1
|
Wang Y, Fu X, Zeng L, Hu Y, Gao R, Xian S, Liao S, Huang J, Yang Y, Liu J, Jin H, Klaunig J, Lu Y, Zhou S. Activation of Nrf2/HO-1 signaling pathway exacerbates cholestatic liver injury. Commun Biol 2024; 7:621. [PMID: 38783088 PMCID: PMC11116386 DOI: 10.1038/s42003-024-06243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Nuclear factor erythroid 2-related factor-2 (Nrf2) antioxidant signaling is involved in liver protection, but this generalization overlooks conflicting studies indicating that Nrf2 effects are not necessarily hepatoprotective. The role of Nrf2/heme oxygenase-1 (HO-1) in cholestatic liver injury (CLI) remains poorly defined. Here, we report that Nrf2/HO-1 activation exacerbates liver injury rather than exerting a protective effect in CLI. Inhibiting HO-1 or ameliorating bilirubin transport alleviates liver injury in CLI models. Nrf2 knockout confers hepatoprotection in CLI mice, whereas in non-CLI mice, Nrf2 knockout aggravates liver damage. In the CLI setting, oxidative stress activates Nrf2/HO-1, leads to bilirubin accumulation, and impairs mitochondrial function. High levels of bilirubin reciprocally upregulate the activation of Nrf2 and HO-1, while antioxidant and mitochondrial-targeted SOD2 overexpression attenuate bilirubin toxicity. The expression of Nrf2 and HO-1 is elevated in serum of patients with CLI. These results reveal an unrecognized function of Nrf2 signaling in exacerbating liver injury in cholestatic disease.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xiaolong Fu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Li Zeng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yan Hu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Rongyang Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Siting Xian
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Songjie Liao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jianxiang Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yonggang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jilong Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hai Jin
- Institute of Digestive Diseases of Affiliated Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - James Klaunig
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
- School of Pharmacy, Zunyi Medical University, Zunyi, China.
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
- School of Pharmacy, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Mihajlovic M, Rosseel Z, De Waele E, Vinken M. Parenteral nutrition-associated liver injury: clinical relevance and mechanistic insights. Toxicol Sci 2024; 199:1-11. [PMID: 38383052 DOI: 10.1093/toxsci/kfae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Intestinal failure-associated liver disease (IFALD) is a relatively common complication in individuals receiving parenteral nutrition (PN). IFALD can be manifested as different types of liver injury, including steatosis, cholestasis, and fibrosis, and could result in liver failure in some cases. The onset and progression of IFALD are highly dependent on various patient and PN-related risk factors. Despite still being under investigation, several mechanisms have been proposed. Liver injury can originate due to caloric overload, nutrient deficiency, and toxicity, as well as phytosterol content, and omega-6 to omega-3 fatty acids ratio contained in lipid emulsions. Additional mechanisms include immature or defective bile acid metabolism, acute heart failure, infections, and sepsis exerting negative effects via Toll-like receptor 4 and nuclear factor κB inflammatory signaling. Furthermore, lack of enteral feeding, gut dysbiosis, and altered enterohepatic circulation that affect the farnesoid x receptor-fibroblast growth factor 19 axis can also contribute to IFALD. Various best practices can be adopted to minimize the risk of developing IFALD, such as prevention and management of central line infections and sepsis, preservation of intestine's length, a switch to oral and enteral feeding, cyclic PN, avoidance of overfeeding and soybean oil-based lipid formulations, and avoiding hepatotoxic substances. The present review thus provides a comprehensive overview of all relevant aspects inherent to IFALD. Further research focused on clinical observations, translational models, and advanced toxicological knowledge frameworks is needed to gain more insight into the molecular pathogenesis of hepatotoxicity, reduce IFALD incidence, and encourage the safe use of PN.
Collapse
Affiliation(s)
- Milos Mihajlovic
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Zenzi Rosseel
- Department of Pharmacy, Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
- Department of Clinical Nutrition, Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Elisabeth De Waele
- Department of Clinical Nutrition, Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
- Department of Intensive Care, Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
- Faculty of Medicine and Pharmacy, Department of Clinical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| |
Collapse
|
3
|
Zhang W, Zhang Q, Cao Z, Zheng L, Hu W. Physiologically Based Pharmacokinetic Modeling in Neonates: Current Status and Future Perspectives. Pharmaceutics 2023; 15:2765. [PMID: 38140105 PMCID: PMC10747965 DOI: 10.3390/pharmaceutics15122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Rational drug use in special populations is a clinical problem that doctors and pharma-cists must consider seriously. Neonates are the most physiologically immature and vulnerable to drug dosing. There is a pronounced difference in the anatomical and physiological profiles be-tween neonates and older people, affecting the absorption, distribution, metabolism, and excretion of drugs in vivo, ultimately leading to changes in drug concentration. Thus, dose adjustments in neonates are necessary to achieve adequate therapeutic concentrations and avoid drug toxicity. Over the past few decades, modeling and simulation techniques, especially physiologically based pharmacokinetic (PBPK) modeling, have been increasingly used in pediatric drug development and clinical therapy. This rigorously designed and verified model can effectively compensate for the deficiencies of clinical trials in neonates, provide a valuable reference for clinical research design, and even replace some clinical trials to predict drug plasma concentrations in newborns. This review introduces previous findings regarding age-dependent physiological changes and pathological factors affecting neonatal pharmacokinetics, along with their research means. The application of PBPK modeling in neonatal pharmacokinetic studies of various medications is also reviewed. Based on this, we propose future perspectives on neonatal PBPK modeling and hope for its broader application.
Collapse
Affiliation(s)
| | | | | | - Liang Zheng
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (W.Z.); (Q.Z.); (Z.C.)
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (W.Z.); (Q.Z.); (Z.C.)
| |
Collapse
|
4
|
Thyroid Hormone Transporters in Pregnancy and Fetal Development. Int J Mol Sci 2022; 23:ijms232315113. [PMID: 36499435 PMCID: PMC9737226 DOI: 10.3390/ijms232315113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Thyroid hormone is essential for fetal (brain) development. Plasma membrane transporters control the intracellular bioavailability of thyroid hormone. In the past few decades, 15 human thyroid hormone transporters have been identified, and among them, mutations in monocarboxylate transporter (MCT)8 and organic anion transporting peptide (OATP)1C1 are associated with clinical phenotypes. Different animal and human models have been employed to unravel the (patho)-physiological role of thyroid hormone transporters. However, most studies on thyroid hormone transporters focus on postnatal development. This review summarizes the research on the thyroid hormone transporters in pregnancy and fetal development, including their substrate preference, expression and tissue distribution, and physiological and pathophysiological role in thyroid homeostasis and clinical disorders. As the fetus depends on the maternal thyroid hormone supply, especially during the first half of pregnancy, the review also elaborates on thyroid hormone transport across the human placental barrier. Future studies may reveal how the different transporters contribute to thyroid hormone homeostasis in fetal tissues to properly facilitate development. Employing state-of-the-art human models will enable a better understanding of their roles in thyroid hormone homeostasis.
Collapse
|
5
|
Mutanen A, Pöntinen V, Gunnar R, Merras-Salmio L, Pakarinen MP. Efficient achievement of enteral autonomy facilitates resolution of liver injury in necrotizing enterocolitis induced short bowel syndrome. Sci Rep 2022; 12:17516. [PMID: 36266329 PMCID: PMC9584958 DOI: 10.1038/s41598-022-22414-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/14/2022] [Indexed: 01/12/2023] Open
Abstract
Children with short bowel syndrome (SBS) are at high risk for intestinal failure associated liver disease (IFALD). The aim of this retrospective follow-up study was to compare weaning off parenteral nutrition (PN) and IFALD between necrotizing enterocolitis (NEC) and non-NEC induced SBS. Altogether, 77 patients with neonatal SBS treated by our multidisciplinary intestinal failure unit (NEC n = 38, non-NEC SBS n = 39) were included and followed-up at least for 2 years until median age of 10 years (interquartile range, 6.0-16). Occurrence and characteristics of IFALD was assessed with liver biopsies obtained at median age of 3.2 (1.0-6.7) years (n = 62) and serum liver biochemistry. Overall, NEC patients had less end-jejunostomies and autologous intestinal reconstruction surgeries performed compared to non-NEC patients (< 0.05), while remaining small bowel anatomy was comparable between groups. Cumulative weaning off PN was more frequent and duration of PN shorter among NEC patients (P < 0.05). Overall cumulative probability of histological IFALD was lower among NEC patients during whole follow-up period (P = 0.052) and at 10 years (P = 0.024). NEC patients had lower ALT and GGT levels at last follow-up (P < 0.05 for all). In univariate Cox regression analysis, absence of end-jejunostomy, NEC diagnosis, longer remaining small bowel length, multidisciplinary treatment and prematurity were predictive for weaning off PN, while NEC diagnosis and lower birth weight in addition to multidisciplinary care protected from histological IFALD. Neonates with NEC induced SBS reached enteral autonomy earlier than those with non-NEC SBS, which associated with more efficient resolution of histological IFALD among long-term survivors.
Collapse
Affiliation(s)
- Annika Mutanen
- grid.7737.40000 0004 0410 2071Department of Pediatric Surgery, Pediatric Liver and Gut Research Group, Pediatric Research Center, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Stenbäckinkatu 9, P.O Box 347, 00029 HUS Helsinki, Finland
| | - Ville Pöntinen
- grid.7737.40000 0004 0410 2071Department of Pediatric Surgery, Pediatric Liver and Gut Research Group, Pediatric Research Center, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Stenbäckinkatu 9, P.O Box 347, 00029 HUS Helsinki, Finland
| | - Riikka Gunnar
- grid.7737.40000 0004 0410 2071Department of Pediatric Gastroenterology, Pediatric Liver and Gut Research Group, Pediatric Research Center, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Laura Merras-Salmio
- grid.7737.40000 0004 0410 2071Department of Pediatric Gastroenterology, Pediatric Liver and Gut Research Group, Pediatric Research Center, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko P. Pakarinen
- grid.7737.40000 0004 0410 2071Department of Pediatric Surgery, Pediatric Liver and Gut Research Group, Pediatric Research Center, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Stenbäckinkatu 9, P.O Box 347, 00029 HUS Helsinki, Finland
| |
Collapse
|
6
|
Genetic variants of NTCP gene and hepatitis B vaccine failure in Taiwanese children of hepatitis B e antigen positive mothers. Hepatol Int 2022; 16:789-798. [PMID: 35635688 DOI: 10.1007/s12072-022-10350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/25/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) vaccine failure remains a hurdle to the global elimination of HBV infections in the vaccination era. We aimed to elucidate the relationships between HBV entry receptor sodium taurocholate co-transporting polypeptide (NTCP) and vaccine failure in children born to highly infectious mothers. METHODS The genetic variants rs7154439, rs4646285, rs4646287, and rs2296651 were genotyped in 170 children with chronic HBV infections and 138 control children of mothers positive for hepatitis B e antigen (HBeAg). All children received hepatitis B immunoglobulin and complete HBV vaccination. Total RNAs from 82 adult non-tumor liver tissues were quantified for NTCP, type I interferons and interferon-induced transmembrane protein 3 (IFITM3) levels. RESULTS A higher rate of the GA/AA genotype (28.3% vs. 15.3%, p = 0.006) of the genetic variant rs4646287 in intron 1 of the NTCP gene was detected in control children compared to the carrier children. The rs4646287 G > A genotype was associated with younger ages at which spontaneous HBeAg seroconversion occurred (10.8 ± 8.4 vs. 14.6 ± 8.7 years, p = 0.003) in chronic HBV-infected children. Unique correlation patterns of NTCP and innate immunity-related genes (type I interferons and IFITM3) were found in HBV-infected liver tissues with the rs4646287 G > A genotype. CONCLUSION The rs4646287 G > A genotype of the NTCP gene may be associated with lower risk for HBV vaccine failure in children born to highly infectious mothers. The protective effect of rs4646287 G > A was also present in carrier children, evidenced by earlier spontaneous HBeAg seroconversion.
