1
|
Gilgenkrantz H, Paradis V, Lotersztajn S. Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma. Hepatology 2025; 81:269-287. [PMID: 37212145 PMCID: PMC11643143 DOI: 10.1097/hep.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Progression of chronic liver injury to fibrosis, abnormal liver regeneration, and HCC is driven by a dysregulated dialog between epithelial cells and their microenvironment, in particular immune, fibroblasts, and endothelial cells. There is currently no antifibrogenic therapy, and drug treatment of HCC is limited to tyrosine kinase inhibitors and immunotherapy targeting the tumor microenvironment. Metabolic reprogramming of epithelial and nonparenchymal cells is critical at each stage of disease progression, suggesting that targeting specific metabolic pathways could constitute an interesting therapeutic approach. In this review, we discuss how modulating intrinsic metabolism of key effector liver cells might disrupt the pathogenic sequence from chronic liver injury to fibrosis/cirrhosis, regeneration, and HCC.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| | - Valérie Paradis
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
- Pathology Department, Beaujon Hospital APHP, Paris-Cité University, Clichy, France
| | - Sophie Lotersztajn
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| |
Collapse
|
2
|
Sun Y, Yuan X, Hu Z, Li Y. Harnessing nuclear receptors to modulate hepatic stellate cell activation for liver fibrosis resolution. Biochem Pharmacol 2024; 232:116730. [PMID: 39710274 DOI: 10.1016/j.bcp.2024.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
With the recent approval of Resmetirom as the first drug targeting nuclear receptors for metabolic dysfunction-associated steatohepatitis (MASH), there is promising way to treat MASH-associated liver fibrosis. However, liver fibrosis can arise from various pathogenic factors, and effective treatments for fibrosis due to other causes remain elusive. The activation of hepatic stellate cells (HSCs) represents a central link in the pathogenesis of hepatic fibrosis. Therefore, harnessing nuclear receptors to modulate HSC activation may be an effective approach to resolving the complex liver fibrosis caused by various factors. In this comprehensive review, we systematically explore the structure and physiological functions of nuclear receptors, shedding light on their multifaceted roles in HSC activation. Recent advancements in drug development targeting nuclear receptors are discussed, providing insights into their potential as rational and effective therapeutic targets for modulating HSC activation in the context of liver fibrosis. By elucidating the intricate interplay between nuclear receptors and HSC activation, this review contributes to the discovery of new nuclear receptor targets in HSCs for resolving hepatic fibrosis.
Collapse
Affiliation(s)
- Yaxin Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Yuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; Department of Health and Nursing, Nanfang College of Sun Yat-sen University, Guangzhou, China.
| | - Yuanyuan Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Horn P, Tacke F. Metabolic reprogramming in liver fibrosis. Cell Metab 2024; 36:1439-1455. [PMID: 38823393 DOI: 10.1016/j.cmet.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Chronic liver diseases, primarily metabolic dysfunction-associated steatotic liver disease (MASLD), harmful use of alcohol, or viral hepatitis, may result in liver fibrosis, cirrhosis, and cancer. Hepatic fibrogenesis is a complex process with interactions between different resident and non-resident heterogeneous liver cell populations, ultimately leading to deposition of extracellular matrix and organ failure. Shifts in cell phenotypes and functions involve pronounced transcriptional and protein synthesis changes that require metabolic adaptations in cellular substrate metabolism, including glucose and lipid metabolism, resembling changes associated with the Warburg effect in cancer cells. Cell activation and metabolic changes are regulated by metabolic stress responses, including the unfolded protein response, endoplasmic reticulum stress, autophagy, ferroptosis, and nuclear receptor signaling. These metabolic adaptations are crucial for inflammatory and fibrogenic activation of macrophages, lymphoid cells, and hepatic stellate cells. Modulation of these pathways, therefore, offers opportunities for novel therapeutic approaches to halt or even reverse liver fibrosis progression.
Collapse
Affiliation(s)
- Paul Horn
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
4
|
Chen X, Li J, Xiang A, Guan H, Su P, Zhang L, Zhang D, Yu Q. BMP and activin receptor membrane bound inhibitor: BAMBI has multiple roles in gene expression and diseases (Review). Exp Ther Med 2024; 27:28. [PMID: 38125356 PMCID: PMC10728939 DOI: 10.3892/etm.2023.12316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/20/2023] [Indexed: 12/23/2023] Open
Abstract
BMP and activin membrane-bound inhibitor (BAMBI) is a transmembrane glycoprotein, known as a pseudo-receptor for TGFβ, as, while its extracellular domain is similar to that of type I TGFβ receptors, its intracellular structure is shorter and lacks a serine/threonine phosphokinase signaling motif. BAMBI can regulate numerous biological phenomena, including glucose and lipid metabolism, inflammatory responses, and cell proliferation and differentiation. Furthermore, abnormal expression of BAMBI at the mRNA and protein levels contributes to various human pathologies, including obesity and cancer. In the present review, the structure of BAMBI is briefly introduced and its associated signaling pathways and physiological functions are described. Understanding of BAMBI structure and function may contribute to knowledge regarding the occurrence of diseases, including obesity and diabetes, among others. The present review provides a theoretical foundation for the development of BAMBI as a potential biomarker or therapeutic target.
