1
|
Wang N, Zhou D, Xu K, Kou D, Chen C, Li C, Ge J, Chen L, Zeng J, Gao M. Iron Homeostasis-Regulated Adaptive Metabolism of PEGylated Ultrasmall Iron Oxide Nanoparticles. ACS NANO 2025. [PMID: 40135968 DOI: 10.1021/acsnano.5c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Iron oxide nanoparticles have become increasingly significant in the biomedical field due to their exceptional magnetic properties and biocompatibility. However, understanding their in vivo metabolism and transformation is crucial due to the potential biological effects they may induce. This study investigates the metabolic pathways of PEGylated ultrasmall iron oxide nanoparticles (PUSIONPs) in vivo, particularly under varying iron statuses and dosages. Employing a comprehensive analytical approach─including magnetic resonance imaging, elemental analysis, histological assessments, hematological analysis, and Western blot analysis─the biodistribution and transformation of PUSIONPs were mapped. The findings reveal significant differences in the metabolic fate of PUSIONPs between iron-sufficient and iron-deficient conditions, underscoring the pivotal role of iron homeostasis in regulating PUSIONPs biodegradation. In iron-deficient states, degradation and transformation were markedly accelerated, with the released iron rapidly incorporated into hemoglobin. Additionally, the liver and spleen exhibited different PUSIONPs metabolism rates due to their distinct physiological roles: the spleen, primarily responsible for iron recycling, facilitated faster degradation, while the liver, serving as an iron storage organ, showed slower degradation. Under iron deficiency, most degradation products were directed toward hemoglobin synthesis, whereas under normal conditions, the liver gradually metabolized the degradation products, and the spleen retained higher iron levels. Moreover, PUSIONPs degradation demonstrated dose dependency, with higher doses slowing degradation and reducing the utilization rate by the iron-deficient body. Comprehensive safety evaluations confirmed that PUSIONPs exhibit excellent biocompatibility across all doses, with no significant safety concerns. Compared to the clinically used intravenous iron supplement iron sucrose, PUSIONPs also demonstrated superior bioavailability and more effective iron supplementation. These findings provide critical insights into the interaction between iron oxide nanoparticles and iron metabolism, offering a foundation for future research and the broader application of PUSIONPs in biomedical contexts.
Collapse
Affiliation(s)
- Ning Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Keyang Xu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Dandan Kou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Can Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Cang Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- School of life Sciences, Soochow University, Suzhou 215123, China
- The Second Affiliated Hospital of Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Jain A, Mishra AK, Hurkat P, Shilpi S, Mody N, Jain SK. Navigating liver cancer: Precision targeting for enhanced treatment outcomes. Drug Deliv Transl Res 2025:10.1007/s13346-024-01780-x. [PMID: 39847205 DOI: 10.1007/s13346-024-01780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Cancer treatments such as surgery and chemotherapy have several limitations, including ineffectiveness against large or persistent tumors, high relapse rates, drug toxicity, and non-specificity of therapy. Researchers are exploring advanced strategies for treating this life-threatening disease to address these challenges. One promising approach is targeted drug delivery using prodrugs or surface modification with receptor-specific moieties for active or passive targeting. While various drug delivery systems have shown potential for reaching hepatic cells, nano-carriers offer significant size, distribution, and targetability advantages. Engineered nanocarriers can be customized to achieve effective and safe targeting of tumors by manipulating physical characteristics such as particle size or attaching receptor-specific ligands. This method is particularly advantageous in treating liver cancer by targeting specific hepatocyte receptors and enzymatic pathways for both passive and active therapeutic strategies. It highlights the epidemiology of liver cancer and provides an in-depth analysis of the various targeting approaches, including prodrugs, liposomes, magneto-liposomes, micelles, glycol-dendrimers, magnetic nanoparticles, chylomicron-based emulsion, and quantum dots surface modification with receptor-specific moieties. The insights from this review can be immensely significant for preclinical and clinical researchers working towards developing effective treatments for liver cancer. By utilizing these novel strategies, we can overcome the limitations of conventional therapies and offer better outcomes for liver cancer patients.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India.
| | - Ashwini Kumar Mishra
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Pooja Hurkat
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | - Satish Shilpi
- School of Pharmaceuticals and Population Health Informatics, FOP, DIT University, Dehradun, Uttarakahnad, India
| | - Nishi Mody
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | | |
Collapse
|
3
|
AbouSamra MM. Liposomal nano-carriers mediated targeting of liver disorders: mechanisms and applications. J Liposome Res 2024; 34:728-743. [PMID: 38988127 DOI: 10.1080/08982104.2024.2377085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Liver disorders present a significant global health challenge, necessitating the exploration of innovative treatment modalities. Liposomal nanocarriers have emerged as promising candidates for targeted drug delivery to the liver. This review offers a comprehensive examination of the mechanisms and applications of liposomal nanocarriers in addressing various liver disorders. Firstly discussing the liver disorders and the conventional treatment approaches, the review delves into the liposomal structure and composition. Moreover, it tackles the different mechanisms of liposomal targeting including both passive and active strategies. After that, the review moves on to explore the therapeutic potentials of liposomal nanocarriers in treating liver cirrhosis, fibrosis, viral hepatitis, and hepatocellular carcinoma. Through discussing recent advancements and envisioning future perspectives, this review highlights the role of liposomal nanocarriers in enhancing the effectiveness and the safety of liver disorders and consequently improving patient outcomes and enhances life quality.
Collapse
Affiliation(s)
- Mona M AbouSamra
- Pharmaceutical Technology Department, National Research Centre, Giza, Egypt
| |
Collapse
|
4
|
Allam EAH, Darwish MHA, Abou Khalil NS, El-Baset SHAA, El-Aal MA, Elrawy A, Ahmed AAN, Sabra MS. Evaluation of the therapeutic potential of novel nanoparticle formulations of glutathione and virgin coconut oil in an experimental model of carbon tetrachloride-induced liver failure. BMC Pharmacol Toxicol 2024; 25:74. [PMID: 39380023 PMCID: PMC11460069 DOI: 10.1186/s40360-024-00795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a critical condition characterized by rapid liver dysfunction, leading to high mortality rates. Current treatments are limited, primarily supportive, and often require liver transplantation. This study investigates the potential of a novel nanoparticle formulation of glutathione (GSH) and virgin coconut oil (VCO) alone and in combination to enhance therapeutic outcomes in a rat model of ALF induced by orogastric carbon tetrachloride (CCl4). METHODS The study employed adult male Albino rats divided into ten groups, with ALF induced via a single oral dose of CCl4. Various treatment regimens were administered over seven days, including conventional and nanoparticle forms of GSH and VCO and their combinations. The efficacy of treatments was evaluated through biochemical analysis of liver function markers, oxidative stress indicators, inflammatory biomarkers, and histopathological examinations. Nanoparticles were synthesized using established methods, and characterization techniques were employed to ensure their quality and properties. RESULTS The nanoparticle formulations significantly improved liver function, as indicated by reduced serum levels of alanine aminotransferase and aspartate aminotransferase, alongside decreased oxidative stress markers such as malondialdehyde. Furthermore, they reduced tumor necrosis factor alpha and interleukin-1 beta inflammatory markers. Histological analysis revealed reduced hepatocellular necrosis and inflammation in treated groups compared to controls. Also, decreased nuclear factor-kappa B was detected by immunohistochemical analysis. CONCLUSION The findings show that the nanoparticle mixture of GSH and VCO effectively reduces liver damage in ALF. This suggests a promising drug-based approach for improving liver regeneration and protection. This innovative strategy may pave the way for new therapeutic interventions in the management of ALF.
Collapse
Affiliation(s)
- Essmat A H Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Madeha H A Darwish
- Department of Animal and Poultry Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| | - Nasser S Abou Khalil
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University, Assiut, Egypt
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Shimaa H A Abd El-Baset
- Department of pathology and clinical pathology, Faculty of Veterinary Medicine, Sphinx University, Assiut, Egypt
| | - Mohamed Abd El-Aal
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Ahmed Elrawy
- Department of Animal and Poultry Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| | - Ahmed A N Ahmed
- Pharmacology Department, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut, 71526, Egypt
| | - Mahmoud S Sabra
- Department of Pharmacology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
- Pharmacology Department, Faculty of Veterinary Medicine, Badr University, Assiut, Egypt.
| |
Collapse
|
5
|
Bi Y, Chen J, Li Y, Song B, Li Q, Zhou T, Yuan F, Wang J, Zhang R. The Chemo-Immunotherapeutic Roles of Tumor-Derived Extracellular Vesicle-Based Paclitaxel Delivery System in Hepatocarcinoma. Mol Pharm 2024; 21:5126-5137. [PMID: 39283990 DOI: 10.1021/acs.molpharmaceut.4c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
As a first-line chemotherapeutic agent, albumin-bound paclitaxel (PA) has a considerable effect on the treatment of various cancers. However, in chemotherapy for hepatocarcinoma, the sensitivity to PA is low owing to the innate resistance of hepatocarcinoma cells; the toxicity and side effects are severe, and the clinical treatment impact is poor. In this study, we present a unique nanodrug delivery system. The ultraviolet (UV)-induced tumor-cell-derived extracellular vesicles (EVs) were isolated and purified by differential centrifugation. Then, PA was loaded by coextrusion to create a vesicle drug delivery system (EVPA). By employing the EV-dependent enhanced retention effect and specific homing effect, EVPA would passively and actively target tumor tissues, activate the immune response to release PA, and achieve the combination therapeutic effect of chemo-immunotherapy on hepatocarcinoma. We demonstrated that the tumor-killing effect of EVPA is superior to that of PA, both in vivo and in vitro and that EVPA can be effectively taken up by hepatocarcinoma and dendritic cells, activate the body's specific immune response, promote the infiltration of CD4+ and CD8+ T cells in tumor tissues, and exert a precise killing effect on hepatocarcinoma cells via chemo-immunotherapy.