Collapse
|
7
|
Fu H, Zhao R, Jia X, Li X, Li G, Yin C. Neonatal Dubin-Johnson syndrome: biochemical parameters, characteristics, and genetic variants study. Pediatr Res 2022; 91:1571-1578. [PMID: 34050268 DOI: 10.1038/s41390-021-01583-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/18/2021] [Accepted: 04/16/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND The clinical characteristics and gene mutation characteristics of children with Dubin-Johnson syndrome (DJS) need in-depth study. METHODS The clinical and genomic data of neonatal Dubin-Johnson syndrome (NDJS) and 155 cases with idiopathic cholestasis (IC) were analyzed from June 2016 to August 2020 RESULTS: ABCC2 gene variants were identified in eight patients, including one patient with homozygous variants and seven patients with compound heterozygous variants. A total of 13 different ABCC variants were detected in the NDJS patients, including three nonsense variants, six missense variants, three frameshift variants, and a splice site variant. The variant c.2443C > T (p.R815X), c.4237_4238insCT (p.H1414Lfs*17), c.960_961insGT (p.L322Cfs*3), c.4250delC (p.S1417Ffs*14), c.2224G > A (p.D742N), c.4020G > C (p.K1340N), and c.2439 + 5G > A were not reported in the Human Gene Variant Database. There was no significance in the sex, birth weight, and onset age between the NDJS and IC groups. Compared with the IC group, the NDJS group had significantly higher levels of total bilirubin (TB), but a significantly lower level of alanine transaminase and a ratio of direct bilirubin (DB) to TB. There is no significance in total bile acid, gamma-glutamyl-transpeptidase, albumin, or international normalized ratio between the two groups. CONCLUSIONS NDJS should be considered in prolonged neonatal intrahepatic cholestasis, especially in infants with normal or slightly elevated transaminase levels. IMPACT Explore the biochemical parameters, characteristics, and genetic profile of NDJS. By summarizing the characteristics of biochemical indicators, seven new mutation types of the ABCC2 gene were detected, which expanded the mutation spectrum of the ABCC2 gene. NDJS should be considered in prolonged neonatal intrahepatic cholestasis, especially in infants with normal or slightly elevated transaminase levels.
Collapse
Affiliation(s)
- Haiyan Fu
- Digestive Department, Children' Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Ruiqin Zhao
- Digestive Department, Children' Hospital of Hebei Province, Shijiazhuang, Hebei, China.
| | - Xiaoyun Jia
- Digestive Department, Children' Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Xiaolei Li
- Digestive Department, Children' Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Guigui Li
- Digestive Department, Children' Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Chunlan Yin
- Digestive Department, Children' Hospital of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
8
|
Kobayashi T, Takeba Y, Ohta Y, Ootaki M, Kida K, Watanabe M, Iiri T, Matsumoto N. Prenatal glucocorticoid administration enhances bilirubin metabolic capacity and increases Ugt1a and Abcc2 gene expression via glucocorticoid receptor and PXR in rat fetal liver. J Obstet Gynaecol Res 2022; 48:1591-1606. [PMID: 35445507 DOI: 10.1111/jog.15235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 02/22/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
AIM Jaundice is especially common in premature infant born before 35 weeks. Because the premature infant liver is not fully developed at birth it may be incomplete the bilirubin metabolism. The purpose was to evaluate the metabolism and the excretion of bilirubin in the premature infant rat liver following prenatal glucocorticoid (GC) administration. METHODS Dexamethasone (DEX) was administered subcutaneously to pregnant Wistar rats for two consecutive days on gestational days 17 and 19. The fetus were delivered by cesarean section in gestational days 19 and 21. The mRNA levels and protein levels of bilirubin-metabolic enzymes and transporters in the fetal liver tissues were analyzed using RT-PCR immunohistochemistry staining and ELISA, respectively. We evaluated that the effect of bilirubin-metabolic enzymes in the primary fetal rat hepatocytes treated with DEX after pretreated with glucocorticoid receptor (GR, Nr3c1) and Pxr (Nr1i2) siRNA. RESULTS Ugt1a1 and Bsep (Abcb11) mRNA levels were significantly increased in the fetuses by prenatal GC administration. The mRNA levels of nuclear transcription factors Nr1i2, Car (Nr1i3), and Rxrα (Nr2b1) were also significantly increased in the fetuses by prenatal GC administration. In addition, DEX increased Nr1i2, Ugt1a1, and Abcc2 (Mrp2) mRNA levels in the primary fetal hepatocytes. The Nr3c1 or Nr1i2 siRNA-mediated knockdown suppressed the increases of Ugt1a1, and Abcc2 mRNA levels induced by DEX, indicating that DEX are mediated by GC receptor and PXR in primary fetal hepatocytes. CONCLUSIONS These results suggest that prenatal GC administration increases bilirubin-metabolic ability, in the premature liver, which may prevent jaundice in neonates.
Collapse
Affiliation(s)
- Tsukasa Kobayashi
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Yuki Ohta
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Masanori Ootaki
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Keisuke Kida
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Minoru Watanabe
- Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine, Kawasaki, Kanagawa, Japan
| | - Taroh Iiri
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Naoki Matsumoto
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| |
Collapse
|
9
|
Na+-Taurocholate Co-Transporting Polypeptide (NTCP) in Livers, Function, Expression Regulation, and Potential in Hepatitis B Treatment. LIVERS 2021. [DOI: 10.3390/livers1040019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection has become one of the leading causes of liver cirrhosis and hepatocellular carcinoma globally. The discovery of sodium taurocholate co-transporting polypeptide (NTCP), a solute carrier, as a key receptor for HBV and hepatitis D virus (HDV) has opened new avenues for HBV treatment. Additionally, it has led researchers to generate hepatoma cell lines (including HepG2-NTCP and Huh-7-NTCP) susceptible to HBV infection in vitro, hence, paving the way to develop and efficiently screen new and novel anti-HBV drugs. This review summarizes the history, function and critical findings regarding NTCP as a viral receptor for HBV/HDV, and it also discusses recently developed drugs targeting NTCP.
Collapse
|
10
|
Human induced pluripotent stem cell derived hepatocytes provide insights on parenteral nutrition associated cholestasis in the immature liver. Sci Rep 2021; 11:12386. [PMID: 34117281 PMCID: PMC8196029 DOI: 10.1038/s41598-021-90510-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
Parenteral nutrition-associated cholestasis (PNAC) significantly limits the safety of intravenous parenteral nutrition (PN). Critically ill infants are highly vulnerable to PNAC-related morbidity and mortality, however the impact of hepatic immaturity on PNAC is poorly understood. We examined developmental differences between fetal/infant and adult livers, and used human induced pluripotent stem cell-derived hepatocyte-like cells (iHLC) to gain insights into the contribution of development to altered sterol metabolism and PNAC. We used RNA-sequencing and computational techniques to compare gene expression patterns in human fetal/infant livers, adult liver, and iHLC. We identified distinct gene expression profiles between the human feta/infant livers compared to adult liver, and close resemblance of iHLC to human developing livers. Compared to adult, both developing livers and iHLC had significant downregulation of xenobiotic, bile acid, and fatty acid metabolism; and lower expression of the sterol metabolizing gene ABCG8. When challenged with stigmasterol, a plant sterol found in intravenous soy lipids, lipid accumulation was significantly higher in iHLC compared to adult-derived HepG2 cells. Our findings provide insights into altered bile acid and lipid metabolizing processes in the immature human liver, and support the use of iHLC as a relevant model system of developing liver to study lipid metabolism and PNAC.
Collapse
|
11
|
De Vocht T, Buyck C, Deferm N, Qi B, Van Brantegem P, van Vlijmen H, Snoeys J, Hoeben E, Vermeulen A, Annaert P. Identification of novel inhibitors of rat Mrp3. Eur J Pharm Sci 2021; 162:105813. [PMID: 33753214 DOI: 10.1016/j.ejps.2021.105813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/18/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Multidrug resistance-associated protein (MRP; ABCC gene family) mediated efflux transport plays an important role in the systemic and tissue exposure profiles of many drugs and their metabolites, and also of endogenous compounds like bile acids and bilirubin conjugates. However, potent and isoform-selective inhibitors of the MRP subfamily are currently lacking. Therefore, the purpose of the present work was to identify novel rat Mrp3 inhibitors. Using 5(6)-carboxy-2',7'-dichlorofluorescein diacetate (CDFDA) as a model-(pro)substrate for Mrp3 in an oil-spin assay with primary rat hepatocytes, the extent of inhibition of CDF efflux was determined for 1584 compounds, yielding 59 hits (excluding the reference inhibitor) that were identified as new Mrp3 inhibitors. A naive Bayesian prediction model was constructed in Pipeline Pilot to elucidate physicochemical and structural features of compounds causing Mrp3 inhibition. The final Bayesian model generated common physicochemical properties of Mrp3 inhibitors. For instance, more than half of the hits contain a phenolic structure. The identified compounds have an AlogP between 2 and 4.5, between 5 to 8 hydrogen bond acceptor atoms, a molecular weight between 260 and 400, and 2 or more aromatic rings. Compared to the depleted dataset (i.e. 90% remaining compounds), the Mrp3 hit rate in the enriched set was 7.5-fold higher (i.e. 17.2% versus 2.3%). Several hits from this first screening approach were confirmed in an additional study using Mrp3 transfected inside-out membrane vesicles. In conclusion, several new and potent inhibitors of Mrp3 mediated efflux were identified in an optimized in vitro rat hepatocyte assay and confirmed using Mrp3 transfected inside-out membrane vesicles. A final naive Bayesian model was developed in an iterative way to reveal common physicochemical and structural features for Mrp3 inhibitors. The final Bayesian model will enable in silico screening of larger libraries and in vitro identification of more potent Mrp3 inhibitors.
