Yonglin Chen
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China.
| | - Yuzheng Zou
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Yuhong Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Wenjian Mao
- Guizhou Environment and Engineering Appraisal Center, Guiyang, China
| | - Jian Zhang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Bing Wang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
24
|
Liu M, Wang X, Tang S, Zhou J, Liu L, Ma Q, Wu L, Xu M. Remobilization of Cd caused by iron oxide phase transformation and Mn 2+ competition after stabilization by nano zero valent iron. CHEMOSPHERE 2024; 350:141091. [PMID: 38171399 DOI: 10.1016/j.chemosphere.2023.141091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Stabilization techniques are vital in controlling Cd soil pollution. Nano zero valent iron (nZVI) has been extensively utilized for Cd remediation owing to its robust adsorption and reactivity. However, the environmental stress-induced stability of Cd after nZVI addition remains unclear. A pot experiment was conducted to evaluate the Cd bioavailability in continuously flooded (130 d) soil after stabilization with nZVI. The findings indicated that nZVI application did not result in a decline in Cd concentration in rice, as compared to the no-nZVI control. Additionally, nZVI simultaneously increased the available Cd concentration, iron-manganese oxide-bound (OX) Mn fraction, and relative abundance of Fe(III)-reducing bacteria, but it decreased OX-Cd and Mn availability in soil. Cadmium in rice tissues was positively correlated with the available Cd in soil. The results of subsequent adsorption tests demonstrated that CdO was the product of Cd adsorption by the nZVI aging products. Conversely, Mn2+ decreased the adsorption capacity of Cd-containing solutions. These results underscore the crucial role of both biotic and abiotic factors in undermining the stabilization of nZVI under continuous flooding conditions. This study offers novel insights into the regulation of nZVI-mediated Cd stabilization efficiency in conjunction with biological inhibitors and functional modification techniques.
Collapse
Affiliation(s)
- Mengjiao Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiya Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Sheng Tang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingjie Zhou
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Longfei Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Qingxu Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lianghuan Wu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Meng Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Zheng S, Xu C, Luo Z, Zhu H, Wang H, Zhang Q, Zhu Q, Huang D. Co-utilization of sepiolite and ferromanganese ore reduces rice Cd and As concentrations via soil immobilization and root Fe-Mn plaque resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168269. [PMID: 37918748 DOI: 10.1016/j.scitotenv.2023.168269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Cadmium (Cd) and arsenic (As), common toxic elements in farmland soil, are easily absorbed by rice and accumulate in grains. Combined amendment is likely to ameliorate Cd-As-contaminated soil; however, studies on this aspect are limited. Therefore, we explored the effects of co-utilizing sepiolite and ferromanganese ore (SF) on Cd-As accumulation in rice by conducting pot experiments on Cd-As-contaminated paddy soil. The results showed that 4 g kg-1 SF (4SF) reduced Cd (55.9 %/48.5 %) and As (82.9 %/64.7 %) concentrations in grain in early and late rice. The Fe concentration in Fe-Mn plaque (IMP) (FeIMP) first decreased and then increased, and the Mn concentration in IMP (MnIMP) increased with an increase in the SF addition amount. This resulted in the 4SF treatment maximizing the Cd adsorption capacity of IMP, whereas the 2 g kg-1 SF treatment (2SF) minimized the As adsorption capacity of IMP. More importantly, when the total Cd and As were 9.7 mg kg-1 and 304.2 mg kg-1, respectively, in the soil, 4SF application reduced CaCl2-extractable Cd (80.5 %/87.9 %), and 2SF reduced available As (24.0 %/20.9 %) in early and late rice. Additionally, SF decreased the Cd and As ion contents in soil pore water. Overall, SF has good immobilization and sustained effect on Cd-As and can be used as an effective material for remediation of Cd-As-contaminated soil.
Collapse
Affiliation(s)
- Shen Zheng
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Chao Xu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Zunchang Luo
- Soil and Fertilizer Institute of Hunan Province, Changsha 410125, China
| | - Hanhua Zhu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hui Wang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Quan Zhang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qihong Zhu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Daoyou Huang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
26
|
Meng FL, Zhang X, Hu Y, Sheng GP. New Barrier Role of Iron Plaque: Producing Interfacial Hydroxyl Radicals to Degrade Rhizosphere Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:795-804. [PMID: 38095914 DOI: 10.1021/acs.est.3c08132] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Iron plaque, as a natural barrier between rice and soil, can reduce the accumulation of pollutants in rice by adsorption, contributing to the safe production of rice in contaminated soil. In this study, we unveiled a new role of iron plaque, i.e., producing hydroxyl radicals (·OH) by activating root-secreted oxygen to degrade pollutants. The ·OH was produced on the iron plaque surface and then diffused to the interfacial layer between the surface and the rhizosphere environment. The iron plaque activated oxygen via a successive three-electron transfer to produce ·OH, involving superoxide and hydrogen peroxide as the intermediates. The structural Fe(II) in iron plaque played a dominant role in activating oxygen rather than the adsorbed Fe(II), since the structural Fe(II) was thermodynamically more favorable for oxygen activation. The oxygen vacancies accompanied by the structural Fe(II) played an important role in oxygen activation to produce ·OH. The interfacial ·OH selectively degraded rhizosphere pollutants that could be adsorbed onto the iron plaque and was less affected by the rhizosphere environments than the free ·OH. This study uncovered the oxidative role of iron plaque mediated by its produced ·OH, reshaping our understanding of the role of iron plaque as a barrier for rice.
Collapse
Affiliation(s)
- Fan-Li Meng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|