Collapse
Affiliation(s)
- Yanghui Bi
- Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Jieya Chen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Yan Li
- Academy of Medical Sciences, Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Qing Li
- Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Tong Zhou
- Shanxi Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Fajia Yuan
- Shanxi Jinzhong Health School, Jinzhong 030600, PR China
| | - Jintao Wang
- Academy of Medical Sciences, Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030000, China
| |
Collapse
|
6
|
Asgharzadeh F, Moradi Binabaj M, Fanoudi S, C. Cho W, Yang YJ, Azarian M, Shafiee Ardestani M, Nasiri N, Ramezani Farani M, Huh YS. Nanomedicine Strategies Utilizing Lipid-Based Nanoparticles for Liver Cancer Therapy: Exploring Signaling Pathways and Therapeutic Modalities. Adv Pharm Bull 2024; 14:513-523. [PMID: 39494254 PMCID: PMC11530870 DOI: 10.34172/apb.2024.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 11/05/2024] Open
Abstract
Liver cancer, specifically hepatocellular carcinoma (HCC), is the second leading cause of cancer-related deaths, following pancreatic cancer. The 5-year overall survival rate for HCC remains relatively low. Currently, there are multiple treatment options available for HCC, including systemic drugs, minimally invasive local therapies such as radiofrequency ablation, transarterial chemoembolization (TACE), and arterial radioembolization (TARE), as well as surgical interventions like liver resection or transplantation. However, the effectiveness of drug delivery to the cancerous liver is hindered by pathophysiological changes in the organ. In order to address this challenge, lipid-based nanoparticles (LNPs) have emerged as promising platforms for delivering a diverse range of therapeutic drugs. LNPs offer various structural configurations that enhance their physical stability and enable them to accommodate different types of cargo with varying mechanical properties and degrees of hydrophobicity. In this article, we provide a comprehensive review of the current applications of LNPs in the development of anti-HCC therapies. By examining the existing research, we aim to shed light on the potential future directions and advancements in this field.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Moradi Binabaj
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Sahar Fanoudi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Yu-jeong Yang
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Nasiri
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
7
|
Yang Y, Pan J, Wang A, Ma Y, Liu Y, Jiang W. A novel method for the diagnosis of atherosclerosis based on nanotechnology. J Mater Chem B 2024; 12:9144-9154. [PMID: 39177217 DOI: 10.1039/d4tb00900b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Cardiovascular disease (CVD) is a global health concern, presenting significant risks to human health. Atherosclerosis is among the most prevalent CVD, impacting the medium and large arteries in the kidneys, brain, heart, and other vital organs, as well as the lower limbs. As the disease progresses, arterial obstruction can result in heart attacks and strokes. Therefore, patients with atherosclerosis should receive accurate diagnosis and timely therapeutic intervention. With the advancements in nanomedicine, researchers have proposed new research strategies and methods for atherosclerosis imaging. This paper summarizes some current research findings on the use of nanomaterials in diagnosing atherosclerosis and offers insights for optimizing the imaging applications of nanomaterials in the future.
Collapse
Affiliation(s)
- Ying Yang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Jiangpeng Pan
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Aifeng Wang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Yongcheng Ma
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Ying Liu
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Wei Jiang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| |
Collapse
|
8
|
ten Hove M, Smyris A, Booijink R, Wachsmuth L, Hansen U, Alic L, Faber C, Hӧltke C, Bansal R. Engineered SPIONs functionalized with endothelin a receptor antagonist ameliorate liver fibrosis by inhibiting hepatic stellate cell activation. Bioact Mater 2024; 39:406-426. [PMID: 38855059 PMCID: PMC11157122 DOI: 10.1016/j.bioactmat.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024] Open
Abstract
Endothelin-1/endothelin A receptor (ET-1/ETAR) pathway plays an important role in the progression of liver fibrosis by activating hepatic stellate cells (HSCs) - a key cell type involved in the pathogenesis of liver fibrosis. Inactivating HSCs by blocking the ET-1/ETAR pathway using a selective ETAR antagonist (ERA) represents a promising therapeutic approach for liver fibrosis. Unfortunately, small-molecule ERAs possess limited clinical potential due to poor bioavailability, short half-life, and rapid renal clearance. To improve the clinical applicability, we conjugated ERA to superparamagnetic iron-oxide nanoparticles (SPIONs) and investigated the therapeutic efficacy of ERA and ERA-SPIONs in vitro and in vivo and analyzed liver uptake by in vivo and ex vivo magnetic resonance imaging (MRI), HSCs-specific localization, and ET-1/ETAR-pathway antagonism in vivo. In murine and human liver fibrosis/cirrhosis, we observed overexpression of ET-1 and ETAR that correlated with HSC activation, and HSC-specific localization of ETAR. ERA and successfully synthesized ERA-SPIONs demonstrated significant attenuation in TGFβ-induced HSC activation, ECM production, migration, and contractility. In an acute CCl4-induced liver fibrosis mouse model, ERA-SPIONs exhibited higher liver uptake, HSC-specific localization, and ET-1/ETAR pathway antagonism. This resulted in significantly reduced liver-to-body weight ratio, plasma ALT levels, and α-SMA and collagen-I expression, indicating attenuation of liver fibrosis. In conclusion, our study demonstrates that the delivery of ERA using SPIONs enhances the therapeutic efficacy of ERA in vivo. This approach holds promise as a theranostic strategy for the MRI-based diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Marit ten Hove
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Andreas Smyris
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Richell Booijink
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Lydia Wachsmuth
- Clinic of Radiology, University Hospital Muenster, Muenster, Germany
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Lejla Alic
- Department of Magnetic Detection and Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Cornelius Faber
- Clinic of Radiology, University Hospital Muenster, Muenster, Germany
| | - Carsten Hӧltke
- Clinic of Radiology, University Hospital Muenster, Muenster, Germany
| | - Ruchi Bansal
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| |
Collapse
|
9
|
Kusumoputro S, Au C, Lam KH, Park N, Hyun A, Kusumoputro E, Wang X, Xia T. Liver-Targeting Nanoplatforms for the Induction of Immune Tolerance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:67. [PMID: 38202522 PMCID: PMC10780512 DOI: 10.3390/nano14010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Liver-targeting nanoparticles have emerged as a promising platform for the induction of immune tolerance by taking advantage of the liver's unique tolerogenic properties and nanoparticles' physicochemical flexibility. Such an approach provides a versatile solution to the treatment of a diversity of immunologic diseases. In this review, we begin by assessing the design parameters integral to cell-specific targeting and the tolerogenic induction of nanoplatforms engineered to target the four critical immunogenic hepatic cells, including liver sinusoidal epithelial cells (LSECs), Kupffer cells (KCs), hepatic stellate cells (HSCs), and hepatocytes. We also include an overview of multiple therapeutic strategies in which nanoparticles are being studied to treat many allergies and autoimmune disorders. Finally, we explore the challenges of using nanoparticles in this field while highlighting future avenues to expand the therapeutic utility of liver-targeting nanoparticles in autoimmune processes.
Collapse
Affiliation(s)
- Sydney Kusumoputro
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.K.); (N.P.)
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Christian Au
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA;
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA;
| | - Katie H. Lam
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA;
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Nathaniel Park
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.K.); (N.P.)
| | - Austin Hyun
- Department of Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Emily Kusumoputro
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA;
| | - Xiang Wang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Zhang YW, Hou LS, Xing JH, Zhang TR, Zhou SY, Zhang BL. Two-Membrane Hybrid Nanobiomimetic Delivery System for Targeted Autophagy Inhibition of Activated Hepatic Stellate Cells To Synergistically Treat Liver Fibrosis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37899504 DOI: 10.1021/acsami.3c11046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Liver fibrosis is one of the most common and highly prevalent chronic liver diseases caused by multiple pathogenic factors, and there is still no effective therapeutic drugs up to now. The activated hepatic stellate cells (aHSCs) are the main executor in liver fibrosis, and the autophagy plays a key role in the proliferation and differentiation of aHSCs, which promotes the development of liver fibrosis. However, autophagy has the opposite effect on the different kinds of liver cells in the development of liver fibrosis, and the clinical treatment has been limited by the poor selectivity and inefficient drug delivery to aHSCs. Therefore, in this study, a liposome (Lip) and exosome (Exo) two-membrane hybrid nanobiomimetic delivery system HCQ@VA-Lip-Exo was designed, which was modified by vitamin A (VA) to target the aHSCs and carried the autophagy inhibitor hydroxychloroquine (HCQ). The experimental results in vitro and in vivo revealed that the constructed aHSC-targeted hybrid delivery system HCQ@VA-Lip-Exo combined with the benefits of HCQ and exosomes derived from bone marrow mesenchymal stem cells. HCQ@VA-Lip-Exo had good aHSC-targeted delivery ability, effective autophagy inhibition, and synergistical anti-liver fibrosis performance, thus reducing the production and deposition of the extracellular matrix to inhibit the liver fibrosis. This combined strategy provided a potential idea for the construction and clinical application of a two-membrane hybrid delivery system as an effective targeted therapy of liver fibrosis.
Collapse
Affiliation(s)
- Yao-Wen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Li-Shuang Hou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Jie-Hua Xing
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Tang-Rui Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| |
Collapse
|
11
|
Hua X, Wei X. Liver X receptors: From pharmacology to nanoparticle-based drug delivery. Eur J Pharmacol 2023; 956:175953. [PMID: 37541371 DOI: 10.1016/j.ejphar.2023.175953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Liver X receptors (LXRs) are master regulators of various biological processes, including metabolism, inflammation, development, and reproduction. As well-known nuclear oxysterol receptors of the nuclear receptor (NR) family, LXRs have two homologous subtypes, LXRα (NR1H3) and LXRβ (NR1H2). Since the mid-1990s, numerous LXR-targeted drugs have been designed to treat diseases such as atherosclerosis, systemic lupus erythematosus, and cancer. These modulators include agonists and antagonists, and the selectivity of them have been development from diverse aspects, including subtype-specific, cell-specific, tissue-specific types. Meanwhile, advanced delivery systems are also exploreed to facilitate the application of LXR drugs in clinical setting. One of the most promising delivery systems involves the use of nanoparticles and is expected to increase the clinical potential of LXR modulators. This review discusses our current understanding of LXR biology and pharmacology, focusing on the development of modulators for LXRα and/or LXRβ, and the nanoparticle-based delivery systems for promising LXR modulators with potential for use as drugs.
Collapse
Affiliation(s)
- Xiaofen Hua
- Department of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, James Clerk Maxwell Building, 57 Waterloo Road, London, SE1 8WA, UK
| | - Xiduan Wei
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
12
|
Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv Drug Deliv Rev 2023; 197:114828. [PMID: 37075952 DOI: 10.1016/j.addr.2023.114828] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Adam Frtús
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
13
|
Huang Z, Wang H, Chun C, Li X, Xu S, Zhao Y. Self-assembled FGF21 nanoparticles alleviate drug-induced acute liver injury. Front Pharmacol 2023; 13:1084799. [PMID: 36703750 PMCID: PMC9871310 DOI: 10.3389/fphar.2022.1084799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Acetaminophen (N-acetyl-p-aminophenol, APAP) is a common antipyretic agent and analgesic. An overdose of APAP can result in acute liver injury (ALI). Oxidative stress and inflammation are central to liver injury. N-acetylcysteine (NAC), a precursor of glutathione, is used commonly in clinical settings. However, the window of NAC treatment is limited, and more efficacious alternatives must be found. Endogenous cytokines such as fibroblast growth factor (FGF) 21 can improve mitochondrial function while decreasing intracellular oxidative stress and inflammatory responses, thereby exhibiting antioxidant-like effects. In this study, self-assembled nanoparticles comprising chitosan and heparin (CH) were developed to deliver FGF21 (CH-FGF21) to achieve the sustained release of FGF21 and optimize the in vivo distribution of FGF21. CH-FGF21 attenuated the oxidative damage and intracellular inflammation caused by APAP to hepatocytes effectively. In a murine model of APAP-induced hepatotoxicity, CH-FGF21 could alleviate ALI progression and promote the recovery of liver function. These findings demonstrated that a simple assembly of CH nanoparticles carrying FGF21 could be applied for the treatment of liver diseases.