Collapse
Affiliation(s)
- Xiaochang Chen
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
- Department of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Jue Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Aoqi Xiang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Hua Guan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Peihong Su
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Lusha Zhang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Dian Zhang
- Department of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|
5
|
Yi Q, Yang J, Wu Y, Wang Y, Cao Q, Wen W. Immune microenvironment changes of liver cirrhosis: emerging role of mesenchymal stromal cells. Front Immunol 2023; 14:1204524. [PMID: 37539053 PMCID: PMC10395751 DOI: 10.3389/fimmu.2023.1204524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 08/05/2023] Open
Abstract
Cirrhosis is a progressive and diffuse liver disease characterized by liver tissue fibrosis and impaired liver function. This condition is brought about by several factors, including chronic hepatitis, hepatic steatosis, alcohol abuse, and other immunological injuries. The pathogenesis of liver cirrhosis is a complex process that involves the interaction of various immune cells and cytokines, which work together to create the hepatic homeostasis imbalance in the liver. Some studies have indicated that alterations in the immune microenvironment of liver cirrhosis are closely linked to the development and prognosis of the disease. The noteworthy function of mesenchymal stem cells and their paracrine secretion lies in their ability to promote the production of cytokines, which in turn enhance the self-repairing capabilities of tissues. The objective of this review is to provide a summary of the alterations in liver homeostasis and to discuss intercellular communication within the organ. Recent research on MSCs is yielding a blueprint for cell typing and biomarker immunoregulation. Hopefully, as MSCs researches continue to progress, novel therapeutic approaches will emerge to address cirrhosis.
Collapse
Affiliation(s)
- Qiuyun Yi
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jinxian Yang
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ying Wu
- Department of Breast and Thyroid Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Ying Wang
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Qiqi Cao
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wen Wen
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
6
|
Gou Y, Wang L, Zhao J, Xu X, Xu H, Xie F, Wang Y, Feng Y, Zhang J, Zhang Y. PNPLA3-I148M Variant Promotes the Progression of Liver Fibrosis by Inducing Mitochondrial Dysfunction. Int J Mol Sci 2023; 24:ijms24119681. [PMID: 37298640 DOI: 10.3390/ijms24119681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 polymorphism (I148M) is strongly associated with non-alcoholic steatohepatitis and advanced fibrosis; however, the underlying mechanisms remain largely unknown. In this study, we investigated the effect of PNPLA3-I148M on the activation of hepatic stellate cell line LX-2 and the progression of liver fibrosis. Immunofluorescence staining and enzyme-linked immunosorbent assay were used to detect lipid accumulation. The expression levels of fibrosis, cholesterol metabolism, and mitochondria-related markers were measured via real-time PCR or western blotting. Electron microscopy was applied to analyze the ultrastructure of the mitochondria. Mitochondrial respiration was measured by a Seahorse XFe96 analyzer. PNPLA3-I148M significantly promoted intracellular free cholesterol aggregation in LX-2 cells by decreasing cholesterol efflux protein (ABCG1) expression; it subsequently induced mitochondrial dysfunction characterized by attenuated ATP production and mitochondrial membrane potential, elevated ROS levels, caused mitochondrial structural damage, altered the oxygen consumption rate, and decreased the expression of mitochondrial-function-related proteins. Our results demonstrated for the first time that PNPLA3-I148M causes mitochondrial dysfunction of LX-2 cells through the accumulation of free cholesterol, thereby promoting the activation of LX-2 cells and the development of liver fibrosis.