Collapse
Affiliation(s)
- Tom De Vocht
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg, O&N2, Herestraat 49 box 921, B-3000 Leuven, Belgium
| | - Christophe Buyck
- Discovery Sciences, Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Neel Deferm
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg, O&N2, Herestraat 49 box 921, B-3000 Leuven, Belgium
| | - Bing Qi
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg, O&N2, Herestraat 49 box 921, B-3000 Leuven, Belgium
| | - Pieter Van Brantegem
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg, O&N2, Herestraat 49 box 921, B-3000 Leuven, Belgium
| | - Herman van Vlijmen
- Discovery Sciences, Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Jan Snoeys
- Drug Metabolism and Pharmacokinetics, Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Eef Hoeben
- Quantitative Sciences, Janssen Research and Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium; BioNotus GCV, Wetenschapspark Universiteit Antwerpen, Galileilaan 15, B-2845 Niel, Belgium
| | - An Vermeulen
- Quantitative Sciences, Janssen Research and Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg, O&N2, Herestraat 49 box 921, B-3000 Leuven, Belgium; BioNotus GCV, Wetenschapspark Universiteit Antwerpen, Galileilaan 15, B-2845 Niel, Belgium.
| |
Collapse
|
12
|
Wu SH, Chang MH, Chen YH, Wu HL, Chua HH, Chien CS, Ni YH, Chen HL, Chen HL. The ESCRT-III molecules regulate the apical targeting of bile salt export pump. J Biomed Sci 2021; 28:19. [PMID: 33750401 PMCID: PMC7941988 DOI: 10.1186/s12929-020-00706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Background The bile salt export pump (BSEP) is a pivotal apical/canalicular bile salt transporter in hepatocytes that drives the bile flow. Defects in BSEP function and canalicular expression could lead to a spectrum of cholestatic liver diseases. One prominent manifestation of BSEP-associated cholestasis is the defective canalicular localization and cytoplasmic retention of BSEP. However, the etiology of impaired BSEP targeting to the canalicular membrane is not fully understood. Our goal was to discover what molecule could interact with BSEP and affect its post-Golgi sorting. Methods The human BSEP amino acids (a.a.) 491-630 was used as bait to screen a human fetal liver cDNA library through yeast two-hybrid system. We identified a BSEP-interacting candidate and showed the interaction and colocalization in the co-immunoprecipitation in hepatoma cell lines and histological staining in human liver samples. Temperature shift assays were used to study the post-Golgi trafficking of BSEP. We further determine the functional impacts of the BSEP-interacting candidate on BSEP in vitro. A hydrodynamically injected mouse model was established for in vivo characterizing the long-term impacts on BSEP. Results We identified that charged multivesicular body protein 5 (CHMP5), a molecule of the endosomal protein complex required for transport subcomplex-III (ESCRT-III), interacted and co-localized with BSEP in the subapical compartments (SACs) in developing human livers. Cholestatic BSEP mutations in the CHMP5-interaction region have defects in canalicular targeting and aberrant retention at the SACs. Post-Golgi delivery of BSEP and bile acid secretion were impaired in ESCRT-III perturbation or CHMP5-knockdown hepatic cellular and mouse models. This ESCRT-III-mediated BSEP sorting preceded Rab11A-regulated apical cycling of BSEP. Conclusions Our results showed the first example that ESCRT-III is essential for canalicular trafficking of apical membrane proteins, and provide new targets for therapeutic approaches in BSEP associated cholestasis.
Collapse
Affiliation(s)
- Shang-Hsin Wu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Mei-Hwei Chang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan.,Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Ya-Hui Chen
- Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan
| | - Hui-Lin Wu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Huey-Huey Chua
- Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan
| | - Chin-Sung Chien
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan.,Medical Microbiota Center of the First Core Laboratory, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Hui-Ling Chen
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan.
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan. .,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan. .,Department and Graduate Institute of Medical Education and Bioethics, National Taiwan University College of Medicine, Taipei, 100, Taiwan.
| |
Collapse
|
13
|
Chan KL, Varughese N, Jones PM, Zwick DL, Rajaram V, Lee M, Ramirez CM. A Case of Dubin-Johnson Syndrome Presenting as Neonatal Cholestasis With Paucity of Interlobular Bile Ducts. Pediatr Dev Pathol 2021; 24:154-158. [PMID: 33470920 DOI: 10.1177/1093526620980577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dubin-Johnson syndrome (DJS) is a rare autosomal recessive disorder that typically manifests in young adulthood as jaundice with conjugated hyperbilirubinemia. We report a case presenting as neonatal cholestasis with the unexpected histologic finding of paucity of interlobular bile ducts, a feature that is not typically seen in DJS. The diagnosis was confirmed by absent canalicular multidrug-resistance-associated protein 2 (MRP2) immunohistochemical staining on liver biopsy tissue and molecular genetic testing that demonstrated heterozygous mutations in the ATP-Binding Cassette Subfamily C Member 2 (ABCC2) gene, including a novel missense mutation. This report describes a case of DJS with atypical clinicopathologic findings and suggests that DJS should be considered in patients with neonatal cholestasis and bile duct paucity.
Collapse
Affiliation(s)
- Kara L Chan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Natasha Varughese
- Department of Pediatrics, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - Patricia M Jones
- Department of Pathology, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - David L Zwick
- Department of Pathology, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - Veena Rajaram
- Department of Pathology, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - Michael Lee
- Department of Pediatrics, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - Charina M Ramirez
- Department of Pediatrics, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| |
Collapse
|
14
|
Jain AK, Anand R, Lerret S, Yanni G, Chen JY, Mohammad S, Doyle M, Telega G, Horslen S. Outcomes following liver transplantation in young infants: Data from the SPLIT registry. Am J Transplant 2021; 21:1113-1127. [PMID: 32767649 PMCID: PMC7867666 DOI: 10.1111/ajt.16236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Liver transplantation (LT) in young patients is being performed with greater frequency. We hypothesized that objective analysis of pre-, intra-, and postoperative events would help understand contributors to successful outcomes and guide transplant decision processes. We queried SPLIT registry for pediatric transplants between 2011 and 2018. Outcomes were compared for age groups: 0-<3, 3-<6, 6-<12 months, and 1-<3 years (Groups A, B, C, D respectively) and by weight categories: <5, 5-10, >10 kg; 1033 patients were available for analysis. Cholestatic disease and fulminant failure were highest in group A and those <5 kg; and biliary atresia in group C (72.8%). Group A had significantly higher life support dependence (34.6%; P < .001), listing as United Network for Organ Sharing status 1a/1b (70.4%; P < .001), and shortest wait times (P < .001). The median (interquartile range) for international normalized ratio and bilirubin were highest in group A (3.0 [2.1-3.9] and 16.7 [6.8-29.7] mg/dL) and those <5 kg (2.6 [1.8-3.4] and 13.5 [3.0-28.4] mg/dL). A pediatric end -stage liver disease score ≥40, postoperative hospital stays, rejection, and nonanastomotic biliary strictures were highest in group A with lowest survival at 93.1%. Infants 0 to <3 months and those <5 kg need more intensive care with lower survival and higher complications. Importantly, potential LT before reaching status 1a/1b and aggressive postoperative management may positively influence their outcomes.
Collapse
Affiliation(s)
- Ajay K. Jain
- Saint Louis University, Saint Louis, Missouri, USA
| | | | - Stacee Lerret
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Pediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - George Yanni
- Pediatrics, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| | | | - Saeed Mohammad
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Majella Doyle
- Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Greg Telega
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Pediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Simon Horslen
- Liver and Small Bowel Transplantation, Seattle Children’s Hospital, Seattle, Washington, USA
| |
Collapse
|
15
|
van Groen BD, Nicolaï J, Kuik AC, Van Cruchten S, van Peer E, Smits A, Schmidt S, de Wildt SN, Allegaert K, De Schaepdrijver L, Annaert P, Badée J. Ontogeny of Hepatic Transporters and Drug-Metabolizing Enzymes in Humans and in Nonclinical Species. Pharmacol Rev 2021; 73:597-678. [PMID: 33608409 DOI: 10.1124/pharmrev.120.000071] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The liver represents a major eliminating and detoxifying organ, determining exposure to endogenous compounds, drugs, and other xenobiotics. Drug transporters (DTs) and drug-metabolizing enzymes (DMEs) are key determinants of disposition, efficacy, and toxicity of drugs. Changes in their mRNA and protein expression levels and associated functional activity between the perinatal period until adulthood impact drug disposition. However, high-resolution ontogeny profiles for hepatic DTs and DMEs in nonclinical species and humans are lacking. Meanwhile, increasing use of physiologically based pharmacokinetic (PBPK) models necessitates availability of underlying ontogeny profiles to reliably predict drug exposure in children. In addition, understanding of species similarities and differences in DT/DME ontogeny is crucial for selecting the most appropriate animal species when studying the impact of development on pharmacokinetics. Cross-species ontogeny mapping is also required for adequate translation of drug disposition data in developing nonclinical species to humans. This review presents a quantitative cross-species compilation of the ontogeny of DTs and DMEs relevant to hepatic drug disposition. A comprehensive literature search was conducted on PubMed Central: Tables and graphs (often after digitization) in original manuscripts were used to extract ontogeny data. Data from independent studies were standardized and normalized before being compiled in graphs and tables for further interpretation. New insights gained from these high-resolution ontogeny profiles will be indispensable to understand cross-species differences in maturation of hepatic DTs and DMEs. Integration of these ontogeny data into PBPK models will support improved predictions of pediatric hepatic drug disposition processes. SIGNIFICANCE STATEMENT: Hepatic drug transporters (DTs) and drug-metabolizing enzymes (DMEs) play pivotal roles in hepatic drug disposition. Developmental changes in expression levels and activities of these proteins drive age-dependent pharmacokinetics. This review compiles the currently available ontogeny profiles of DTs and DMEs expressed in livers of humans and nonclinical species, enabling robust interpretation of age-related changes in drug disposition and ultimately optimization of pediatric drug therapy.
Collapse
Affiliation(s)
- B D van Groen
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - J Nicolaï
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - A C Kuik
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - S Van Cruchten
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - E van Peer
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - A Smits
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - S Schmidt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - S N de Wildt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - K Allegaert
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - L De Schaepdrijver
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - P Annaert
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - J Badée
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| |
Collapse
|
16
|
Sticova E, Jirsa M. ABCB4 disease: Many faces of one gene deficiency. Ann Hepatol 2021; 19:126-133. [PMID: 31759867 DOI: 10.1016/j.aohep.2019.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
ATP-binding cassette (ABC) subfamily B member 4 (ABCB4), also known as multidrug resistance protein 3 (MDR3), encoded by ABCB4, is involved in biliary phospholipid secretion, protecting hepatobiliary system from deleterious detergent and lithogenic properties of the bile. ABCB4 mutations altering canalicular ABCB4 protein function and expression may have variable clinical presentation and predispose to several human liver diseases. Well-established phenotypes of ABCB4 deficit are: progressive familial intrahepatic cholestasis type 3, gallbladder disease 1 (syn. low phospholipid associated cholelithiasis syndrome), high ɣ-glutamyl transferase intrahepatic cholestasis of pregnancy, chronic cholangiopathy, and adult biliary fibrosis/cirrhosis. Moreover, ABCB4 aberrations may be involved in some cases of drug induced cholestasis, transient neonatal cholestasis, and parenteral nutrition-associated liver disease. Recently, genome-wide association studies have documented occurrence of malignant tumours, predominantly hepatobiliary malignancies, in patients with ABCB4/MDR3 deficit. The patient's age at the time of the first presentation of cholestatic disease, as well as the severity of liver disorder and response to treatment are related to the ABCB4 allelic status. Mutational analysis of ABCB4 in patients and their families should be considered in all individuals with cholestasis of unknown aetiology, regardless of age and/or time of onset of the first symptoms.