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China,College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, South Korea,*Correspondence: Zhiwei Huang, ; Shihao Xu, ; Yingzheng Zhao,
| | - Hengcai Wang
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Changju Chun
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, South Korea
| | - Xinze Li
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shihao Xu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,*Correspondence: Zhiwei Huang, ; Shihao Xu, ; Yingzheng Zhao,
| | - Yingzheng Zhao
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China,*Correspondence: Zhiwei Huang, ; Shihao Xu, ; Yingzheng Zhao,
| |
Collapse
|
14
|
Luo F, Yu Y, Li M, Chen Y, Zhang P, Xiao C, Lv G. Polymeric nanomedicines for the treatment of hepatic diseases. J Nanobiotechnology 2022; 20:488. [PMCID: PMC9675156 DOI: 10.1186/s12951-022-01708-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
The liver is an important organ in the human body and performs many functions, such as digestion, detoxification, metabolism, immune responses, and vitamin and mineral storage. Therefore, disorders of liver functions triggered by various hepatic diseases, including hepatitis B virus infection, nonalcoholic steatohepatitis, hepatic fibrosis, hepatocellular carcinoma, and transplant rejection, significantly threaten human health worldwide. Polymer-based nanomedicines, which can be easily engineered with ideal physicochemical characteristics and functions, have considerable merits, including contributions to improved therapeutic outcomes and reduced adverse effects of drugs, in the treatment of hepatic diseases compared to traditional therapeutic agents. This review describes liver anatomy and function, and liver targeting strategies, hepatic disease treatment applications and intrahepatic fates of polymeric nanomedicines. The challenges and outlooks of hepatic disease treatment with polymeric nanomedicines are also discussed.
Collapse
Affiliation(s)
- Feixiang Luo
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Ying Yu
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Mingqian Li
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Yuguo Chen
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Peng Zhang
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Chunsheng Xiao
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Guoyue Lv
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| |
Collapse
|
15
|
AL Fayez N, Böttger R, Brown J, Rouhollahi E, Li SD. The mechanism of Hepatocyte-Targeting and safety profile of Phospholipid-Free small unilamellar vesicles. Int J Pharm 2022; 628:122269. [DOI: 10.1016/j.ijpharm.2022.122269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 10/31/2022]
|
16
|
Soares GA, Pereira GM, Romualdo GR, Biasotti GGA, Stoppa EG, Bakuzis AF, Baffa O, Barbisan LF, Miranda JRA. Biodistribution Profile of Magnetic Nanoparticles in Cirrhosis-Associated Hepatocarcinogenesis in Rats by AC Biosusceptometry. Pharmaceutics 2022; 14:pharmaceutics14091907. [PMID: 36145654 PMCID: PMC9504370 DOI: 10.3390/pharmaceutics14091907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Since magnetic nanoparticles (MNPs) have been used as multifunctional probes to diagnose and treat liver diseases in recent years, this study aimed to assess how the condition of cirrhosis-associated hepatocarcinogenesis alters the biodistribution of hepatic MNPs. Using a real-time image acquisition approach, the distribution profile of MNPs after intravenous administration was monitored using an AC biosusceptometry (ACB) assay. We assessed the biodistribution profile based on the ACB images obtained through selected regions of interest (ROIs) in the heart and liver position according to the anatomical references previously selected. The signals obtained allowed for the quantification of pharmacokinetic parameters, indicating that the uptake of hepatic MNPs is compromised during liver cirrhosis, since scar tissue reduces blood flow through the liver and slows its processing function. Since liver monocytes/macrophages remained constant during the cirrhotic stage, the increased intrahepatic vascular resistance associated with impaired hepatic sinusoidal circulation was considered the potential reason for the change in the distribution of MNPs.
Collapse
Affiliation(s)
- Guilherme A. Soares
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
- Correspondence:
| | - Gabriele M. Pereira
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Guilherme R. Romualdo
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
- Department of Strucutral and Functional Biology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Gabriel G. A. Biasotti
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Erick G. Stoppa
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Andris F. Bakuzis
- Institute of Physics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Oswaldo Baffa
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Luis F. Barbisan
- Department of Strucutral and Functional Biology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Jose R. A. Miranda
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| |
Collapse
|
17
|
Vène E, Jarnouen K, Ribault C, Vlach M, Verres Y, Bourgeois M, Lepareur N, Cammas-Marion S, Loyer P. Circumsporozoite Protein of Plasmodium berghei- and George Baker Virus A-Derived Peptides Trigger Efficient Cell Internalization of Bioconjugates and Functionalized Poly(ethylene glycol)-b-poly(benzyl malate)-Based Nanoparticles in Human Hepatoma Cells. Pharmaceutics 2022; 14:pharmaceutics14040804. [PMID: 35456637 PMCID: PMC9028075 DOI: 10.3390/pharmaceutics14040804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
In order to identify the peptides, selected from the literature, that exhibit the strongest tropism towards human hepatoma cells, cell uptake assays were performed using biotinylated synthetic peptides bound to fluorescent streptavidin or engrafted onto nanoparticles (NPs), prepared from biotin-poly(ethylene glycol)-block-poly(benzyl malate) (Biot-PEG-b-PMLABe) via streptavidin bridging. Two peptides, derived from the circumsporozoite protein of Plasmodium berghei- (CPB) and George Baker (GB) Virus A (GBVA10-9), strongly enhanced the endocytosis of both streptavidin conjugates and NPs in hepatoma cells, compared to primary human hepatocytes and non-hepatic cells. Unexpectedly, the uptake of CPB- and GBVA10-9 functionalized PEG-b-PMLABe-based NPs by hepatoma cells involved, at least in part, the peptide binding to apolipoproteins, which would promote NP’s interactions with cell membrane receptors of HDL particles. In addition, CPB and GBVA10-9 peptide–streptavidin conjugates favored the uptake by hepatoma cells over that of the human macrophages, known to strongly internalize nanoparticles by phagocytosis. These two peptides are promising candidate ligands for targeting hepatocellular carcinomas.
Collapse
Affiliation(s)
- Elise Vène
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, F-35033 Rennes, France
| | - Kathleen Jarnouen
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
| | - Catherine Ribault
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
| | - Manuel Vlach
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
- INRAE, Institut AGRO, PEGASE UMR 1348, F-35590 Saint-Gilles, France
| | - Yann Verres
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
| | - Mickaël Bourgeois
- CRCINA, Inserm, CNRS, Université de Nantes, F-44000 Nantes, France;
- ARRONAX Cyclotron, F-44817 Saint Herblain, France
| | - Nicolas Lepareur
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
- Comprehensive Cancer Center Eugène Marquis, F-35000 Rennes, France
- Correspondence: (N.L.); (S.C.-M.); (P.L.)
| | - Sandrine Cammas-Marion
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
- Institut des Sciences Chimiques de Rennes (ISCR), Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, University of Rennes, F-35042 Rennes, France
- Correspondence: (N.L.); (S.C.-M.); (P.L.)
| | - Pascal Loyer
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
- Correspondence: (N.L.); (S.C.-M.); (P.L.)
| |
Collapse
|
18
|
Li M, Luo Q, Tao Y, Sun X, Liu C. Pharmacotherapies for Drug-Induced Liver Injury: A Current Literature Review. Front Pharmacol 2022; 12:806249. [PMID: 35069218 PMCID: PMC8766857 DOI: 10.3389/fphar.2021.806249] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
Drug-induced liver injury (DILI) has become a serious public health problem. For the management of DILI, discontinuation of suspicious drug or medicine is the first step, but the treatments including drugs and supporting approaches are needed. Reference to clinical patterns and disease severity grades of DILI, the treatment drugs were considered to summarize into hepatoprotective drugs (N-acetylcysteine and Glutathione, Glycyrrhizin acid preparation, Polyene phosphatidylcholine, Bicyclol, Silymarin), anticholestatic drug (Ursodeoxycholic acid, S-adenosylmethionine, Cholestyramine), immunosuppressants (Glucocorticoids) and specific treatment agents (L-carnitine, Anticoagulants). The current article reviewed the accumulated literature with evidence-based medicine researches for DILI in clinical practice. Also the drawbacks of the clinical studies involved in the article, unmet needs and prospective development for DILI therapy were discussed.
Collapse
Affiliation(s)
- Meng Li
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiong Luo
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyan Tao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, China
- Shanghai Innovation Center of TCM Health Service, Shanghai, China
| |
Collapse
|
19
|
Wang L, Li B, Zhao H, Wu P, Wu Q, Chen K, Mu Y. A systematic review and meta-analysis of endocrine-related adverse events associated with interferon. Front Endocrinol (Lausanne) 2022; 13:949003. [PMID: 35992107 PMCID: PMC9388759 DOI: 10.3389/fendo.2022.949003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To perform a systematic review and meta-analysis of interferon and endocrine side effects, including their incidence, evaluation, and management. METHODS PubMed was searched through March 7th, 2021, by 2 authors independently (LH Wang and H Zhao). Early phase I/II, phase III experimental trials, prospective and retrospective observational studies were included. Stata 16.0 (StataCorp LLC, 16.0) was the main statistical software for meta-analysis. The weighted incidence and risk ratio were estimated for primary thyroid disease and diabetes mellitus. RESULTS A total of 108 studies involving 46265 patients were included. Hypothyroidism was the most common thyroid disorder, followed by hyperthyroidism. IFN α+RBV treated patients experienced hypothyroidism in 7.8% (95%CI, 5.9-9.9), which was higher than IFN α (5.2%; 95%CI, 3.7-6.8) and IFN β (7.0%; 95%CI, 0.06-23.92). IFN α+RBV treated patients experienced hyperthyroidism in 5.0% (95%CI, 3.6-6.5), which was higher than IFN α (3.5%; 95%CI, 2.5-4.8) and IFN β (3.4%; 95%CI, 0.9-7.5). The summary estimated incidence of painless thyroiditis was 5.8% (95%CI, 2.8-9.8) for IFN α, and 3.5% (95%CI,1.9-5.5) for IFN α+RBV. The summary estimated incidence of diabetes was 1.4% (95%CI, 0.3-3.1) for IFN, 0.55% (95%CI, 0.05-1.57) for IFN α, 3.3% (95%CI,1.1-6.6) for IFN α+RBV. CONCLUSIONS Our meta-analysis shows a high incidence of endocrine adverse events provoked by IFN, further reinforced by combined RBV treatment. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier CRD42022334131.