Collapse
Affiliation(s)
- Yusong Gou
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Lifei Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinhan Zhao
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaoyi Xu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hangfei Xu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Fang Xie
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Yanjun Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Yingmei Feng
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jing Zhang
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing 100069, China
| |
Collapse
|
7
|
Li MR, Li JZ, Li JY, Wang CC, Yuan RK, Ye LH, Liu YY, Liang XJ, Zhang HC, Liu ZQ, Zeng DY, Zhang XD, Wang DH, Li JQ, Li TY, Yang L, Cao Y, Pan Y, Lin XG, Pan CQ, Dai EH, Dong ZY. Clinical Features of Non-Alcoholic Fatty Liver Disease in the Non-Lean Population. Obes Facts 2023; 16:427-434. [PMID: 37231905 PMCID: PMC10601616 DOI: 10.1159/000530845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION The prevalence of non-alcoholic fatty liver disease (NAFLD) in non-lean patients is significantly increased, and obesity significantly increases the risk of cirrhosis and HCC in NAFLD patients. However, whether there is a difference in clinical manifestations of NAFLD between overweight and obesity remains unclear. The objective of this study was to assess the clinical and histological features of NAFLD among a non-lean population. METHODS Current study enrolled consecutive non-lean (body mass index [BMI] >23 kg/m2) patients with NAFLD and available liver biopsy results. Patients were stratified by BMI into two groups for the comparison of their clinical and histological variables, which included the overweight (BMI 23∼<28 kg/m2) and the obese (BMI ≥28 kg/m2). Risk factors for moderate to severe fibrosis (stage >1) were also analyzed through the logistic regression model. RESULTS Among 184 non-lean patients with metabolic-associated fatty liver disease enrolled, 65 and 119 were overweight and obese, respectively. Patients in the obesity group had a significantly lower level of gamma-glutamyl transpeptidase, higher levels of platelet, glucose, prothrombin time, and more common of moderate to severe inflammatory activity when compared to those in the overweight group. However, a significant low frequency of moderate to severe fibrosis was found in the obesity group versus the overweight group (19.33% vs. 40.00%, p = 0.002). Binary logistics regression analysis of fibrosis found that aspartate transaminase (AST), BMI, alanine transaminase (ALT), and cholesterol (CHOL) were independent predictors for moderate to severe fibrosis in non-lean patients with NAFLD. Compared with the traditional fibrosis-4 (AUC = 0.77) and aminotransferase to platelet ratio index (AUC = 0.79) indexes, the combined index based on AST, BMI, ALT, and CHOL was more accurate in predicting moderate to severe fibrosis in non-lean patients with NAFLD (AUC = 0.87). CONCLUSIONS Clinical and histological features differed between obesity and overweight patients with NAFLD. When compared to the traditional serum markers, the combination index including AST, BMI, ALT, and CHOL provided a better model to predict moderate to severe fibrosis in non-lean patients with NAFLD.
Collapse
Affiliation(s)
- Min-ran Li
- Division of Infectious Disease, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jin-zhong Li
- Division of Infectious Disease, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jie-ying Li
- Division of Infectious Disease, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Cun-chuan Wang
- Bariatric and Metabolic Surgery Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Rui-kun Yuan
- Division of Infectious Disease, The Sixth Affiliated Hospital of Jinan University, Dongguan, China
| | - Li-hong Ye
- Division of Pathology, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Yun-yan Liu
- Division of Liver Disease, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Xu-jing Liang
- Division of Infectious Disease, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hai-cong Zhang
- Division of Pathology, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Zhi-quan Liu
- Division of Pathology, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Dong-yu Zeng
- Division of Infectious Disease, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | | | - De-hua Wang
- Division of Liver Disease, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Jun-qing Li
- Division of Liver Disease, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Tao-yuan Li
- Division of Infectious Disease, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liu Yang
- Division of Infectious Disease, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yang Cao
- Division of Infectious Disease, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yun Pan
- Division of Infectious Disease, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xun-ge Lin
- Division of Infectious Disease, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Calvin Q. Pan
- Department of Infectious Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Division of Gastroenterology and Hepatology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Er-hei Dai
- Division of Liver Disease, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Zhi-yong Dong
- Bariatric and Metabolic Surgery Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Jia L. Dietary cholesterol in alcohol-associated liver disease. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00026. [PMID: 37152117 PMCID: PMC10158609 DOI: 10.1097/in9.0000000000000026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023]
Abstract
There is an increasing prevalence of alcohol-associated liver disease (ALD) worldwide. In addition to excessive alcohol consumption, other nutritional factors have been shown to affect the initiation and progression of ALD. The emerging role of cholesterol in exacerbating ALD has been reported recently and the underlying mechanisms are discussed. In addition, the interplay between dietary cholesterol and alcohol on cholesterol metabolism is reviewed. Furthermore, we highlight the therapeutic potential of cholesterol-lowering drugs in managing the onset and severity of ALD. Finally, we suggest the future mechanistic investigation of the effect of cholesterol on insulin resistance and intestinal inflammation in the exacerbation of alcohol-induced cellular and systemic dysfunction.