Collapse
Affiliation(s)
- Eva Sticova
- Institute for Clinical and Experimental Medicine, Videnska, Prague, Czech Republic; Pathology Department, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Srobarova, Prague, Czech Republic.
| | - Milan Jirsa
- Institute for Clinical and Experimental Medicine, Videnska, Prague, Czech Republic; Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and Faculty General Hospital, U Nemocnice, Prague, Czech Republic
| |
Collapse
|
17
|
Potter C. The Role of a NICU Hepatology Consult Service in Assessing Liver Dysfunction in the Premature Infant. JPGN REPORTS 2021; 2:e031. [PMID: 37206928 PMCID: PMC10191506 DOI: 10.1097/pg9.0000000000000031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/23/2020] [Indexed: 05/21/2023]
Abstract
Liver dysfunction is common in the neonatal intensive care unit (NICU). Literature exists on the presentation of primary liver disease in the NICU but little has been published on general liver dysfunction in the NICU. This is a retrospective observational study of hepatology consultations and outcomes in a large referral NICU. 157 babies were evaluated by a single hepatologist and followed to resolution of disease, death, or lost to follow-up as outpatients. Infectious etiologies were the most common cause for liver dysfunction in the NICU, followed by shock, genetic abnormalities, cardiac disease, large heme loads, and hypothyroidism. Primary liver disease was rare. Liver dysfunction in the sick preterm infant was often multifactorial, and the distribution of diagnoses differs from that seen in the term baby. The liver dysfunction may last well beyond discharge from the NICU and may result in death.
Collapse
Affiliation(s)
- Carol Potter
- From the Nationwide Children’s Hospital, The Ohio State University, Columbus, OH
| |
Collapse
|
18
|
Al‐Majdoub ZM, Achour B, Couto N, Howard M, Elmorsi Y, Scotcher D, Alrubia S, El‐Khateeb E, Vasilogianni A, Alohali N, Neuhoff S, Schmitt L, Rostami‐Hodjegan A, Barber J. Mass spectrometry-based abundance atlas of ABC transporters in human liver, gut, kidney, brain and skin. FEBS Lett 2020; 594:4134-4150. [PMID: 33128234 PMCID: PMC7756589 DOI: 10.1002/1873-3468.13982] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/24/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022]
Abstract
ABC transporters (ATP-binding cassette transporter) traffic drugs and their metabolites across membranes, making ABC transporter expression levels a key factor regulating local drug concentrations in different tissues and individuals. Yet, quantification of ABC transporters remains challenging because they are large and low-abundance transmembrane proteins. Here, we analysed 200 samples of crude and membrane-enriched fractions from human liver, kidney, intestine, brain microvessels and skin, by label-free quantitative mass spectrometry. We identified 32 (out of 48) ABC transporters: ABCD3 was the most abundant in liver, whereas ABCA8, ABCB2/TAP1 and ABCE1 were detected in all tissues. Interestingly, this atlas unveiled that ABCB2/TAP1 may have TAP2-independent functions in the brain and that biliary atresia (BA) and control livers have quite different ABC transporter profiles. We propose that meaningful biological information can be derived from a direct comparison of these data sets.
Collapse
Affiliation(s)
- Zubida M. Al‐Majdoub
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Brahim Achour
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Narciso Couto
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Martyn Howard
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Yasmine Elmorsi
- Clinical Pharmacy DepartmentFaculty of PharmacyTanta UniversityEgypt
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Sarah Alrubia
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
- Pharmaceutical Chemistry DepartmentCollege of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Eman El‐Khateeb
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
- Clinical Pharmacy DepartmentFaculty of PharmacyTanta UniversityEgypt
| | | | - Noura Alohali
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
- Pharmaceutical Practice DepartmentCollege of PharmacyPrincess Noura Bint Abdul Rahman UniversityRiyadhSaudi Arabia
| | | | - Lutz Schmitt
- Institute of BiochemistryHeinrich Heine University DüsseldorfGermany
| | - Amin Rostami‐Hodjegan
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
- Simcyp DivisionCertara UK LtdSheffieldUK
| | - Jill Barber
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| |
Collapse
|
19
|
Cheung KWK, van Groen BD, Burckart GJ, Zhang L, de Wildt SN, Huang SM. Incorporating Ontogeny in Physiologically Based Pharmacokinetic Modeling to Improve Pediatric Drug Development: What We Know About Developmental Changes in Membrane Transporters. J Clin Pharmacol 2020; 59 Suppl 1:S56-S69. [PMID: 31502692 DOI: 10.1002/jcph.1489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022]
Abstract
Developmental changes in the biological processes involved in the disposition of drugs, such as membrane transporter expression and activity, may alter the drug exposure and clearance in pediatric patients. Physiologically based pharmacokinetic (PBPK) models take these age-dependent changes into account and may be used to predict drug exposure in children. As a result, this mechanistic-based tool has increasingly been applied to improve pediatric drug development. Under the Prescription Drug User Fee Act VI, the US Food and Drug Administration has committed to facilitate the advancement of PBPK modeling in the drug application review process. Yet, significant knowledge gaps on developmental biology still exist, which must be addressed to increase the confidence of prediction. Recently, more data on ontogeny of transporters have emerged and supplied a missing piece of the puzzle. This article highlights the recent findings on the ontogeny of transporters specifically in the intestine, liver, and kidney. It also provides a case study that illustrates the utility of incorporating this information in predicting drug exposure in children using a PBPK approach. Collaborative work has greatly improved the understanding of the interplay between developmental physiology and drug disposition. Such efforts will continue to be needed to address the remaining knowledge gaps to enhance the application of PBPK modeling in drug development for children.
Collapse
Affiliation(s)
- Kit Wun Kathy Cheung
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.,Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA.,Oak Ridge Institute for Science and Education (ORISE Fellow), Oak Ridge, TN, USA
| | - Bianca D van Groen
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Gilbert J Burckart
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Saskia N de Wildt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pharmacology and Toxicology, Radboud University, Nijmegen, the Netherlands
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
20
|
Abstract
Liver dysfunction is a common problem in the sick premature infant. The dysfunction is usually multifactorial and often underlies a combination of liver immaturity, comorbidities, and/or the presence of primary liver disease. The liver of the preterm infant has a paucity of bile ducts, low levels of many hepatic enzymes and transporters, and a small bile acid pool. Many other organ systems are immature as well and do not respond to stress the way they would later in infancy. This articles discusses how prematurity affects the liver, how it responds to secondary insults, and approaches to evaluation.
Collapse
Affiliation(s)
- Carol Jean Potter
- Nationwide Children's Hospital, The Ohio State University, 700 Childrens Drive, Columbus, OH 43205, USA.
| |
Collapse
|
21
|
Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid Hormone Transporters. Endocr Rev 2020; 41:5637505. [PMID: 31754699 DOI: 10.1210/endrev/bnz008] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
22
|
Vilas-Boas V, Gijbels E, Jonckheer J, De Waele E, Vinken M. Cholestatic liver injury induced by food additives, dietary supplements and parenteral nutrition. ENVIRONMENT INTERNATIONAL 2020; 136:105422. [PMID: 31884416 DOI: 10.1016/j.envint.2019.105422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Cholestasis refers to the accumulation of toxic levels of bile acids in the liver due to defective bile secretion. This pathological situation can be triggered by drugs, but also by ingredients contained in food, food supplements and parenteral nutrition. This paper provides an overview of the current knowledge on cholestatic injury associated with such ingredients, with particular emphasis on the underlying mechanisms of toxicity.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Joop Jonckheer
- Department of Intensive Care, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Elisabeth De Waele
- Department of Intensive Care, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
23
|
Ghazy RM, Khedr MA. Neonatal cholestasis: recent insights. EGYPTIAN PEDIATRIC ASSOCIATION GAZETTE 2019. [DOI: 10.1186/s43054-019-0009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractBackgroundNeonatal physiological jaundice is a common benign condition that rarely extends behind the second week of life; however, it may interfere with the diagnosis of a pathological condition termed neonatal cholestasis (NC). The latter is a critical, uncommon problem characterized by conjugated hyperbilirubinaemia. This review aims to highlight the differences between physiological and pathological jaundice, identify different causes of NC, and provide a recent approach to diagnosis and management of this serious condition.Main textNC affects 1/2500 live births, resulting in life-threatening complications due to associated hepatobiliary or metabolic abnormalities. NC is rarely benign and indicates the presence of severe underlying disease. If jaundice extends more than 14 days in full-term infants or 21 days in preterm infants, the serum bilirubin level fractionated into conjugated (direct) and unconjugated (indirect) bilirubin should be measured. A stepwise diagnostic approach starts with obtaining a complete history, and a physical examination which are valuable for the rapid diagnosis of the underlying disease. The most frequently diagnosed causes of NC are biliary atresia (BA) and idiopathic neonatal hepatitis (INH). The early diagnosis of NC ensures more accurate management and better prognosis. Despite the unavailability of any specific treatments for some causes of NC, the patient can benefit from nutritional management and early medical intervention. Future research should attempt to shed light on methods of screening for NC, especially for causes that can be effectively treated either through proper nutritional support, appropriate chemotherapeutic management, or timely surgical intervention.ConclusionFurther attention should be paid for diagnosis and treatment of NC as it may be misdiagnosed as physiological jaundice; this may delay the proper management of the underlying diseases and aggravates its complications.
Collapse
|
24
|
Leung DH, Yimlamai D. The intestinal microbiome and paediatric liver disease. Lancet Gastroenterol Hepatol 2018; 2:446-455. [PMID: 28497760 DOI: 10.1016/s2468-1253(16)30241-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023]
Abstract
The intestinal microbiome has been the intense focus of recent study, but how the microbiota affects connected organs, such as the liver, has not been fully elucidated. The microbiome regulates intestinal permeability and helps to metabolise the human diet into small molecules, thus directly affecting liver health. Several studies have linked intestinal dysbiosis to the severity and progression of liver diseases, such as non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, primary sclerosing cholangitis, total parenteral nutrition-associated liver disease, and cystic fibrosis-associated liver disease. However, there is limited information and interpretation with regard to how the microbiome could contribute to liver disease in the paediatric population. Notably, the gut microbiota is distinct at birth and does not establish an adult profile until the third year of life. Clinical research suggests that paediatric liver disease differs in both severity and rate of progression compared with adult forms, suggesting independent mechanisms of pathogenesis. We discuss data linking the intestinal microbiome to liver disease development and therapeutic efforts to modify the microbiome in children.