Collapse
Affiliation(s)
- Linghuan Wang
- Medicine School of Nankai University, Tianjin, China
- Department of Endocrinology, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Binqi Li
- Medicine School of Nankai University, Tianjin, China
- Department of Endocrinology, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - He Zhao
- Medicine School of Nankai University, Tianjin, China
| | - Peixin Wu
- Medicine School of Nankai University, Tianjin, China
| | - Qingzhen Wu
- Medicine School of Nankai University, Tianjin, China
| | - Kang Chen
- Department of Endocrinology, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Kang Chen, ; Yiming Mu,
| | - Yiming Mu
- Medicine School of Nankai University, Tianjin, China
- Department of Endocrinology, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Kang Chen, ; Yiming Mu,
| |
Collapse
|
20
|
Du Y, Yang W, Yang C, Yang X. A comprehensive review on microbiome, aromas and flavors, chemical composition, nutrition and future prospects of Fuzhuan brick tea. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Rabha B, Bharadwaj KK, Pati S, Choudhury BK, Sarkar T, Kari ZA, Edinur HA, Baishya D, Atanase LI. Development of Polymer-Based Nanoformulations for Glioblastoma Brain Cancer Therapy and Diagnosis: An Update. Polymers (Basel) 2021; 13:polym13234114. [PMID: 34883617 PMCID: PMC8659151 DOI: 10.3390/polym13234114] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Brain cancers, mainly high-grade gliomas/glioblastoma, are characterized by uncontrolled proliferation and recurrence with an extremely poor prognosis. Despite various conventional treatment strategies, viz., resection, chemotherapy, and radiotherapy, the outcomes are still inefficient against glioblastoma. The blood–brain barrier is one of the major issues that affect the effective delivery of drugs to the brain for glioblastoma therapy. Various studies have been undergone in order to find novel therapeutic strategies for effective glioblastoma treatment. The advent of nanodiagnostics, i.e., imaging combined with therapies termed as nanotheranostics, can improve the therapeutic efficacy by determining the extent of tumour distribution prior to surgery as well as the response to a treatment regimen after surgery. Polymer nanoparticles gain tremendous attention due to their versatile nature for modification that allows precise targeting, diagnosis, and drug delivery to the brain with minimal adverse side effects. This review addresses the advancements of polymer nanoparticles in drug delivery, diagnosis, and therapy against brain cancer. The mechanisms of drug delivery to the brain of these systems and their future directions are also briefly discussed.
Collapse
Affiliation(s)
- Bijuli Rabha
- Department of Bioengineering & Technology, GUIST, Gauhati University, Guwahati 781014, India; (B.R.); (K.K.B.)
| | - Kaushik Kumar Bharadwaj
- Department of Bioengineering & Technology, GUIST, Gauhati University, Guwahati 781014, India; (B.R.); (K.K.B.)
| | - Siddhartha Pati
- Skills Innovation & Academic Network (SIAN) Institute-Association for Biodiversity Conservation and Research (ABC), Balasore 756001, India;
- NatNov Bioscience Private Limited, Balasore, 756001, India
| | | | - Tanmay Sarkar
- Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda 732102, India;
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata 700032, India
| | - Zulhisyam Abdul Kari
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli 17600, Malaysia;
| | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Debabrat Baishya
- Department of Bioengineering & Technology, GUIST, Gauhati University, Guwahati 781014, India; (B.R.); (K.K.B.)
- Correspondence: (D.B.); (L.I.A.)
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Correspondence: (D.B.); (L.I.A.)
| |
Collapse
|
22
|
Schito AM, Caviglia D, Piatti G, Zorzoli A, Marimpietri D, Zuccari G, Schito GC, Alfei S. Efficacy of Ursolic Acid-Enriched Water-Soluble and Not Cytotoxic Nanoparticles against Enterococci. Pharmaceutics 2021; 13:1976. [PMID: 34834390 PMCID: PMC8625572 DOI: 10.3390/pharmaceutics13111976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Ursolic acid (UA), a pentacyclic triterpenoid acid found in many medicinal plants and aromas, is known for its antibacterial effects against multi-drug-resistant (MDR) Gram-positive bacteria, which seriously threaten human health. Unfortunately, UA water-insolubility, low bioavailability, and systemic toxicity limit the possibilities of its application in vivo. Consequently, the beneficial activities of UA observed in vitro lose their potential clinical relevance unless water-soluble, not cytotoxic UA formulations are developed. With a nano-technologic approach, we have recently prepared water-soluble UA-loaded dendrimer nanoparticles (UA-G4K NPs) non-cytotoxic on HeLa cells, with promising physicochemical properties for their clinical applications. In this work, with the aim of developing a new antibacterial agent based on UA, UA-G4K has been tested on different strains of the Enterococcus genus, including marine isolates, toward which UA-G4K has shown minimum inhibitory concentrations (MICs) very low (0.5-4.3 µM), regardless of their resistance to antibiotics. Time-kill experiments, in addition to confirming the previously reported bactericidal activity of UA against E. faecium, also established it for UA-G4K. Furthermore, cytotoxicity experiments on human keratinocytes revealed that nanomanipulation of UA significantly reduced the cytotoxicity of UA, providing UA-G4K NPs with very high LD50 (96.4 µM) and selectivity indices, which were in the range 22.4-192.8, depending on the enterococcal strain tested. Due to its physicochemical and biological properties, UA-G4K could be seriously evaluated as a novel oral-administrable therapeutic option for tackling difficult-to-treat enterococcal infections.
Collapse
Affiliation(s)
- Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (A.M.S.); (D.C.); (G.P.); (G.C.S.)
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (A.M.S.); (D.C.); (G.P.); (G.C.S.)
| | - Gabriella Piatti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (A.M.S.); (D.C.); (G.P.); (G.C.S.)
| | - Alessia Zorzoli
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147 Genoa, Italy; (A.Z.); (D.M.)
| | - Danilo Marimpietri
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147 Genoa, Italy; (A.Z.); (D.M.)
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (A.M.S.); (D.C.); (G.P.); (G.C.S.)
| | - Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
| |
Collapse
|
23
|
Gupta A, Andresen JL, Manan RS, Langer R. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev 2021; 178:113834. [PMID: 34492233 DOI: 10.1016/j.addr.2021.113834] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Recent medical advances have exploited the ability to address a given disease at the underlying level of transcription and translation. These treatment paradigms utilize nucleic acids - including short interfering RNA (siRNA), microRNA (miRNA), antisense oligonucleotides (ASO), and messenger RNA (mRNA) - to achieve a desired outcome ranging from gene knockdown to induced expression of a selected target protein. Towards this end, numerous strategies for encapsulation or stabilization of various nucleic acid structures have been developed in order to achieve intracellular delivery. In this review, we discuss several therapeutic applications of nucleic acids directed towards specific diseases and tissues of interest, in particular highlighting recent technologies which have reached late-stage clinical trials and received FDA approval.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Jason L Andresen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rajith S Manan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Mignani S, Shi X, Rodrigues J, Tomas H, Karpus A, Majoral JP. First-in-class and best-in-class dendrimer nanoplatforms from concept to clinic: Lessons learned moving forward. Eur J Med Chem 2021; 219:113456. [PMID: 33878563 DOI: 10.1016/j.ejmech.2021.113456] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Research to develop active dendrimers by themselves or as nanocarriers represents a promising approach to discover new biologically active entities that can be used to tackle unmet medical needs including difficult diseases. These developments are possible due to the exceptional physicochemical properties of dendrimers, including their biocompatibility, as well as their therapeutic activity as nanocarriers and drugs themselves. Despite a large number of academic studies, very few dendrimers have crossed the 'valley of death' between. Only a few number of pharmaceutical companies have succeeded in this way. In fact, only Starpharma (Australia) and Orpheris, Inc. (USA), an Ashvattha Therapeutics subsidiary, can fill all the clinic requirements to have in the market dendrimers based drugs/nancocarriers. After evaluating the main physicochemical properties related to the respective biological activity of dendrimers classified as first-in-class or best-in-class in nanomedicine, this original review analyzes the advantages and disavantages of these two strategies as well the concerns to step in clinical phases. Various solutions are proposed to advance the use of dendrimers in human health.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, Rue des Saints Peres, CNRS UMR 860, 75006, Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Xangyang Shi
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China.
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Helena Tomas
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077, Toulouse Cedex 4, France; Université Toulouse, 118 Route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077, Toulouse Cedex 4, France.
| |
Collapse
|
25
|
Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102487] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Shao M, Shi R, Gao ZX, Gao SS, Li JF, Li H, Cui SZ, Hu WM, Chen TY, Wu GR, Zhang J, Xu J, Sy MS, Li C. Crizotinib and Doxorubicin Cooperatively Reduces Drug Resistance by Mitigating MDR1 to Increase Hepatocellular Carcinoma Cells Death. Front Oncol 2021; 11:650052. [PMID: 34094940 PMCID: PMC8170002 DOI: 10.3389/fonc.2021.650052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/16/2021] [Indexed: 11/24/2022] Open
Abstract
As the sixth most lethal cancers worldwide, hepatocellular carcinoma (HCC) has been treated with doxorubicin (Dox) for decades. However, chemotherapy resistance, especially for Dox is an even more prominent problem due to its high cardiotoxicity. To find a regimen to reduce Dox resistance, and identify the mechanisms behind it, we tried to identify combination of drugs that can overcome drug resistance by screening tyrosine kinase inhibitor(s) with Dox with various HCC cell lines in vitro and in vivo. We report here that combination of Crizo and Dox has a synergistic effect on inducing HCC cell death. Accordingly, Crizo plus Dox increases Dox accumulation in nucleus 3-16 times compared to Dox only; HCC cell death enhanced at least 50% in vitro and tumor weights reduced ranging from 35 to 65%. Combining these two drugs reduces multiple drug resistance 1 (MDR1) protein as a result of activation of protein kinase RNA-like endoplasmic reticulum kinase (PERK), which phosphorylates eIF2α, leading to protein translational repression. Additionally, PERK stimulation activates C-Jun terminal kinase (JNK), resulting in accumulation of unfused autophagosome to enhance autophagic cell death via Poly-ADP-ribosyltransferase (PARP-1) cleavage. When the activity of PERK or JNK is blocked, unfused autophagosome is diminished, cleaved PARP-1 is reduced, and cell death is abated. Therefore, Crizo plus Dox sensitize HCC drug resistance by engaging PERK-p- eIF2α-MDR1, and kill HCC cells by engaging PERK-JNK- autophagic cell death pathways. These newly discovered mechanisms of Crizo plus Dox not only provide a potential treatment for HCC but also point to an approach to overcome MDR1 related drug resistance in other cancers.