Collapse
Affiliation(s)
- Lin Jia
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
9
|
Shi B, Wang W, Ye M, Liang M, Yu Z, Zhang Y, Liu Z, Liang X, Ao J, Xu F, Xu G, Jiang X, Zhou X, Liu L. Spermidine suppresses the activation of hepatic stellate cells to cure liver fibrosis through autophagy activator MAP1S. Liver Int 2023; 43:1307-1319. [PMID: 36892418 DOI: 10.1111/liv.15558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND AND AIMS Liver diseases present a wide range of fibrosis, from fatty liver with no inflammation to steatohepatitis with varying degrees of fibrosis, to established cirrhosis leading to HCC. In a multivariate analysis, serum levels of spermidine were chosen as the top metabolite from 237 metabolites and its levels were drastically reduced along with progression to advanced steatohepatitis. Our previous studies that showed spermidine supplementation helps mice prevent liver fibrosis through MAP1S have prompted us to explore the possibility that spermidine can alleviate or cure already developed liver fibrosis. METHODS We collected tissue samples from patients with liver fibrosis to measure the levels of MAP1S. We treated wild-type and MAP1S knockout mice with CCl4 -induced liver fibrosis with spermidine and isolated HSCs in culture to test the effects of spermidine on HSC activation and liver fibrosis. RESULTS Patients with increasing degrees of liver fibrosis had reduced levels of MAP1S. Supplementing spermidine in mice that had already developed liver fibrosis after 1 month of CCl4 induction for an additional 3 months resulted in significant reductions in levels of ECM proteins and a remarkable improvement in liver fibrosis through MAP1S. Spermidine also suppressed HSC activation by reducing ECM proteins at both the mRNA and protein levels, and increasing the number of lipid droplets in stellate cells. CONCLUSIONS Spermidine supplementation is a potentially clinically meaningful approach to treating and curing liver fibrosis, preventing cirrhosis and HCC in patients.
Collapse
Affiliation(s)
- Boyun Shi
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pediatric Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Wang
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mengting Ye
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min Liang
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziyu Yu
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yingying Zhang
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhaoyu Liu
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xue Liang
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Ao
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fengfeng Xu
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guibin Xu
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xianhan Jiang
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinke Zhou
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Leyuan Liu
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Guo X, Li Y, Wang W, Wang L, Hu S, Xiao X, Hu C, Dai Y, Zhang Y, Li Z, Li J, Ma X, Zeng J. The construction of preclinical evidence for the treatment of liver fibrosis with quercetin: A systematic review and meta-analysis. Phytother Res 2022; 36:3774-3791. [PMID: 35918855 DOI: 10.1002/ptr.7569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 12/09/2022]
Abstract
Quercetin (3,3',4',5,7-pentahydroxyflavone), a flavonoid, is widely found in fruits and vegetables and exerts broad-spectrum pharmacological effects in the liver. Many studies have explored the bioactivity of quercetin in the treatment of liver fibrosis. Hence, through a systematic review and biological mechanism evaluation, this study aimed to construct a body of preclinical evidence for the treatment of liver fibrosis using quercetin. The literature used in this study was mainly obtained from four databases, and the SYRCLE list (10 items) was used to evaluate the quality of the included literature. A meta-analysis of HA, LN, and other indicators was performed via STATA 15.0 software. Subgroup analyses based on animal species and model protocol were performed to further obtain detailed results. Moreover, the therapeutic mechanism of quercetin was summarized in a directed network form based on a comprehensive search of the literature. After screening, a total of 14 articles (comprising 15 studies) involving 254 animals were included. The results from the analysis showed that the corresponding liver function indexes, such as the levels of HA and LN, were significantly improved in the quercetin group compared with the model group, and liver function, such as the levels of AST and ALT, were also improved in the quercetin group. The species- and model-based subgroup analyses of AST and ALT revealed that quercetin exerts a significant effect. The therapeutic mechanism of quercetin was shown to be related to multiple pathways involving anti-inflammatory and antioxidant activities and lipid accumulation, including regulation of the TGF-β, α-SMA, ROS, and P-AMPK pathways. The results showed that quercetin exerts an obvious effect on liver fibrosis, and more prominent improvement effects on liver function and liver fibrosis indicators were obtained with a dose of 5-200 mg during a treatment course ranging from 4 to 8 weeks. Quercetin might be a promising therapeutic for liver fibrosis.
Collapse
Affiliation(s)
- Xiaochuan Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weizheng Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Luyao Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sihan Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Dai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiheng Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziyu Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junlin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Supplementation of Enriched Polyunsaturated Fatty Acids and CLA Cheese on High Fat Diet: Effects on Lipid Metabolism and Fat Profile. Foods 2022; 11:foods11030398. [PMID: 35159548 PMCID: PMC8834222 DOI: 10.3390/foods11030398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies have demonstrated a positive relationship between dietary fat intake and the onset of several metabolic diseases. This association is particularly evident in a diet rich in saturated fatty acids, typical of animal foods, such as dairy products. However, these foods are the main source of fatty acids with a proven nutraceutical effect, such as the ω-3 fatty acid α-linolenic acid (ALA) and the conjugated linoleic acid (CLA), which have demonstrated important roles in the prevention of various diseases. In the present study, the effect of a supplementation with cheese enriched with ω-3 fatty acids and CLA on the metabolism and lipid profiles of C57bl/6 mice was evaluated. In particular, the analyses were conducted on different tissues, such as liver, muscle, adipose tissue and brain, known for their susceptibility to the effects of dietary fats. Supplementing cheese enriched in CLA and ω-3 fats reduced the level of saturated fat and increased the content of CLA and ALA in all tissues considered, except for the brain. Furthermore, the consumption of this cheese resulted in a tissue-specific response in the expression levels of genes involved in lipid and mitochondrial metabolism. As regards genes involved in the inflammatory response, the consumption of enriched cheese resulted in a reduction in the expression of inflammatory genes in all tissues analyzed. Considering the effects that chronic inflammation associated with a high-calorie and high-fat diet (meta-inflammation) or aging (inflammaging) has on the onset of chronic degenerative diseases, these data could be of great interest as they indicate the feasibility of modulating inflammation (thus avoiding/delaying these pathologies) with a nutritional and non-pharmacological intervention.