Collapse
Affiliation(s)
- Daniel H Leung
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Division of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - Dean Yimlamai
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Division of Gastroenterology and Nutrition, Department of Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
25
|
Proteomics of human liver membrane transporters: a focus on fetuses and newborn infants. Eur J Pharm Sci 2018; 124:217-227. [PMID: 30171984 DOI: 10.1016/j.ejps.2018.08.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hepatic membrane transporters are involved in the transport of many endogenous and exogenous compounds, including drugs. We aimed to study the relation of age with absolute transporter protein expression in a cohort of 62 mainly fetus and newborn samples. METHODS Protein expressions of BCRP, BSEP, GLUT1, MCT1, MDR1, MRP1, MRP2, MRP3, NTCP, OCT1, OATP1B1, OATP1B3, OATP2B1 and ATP1A1 were quantified with LC-MS/MS in isolated crude membrane fractions of snap-frozen post-mortem fetal and pediatric, and surgical adult liver samples. mRNA expression was quantified using RNA sequencing, and genetic variants with TaqMan assays. We explored relationships between protein expression and age (gestational age [GA], postnatal age [PNA], and postmenstrual age); between protein and mRNA expression; and between protein expression and genotype. RESULTS We analyzed 36 fetal (median GA 23.4 weeks [range 15.3-41.3]), 12 premature newborn (GA 30.2 weeks [24.9-36.7], PNA 1.0 weeks [0.14-11.4]), 10 term newborn (GA 40.0 weeks [39.7-41.3], PNA 3.9 weeks [0.3-18.1]), 4 pediatric (PNA 4.1 years [1.1-7.4]) and 8 adult liver samples. A relationship with age was found for BCRP, BSEP, GLUT1, MDR1, MRP1, MRP2, MRP3, NTCP, OATP1B1 and OCT1, with the strongest relationship for postmenstrual age. For most transporters mRNA and protein expression were not correlated. No genotype-protein expression relationship was detected. DISCUSSION AND CONCLUSION Various developmental patterns of protein expression of hepatic transporters emerged in fetuses and newborns up to four months of age. Postmenstrual age was the most robust factor predicting transporter expression in this cohort. Our data fill an important gap in current pediatric transporter ontogeny knowledge.
Collapse
|
26
|
Sargiacomo C, El-Kehdy H, Pourcher G, Stieger B, Najimi M, Sokal E. Age-dependent glycosylation of the sodium taurocholate cotransporter polypeptide: From fetal to adult human livers. Hepatol Commun 2018; 2:693-702. [PMID: 29881821 PMCID: PMC5983131 DOI: 10.1002/hep4.1174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 12/25/2022] Open
Abstract
Sodium taurocholate cotransporter polypeptide (NTCP), mainly expressed on the sinusoidal membrane of hepatocytes, is one of the major transporters responsible for liver bile acid (BA) re-uptake. NTCP transports conjugated BA from the blood into hepatocytes and is crucial for correct enterohepatic circulation. Studies have shown that insufficient hepatic clearance of BA correlates with elevated serum BA in infants younger than 1 year of age. In the current study, we investigated human NTCP messenger RNA and protein expression by using reverse-transcription quantitative polymerase chain reaction and immunoblotting in isolated and cryopreserved human hepatocytes from two different age groups, below and above 1 year of age. Here, we show that NTCP messenger RNA expression is not modulated whereas NTCP protein posttranslational glycosylation is modulated in an age-dependent manner. These results were confirmed by quantification analysis of NTCP 55-kDa N-glycosylated bands, which showed significantly less total NTCP protein in donors below 1 year of age compared to donors older than 1 year. NTCP tissue localization was also analyzed by means of immunofluorescence. This revealed that NTCP cellular localization in fetal samples was mainly perinuclear, suggesting that NTCP is not glycosylated, while its postnatal localization on the plasma membrane is age dependent compared to multidrug resistant protein 2, which is apical starting in fetal life. Conclusion: After birth, the NTCP age-dependent maturation process requires approximately 1 year to complete NTCP glycosylation in human hepatocytes. Therefore, NTCP late posttranslational glycosylation appears to be important for correct NTCP membrane localization, which might explain physiologic cholestasis in neonatal life and might play a central role for HBV infection after birth. (Hepatology Communications 2018;2:693-702).
Collapse
Affiliation(s)
- Camillo Sargiacomo
- Institute of Experimental and Clinical Research, Laboratory of Pediatric Hepatology and Cell Therapy Université Catholique de Louvain Brussels Belgium
| | - Hoda El-Kehdy
- Institute of Experimental and Clinical Research, Laboratory of Pediatric Hepatology and Cell Therapy Université Catholique de Louvain Brussels Belgium
| | - Guillaume Pourcher
- Department of Digestive Diseases, Institut Mutualiste Montsouris Paris Descartes University Paris France
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology University Hospital Zurich Zurich Switzerland
| | - Mustapha Najimi
- Institute of Experimental and Clinical Research, Laboratory of Pediatric Hepatology and Cell Therapy Université Catholique de Louvain Brussels Belgium
| | - Etienne Sokal
- Institute of Experimental and Clinical Research, Laboratory of Pediatric Hepatology and Cell Therapy Université Catholique de Louvain Brussels Belgium
| |
Collapse
|
27
|
Stevens CE, Toy P, Kamili S, Taylor PE, Tong MJ, Xia GL, Vyas GN. Eradicating hepatitis B virus: The critical role of preventing perinatal transmission. Biologicals 2017; 50:3-19. [DOI: 10.1016/j.biologicals.2017.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022] Open
|
28
|
Rodieux F, Gotta V, Pfister M, van den Anker JN. Causes and Consequences of Variability in Drug Transporter Activity in Pediatric Drug Therapy. J Clin Pharmacol 2017; 56 Suppl 7:S173-92. [PMID: 27385174 DOI: 10.1002/jcph.721] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/26/2016] [Accepted: 02/11/2016] [Indexed: 01/06/2023]
Abstract
Drug transporters play a key role in mediating the uptake of endo- and exogenous substances into cells as well as their efflux. Therefore, variability in drug transporter activity can influence pharmaco- and toxicokinetics and be a determinant of drug safety and efficacy. In children, particularly in neonates and young infants, the contribution of tissue-specific drug transporters to drug absorption, distribution, and excretion may differ from that in adults. In this review 5 major factors and their interdependence that may influence drug transporter activity in children are discussed: developmental differences, genetic polymorphisms, pediatric comorbidities, interacting comedication, and environmental factors. Even if data are sparse, altered drug transporter activity due to those factors have been associated with clinically relevant differences in drug disposition, efficacy, and safety in pediatric patients. Single nucleotide polymorphisms in drug transporter-encoding genes were the most studied source of drug transporter variability in children. However, in the age group where drug transporter activity has been reported to differ from that in adults, namely neonates and young infants, hardly any studies have been performed. Longitudinal studies in this young population are required to investigate the age- and disease-dependent genotype-phenotype relationships and relevance of drug transporter drug-drug interactions. Physiologically based pharmacokinetic modeling approaches can integrate drug- and patient-specific parameters, including drug transporter ontogeny, and may further improve in silico predictions of pediatric-specific pharmacokinetics.
Collapse
Affiliation(s)
- Frédérique Rodieux
- Pediatric Pharmacology, University of Basel Children's Hospital (UKBB), Basel, Switzerland
| | - Verena Gotta
- Pediatric Pharmacology, University of Basel Children's Hospital (UKBB), Basel, Switzerland
| | - Marc Pfister
- Pediatric Pharmacology, University of Basel Children's Hospital (UKBB), Basel, Switzerland.,Quantitative Solutions/Certara, Menlo Park, CA, USA
| | - Johannes N van den Anker
- Pediatric Pharmacology, University of Basel Children's Hospital (UKBB), Basel, Switzerland.,Division of Pediatric Clinical Pharmacology, Children's National Health System, Washington, DC, USA.,Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The goal of this review is to provide updates on the definition, pathophysiology, treatment, and prevention of intestinal failure-associated liver disease (IFALD) that are relevant to care of pediatric patients. RECENT FINDINGS Current literature emphasizes the multifactorial nature of IFALD. The pathogenesis is still largely unknown; however, molecular pathways have been identified. Key to these pathways are proinflammatory cytokines involved in hepatic inflammation and bile acids synthesis such as Toll-like receptor 4 and farnesoid X receptor, respectively. Research for prevention and treatment is aimed at alleviating risk factors associated with IFALD, principally those associated with parental nutrition. Multiple nutrients and amino acids are relevant to the development of IFALD, but lipid composition has been the primary focus. Lipid emulsions with a lower ratio of omega-6-to-omega-3 polyunsaturated fatty acids (FAs) appear to improve bile flow and decrease intrahepatic inflammation. Long-term consequences of these alternative lipid emulsions are yet to be determined. SUMMARY IFALD remains the greatest contributor of mortality in patients with intestinal failure. Many factors contribute to its development, namely, alterations in the gut microbiome, sepsis, and lack of enteral intake. Novel combinations of lipid formulations are promising alternatives to purely soy-based formulas to reduce cholestasis.
Collapse
Affiliation(s)
- Cathleen M Courtney
- aDivision of Pediatric Surgery, St. Louis Children's Hospital bDepartment of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
30
|
McIlvride S, Dixon PH, Williamson C. Bile acids and gestation. Mol Aspects Med 2017; 56:90-100. [PMID: 28506676 DOI: 10.1016/j.mam.2017.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/27/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022]
Abstract
There are numerous profound maternal physiological changes that occur from conception onwards and adapt throughout gestation in order to support a healthy pregnancy. By the time of late gestation, when circulating pregnancy hormones are at their highest concentrations, maternal adaptations include relative hyperlipidemia, hypercholanemia and insulin resistance. Bile acids have now been established as key regulators of metabolism, and their role in gestational changes in metabolism is becoming apparent. Bile acid homeostasis is tightly regulated by the nuclear receptor FXR, which has been shown to have reduced activity during pregnancy. This review focuses on the gestational alterations in bile acid homeostasis that occur in normal pregnancy, which in some women can become pathological, leading to the development of intrahepatic cholestasis of pregnancy. As well as their important role in maternal metabolic health, we will review bile acid metabolism in the feto-placental unit.
Collapse
Affiliation(s)
- Saraid McIlvride
- Division of Women's Health, King's College London, Guy's Campus, Hodgkin Building, SE1 1UL, London, United Kingdom
| | - Peter H Dixon
- Division of Women's Health, King's College London, Guy's Campus, Hodgkin Building, SE1 1UL, London, United Kingdom
| | - Catherine Williamson
- Division of Women's Health, King's College London, Guy's Campus, Hodgkin Building, SE1 1UL, London, United Kingdom.
| |
Collapse
|
31
|
Lobular Distribution and Variability in Hepatic ATP Binding Cassette Protein B1 (ABCB1, P-gp): Ontogenetic Differences and Potential for Toxicity. Pharmaceutics 2017; 9:pharmaceutics9010008. [PMID: 28218636 PMCID: PMC5374374 DOI: 10.3390/pharmaceutics9010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 01/16/2023] Open
Abstract
The ATP Binding Cassette B1 (ABCB1) transporter has critical roles in endo- and xenobiotic efficacy and toxicity. To understand population variability in hepatic transport we determined ABCB1 mRNA and protein levels in total liver lysates sampled from 8 pre-defined sites (n = 24, 18–69 years), and in S9 from randomly acquired samples (n = 87, 7 days–87 years). ABCB1 levels did not differ significantly throughout individual livers and showed 4.4-fold protein variation between subjects. Neither mRNA nor protein levels varied with sex, ethnicity, obesity or triglycerides in lysates or S9 (that showed the same relationships), but protein levels were lower in pediatric S9 (p < 0.0001), with 76% of adult ABCB1 present at birth and predicted to mature in 5 years. Pediatric total liver lysates were not available. In summary, opportunistic collection for studying human hepatic ABCB1 is acceptable. Additionally, ABCB1 may be lower in children, indicating differential potential for toxicity and response to therapy in this special population.