Collapse
Affiliation(s)
- Ming Shao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Run Shi
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhen-Xing Gao
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Shan-Shan Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jing-Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Wei-Min Hu
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Tian-Yun Chen
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gui-Ru Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jie Zhang
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jiang Xu
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Chaoyang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
27
|
Singh A, Shafi S, Upadhyay T, Najmi AK, Kohli K, Pottoo FH. Insights into Nanotherapeutic Strategies as an Impending Approach to Liver Cancer Treatment. Curr Top Med Chem 2021; 20:1839-1854. [PMID: 32579503 DOI: 10.2174/1568026620666200624161801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Liver cancer, being the utmost prevalent fatal malignancy worldwide, is ranked as the fifth leading cause of deaths associated with cancer. Patients with liver cancer are diagnosed often at an advanced stage, contributing to poor prognosis. Of all forms of liver cancer, hepatocellular carcinoma (HCC) contributes to 90% of cases, with chemotherapy being the treatment of choice. However, unfavorable toxicity of chemotherapy drugs and the vulnerability of nucleic acid-based drugs to degradation, have limited their application in clinical settings. So, in order to improvise their therapeutic efficacy in HCC treatment, various nanocarrier drug delivery systems have been explored. Furthermore, nanoparticle based imaging provides valuable means of accurately diagnosing HCC. Thus, in recent years, the advent of nanomedicine has shown great potential and progress in dramatically altering the approach to the diagnosis as well as treatment of liver cancer. Nanoparticles (NPs) are being explored as potential drug carriers for small molecules, miRNAs, and therapeutic genes used for liver cancer treatment. This review emphasizes on the current developments and applications of nanomedicine based therapeutic and diagnostic approaches in HCC.
Collapse
Affiliation(s)
- Archu Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Sadat Shafi
- Department of Pharmacology, Pharmaceutical Medicine, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Tanya Upadhyay
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh-201313, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul rahman Bin Faisal University, P.O.BOX 1982, Damman 31441, Saudi Arabia
| |
Collapse
|
28
|
Zhang X, Hu J, Becker KV, Engle JW, Ni D, Cai W, Wu D, Qu S. Antioxidant and C5a-blocking strategy for hepatic ischemia-reperfusion injury repair. J Nanobiotechnology 2021; 19:107. [PMID: 33858424 PMCID: PMC8050892 DOI: 10.1186/s12951-021-00858-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Nonspecific liver uptake of nanomaterials after intravenous injection has hindered nanomedicine for clinical translation. However, nanomaterials' propensity for liver distribution might enable their use in hepatic ischemia-reperfusion injury (IRI) repair. During hepatic IRI, reactive oxygen species (ROS) are generated and the fifth component of complement (C5a) is activated. In addition, C5a is confirmed to exacerbate the vicious cycle of oxidative stress and inflammatory damage. For these reasons, we have investigated the development of nanomaterials with liver uptake to scavenge ROS and block C5a for hepatic IRI repair. RESULTS To achieve this goal, a traditional nanoantioxidant of nanoceria was surface conjugated with the anti-C5a aptamers (Ceria@Apt) to scavenge the ROS and reduce C5a-mediated inflammation. High uptake of Ceria@Apt in the liver was confirmed by preclinical positron emission tomography (PET) imaging. The clinical symptoms of hepatic IRI were effectively alleviated by Ceria@Apt with ROS scavenging and C5a blocking in mice model. The released pro-inflammatory cytokines were significantly reduced, and subsequent inflammatory reaction involved in the liver was inhibited. CONCLUSIONS The synthesized Ceria@Apt has great potential of medical application in hepatic IRI repair, which could also be applied for other ischemic-related diseases.
Collapse
Affiliation(s)
- Xiaobing Zhang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Jiajia Hu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Kaelyn V Becker
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dalong Ni
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | | | - Dong Wu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China.
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Shuping Qu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
29
|
Dai Q, Jiang W, Liu H, Qing X, Wang G, Huang F, Yang Z, Wang C, Gu E, Zhao H, Zhang J, Liu X. Kupffer cell-targeting strategy for the protection of hepatic ischemia/reperfusion injury. NANOTECHNOLOGY 2021; 32:265101. [PMID: 33472187 DOI: 10.1088/1361-6528/abde02] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study is to evaluate the effect of rare earth upconversion nanoparticles (UCNs) on hepatic ischemia reperfusion injury (IRI) and explore its possible mechanism. Hepatic IRI seriously affects the prognosis of patients undergoing liver surgery. Liver-resident Kupffer cells have been reported to promote IRI. Nanomedicines are known to be effective in the treatment of liver diseases, however, Kupffer cell-targeting nanomedicines for the treatment of IRI are yet to be developed. As potential bioimaging nanomaterials, UCNs have been found to specifically deplete Kupffer cells, but the underlying mechanism is unknown. In this study, we found that UCNs specifically depleted Kupffer cells by pyroptosis, while the co-administration of the caspase-1 inhibitor VX-765 rescued the UCN-induced Kupffer cell pyroptosis in mice. Furthermore, the pre-depletion of Kupffer cells by the UCNs significantly suppressed the release of inflammatory cytokines and effectively improved hepatic IRI. The rescue of the pyroptosis of the Kupffer cells by VX-765 abrogated the protective effect of UCNs on the liver. These results suggest that UCNs are highly promising for the development of Kupffer cell-targeting nanomedicines for intraoperative liver protection.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Wei Jiang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Hu Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Xin Qing
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Guobin Wang
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Fan Huang
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Zhilai Yang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Chunhui Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Erwei Gu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Hongchuan Zhao
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Jiqian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| |
Collapse
|
30
|
Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. NATURE REVIEWS. MATERIALS 2021; 6:351-370. [PMID: 34950512 PMCID: PMC8691416 DOI: 10.1038/s41578-020-00269-6] [Citation(s) in RCA: 445] [Impact Index Per Article: 111.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 05/05/2023]
Abstract
Progress in the field of precision medicine has changed the landscape of cancer therapy. Precision medicine is propelled by technologies that enable molecular profiling, genomic analysis, and optimized drug design to tailor treatments for individual patients. Although precision medicines have resulted in some clinical successes, the use of many potential therapeutics has been hindered by pharmacological issues, including toxicities and drug resistance. Drug delivery materials and approaches have now advanced to a point where they can enable the modulation of a drug's pharmacological parameters without compromising the desired effect on molecular targets. Specifically, they can modulate a drug's pharmacokinetics, stability, absorption, and exposure to tumours and healthy tissues, and facilitate the administration of synergistic drug combinations. This Review highlights recent progress in precision therapeutics and drug delivery, and identifies opportunities for strategies to improve the therapeutic index of cancer drugs, and consequently, clinical outcomes.
Collapse
Affiliation(s)
- Mandana T. Manzari
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- These authors have contributed equally to this work
| | - Yosi Shamay
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- These authors have contributed equally to this work
| | - Hiroto Kiguchi
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- These authors have contributed equally to this work
| | - Neal Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
31
|
Taufiq A, Saputro RE, Susanto H, Hidayat N, Sunaryono S, Amrillah T, Wijaya HW, Mufti N, Simanjuntak FM. Synthesis of Fe 3O 4/Ag nanohybrid ferrofluids and their applications as antimicrobial and antifibrotic agents. Heliyon 2020; 6:e05813. [PMID: 33426329 PMCID: PMC7779699 DOI: 10.1016/j.heliyon.2020.e05813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/25/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022] Open
Abstract
To date, the search for creating stable ferrofluids with excellent properties for biomedical application is one of the challenging scientific and practical investigations. In this study, novel Fe3O4/Ag nanohybrid ferrofluids from iron sand were synthesized using a double-layer method. The Fe3O4/Ag nanocomposites exhibited stable crystallite sizes of 11.8 12.1 nm and 36.8-37.2 nm for Fe3O4 and Ag, respectively. The lattice parameters of the spinel structure Fe3O4 and face-centered cubic Ag were respectively 8.344 Å and 4.091 Å. With increasing Ag amount, the crystallite phase of Ag in the nanocomposites increased from 40.2% to 77.2%. The XPS results confirmed that Fe3O4/Ag nanocomposites were successfully prepared, where Fe3O4 mixed well with Ag via strong ionic bonding. The FTIR results confirmed the presence of Fe3O4/Ag, oleic acid, and dimethyl sulfoxide as the filler, first layer, and second layer, respectively. The as-prepared ferrofluids exhibited superparamagnetic behavior, where the saturation magnetization decreased with increasing Ag content. The Fe3O4/Ag nanohybrid ferrofluids exhibited excellent antimicrobial performance against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Candida albicans. More importantly, the Fe3O4/Ag nanohybrid ferrofluids decreased the progression of liver fibrosis-related inflammation and fibrogenic activity on hepatic stellate cells.
Collapse
Affiliation(s)
- Ahmad Taufiq
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Rosy Eko Saputro
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Hendra Susanto
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Nurul Hidayat
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Sunaryono Sunaryono
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Tahta Amrillah
- Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Husni Wahyu Wijaya
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Nandang Mufti
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Firman Mangasa Simanjuntak
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
32
|
Abstract
Brain tumors, especially glioblastoma, remain the most aggressive form of all the cancers because of inefficient diagnosis and profiling. Nanostructures, such as metallic nanostructures, silica nano-vehicles, quantum dots, lipid nanoparticles (NPs) and polymeric NPs, with high specificity have made it possible to permeate the blood–brain barrier (BBB). NPs possess optical, magnetic and photodynamic properties that can be exploited by surface modification, bio composition, contrast agents’ encapsulation and coating by tumor-derived cells. Hence, nanotechnology has brought on a revolution in the field of diagnosis and imaging of brain tumors and cancers. Recently, nanomaterials with biomimetic functions have been introduced to efficiently cross the BBB to be engulfed by deep skin tumors and cancer malignancies for imaging. The review focuses on nanotechnology-based diagnostic and imaging approaches for exploration in brain tumors and cancers. Moreover, the review also summarizes a few strategies to image glioblastoma and cancers by multimodal functional nanocomposites for more precise and accurate clinical diagnosis. Their unique physicochemical attributes, including nanoscale sizes, larger surface area, explicit structural features and ability to encapsulate diverse molecules on their surface, render nanostructured materials as excellent nano-vehicles to cross the blood–brain barrier and convey drug molecules to their target region. This review sheds light on the current progress of various kinds of nanomaterials, such as liposomes, nano-micelles, dendrimers, carbon nanotubes, carbon dots and NPs (gold, silver and zinc oxide NPs), for efficient drug delivery in the treatment and diagnosis of brain cancer.