Collapse
|
12
|
Yue H, Cai W, Li Y, Feng X, Dong P, Xue C, Wang J. A Novel Sialoglycopeptide from Gadus morhua Eggs Prevents Liver Fibrosis Induced by CCl 4 via Downregulating FXR/FGF15 and TLR4/TGF-β/Smad Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13093-13101. [PMID: 34714650 DOI: 10.1021/acs.jafc.1c05411] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liver fibrosis plays a critical role in liver disease progression. A sialoglycopeptide from the Gadus morhua eggs (Gm-SGPP) was identified having a 7000 Da molecular weight with a core pentasaccharide structure and osteogenesis activity. However, whether Gm-SGPP is beneficial to liver fibrosis remains unknown. In this study, mice with liver fibrosis were intraperitoneally injected with 2.5% CCl4 (10 mL/kg) and orally administered with Gm-SGPP (500 mg/kg) for 30 days. Results showed that Gm-SGPP alleviated oxidative liver damage and lipid metabolism disorder and reduced hepatocyte necrosis and lipid droplet accumulation. Notably, we found that Gm-SGPP increased the number and changed the composition of bile acids via increasing cholesterol 7a-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) expression, which caused inhibition of ileum farnesoid X receptor (FXR) expression and accelerated the cholesterol conversion. Cholesterol accumulation is a risk factor for liver fibrosis. Masson staining showed that Gm-SGPP significantly reduced the degree of collagen deposition. Western blotting further suggested that Gm-SGPP downregulated the key gene of the toll-like receptor 4 (TLR4)-mediated transforming growth factor-β (TGF-β)/Smad pathway. To our best knowledge, this is the first report that Gm-SGPP prevented liver fibrosis via attenuating cholesterol accumulation. Our present results provide new ideas for the Gadus morhua egg's high-value utilization.
Collapse
Affiliation(s)
- Hao Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Weizhen Cai
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Yanqi Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Xiaoxuan Feng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province 266237, P.R. China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| |
Collapse
|
13
|
Hwang S, Chung KW. Targeting fatty acid metabolism for fibrotic disorders. Arch Pharm Res 2021; 44:839-856. [PMID: 34664210 DOI: 10.1007/s12272-021-01352-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is defined by abnormal accumulation of extracellular matrix, which can affect virtually every organ system under diseased conditions. Fibrotic tissue remodeling often leads to organ dysfunction and is highly associated with increased morbidity and mortality. The disease burden caused by fibrosis is substantial, and the medical need for effective antifibrotic therapies is essential. Significant progress has been made in understanding the molecular mechanism and pathobiology of fibrosis, such as transforming growth factor-β (TGF-β)-mediated signaling pathways. However, owing to the complex and dynamic properties of fibrotic disorders, there are currently no therapeutic options that can prevent or reverse fibrosis. Recent studies have revealed that alterations in fatty acid metabolic processes are common mechanisms and core pathways that play a central role in different fibrotic disorders. Excessive lipid accumulation or defective fatty acid oxidation is associated with increased lipotoxicity, which directly contributes to the development of fibrosis. Genetic alterations or pharmacologic targeting of fatty acid metabolic processes have great potential for the inhibition of fibrosis development. Furthermore, mechanistic studies have revealed active interactions between altered metabolic processes and fibrosis development. Several well-known fibrotic factors change the lipid metabolic processes, while altered metabolic processes actively participate in fibrosis development. This review summarizes the recent evidence linking fatty acid metabolism and fibrosis, and provides new insights into the pathogenesis of fibrotic diseases for the development of drugs for fibrosis prevention and treatment.