Collapse
|
32
|
Mooij MG, Nies AT, Knibbe CAJ, Schaeffeler E, Tibboel D, Schwab M, de Wildt SN. Development of Human Membrane Transporters: Drug Disposition and Pharmacogenetics. Clin Pharmacokinet 2016; 55:507-24. [PMID: 26410689 PMCID: PMC4823323 DOI: 10.1007/s40262-015-0328-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Membrane transporters play an essential role in the transport of endogenous and exogenous compounds, and consequently they mediate the uptake, distribution, and excretion of many drugs. The clinical relevance of transporters in drug disposition and their effect in adults have been shown in drug–drug interaction and pharmacogenomic studies. Little is known, however, about the ontogeny of human membrane transporters and their roles in pediatric pharmacotherapy. As they are involved in the transport of endogenous substrates, growth and development may be important determinants of their expression and activity. This review presents an overview of our current knowledge on human membrane transporters in pediatric drug disposition and effect. Existing pharmacokinetic and pharmacogenetic data on membrane substrate drugs frequently used in children are presented and related, where possible, to existing ex vivo data, providing a basis for developmental patterns for individual human membrane transporters. As data for individual transporters are currently still scarce, there is a striking information gap regarding the role of human membrane transporters in drug therapy in children.
Collapse
Affiliation(s)
- Miriam G Mooij
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Room Sp-3458, Wytemaweg 80, PO-box 2060, 3000 CB, Rotterdam, The Netherlands
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Catherijne A J Knibbe
- Faculty of Science, Leiden Academic Centre for Research, Pharmacology, Leiden, The Netherlands.,Hospital Pharmacy and Clinical Pharmacology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Room Sp-3458, Wytemaweg 80, PO-box 2060, 3000 CB, Rotterdam, The Netherlands
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Clinical Pharmacology, University Hospital Tuebingen, Tuebingen, Germany
| | - Saskia N de Wildt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Room Sp-3458, Wytemaweg 80, PO-box 2060, 3000 CB, Rotterdam, The Netherlands.
| |
Collapse
|
33
|
Ito S, Hayashi H, Sugiura T, Ito K, Ueda H, Togawa T, Endo T, Tanikawa K, Kage M, Kusuhara H, Saitoh S. Effects of 4-phenylbutyrate therapy in a preterm infant with cholestasis and liver fibrosis. Pediatr Int 2016; 58:506-509. [PMID: 26841694 DOI: 10.1111/ped.12839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/19/2015] [Accepted: 10/09/2015] [Indexed: 01/05/2023]
Abstract
The bile salt export pump is expressed at the canalicular membrane of hepatocytes and mediates biliary excretion of bile salts. 4-Phenylbutyrate (4 PB), a drug used to treat ornithine transcarbamylase deficiency, has been found to increase the hepatocanalicular expression of bile salt export pump. The beneficial effects of 4-phenylbutyrate therapy have been reported for patients with progressive familial intrahepatic cholestasis, an inherited autosomal recessive liver disease. This is the first study to show the therapeutic effect of 4 PB in a preterm infant with cholestasis and liver fibrosis. The preterm infant had severe cholestasis with jaundice and failure to thrive refractory to ursodeoxycholic acid. Histology indicated giant cell hepatitis, cholestasis, and severe fibrosis. Bile salt export pump immunostaining showed lower expression than in a control. Oral 4 PB was started at a daily dose of 200 mg/kg/day. After the start of 4 PB therapy, cholestasis improved.
Collapse
Affiliation(s)
- Shogo Ito
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Tokio Sugiura
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Koichi Ito
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroko Ueda
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Takao Togawa
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Takeshi Endo
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Ken Tanikawa
- Department of Diagnostic Pathology, Kurume University Hospital, Fukuoka, Japan
| | - Masayoshi Kage
- Department of Diagnostic Pathology, Kurume University Hospital, Fukuoka, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
34
|
Exon-skipping and mRNA decay in human liver tissue: molecular consequences of pathogenic bile salt export pump mutations. Sci Rep 2016; 6:24827. [PMID: 27114171 PMCID: PMC4845019 DOI: 10.1038/srep24827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/05/2016] [Indexed: 12/12/2022] Open
Abstract
The bile salt export pump BSEP mediates bile formation. Over 150 BSEP mutations are associated with progressive familial intrahepatic cholestasis type 2 (PFIC-2), with few characterised specifically. We examined liver tissues from two PFIC-2 patients compound heterozygous for the splice-site mutation c.150 + 3A > C and either c.2783_2787dup5 resulting in a frameshift with a premature termination codon (child 1) or p.R832C (child 2). Splicing was analysed with a minigene system and mRNA sequencing from patients’ livers. Protein expression was shown by immunofluorescence. Using the minigene, c.150 + 3A > C causes complete skipping of exon 3. In liver tissue of child 1, c.2783_2787dup5 was found on DNA but not on mRNA level, implying nonsense-mediated mRNA decay (NMD) when c.2783_2787dup5 is present. Still, BSEP protein as well as mRNA with and without exon 3 were detectable and can be assigned to the c.150 + 3A > C allele. Correctly spliced transcripts despite c.150 + 3A > C were also confirmed in liver of child 2. In conclusion, we provide evidence (1) for effective NMD due to a BSEP frameshift mutation and (2) partial exon-skipping due to c.150 + 3A > C. The results illustrate that the extent of exon-skipping depends on the genomic and cellular context and that regulation of splicing may have therapeutic potential.
Collapse
|
35
|
Mooij MG, van de Steeg E, van Rosmalen J, Windster JD, de Koning BAE, Vaes WHJ, van Groen BD, Tibboel D, Wortelboer HM, de Wildt SN. Proteomic Analysis of the Developmental Trajectory of Human Hepatic Membrane Transporter Proteins in the First Three Months of Life. ACTA ACUST UNITED AC 2016; 44:1005-13. [PMID: 27103634 DOI: 10.1124/dmd.115.068577] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/20/2016] [Indexed: 01/02/2023]
Abstract
Human hepatic membrane-embedded transporter proteins are involved in trafficking endogenous and exogenous substrates. Even though impact of transporters on pharmacokinetics is recognized, little is known on maturation of transporter protein expression levels, especially during early life. We aimed to study the protein expression of 10 transporters in liver tissue from fetuses, infants, and adults. Transporter protein expression levels [ATP-binding cassette transporter (ABC)B1, ABCG2, ABCC2, ABCC3, bile salt efflux pump, glucose transporter 1, monocarboxylate transporter 1, organic anion transporter polypeptide (OATP)1B1, OATP2B1, and organic cation/carnitine transporter 2) were quantified using ultraperformance liquid chromatography tandem mass spectrometry in snap-frozen postmortem fetal, infant, and adult liver samples. Protein expression was quantified in isolated crude membrane fractions. The possible association between postnatal and postmenstrual age versus protein expression was studied. We studied 25 liver samples, as follows: 10 fetal [median gestational age 23.2 wk (range 16.4-37.9)], 12 infantile [gestational age at birth 35.1 wk (27.1-41.0), postnatal age 1 wk (0-11.4)], and 3 adult. The relationship of protein expression with age was explored by comparing age groups. Correlating age within the fetal/infant age group suggested four specific protein expression patterns, as follows: stable, low to high, high to low, and low-high-low. The impact of growth and development on human membrane transporter protein expression is transporter-dependent. The suggested age-related differences in transporter protein expression may aid our understanding of normal growth and development, and also may impact the disposition of substrate drugs in neonates and young infants.
Collapse
Affiliation(s)
- Miriam G Mooij
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| | - Evita van de Steeg
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| | - Joost van Rosmalen
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| | - Jonathan D Windster
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| | - Barbara A E de Koning
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| | - Wouter H J Vaes
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| | - Bianca D van Groen
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| | - Heleen M Wortelboer
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| | - Saskia N de Wildt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| |
Collapse
|
36
|
Moscovitz JE, Nahar MS, Shalat SL, Slitt AL, Dolinoy DC, Aleksunes LM. Correlation between Conjugated Bisphenol A Concentrations and Efflux Transporter Expression in Human Fetal Livers. ACTA ACUST UNITED AC 2016; 44:1061-5. [PMID: 26851240 DOI: 10.1124/dmd.115.068668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/04/2016] [Indexed: 12/14/2022]
Abstract
Because of its widespread use in the manufacturing of consumer products over several decades, human exposure to bisphenol A (BPA) has been pervasive. Fetuses are particularly sensitive to BPA exposure, with a number of negative developmental and reproductive outcomes observed in rodent perinatal models. Xenobiotic transporters are one mechanism to extrude conjugated and unconjugated BPA from the liver. In this study, the mRNA expression of xenobiotic transporters and relationships with total, conjugated, and free BPA levels were explored utilizing human fetal liver samples. The mRNA expression of breast cancer resistance protein (BCRP) and multidrug resistance-associated transporter (MRP)4, as well as BCRP and multidrug resistance transporter 1 exhibited the highest degree of correlation, with r(2) values of 0.941 and 0.816 (P < 0.001 for both), respectively. Increasing concentrations of conjugated BPA significantly correlated with high expression of MRP1 (P < 0.001), MRP2 (P < 0.05), and MRP3 (P < 0.05) transporters, in addition to the NF-E2-related factor 2 transcription factor (P < 0.001) and its prototypical target gene, NAD(P)H quinone oxidoreductase 1 (P < 0.001). These data demonstrate that xenobiotic transporters may be coordinately expressed in the human fetal liver. This is also the first report of a relationship between environmentally relevant fetal BPA levels and differences in the expression of transporters that can excrete the parent compound and its metabolites.
Collapse
Affiliation(s)
- Jamie E Moscovitz
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey (J.E.M., L.M.A.); Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan (M.S.N., D.C.D.); Division of Environmental Health, School of Public Health, Georgia State University, Atlanta, Georgia (S.L.S.); Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey (S.L.S.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (S.L.S., L.M.A.); Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S.); and Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan (D.C.D.)
| | - Muna S Nahar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey (J.E.M., L.M.A.); Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan (M.S.N., D.C.D.); Division of Environmental Health, School of Public Health, Georgia State University, Atlanta, Georgia (S.L.S.); Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey (S.L.S.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (S.L.S., L.M.A.); Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S.); and Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan (D.C.D.)
| | - Stuart L Shalat
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey (J.E.M., L.M.A.); Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan (M.S.N., D.C.D.); Division of Environmental Health, School of Public Health, Georgia State University, Atlanta, Georgia (S.L.S.); Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey (S.L.S.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (S.L.S., L.M.A.); Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S.); and Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan (D.C.D.)
| | - Angela L Slitt
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey (J.E.M., L.M.A.); Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan (M.S.N., D.C.D.); Division of Environmental Health, School of Public Health, Georgia State University, Atlanta, Georgia (S.L.S.); Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey (S.L.S.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (S.L.S., L.M.A.); Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S.); and Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan (D.C.D.)
| | - Dana C Dolinoy
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey (J.E.M., L.M.A.); Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan (M.S.N., D.C.D.); Division of Environmental Health, School of Public Health, Georgia State University, Atlanta, Georgia (S.L.S.); Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey (S.L.S.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (S.L.S., L.M.A.); Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S.); and Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan (D.C.D.)