Collapse
|
33
|
Jin Y, Wang H, Yi K, Lv S, Hu H, Li M, Tao Y. Applications of Nanobiomaterials in the Therapy and Imaging of Acute Liver Failure. NANO-MICRO LETTERS 2020; 13:25. [PMID: 34138224 PMCID: PMC8187515 DOI: 10.1007/s40820-020-00550-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/22/2020] [Indexed: 05/02/2023]
Abstract
This review focuses on the therapeutic mechanisms, targeting strategies of various nanomaterials in acute liver failure, and recent advances of diverse nanomaterials for acute liver failure therapy, diagnosis, and imaging. This review provides an outlook on the applications of nanomaterials, especially on the new horizons in acute liver failure therapy, and inspires broader interests across various disciplines. Acute liver failure (ALF), a fatal clinical disease featured with overwhelming hepatocyte necrosis, is a grand challenge in global health. However, a satisfactory therapeutic option for curing ALF is still absent, other than liver transplantation. Nanobiomaterials are currently being developed for the diagnosis and treatment of ALF. The liver can sequester most of nanoparticles from blood circulation, which becomes an intrinsic superiority for nanobiomaterials targeting hepatic diseases. Nanobiomaterials can enhance the bioavailability of free drugs, thereby significantly improving the therapeutic effects in ALF. Nanobiomaterials can also increase the liver accumulation of therapeutic agents and enable more effective targeting of the liver or specific liver cells. In addition, stimuli-responsive, optical, or magnetic nanomaterials exhibit great potential in the therapeutical, diagnostic, and imaging applications in ALF. Therefore, therapeutic agents in combination with nanobiomaterials increase the specificity of ALF therapy, diminish adverse systemic effects, and offer a multifunctional theranostic platform. Nanobiomaterial holds excellent significance and prospects in ALF theranostics. In this review, we summarize the therapeutic mechanisms and targeting strategies of various nanobiomaterials in ALF. We highlight recent developments of diverse nanomedicines for ALF therapy, diagnosis, and imaging. Furthermore, the challenges and future perspectives in the theranostics of ALF are also discussed.
Collapse
Affiliation(s)
- Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Shixian Lv
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.
| |
Collapse
|
34
|
Bai X, Su G, Zhai S. Recent Advances in Nanomedicine for the Diagnosis and Therapy of Liver Fibrosis. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1945. [PMID: 33003520 PMCID: PMC7599596 DOI: 10.3390/nano10101945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/11/2022]
Abstract
Liver fibrosis, a reversible pathological process of inflammation and fiber deposition caused by chronic liver injury and can cause severe health complications, including liver failure, liver cirrhosis, and liver cancer. Traditional diagnostic methods and drug-based therapy have several limitations, such as lack of precision and inadequate therapeutic efficiency. As a medical application of nanotechnology, nanomedicine exhibits great potential for liver fibrosis diagnosis and therapy. Nanomedicine enhances imaging contrast and improves tissue penetration and cellular internalization; it simultaneously achieves targeted drug delivery, combined therapy, as well as diagnosis and therapy (i.e., theranostics). In this review, recent designs and development efforts of nanomedicine systems for the diagnosis, therapy, and theranostics of liver fibrosis are introduced. Relative to traditional methods, these nanomedicine systems generally demonstrate significant improvement in liver fibrosis treatment. Perspectives and challenges related to these nanomedicine systems translated from laboratory to clinical use are also discussed.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| |
Collapse
|
35
|
Tao H, Guo J, Ma Y, Zhao Y, Jin T, Gu L, Dou Y, Liu J, Hu H, Xiong X, Zhang J. Luminescence Imaging of Acute Liver Injury by Biodegradable and Biocompatible Nanoprobes. ACS NANO 2020; 14:11083-11099. [PMID: 32790342 DOI: 10.1021/acsnano.0c00539] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Liver injury can result in different hepatic diseases such as fatty liver, liver fibrosis, hepatitis, and liver failure, which are mainly responsible for global mortality and morbidity. Early diagnosis is critical for the treatment of liver diseases. Herein we report luminescence imaging of neutrophil-mediated acute liver injury, including alcoholic liver injury (ALI) and acute liver failure (ALF). To this purpose, a biodegradable luminescent material was developed by chemical functionalization of a cyclic oligosaccharide, which can be produced into nanoprobes (defined as LaCD NPs). Luminescence of LaCD NPs was dependent on the level of reactive oxygen species and myeloperoxidase (MPO). Correspondingly, activated neutrophils could be specifically imaged by LaCD NPs, and the luminescent signal was positively associated with the neutrophil count. In mouse models of ALI and ALF, LaCD NPs enabled precise quantification and tracking of neutrophils in livers. In both cases, changes in the luminescence intensity are consistent with time-dependent profiles of neutrophils, MPO, and other parameters relevant to the pathogenesis of liver injury. Moreover, the luminescence imaging capacity of LaCD NPs can be additionally improved by surface functionalization with a neutrophil-targeting peptide. In addition, preliminary in vitro and in vivo studies demonstrated good safety of LaCD NPs. Consequently, LaCD NPs can be further developed as an effective and biocompatible luminescent nanoprobe for in vivo dynamic detection of the development of neutrophil-mediated acute liver injury. It is also promising for diagnosis of other neutrophil-associated liver diseases.
Collapse
Affiliation(s)
- Hui Tao
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430006, China
| | - Jiawei Guo
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yongchang Ma
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yang Zhao
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Taotao Jin
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430006, China
| | - Yin Dou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Houyuan Hu
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430006, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
36
|
Duraisamy GS, Bhosale D, Lipenská I, Huvarova I, Růžek D, Windisch MP, Miller AD. Advanced Therapeutics, Vaccinations, and Precision Medicine in the Treatment and Management of Chronic Hepatitis B Viral Infections; Where Are We and Where Are We Going? Viruses 2020; 12:v12090998. [PMID: 32906840 PMCID: PMC7552065 DOI: 10.3390/v12090998] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The management of chronic hepatitis B virus (CHB) infection is an area of massive unmet clinical need worldwide. In spite of the development of powerful nucleoside/nucleotide analogue (NUC) drugs, and the widespread use of immune stimulators such as interferon-alpha (IFNα) or PEGylated interferon-alpha (PEG-IFNα), substantial improvements in CHB standards of care are still required. We believe that the future for CHB treatment now rests with advanced therapeutics, vaccination, and precision medicine, if all are to bring under control this most resilient of virus infections. In spite of a plethora of active drug treatments, anti-viral vaccinations and diagnostic techniques, the management of CHB infection remains unresolved. The reason for this is the very complexity of the virus replication cycle itself, giving rise to multiple potential targets for therapeutic intervention some of which remain very intractable indeed. Our review is focused on discussing the potential impact that advanced therapeutics, vaccinations and precision medicine could have on the future management of CHB infection. We demonstrate that advanced therapeutic approaches for the treatment of CHB, in the form of gene and immune therapies, together with modern vaccination strategies, are now emerging rapidly to tackle the limitations of current therapeutic approaches to CHB treatment in clinic. In addition, precision medicine approaches are now gathering pace too, starting with personalized medicine. On the basis of this, we argue that the time has now come to accelerate the design and creation of precision therapeutic approaches (PTAs) for CHB treatment that are based on advanced diagnostic tools and nanomedicine, and which could maximize CHB disease detection, treatment, and monitoring in ways that could genuinely eliminate CHB infection altogether.
Collapse
Affiliation(s)
- Ganesh Selvaraj Duraisamy
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
| | - Dattatry Bhosale
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
| | - Ivana Lipenská
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
| | - Ivana Huvarova
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
| | - Daniel Růžek
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 České Budějovice, Czech Republic
| | - Marc P. Windisch
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, Korea;
- Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon 305-350, Korea
| | - Andrew D. Miller
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Černá Pole, CZ-61300 Brno, Czech Republic
- KP Therapeutics (Europe) s.r.o., Purkyňova 649/127, CZ-61200 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
37
|
Jagwani S, Jalalpure S, Dhamecha D, Jadhav K, Bohara R. Pharmacokinetic and Pharmacodynamic Evaluation of Resveratrol Loaded Cationic Liposomes for Targeting Hepatocellular Carcinoma. ACS Biomater Sci Eng 2020; 6:4969-4984. [PMID: 33455290 DOI: 10.1021/acsbiomaterials.0c00429] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. The destructive nature of the disease makes it difficult for clinicians to manage the condition. Hence, there is an urgent need to find new alternatives for HCC, as the role of conventional cytotoxic drugs has reached a plateau to control HCC associated mortality. Antioxidant compounds of plant origin with potential anti-tumor effect have been recognized as alternate modes in cancer treatment and chemoprevention. Resveratrol (RS) is a model natural nonflavonoid drug known for its anti-cancer activity. However, its clinical application is limited due to its poor bioavailability. The current research work aims to formulate, optimize, and characterize RS loaded cationic liposomes (RLs) for specific delivery in HCC. The optimized liposomes formulation (RL5) was spherical with a vesicle size (VS) of 145.78 ± 9.9 nm, ζ potential (ZP) of 38.03 ± 9.12 mV, and encapsulation efficiency (EE) of 78.14 ± 8.04%. In vitro cytotoxicity studies in HepG2 cells demonstrated an improved anti-cancer activity of RL5 in comparison with free RS. These outcomes were supported by a cell uptake study in HepG2 cells, in which RL5 exhibited a higher uptake than free RS. Furthermore, confocal images of HepG2 cells after 3 and 5 h of incubation showed higher internalization of coumarin 6 (C6) loaded liposomes (CL) as compared to those of the free C6. Pharmacokinetic and pharmacodynamic (prophylactic and therapeutic treatment modalities) studies were performed in N-nitrosodiethylamine (NDEA-carcinogen) induced HCC in rats. Pharmacokinetic evaluation of RL5 demonstrated increased localization of RS in cancerous liver tissues by 3.2- and 2.2-fold increase in AUC and Cmax, respectively, when compared to those of the free RS group. A pharmacodynamic investigation revealed a significant reduction in hepatocyte nodules in RL5 treated animals when compared to those of free RS. Further, on treatment with RL5, HCC-bearing rats showed a significant decrease in the liver marker enzymes (alanine transaminase, alkaline phosphatase, aspartate transaminase, total bilirubin levels, γ-glutamyl transpeptidase, and α-fetoprotein), in comparison with that of the disease control group. Our findings were supported by histopathological analysis, and we were first to demonstrate that NDEA induced detrimental effect on rat livers was successfully reversed with the treatment of RL5 formulation. These results implied that delivery of RS loaded cationic liposomes substantially controlled the severity of HCC and that they can be considered as a promising nanocarrier in the management of HCC.