Collapse
Affiliation(s)
- Seonghwan Hwang
- College of Pharmacy, Pusan National University, Busan, 46214, Republic of Korea
| | - Ki Wung Chung
- College of Pharmacy, Pusan National University, Busan, 46214, Republic of Korea.
| |
Collapse
|
14
|
Jia F, Hu X, Kimura T, Tanaka N. Impact of Dietary Fat on the Progression of Liver Fibrosis: Lessons from Animal and Cell Studies. Int J Mol Sci 2021; 22:ijms221910303. [PMID: 34638640 PMCID: PMC8508674 DOI: 10.3390/ijms221910303] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Previous studies have revealed that a high-fat diet is one of the key contributors to the progression of liver fibrosis, and increasing studies are devoted to analyzing the different influences of diverse fat sources on the progression of non-alcoholic steatohepatitis. When we treated three types of isocaloric diets that are rich in cholesterol, saturated fatty acid (SFA) and trans fatty acid (TFA) with hepatitis C virus core gene transgenic mice that spontaneously developed hepatic steatosis without apparent fibrosis, TFA and cholesterol-rich diet, but not SFA-rich diet, displayed distinct hepatic fibrosis. This review summarizes the recent advances in animal and cell studies regarding the effects of these three types of fat on liver fibrogenesis.
Collapse
Affiliation(s)
- Fangping Jia
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| | - Xiao Hu
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, China;
| | - Takefumi Kimura
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
- International Relations Office, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto 390-8621, Japan
- Correspondence:
| |
Collapse
|
15
|
Yan Y, Zeng J, Xing L, Li C. Extra- and Intra-Cellular Mechanisms of Hepatic Stellate Cell Activation. Biomedicines 2021; 9:biomedicines9081014. [PMID: 34440218 PMCID: PMC8391653 DOI: 10.3390/biomedicines9081014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
Hepatic fibrosis is characterized by the pathological accumulation of extracellular matrix (ECM) in the liver resulting from the persistent liver injury and wound-healing reaction induced by various insults. Although hepatic fibrosis is considered reversible after eliminating the cause of injury, chronic injury left unchecked can progress to cirrhosis and liver cancer. A better understanding of the cellular and molecular mechanisms controlling the fibrotic response is needed to develop novel clinical strategies. It is well documented that activated hepatic stellate cells (HSCs) is the most principal cellular players promoting synthesis and deposition of ECM components. In the current review, we discuss pathways of HSC activation, emphasizing emerging extra- and intra-cellular signals that drive this important cellular response to hepatic fibrosis. A number of cell types and external stimuli converge upon HSCs to promote their activation, including hepatocytes, liver sinusoidal endothelial cells, macrophages, cytokines, altered ECM, hepatitis viral infection, enteric dysbiosis, lipid metabolism disorder, exosomes, microRNAs, alcohol, drugs and parasites. We also discuss the emerging signaling pathways and intracellular events that individually or synergistically drive HSC activation, including TGFβ/Smad, Notch, Wnt/β-catenin, Hedgehog and Hippo signaling pathways. These findings will provide novel potential therapeutic targets to arrest or reverse fibrosis and cirrhosis.
Collapse
|
16
|
Afarin R, Babaahmadi Rezaei H, Yaghooti H, Mohammadtaghvaei N. Fibroblast Growth Factor 21 Reduces Cholesterol-Induced Hepatic Fibrogenesis by Inhibiting TGF-β/Smad3C Signaling Pathway in LX2 Cells. HEPATITIS MONTHLY 2021; 21. [DOI: 10.5812/hepatmon.113321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Background: Liver fibrosis is often attributed to the activation of hepatic stellate cells (HSCs) and excessive scar formation in the liver. Advanced stages of the disease often lead to liver cirrhosis and hepatocellular carcinoma (HCC). Fibroblast growth factor 21 (FGF21) is a secreted protein, which has anti-diabetic and lipocaic effects. Objectives: In this study, we investigated the ability of FGF21 to reduce hepatic fibrogenesis due to the accumulation of free cholesterol in the LX2 cell line (a type of HSC-derived cell line) and its mechanism of action. Methods: Cells were treated with 25, 50, 75, and 100 μM concentrations of cholesterol for 24 and 48 h. The mRNA expression of genes of TGF-β, αSMA, and collagen1α and the level of Smad3C protein were measured to assess liver fibrosis. Next, the cells were treated with FGF21 for 24 h, and the expression levels of TGF-β, αSMA, collagen 1α, and Smad3C protein were measured. Results: The results showed that the expression of TGF-β, αSMA, collagen 1α genes, and also the level of Smad3C protein in the presence of cholesterol increased significantly compared to the control group. Treatment with FGF-21 also significantly reduced the expression of TGF-β, αSMA, and collagen 1α genes. Conclusions: Cholesterol by increasing the level of Smad3C protein and activating the TGF-β signaling pathway increases major proteins involved in the production of extracellular matrix, including collagen 1α. Besides, FGF21 inhibits the further activation of HSCs by inhibiting the TGF-β/Smad3C signaling pathway and thus can prevent the progression of liver fibrosis.