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey (J.E.M., L.M.A.); Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan (M.S.N., D.C.D.); Division of Environmental Health, School of Public Health, Georgia State University, Atlanta, Georgia (S.L.S.); Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey (S.L.S.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (S.L.S., L.M.A.); Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S.); and Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan (D.C.D.)
| |
Collapse
|
37
|
Elmorsi Y, Barber J, Rostami-Hodjegan A. Ontogeny of Hepatic Drug Transporters and Relevance to Drugs Used in Pediatrics. Drug Metab Dispos 2015; 44:992-8. [DOI: 10.1124/dmd.115.067801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022] Open
|
38
|
Brouwer KLR, Aleksunes LM, Brandys B, Giacoia GP, Knipp G, Lukacova V, Meibohm B, Nigam SK, Rieder M, de Wildt SN. Human Ontogeny of Drug Transporters: Review and Recommendations of the Pediatric Transporter Working Group. Clin Pharmacol Ther 2015; 98:266-87. [PMID: 26088472 DOI: 10.1002/cpt.176] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 12/19/2022]
Abstract
The critical importance of membrane-bound transporters in pharmacotherapy is widely recognized, but little is known about drug transporter activity in children. In this white paper, the Pediatric Transporter Working Group presents a systematic review of the ontogeny of clinically relevant membrane transporters (e.g., SLC, ABC superfamilies) in intestine, liver, and kidney. Different developmental patterns for individual transporters emerge, but much remains unknown. Recommendations to increase our understanding of membrane transporters in pediatric pharmacotherapy are presented.
Collapse
Affiliation(s)
- K L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - L M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers, the State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - B Brandys
- NIH Library, National Institutes of Health, Bethesda, Maryland, USA
| | - G P Giacoia
- Obstetric and Pediatric Pharmacology and Therapeutics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, Maryland, USA
| | - G Knipp
- College of Pharmacy, Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - V Lukacova
- Simulations Plus, lnc., Lancaster, California, USA
| | - B Meibohm
- University of Tennessee Health Science Center, College of Pharmacy, Memphis, Tennessee, USA
| | - S K Nigam
- University of California San Diego, La Jolla, California, USA
| | - M Rieder
- Department of Pediatrics, University of Western Ontario, London, Ontario, Canada
| | - S N de Wildt
- Erasmus MC Sophia Children's Hospital, Intensive Care and Department of Pediatric Surgery, Rotterdam, the Netherlands
| | | |
Collapse
|
39
|
Abstract
Hepatitis B virus (HBV) infection affects 240 million people worldwide. A liver-specific bile acid transporter named the sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for HBV and its satellite, the hepatitis D virus (HDV). NTCP likely acts as a major determinant for the liver tropism and species specificity of HBV and HDV at the entry level. NTCP-mediated HBV entry interferes with bile acid transport in cell cultures and has been linked with alterations in bile acid and cholesterol metabolism in vivo. The human liver carcinoma cell line HepG2, complemented with NTCP, now provides a valuable platform for studying the basic biology of the viruses and developing treatments for HBV infection. This review summarizes critical findings regarding NTCP's role as a viral receptor for HBV and HDV and discusses important questions that remain unanswered.
Collapse
Affiliation(s)
- Wenhui Li
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China;
| |
Collapse
|
40
|
Kumar JA, Teckman JH. Controversies in the Mechanism of Total Parenteral Nutrition Induced Pathology. CHILDREN-BASEL 2015; 2:358-70. [PMID: 27417369 PMCID: PMC4928764 DOI: 10.3390/children2030358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 12/20/2022]
Abstract
Over 30,000 patients are permanently dependent on Total Parenteral Nutrition (TPN) for survival with several folds higher requiring TPN for a prolonged duration. Unfortunately, it can cause potentially fatal complications. TPN infusion results in impairment of gut mucosal integrity, enhanced inflammation, increased cytokine expression and trans-mucosal bacterial permeation. It also causes endotoxin associated down regulation of bile acid transporters and Parenteral Nutrition Associated Liver Disease (PNALD), which includes steatosis, disrupted glucose metabolism, disrupted lipid metabolism, cholestasis and liver failure. Despite multiple theories, its etiology and pathophysiology remains elusive and is likely multifactorial. An important cause for TPN related pathologies appears to be a disruption in the normal enterohepatic circulation due to a lack of feeding during such therapy. This is further validated by the fact that in clinical settings, once cholestasis sets in, its reversal occurs when a patient is receiving a major portion of calories enterally. There are several other postulated mechanisms including gut bacterial permeation predisposing to endotoxin associated down regulation of bile acid transporters. An additional potential mechanism includes toxicity of the TPN solution itself, such as lipid mediated hepatic toxicity. Prematurity, leading to a poor development of bile acid regulating nuclear receptors and transporters has also been implicated as a causative factor. This review presents the current controversies and research into mechanisms of TPN associated injury.
Collapse
Affiliation(s)
- Jain Ajay Kumar
- Department of Pediatrics, St. Louis University School of Medicine, Cardinal Glennon Children's Medical Center, SSM Cardinal Glennon Hospital 1465 South Grand Blvd., St. Louis, MO 63104, USA.
| | - Jeffery H Teckman
- Department of Pediatrics, St. Louis University School of Medicine, Cardinal Glennon Children's Medical Center, SSM Cardinal Glennon Hospital 1465 South Grand Blvd., St. Louis, MO 63104, USA.
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine.
| |
Collapse
|
41
|
Zaloga GP. Phytosterols, Lipid Administration, and Liver Disease During Parenteral Nutrition. JPEN J Parenter Enteral Nutr 2015; 39:39S-60S. [DOI: 10.1177/0148607115595978] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022]
|
42
|
Zhang Q, Yang W, Song H, Wu H, Lu Y, He J, Zhao D, Chen X. Tissue distribution and ontogeny of multidrug resistance protein 2, a phosphatidylcholine translocator, in rats. Eur J Drug Metab Pharmacokinet 2014; 41:87-91. [DOI: 10.1007/s13318-014-0226-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
|
43
|
Abstract
Information on drug absorption and disposition in infants and children has increased considerably over the past 2 decades. However, the impact of specific age-related effects on pharmacokinetics, pharmacodynamics, and dose requirements remains poorly understood. Absorption can be affected by the differences in gastric pH and stomach emptying time that have been observed in the pediatric population. Low plasma protein concentrations and a higher body water composition can change drug distribution. Metabolic processes are often immature at birth, which can lead to a reduced clearance and a prolonged half-life for those drugs for which metabolism is a significant mechanism for elimination. Renal excretion is also reduced in neonates due to immature glomerular filtration, tubular secretion, and reabsorption. Limited data are available on the pharmacodynamic behavior of drugs in the pediatric population. Understanding these age effects provide a mechanistic way to identify initial doses for the pediatric population. The various factors that impact pharmacokinetics and pharmacodynamics mature towards adult values at different rates, thus requiring continual modification of drug dose regimens in neonates, infants, and children. In this paper, the age-related changes in drug absorption, distribution, metabolism, and elimination in infants and children are reviewed, and the age-related dosing regimens for this population are discussed.
Collapse
Affiliation(s)
- Hong Lu
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island
| | - Sara Rosenbaum
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
44
|
Urban S, Bartenschlager R, Kubitz R, Zoulim F. Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology 2014; 147:48-64. [PMID: 24768844 DOI: 10.1053/j.gastro.2014.04.030] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/11/2014] [Accepted: 04/21/2014] [Indexed: 02/07/2023]
Abstract
Although there has been much research into the pathogenesis and treatment of hepatitis B virus (HBV) and hepatitis D virus (HDV) infections, we still do not completely understand how these pathogens enter hepatocytes. This is because in vitro infection studies have only been performed in primary human hepatocytes. Development of a polarizable, HBV-susceptible human hepatoma cell line and studies of primary hepatocytes from Tupaia belangeri have provided important insights into the viral and cellular factors involved in virus binding and infection. The large envelope (L) protein on the surface of HBV and HDV particles has many different functions and is required for virus entry. The L protein mediates attachment of virions to heparan sulfate proteoglycans on the surface of hepatocytes. The myristoylated N-terminal preS1 domain of the L protein subsequently binds to the sodium taurocholate cotransporting polypeptide (NTCP, encoded by SLC10A1), the recently identified bona fide receptor for HBV and HDV. The receptor functions of NTCP and virus entry are blocked, in vitro and in vivo, by Myrcludex B, a synthetic N-acylated preS1 lipopeptide. Currently, the only agents available to treat chronic HBV infection target the viral polymerase, and no selective therapies are available for HDV infection. It is therefore important to study the therapeutic potential of virus entry inhibitors, especially when combined with strategies to induce immune-mediated killing of infected hepatocytes.
Collapse
Affiliation(s)
- Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Infection Research, Heidelberg University, Heidelberg, Germany.
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Infection Research, Heidelberg University, Heidelberg, Germany
| | - Ralf Kubitz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Fabien Zoulim
- INSERM Unité 1052, Cancer Research Center of Lyon, Lyon University, Lyon, France
| |
Collapse
|
45
|
Mooij MG, Schwarz UI, de Koning BAE, Leeder JS, Gaedigk R, Samsom JN, Spaans E, van Goudoever JB, Tibboel D, Kim RB, de Wildt SN. Ontogeny of human hepatic and intestinal transporter gene expression during childhood: age matters. Drug Metab Dispos 2014; 42:1268-74. [PMID: 24829289 DOI: 10.1124/dmd.114.056929] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many drugs prescribed to children are drug transporter substrates. Drug transporters are membrane-bound proteins that mediate the cellular uptake or efflux of drugs and are important to drug absorption and elimination. Very limited data are available on the effect of age on transporter expression. Our study assessed age-related gene expression of hepatic and intestinal drug transporters. Multidrug resistance protein 2 (MRP2), organic anion transporting polypeptide 1B1 (OATP1B1), and OATP1B3 expression was determined in postmortem liver samples (fetal n = 6, neonatal n = 19, infant n = 7, child n = 2, adult n = 11) and multidrug resistance 1 (MDR1) expression in 61 pediatric liver samples. Intestinal expression of MDR1, MRP2, and OATP2B1 was determined in surgical small bowel samples (neonates n = 15, infants n = 3, adults n = 14). Using real-time reverse-transcription polymerase chain reaction, we measured fetal and pediatric gene expression relative to 18S rRNA (liver) and villin (intestines), and we compared it with adults using the 2(-∆∆Ct) method. Hepatic expression of MRP2, OATP1B1, and OATP1B3 in all pediatric age groups was significantly lower than in adults. Hepatic MDR1 mRNA expression in fetuses, neonates, and infants was significantly lower than in adults. Neonatal intestinal expressions of MDR1 and MRP2 were comparable to those in adults. Intestinal OATP2B1 expression in neonates was significantly higher than in adults. We provide new data that show organ- and transporter-dependent differences in hepatic and intestinal drug transporter expression in an age-dependent fashion. This suggests that substrate drug absorption mediated by these transporters may be subject to age-related variation in a transporter dependent pattern.