Collapse
Affiliation(s)
- Satveer Jagwani
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India.,Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Sunil Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India.,Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Dinesh Dhamecha
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Kiran Jadhav
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Raghvendra Bohara
- Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to be University), Line Bazar, Kasaba Bawada, Kolhapur, 416006, Maharashtra, India.,CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Upper New Castle, Galway, H91 W2TY, Ireland
| |
Collapse
|
38
|
Targeted delivery of hyaluronic acid nanomicelles to hepatic stellate cells in hepatic fibrosis rats. Acta Pharm Sin B 2020; 10:693-710. [PMID: 32322471 PMCID: PMC7161713 DOI: 10.1016/j.apsb.2019.07.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis is one kind of liver diseases with a high mortality rate and incidence. The activation and proliferation of hepatic stellate cells (HSCs) is the most fundamental reason of hepatic fibrosis. There are no specific and effective drug delivery carriers for the treatment of hepatic fibrosis at present. We found that when hepatic fibrosis occurs, the expression of CD44 receptors on the surface of HSCs is significantly increased. Based on this finding, we designed silibinin-loaded hyaluronic acid (SLB-HA) micelles to achieve the treatment of hepatic fibrosis. Meanwhile, we constructed liver fibrosis rat model using Sprague–Dawley rats. We demonstrated that HA micelles had specific uptake to HSCs in vitro while avoiding the distribution in normal liver cells and the phagocytosis of macrophages. Importantly, HA micelles showed a significant liver targeting effect in vivo, especially in fibrotic liver which highly expressed CD44 receptors. In addition, SLB-HA micelles could selectively kill activated HSCs, having an excellent anti-hepatic fibrosis effect in vivo and a significant sustained release effect, and also had a good biological safety and biocompatibility. Overall, HA micelles represented a novel nanomicelle system which showed great potentiality in anti-hepatic fibrosis drugs delivery.
Collapse
|
39
|
Baboci L, Capolla S, Di Cintio F, Colombo F, Mauro P, Dal Bo M, Argenziano M, Cavalli R, Toffoli G, Macor P. The Dual Role of the Liver in Nanomedicine as an Actor in the Elimination of Nanostructures or a Therapeutic Target. JOURNAL OF ONCOLOGY 2020; 2020:4638192. [PMID: 32184825 PMCID: PMC7060440 DOI: 10.1155/2020/4638192] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
The development of nanostructures for therapeutic purpose is rapidly growing, following the results obtained in vivo in animal models and in the clinical trials. Unfortunately, the potential therapeutic efficacy is not completely exploited, yet. This is mainly due to the fast clearance of the nanostructures in the body. Nanoparticles and the liver have a unique interaction because the liver represents one of the major barriers for drug delivery. This interaction becomes even more relevant and complex when the drug delivery strategies employing nanostructures are proposed for the therapy of liver diseases, such as hepatocellular carcinoma (HCC). In this case, the selective delivery of therapeutic nanoparticles to the tumor microenvironment collides with the tendency of nanostructures to be quickly eliminated by the organ. The design of a new therapeutic approach based on nanoparticles to treat HCC has to particularly take into consideration passive and active mechanisms to avoid or delay liver elimination and to specifically address cancer cells or the cancer microenvironment. This review will analyze the different aspects concerning the dual role of the liver, both as an organ carrying out a clearance activity for the nanostructures and as target for therapeutic strategies for HCC treatment.
Collapse
Affiliation(s)
- Lorena Baboci
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Federico Colombo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Prisca Mauro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Paolo Macor
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
40
|
Chi X, Liu K, Luo X, Yin Z, Lin H, Gao J. Recent advances of nanomedicines for liver cancer therapy. J Mater Chem B 2020; 8:3747-3771. [DOI: 10.1039/c9tb02871d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review highlights recent advancements in nanomedicines for liver cancer therapy.
Collapse
Affiliation(s)
- Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma
- Zhongshan Hospital
- Xiamen University
- Xiamen 361004
- China
| | - Kun Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Xiangjie Luo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Zhenyu Yin
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma
- Zhongshan Hospital
- Xiamen University
- Xiamen 361004
- China
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| |
Collapse
|
41
|
Böttger R, Pauli G, Chao PH, AL Fayez N, Hohenwarter L, Li SD. Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev 2020; 154-155:79-101. [PMID: 32574575 DOI: 10.1016/j.addr.2020.06.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
Liver diseases such as hepatitis, cirrhosis, and hepatocellular carcinoma are global health problems accounting for approximately 800 million cases and over 2 million deaths per year worldwide. Major drawbacks of standard pharmacological therapies are the inability to deliver a sufficient concentration of a therapeutic agent to the diseased liver, and nonspecific drug delivery leading to undesirable systemic side effects. Additionally, depending on the specific liver disease, drug delivery to a subset of liver cells is required. In recent years, lipid nanoparticles have been developed to passively and actively target drugs to the liver. The success of this approach has been highlighted by the FDA-approval of the first liver-targeting lipid nanoparticle, ONPATTRO, in 2018 and many other promising candidate technologies are expected to follow. This review summarizes recent developments of various lipid-based liver-targeting technologies, namely solid-lipid nanoparticles, liposomes, niosomes and micelles, and discusses the challenges and future perspectives in this field.
Collapse
|
42
|
Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer 2020; 1873:188314. [PMID: 31682895 PMCID: PMC6981221 DOI: 10.1016/j.bbcan.2019.188314] [Citation(s) in RCA: 813] [Impact Index Per Article: 162.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
Globally, liver cancer is the most frequent fatal malignancy; in the United States, it ranks fifth. Patients are often diagnosed with liver cancer in advanced stages, contributing to its poor prognosis. Of all liver cancer cases, >90% are hepatocellular carcinomas (HCCs) for which chemotherapy and immunotherapy are the best options for therapy. For liver cancer patients, new treatment options are necessary. Use of natural compounds and/or nanotechnology may provide patients with better outcomes with lower systemic toxicity and fewer side effects. Improved treatments can lead to better prognoses. Finally, in this review, we present some of the problems and current treatment options contributing to the poor outcomes for patients with liver cancer.
Collapse
Affiliation(s)
- David Anwanwan
- Department of Microbiology, Biochemistry and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shriti Singh
- Department of Kriya Sharir, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP 221 005, India
| | - Varma Saikam
- Department of Chemistry, Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30302, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| |
Collapse
|
43
|
Fan QQ, Zhang CL, Qiao JB, Cui PF, Xing L, Oh YK, Jiang HL. Extracellular matrix-penetrating nanodrill micelles for liver fibrosis therapy. Biomaterials 2019; 230:119616. [PMID: 31837823 DOI: 10.1016/j.biomaterials.2019.119616] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/09/2019] [Indexed: 12/18/2022]
Abstract
As hepatic stellate cells (HSCs) are essential for hepatic fibrogenesis, HSCs targeted nano-drug delivery system is a research hotspot in liver fibrosis therapy. However, the excessive deposition of fibrosis collagen (mainly collagen I) in the space of Disse associated with hepatic fibrogenesis would significantly hinder nano-formulation delivery to HSCs. Here, we have prepared a collagenase I and retinol co-decorated polymeric micelle that possess nanodrill-like and HSCs-target function based on poly-(lactic-co-glycolic)-b-poly (ethylene glycol)-maleimide (PLGA-PEG-Mal) (named CRM) for liver fibrosis therapy. Upon encountering collagen I barrier, CRM exerted a nanodrill-like function, efficiently degrading pericellular collagen I and showing greater uptake by human HSCs than other micelle formulations. Besides, CRM could realize excellent accumulation in the fibrotic liver and accurate targeting to activated HSCs in mouse hepatic fibrosis model. Moreover, CRM loaded with nilotinib (CRM/NIL), a second-generation tyrosine kinase inhibitor used in the treatment of liver fibrosis, showed optimal antifibrotic activity. This work suggests that CRM with dual function is an efficient carrier for liver fibrosis drug delivery and collagenase I decorating could be a new strategy for building more efficient HSCs targeted nano-drug delivery system.
Collapse
Affiliation(s)
- Qian-Qian Fan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Cheng-Lu Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian-Bin Qiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng-Fei Cui
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
44
|
Witzigmann D, Uhl P, Sieber S, Kaufman C, Einfalt T, Schöneweis K, Grossen P, Buck J, Ni Y, Schenk SH, Hussner J, Meyer Zu Schwabedissen HE, Québatte G, Mier W, Urban S, Huwyler J. Optimization-by-design of hepatotropic lipid nanoparticles targeting the sodium-taurocholate cotransporting polypeptide. eLife 2019; 8:42276. [PMID: 31333191 PMCID: PMC6682401 DOI: 10.7554/elife.42276] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Active targeting and specific drug delivery to parenchymal liver cells is a promising strategy to treat various liver disorders. Here, we modified synthetic lipid-based nanoparticles with targeting peptides derived from the hepatitis B virus large envelope protein (HBVpreS) to specifically target the sodium-taurocholate cotransporting polypeptide (NTCP; SLC10A1) on the sinusoidal membrane of hepatocytes. Physicochemical properties of targeted nanoparticles were optimized and NTCP-specific, ligand-dependent binding and internalization was confirmed in vitro. The pharmacokinetics and targeting capacity of selected lead formulations was investigated in vivo using the emerging zebrafish screening model. Liposomal nanoparticles modified with 0.25 mol% of a short myristoylated HBV derived peptide, that is Myr-HBVpreS2-31, showed an optimal balance between systemic circulation, avoidance of blood clearance, and targeting capacity. Pronounced liver enrichment, active NTCP-mediated targeting of hepatocytes and efficient cellular internalization were confirmed in mice by 111In gamma scintigraphy and fluorescence microscopy demonstrating the potential use of our hepatotropic, ligand-modified nanoparticles.