Collapse
|
17
|
Gilgenkrantz H, Mallat A, Moreau R, Lotersztajn S. Targeting cell-intrinsic metabolism for antifibrotic therapy. J Hepatol 2021; 74:1442-1454. [PMID: 33631228 DOI: 10.1016/j.jhep.2021.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
In recent years, there have been major advances in our understanding of the mechanisms underlying fibrosis progression and regression, and how coordinated interactions between parenchymal and non-parenchymal cells impact on the fibrogenic process. Recent studies have highlighted that metabolic reprogramming of parenchymal cells, immune cells (immunometabolism) and hepatic stellate cells is required to support the energetic and anabolic demands of phenotypic changes and effector functions. In this review, we summarise how targeting cell-intrinsic metabolic modifications of the main fibrogenic cell actors may impact on fibrosis progression and we discuss the antifibrogenic potential of metabolically targeted interventions.
Collapse
Affiliation(s)
- Helene Gilgenkrantz
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Ariane Mallat
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Richard Moreau
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Sophie Lotersztajn
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France.
| |
Collapse
|
18
|
Teratani T, Tomita K, Wada A, Sugihara N, Higashiyama M, Inaba K, Horiuchi K, Hanawa Y, Nishii S, Mizoguchi A, Tanemoto R, Ito S, Okada Y, Kurihara C, Akita Y, Narimatsu K, Watanabe C, Komoto S, Oike Y, Miura S, Hokari R, Kanai T. Angiopoietin-like protein 4 deficiency augments liver fibrosis in liver diseases such as nonalcoholic steatohepatitis in mice through enhanced free cholesterol accumulation in hepatic stellate cells. Hepatol Res 2021; 51:580-592. [PMID: 33247991 DOI: 10.1111/hepr.13603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
AIM We recently reported that lipoprotein lipase (LPL)-mediated free cholesterol (FC) accumulation in hepatic stellate cells (HSCs) augmented liver fibrosis in non-alcoholic steatohepatitis (NASH). The aim of the present study was to explore the role of angiopoietin-like protein 4 (Angptl4), an LPL inhibitor, in the pathogenesis of liver fibrosis in NASH. METHODS Angptl4-deficient or wild-type mice were used to investigate the role of Angptl4 in the pathogenesis of NASH induced by feeding a methionine- and choline-deficient diet. We also examined the effect of Angptl4 on FC accumulation in HSCs, and the subsequent activation of HSCs, using Angptl4-deficient HSCs. RESULTS In the NASH model, Angptl4-deficient mice had significantly aggravated liver fibrosis and activated HSCs without enhancement of hepatocellular injury, liver inflammation, or liver angiogenesis. FC levels were significantly higher in HSCs from Angptl4-deficient mice than in those from wild-type mice. Treatment with Angptl4 reversed low-density lipoprotein-induced FC accumulation in HSCs through the inhibition of LPL. The Angptl4 deficiency-induced FC accumulation in HSCs suppressed HSC expression of the transforming growth factor-β (TGF-ß) pseudoreceptor, bone morphogenetic protein, and activin membrane-bound inhibitor, and sensitized HSCs to TGF-β-induced activation in vivo and in vitro. CONCLUSIONS Angptl4 plays an important role in the pathogenesis of FC accumulation in HSCs. In addition, regulation of FC levels in HSCs by Angptl4 plays a critical role in the pathogenesis of liver fibrosis in NASH. Thus, Angptl4 could represent a novel therapeutic option for NASH.
Collapse
Affiliation(s)
- Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kengo Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Akinori Wada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Nao Sugihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Masaaki Higashiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Kenichi Inaba
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Kazuki Horiuchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Yoshinori Hanawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Shin Nishii
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Akinori Mizoguchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Rina Tanemoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Suguru Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Yoshikiyo Okada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Chie Kurihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Yoshihiro Akita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Kazuyuki Narimatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Chikako Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Shunsuke Komoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Soichiro Miura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan.,International University of Health and Welfare Graduate School, Minato-ku, Tokyo, Japan
| | - Ryota Hokari
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
19
|
Li Z, Liang Y, Ying H, Chen M, He X, Wang Y, Tong Y, Cai X. Mitochondrial dysfunction attenuates rapid regeneration in livers with toxin-induced fibrosis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:527. [PMID: 33987225 PMCID: PMC8105818 DOI: 10.21037/atm-20-4639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/24/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The mechanism of associating liver partition and portal vein ligation for staged hepatectomy (ALPPS)-induced rapid liver regeneration remains poorly documented, especially in patients with fibrosis. Therefore, this study aims to investigate the underlying mechanism of ALPPS-induced accelerated regeneration in toxin-induced fibrosis models. METHODS The ALPPS-induced regeneration model was established in livers with thioacetamide (TAA)-induced fibrosis to determine the regenerative pathways involved in rapid regeneration. Confirmatory experiments were performed in transforming growth factor beta 1 (TGFβ1)-treated AML12 cells and mice with carbon tetrachloride (CCl4)-induced fibrosis. Finally, mitochondrial dysfunction was validated in fibrotic/non-fibrotic patients. RESULTS In TAA-induced fibrotic mice, ALPPS-induced regeneration was significantly inferior to that of the control group (P=0.027 at day 2 and P<0.001 at day 7). Furthermore, mitochondria-associated genes were significantly downregulated in TAA-challenged mice. Accordingly, the reduced production of ATP and elevated levels of malondialdehyde indicated disturbances in intracellular energy metabolism during the ALPPS-induced regenerative process after TAA treatment. Further investigations were performed in TGF-β1-treated AML12 cells and CCl4-treated mice, which indicated that mitochondrial dysfunction attenuated the capacity for rapid regeneration after ALPPS. CONCLUSIONS In summary, this study revealed that mitochondrial dysfunction led to inferior regeneration in livers with toxin-induced fibrosis and identified new therapeutic targets to improve the feasibility and safety of the ALPPS procedure. Further studies in human patients are required in the future.