Collapse
Affiliation(s)
- Miriam G Mooij
- Intensive Care and Department of Pediatric Surgery (M.G.M., S.N.W., B.A.E.K., E.S., D.T.), and Laboratory of Pediatrics, Division of Gastroenterology and Nutrition (J.N.S.), Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, Ontario, Canada (U.I.S., R.B.K.); Division of Clinical Pharmacology and Therapeutic Innovation, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L., R.G.); Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, and Department of Pediatrics, VU University Medical Center, Amsterdam, the Netherlands (J.B.G.)
| | - Ute I Schwarz
- Intensive Care and Department of Pediatric Surgery (M.G.M., S.N.W., B.A.E.K., E.S., D.T.), and Laboratory of Pediatrics, Division of Gastroenterology and Nutrition (J.N.S.), Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, Ontario, Canada (U.I.S., R.B.K.); Division of Clinical Pharmacology and Therapeutic Innovation, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L., R.G.); Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, and Department of Pediatrics, VU University Medical Center, Amsterdam, the Netherlands (J.B.G.)
| | - Barbara A E de Koning
- Intensive Care and Department of Pediatric Surgery (M.G.M., S.N.W., B.A.E.K., E.S., D.T.), and Laboratory of Pediatrics, Division of Gastroenterology and Nutrition (J.N.S.), Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, Ontario, Canada (U.I.S., R.B.K.); Division of Clinical Pharmacology and Therapeutic Innovation, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L., R.G.); Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, and Department of Pediatrics, VU University Medical Center, Amsterdam, the Netherlands (J.B.G.)
| | - J Steven Leeder
- Intensive Care and Department of Pediatric Surgery (M.G.M., S.N.W., B.A.E.K., E.S., D.T.), and Laboratory of Pediatrics, Division of Gastroenterology and Nutrition (J.N.S.), Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, Ontario, Canada (U.I.S., R.B.K.); Division of Clinical Pharmacology and Therapeutic Innovation, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L., R.G.); Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, and Department of Pediatrics, VU University Medical Center, Amsterdam, the Netherlands (J.B.G.)
| | - Roger Gaedigk
- Intensive Care and Department of Pediatric Surgery (M.G.M., S.N.W., B.A.E.K., E.S., D.T.), and Laboratory of Pediatrics, Division of Gastroenterology and Nutrition (J.N.S.), Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, Ontario, Canada (U.I.S., R.B.K.); Division of Clinical Pharmacology and Therapeutic Innovation, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L., R.G.); Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, and Department of Pediatrics, VU University Medical Center, Amsterdam, the Netherlands (J.B.G.)
| | - Janneke N Samsom
- Intensive Care and Department of Pediatric Surgery (M.G.M., S.N.W., B.A.E.K., E.S., D.T.), and Laboratory of Pediatrics, Division of Gastroenterology and Nutrition (J.N.S.), Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, Ontario, Canada (U.I.S., R.B.K.); Division of Clinical Pharmacology and Therapeutic Innovation, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L., R.G.); Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, and Department of Pediatrics, VU University Medical Center, Amsterdam, the Netherlands (J.B.G.)
| | - Edwin Spaans
- Intensive Care and Department of Pediatric Surgery (M.G.M., S.N.W., B.A.E.K., E.S., D.T.), and Laboratory of Pediatrics, Division of Gastroenterology and Nutrition (J.N.S.), Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, Ontario, Canada (U.I.S., R.B.K.); Division of Clinical Pharmacology and Therapeutic Innovation, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L., R.G.); Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, and Department of Pediatrics, VU University Medical Center, Amsterdam, the Netherlands (J.B.G.)
| | - Johannes B van Goudoever
- Intensive Care and Department of Pediatric Surgery (M.G.M., S.N.W., B.A.E.K., E.S., D.T.), and Laboratory of Pediatrics, Division of Gastroenterology and Nutrition (J.N.S.), Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, Ontario, Canada (U.I.S., R.B.K.); Division of Clinical Pharmacology and Therapeutic Innovation, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L., R.G.); Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, and Department of Pediatrics, VU University Medical Center, Amsterdam, the Netherlands (J.B.G.)
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery (M.G.M., S.N.W., B.A.E.K., E.S., D.T.), and Laboratory of Pediatrics, Division of Gastroenterology and Nutrition (J.N.S.), Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, Ontario, Canada (U.I.S., R.B.K.); Division of Clinical Pharmacology and Therapeutic Innovation, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L., R.G.); Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, and Department of Pediatrics, VU University Medical Center, Amsterdam, the Netherlands (J.B.G.)
| | - Richard B Kim
- Intensive Care and Department of Pediatric Surgery (M.G.M., S.N.W., B.A.E.K., E.S., D.T.), and Laboratory of Pediatrics, Division of Gastroenterology and Nutrition (J.N.S.), Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, Ontario, Canada (U.I.S., R.B.K.); Division of Clinical Pharmacology and Therapeutic Innovation, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L., R.G.); Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, and Department of Pediatrics, VU University Medical Center, Amsterdam, the Netherlands (J.B.G.)
| | - Saskia N de Wildt
- Intensive Care and Department of Pediatric Surgery (M.G.M., S.N.W., B.A.E.K., E.S., D.T.), and Laboratory of Pediatrics, Division of Gastroenterology and Nutrition (J.N.S.), Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, Ontario, Canada (U.I.S., R.B.K.); Division of Clinical Pharmacology and Therapeutic Innovation, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L., R.G.); Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, and Department of Pediatrics, VU University Medical Center, Amsterdam, the Netherlands (J.B.G.)
| |
Collapse
|
46
|
Wlcek K, Stieger B. ATP-binding cassette transporters in liver. Biofactors 2014; 40:188-98. [PMID: 24105869 DOI: 10.1002/biof.1136] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/13/2023]
Abstract
The human ATP-binding cassette (ABC) superfamily consists of 48 members with 14 of them identified in normal human liver at the protein level. Most of the ABC members act as ATP dependent efflux transport systems. In the liver, ABC transporters are involved in diverse physiological processes including export of cholesterol, bile salts, and metabolic endproducts. Consequently, impaired ABC transporter function is involved in inherited diseases like sitosterolemia, hyperbilirubinemia, or cholestasis. Furthermore, altered expression of some of the hepatic ABCs have been associated with primary liver tumors. This review gives a short overview about the function of hepatic ABCs. Special focus is addressed on the localization and ontogenesis of ABC transporters in the human liver. In addition, their expression pattern in primary liver tumors is discussed.
Collapse
Affiliation(s)
- Katrin Wlcek
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
47
|
Alkharfy TM, Ba-Abbad R, Hadi A, Sobaih BH, AlFaleh KM. Total parenteral nutrition-associated cholestasis and risk factors in preterm infants. Saudi J Gastroenterol 2014; 20:293-6. [PMID: 25253364 PMCID: PMC4196344 DOI: 10.4103/1319-3767.141688] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIM Development of hepatic dysfunction is a well-recognized complication of total parenteral nutrition in preterm infants. Previous studies reported the incidence of total parenteral nutrition-associated cholestasis and described possible contributing factors to its pathogenesis, but little is done trying to determine its possible predictive risk factors. The aims of this study was to determine the incidence of total parenteral nutrition-associated cholestasis and to develop a possible predictive model for its occurrence. PATIENTS AND METHODS A review of medical records of all very low birth weight infants admitted to neonatal intensive care unit at King Khalid University Hospital, Riyadh, Saudi Arabia, between January 2001 and December 2003 was carried out. The infants were divided into two groups: Cholestasis and noncholestasis, based on direct serum bilirubin level >34 μmol/L. A multivariate logistic regression analysis was performed to calculate the statistical significance of risk factors. Receiver-operating characteristic curve was used to determine the optimal cutoff points for the significant risk factors and to calculate their sensitivity and specificity. The level of significance was set at P ≤ 0.05. RESULTS A total of 307 patients were included in the analysis. The incidence of cholestasis in the whole population was 24.1% (74 patients). Infants with cholestasis had a lower birth weight, 735.4 ± 166.4 g vs. 1185.0 ± 205.6 g for noncholestasis group (P < 0.001), whereas the mean gestational age for the two groups was 25.4 ± 2.1 week and 28.9 ± 2.1 week, respectively (P < 0.001). The significant risk factors for the development of cholestasis were birth weight (P = 0.006) with an odds ratio of 0.99 [95% confidence interval (CI), 0.98, 0.99]; sensitivity of 92%, specificity of 87%; and total parenteral nutrition duration (P < 0.001) with an odds ratio of 1.18 (95% CI, 1.10, 1.27); sensitivity of 96%, specificity of 89%. CONCLUSIONS A lower birth weight and longer duration of total parenteral nutrition were strong predictive risk factors for the development of cholestasis in preterm infants.
Collapse
Affiliation(s)
- Turki M. Alkharfy
- Department of Pediatrics, College of Medicinal and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia,Address for correspondence: Dr. Turki M. Alkharfy, P.O Box 59244, Riyadh 11525, Kingdom of Saudi Arabia. E-mail:
| | - Rubana Ba-Abbad
- Department of Pediatrics, College of Medicinal and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Anjum Hadi
- Department of Pediatrics, College of Medicinal and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Badr H. Sobaih
- Department of Pediatrics, College of Medicinal and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Khalid M. AlFaleh
- Department of Pediatrics, College of Medicinal and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
48
|
Establishment of metabolism and transport pathways in the rodent and human fetal liver. Int J Mol Sci 2013; 14:23801-27. [PMID: 24322441 PMCID: PMC3876079 DOI: 10.3390/ijms141223801] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/16/2022] Open
Abstract
The ultimate fate of drugs and chemicals in the body is largely regulated by hepatic uptake, metabolism, and excretion. The liver acquires the functional ability to metabolize and transport chemicals during the perinatal period of development. Research using livers from fetal and juvenile rodents and humans has begun to reveal the timing, key enzymes and transporters, and regulatory factors that are responsible for the establishment of hepatic phase I and II metabolism as well as transport. The majority of this research has been limited to relative mRNA and protein quantification. However, the recent utilization of novel technology, such as RNA-Sequencing, and the improved availability and refinement of functional activity assays, has begun to provide more definitive information regarding the extent of hepatic drug disposition in the developing fetus. The goals of this review are to provide an overview of the early regulation of the major phase I and II enzymes and transporters in rodent and human livers and to highlight potential mechanisms that control the ontogeny of chemical metabolism and excretion pathways.
Collapse
|
49
|
Abstract
Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (∼1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions.
Collapse
Affiliation(s)
- James L Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
50
|
Vinken M, Landesmann B, Goumenou M, Vinken S, Shah I, Jaeschke H, Willett C, Whelan M, Rogiers V. Development of an Adverse Outcome Pathway From Drug-Mediated Bile Salt Export Pump Inhibition to Cholestatic Liver Injury. Toxicol Sci 2013; 136:97-106. [DOI: 10.1093/toxsci/kft177] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|