Collapse
Affiliation(s)
- Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Philipp Uhl
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Christina Kaufman
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, INF, Heidelberg, Germany
| | - Tomaz Einfalt
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Katrin Schöneweis
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, INF, Heidelberg, Germany
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jonas Buck
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, INF, Heidelberg, Germany
| | - Susanne H Schenk
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Janine Hussner
- Division of Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Gabriela Québatte
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Walter Mier
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, INF, Heidelberg, Germany
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
45
|
Huo D, Zhu J, Chen G, Chen Q, Zhang C, Luo X, Jiang W, Jiang X, Gu Z, Hu Y. Eradication of unresectable liver metastasis through induction of tumour specific energy depletion. Nat Commun 2019; 10:3051. [PMID: 31296864 PMCID: PMC6624273 DOI: 10.1038/s41467-019-11082-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 06/20/2019] [Indexed: 02/08/2023] Open
Abstract
Treatment of liver metastasis experiences slow progress owing to the severe side effects. In this study, we demonstrate a strategy capable of eliminating metastatic cancer cells in a selective manner. Nucleus-targeting W18O49 nanoparticles (WONPs) are conjugated to mitochondria-selective mesoporous silica nanoparticles (MSNs) containing photosensitizer (Ce6) through a Cathepsin B-cleavable peptide. In hepatocytes, upon the laser irradiation, the generated singlet oxygen species are consumed by WONPs, in turn leading to the loss of their photothermally heating capacity, thereby sparing hepatocyte from thermal damage induced by the laser illumination. By contrast, in cancer cells, the cleaved peptide linker allows WONPs and MSNs to respectively target nucleus and mitochondria, where the therapeutic powers could be unleashed, both photodynamically and photothermally. This ensures the energy production of cancer cells can be abolished. We further assess the underlying molecular mechanism at both gene and protein levels to better understand the therapeutic outcome.
Collapse
Affiliation(s)
- Da Huo
- Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Jianfeng Zhu
- Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Guojun Chen
- Department of Bioengineering and the California Nanosystems Institute, University of California, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, USA
| | - Qian Chen
- Department of Bioengineering and the California Nanosystems Institute, University of California, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, USA
| | - Chao Zhang
- Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xingyu Luo
- Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Wei Jiang
- Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
| | - Zhen Gu
- Department of Bioengineering and the California Nanosystems Institute, University of California, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, USA.
| | - Yong Hu
- Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
46
|
Abstract
Bioavailability is an ancient but effective terminology by which the entire therapeutic efficacy of a drug directly or indirectly relays. Despite considering general plasma bioavailability, specific organ/tissue bioavailability will pave the path to broad spectrum dose calculation. Clear knowledge and calculative vision on bioavailability can improve the research and organ-targeting phenomenon. This article comprises a detailed introduction on bioavailability along with regulatory aspects, kinetic data and novel bioformulative approaches to achieve improved organ specific bioavailability, which may not be readily related to blood plasma bioavailability.
Collapse
|
47
|
Samie HAA, Saeed M, Faisal SM, Kausar MA, Kamal MA. Recent Findings on Nanotechnology-based Therapeutic Strategies Against Hepatocellular Carcinoma. Curr Drug Metab 2019; 20:283-291. [DOI: 10.2174/1389200220666190308134351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 12/14/2018] [Accepted: 02/14/2019] [Indexed: 02/07/2023]
Abstract
Background:
Nanotechnology-based therapies are emerging as a promising new anticancer approach.
Early clinical studies suggest that nanoparticle-based therapeutics can show enhanced efficacy while reducing side
effects minimal, owing to targeted delivery and active intracellular uptake.
Methods:
To overcome the problems of gene and drug delivery, nanotechnology based delivery system gained interest
in the last two decades. Encouraging results from Nano formulation based drug delivery systems revealed that
these emerging restoratives can efficiently lead to more effective, targeted, selective and efficacious delivery of chemotherapeutic
agents to the affected target cells.
Results:
Nanotechnology not only inhibits targeted gene products in patients with cancer, but also taught us valuable
lessons regarding appropriate dosages and route of administrations. Besides, nanotechnology based therapeutics
holds remarkable potential as an effective drug delivery system. We critically highlight the recent findings on
nanotechnology mediated therapeutics strategies to combat hepatocellular carcinoma and discuss how nanotechnology
platform can have enhanced anticancer effects compared with the parent therapeutic agents they contain.
Conclusion:
In this review, we discussed the key challenges, recent findings and future perspective in the development
of effective nanotechnology-based cancer therapeutics. The emphasis here is focused on nanotechnology-based
therapies that are likely to affect clinical investigations and their implications for advancing the treatment of patients
with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hany A. Abdel Samie
- Department of Zoology, Faculty of Science, Menoufia University, Al Minufya, Egypt
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Syed Mohd Faisal
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh-202002, India
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, Saudi Arabia
| | - Mohammad A. Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
48
|
Lucchino M, Billet A, Versini A, Bavireddi H, Dasari BD, Debieu S, Colombeau L, Cañeque T, Wagner A, Masson G, Taran F, Karoyan P, Delepierre M, Gaillet C, Houdusse A, Britton S, Schmidt F, Florent JC, Belmont P, Monchaud D, Cossy J, Thomas C, Gautier A, Johannes L, Rodriguez R. 2nd PSL Chemical Biology Symposium (2019): At the Crossroads of Chemistry and Biology. Chembiochem 2019; 20:968-973. [PMID: 30803119 DOI: 10.1002/cbic.201900092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 11/07/2022]
Abstract
Chemical Biology is the science of designing chemical tools to dissect and manipulate biology at different scales. It provides the fertile ground from which to address important problems of our society, such as human health and environment.
Collapse
Affiliation(s)
- Marco Lucchino
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Anne Billet
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Antoine Versini
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Harikrishna Bavireddi
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Bhanu-Das Dasari
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Sylvain Debieu
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Ludovic Colombeau
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Tatiana Cañeque
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Alain Wagner
- University of Strasbourg, CNRS UMR 7199, 67401, Illkirch-Graffenstaden, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, 91198, Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris-Saclay, CEA, 91191, Gif-sur-Yvette, France
| | - Philippe Karoyan
- PSL Université Paris, Sorbonne Université, Ecole Normale Supérieure, CNRS UMR7203, 75005, Paris, France
| | - Muriel Delepierre
- PSL Université Paris, Institut Pasteur, CNRS UMR3528, 75015, Paris, France
| | - Christine Gaillet
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Anne Houdusse
- PSL Université Paris, Institut Curie, CNRS UMR144, 75005, Paris, France
| | | | - Frédéric Schmidt
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Jean-Claude Florent
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Philippe Belmont
- Université Paris Descartes, Faculté de Pharmacie de Paris, CNRS UMR8038, 75006, Paris, France
| | - David Monchaud
- UBFC, Institut de Chimie Moléculaire, CNRS UMR6302, 21078, Dijon, France
| | - Janine Cossy
- PSL Université Paris, ESPCI Paris, CNRS UMR8271, 75231, Paris cedex 05, France
| | - Christophe Thomas
- PSL Université Paris, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France
| | - Arnaud Gautier
- PSL Université Paris, Sorbonne University, Department of Chemistry, École Normale Supérieure, CNRS, 75005, Paris, France
| | - Ludger Johannes
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Raphaël Rodriguez
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| |
Collapse
|
49
|
Vauthier C. A journey through the emergence of nanomedicines with poly(alkylcyanoacrylate) based nanoparticles. J Drug Target 2019; 27:502-524. [PMID: 30889991 DOI: 10.1080/1061186x.2019.1588280] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Starting in the late 1970s, the pioneering work of Patrick Couvreur gave birth to the first biodegradable nanoparticles composed of a biodegradable synthetic polymer. These nanoparticles, made of poly(alkylcyanoacrylate) (PACA), were the first synthetic polymer-based nanoparticulate drug carriers undergoing a phase III clinical trial so far. Analyzing the journey from the birth of PACA nanoparticles to their clinical evaluation, this paper highlights their remarkable adaptability to bypass various drug delivery challenges found on the way. At present, PACA nanoparticles include a wide range of nanoparticles that can associate drugs of different chemical nature and can be administered in vivo by different routes. The most recent technologies giving the nanoparticles customised functions could also be implemented on this family of nanoparticles. Through different examples, this paper discusses the seminal role of the PACA nanoparticles' family in the development of nanomedicines.
Collapse
Affiliation(s)
- Christine Vauthier
- a Institut Galien Paris Sud, UMR CNRS 8612 , Université Paris-Sud , Chatenay-Malabry Cedex , France
| |
Collapse
|
50
|
Li L, Guo J, Wang Y, Xiong X, Tao H, Li J, Jia Y, Hu H, Zhang J. A Broad-Spectrum ROS-Eliminating Material for Prevention of Inflammation and Drug-Induced Organ Toxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800781. [PMID: 30356945 PMCID: PMC6193162 DOI: 10.1002/advs.201800781] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/22/2018] [Indexed: 05/12/2023]
Abstract
Despite the great potential of numerous antioxidants for pharmacotherapy of diseases associated with inflammation and oxidative stress, many challenges remain for their clinical translation. Herein, a superoxidase dismutase/catalase-mimetic material based on Tempol and phenylboronic acid pinacol ester simultaneously conjugated β-cyclodextrin (abbreviated as TPCD), which is capable of eliminating a broad spectrum of reactive oxygen species (ROS), is reported. TPCD can be easily synthesized by sequentially conjugating two functional moieties onto a β-cyclodextrin scaffold. The thus developed pharmacologically active material may be easily produced into antioxidant and anti-inflammatory nanoparticles, with tunable size. TPCD nanoparticles (TPCD NP) effectively protect macrophages from oxidative stress-induced apoptosis in vitro. Consistently, TPCD NP shows superior efficacies in three murine models of inflammatory diseases, with respect to attenuating inflammatory responses and mitigating oxidative stress. TPCD NP can also protect mice from drug-induced organ toxicity. Besides the passive targeting effect, the broad spectrum ROS-scavenging capability contributes to the therapeutic benefits of TPCD NP. Importantly, in vitro and in vivo preliminary experiments demonstrate the good safety profile of TPCD NP. Consequently, TPCD in its native and nanoparticle forms can be further developed as efficacious and safe therapies for treatment of inflammation and oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Lanlan Li
- Department of PharmaceuticsCollege of PharmacyThird Military Medical UniversityChongqing400038China
| | - Jiawei Guo
- Department of PharmaceuticsCollege of PharmacyThird Military Medical UniversityChongqing400038China
| | - Yuquan Wang
- Department of CardiologySouthwest HospitalThird Military Medical UniversityChongqing400038China
- Department of CardiologyAffiliated Hospital of North Sichuan Medical CollegeNanchong637000Sichuan ProvinceChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Hui Tao
- Department of PharmaceuticsCollege of PharmacyThird Military Medical UniversityChongqing400038China
| | - Jin Li
- Department of PharmaceuticsCollege of PharmacyThird Military Medical UniversityChongqing400038China
| | - Yi Jia
- Department of PharmaceuticsCollege of PharmacyThird Military Medical UniversityChongqing400038China
| | - Houyuan Hu
- Department of CardiologySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Jianxiang Zhang
- Department of PharmaceuticsCollege of PharmacyThird Military Medical UniversityChongqing400038China
| |
Collapse
|