Collapse
Affiliation(s)
- Zheyong Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hanning Ying
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mingyu Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyan He
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Biological Treatment Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yifan Tong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Kuchay MS, Choudhary NS, Mishra SK. Pathophysiological mechanisms underlying MAFLD. Diabetes Metab Syndr 2020; 14:1875-1887. [PMID: 32998095 DOI: 10.1016/j.dsx.2020.09.026] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS The pathophysiology underlying metabolic associated fatty liver disease (MAFLD) involves a multitude of interlinked processes, including insulin resistance (IR) underlying the metabolic syndrome, lipotoxicity attributable to the accumulation of toxic lipid species, infiltration of proinflammatory cells causing hepatic injury and ultimately leading to hepatic stellate cell (HSC) activation and fibrogenesis. The proximal processes, such as IR, lipid overload and lipotoxicity are relatively well established, but the downstream molecular mechanisms, such as inflammatory processes, hepatocyte lipoapoptosis, and fibrogenesis are incompletely understood. METHODS A literature search was performed with Medline (PubMed), Scopus and Google Scholar electronic databases till June 2020, using relevant keywords (nonalcoholic fatty liver disease; metabolic associated fatty liver disease; nonalcoholic steatohepatitis; NASH pathogenesis) to extract relevant studies describing pathogenesis of MAFLD/MASH. RESULTS Several studies have reported new concepts underlying pathophysiology of MAFLD. Activation of HSCs is the common final pathway for diverse signals from damaged hepatocytes and proinflammatory cells. Activated HSCs then secrete excess extracellular matrix (ECM) which accumulates and impairs structure and function of the liver. TAZ (a transcriptional regulator), hedgehog (HH) ligands, transforming growth factor-β (TGF-β), bone morphogenetic protein 8B (BMP8B) and osteopontin play important roles in activating these HSCs. Dysfunctional gut microbiome, dysregulated bile acid metabolism, endogenous alcohol production, and intestinal fructose handling, modify individual susceptibility to MASH. CONCLUSIONS Newer concepts of pathophysiology underlying MASH, such as TAZ/Ihh pathway, extracellular vesicles, microRNA, dysfunctional gut microbiome and intestinal fructose handling present promising targets for the development of therapeutic agents.
Collapse
Affiliation(s)
- Mohammad Shafi Kuchay
- Division of Endocrinology and Metabolism, Medanta the Medicity Hospital, Gurugram, 122001, Haryana, India.
| | - Narendra Singh Choudhary
- Institute of Digestive and Hepatobiliary Sciences, Medanta-The Medicity Hospital, Gurugram, 122001, Haryana, India
| | - Sunil Kumar Mishra
- Division of Endocrinology and Metabolism, Medanta the Medicity Hospital, Gurugram, 122001, Haryana, India
| |
Collapse
|
21
|
Playing Jekyll and Hyde-The Dual Role of Lipids in Fatty Liver Disease. Cells 2020; 9:cells9102244. [PMID: 33036257 PMCID: PMC7601321 DOI: 10.3390/cells9102244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Lipids play Jekyll and Hyde in the liver. On the one hand, the lipid-laden status of hepatic stellate cells is a hallmark of healthy liver. On the other hand, the opposite is true for lipid-laden hepatocytes—they obstruct liver function. Neglected lipid accumulation in hepatocytes can progress into hepatic fibrosis, a condition induced by the activation of stellate cells. In their resting state, these cells store substantial quantities of fat-soluble vitamin A (retinyl esters) in large lipid droplets. During activation, these lipid organelles are gradually degraded. Hence, treatment of fatty liver disease is treading a tightrope—unsophisticated targeting of hepatic lipid accumulation might trigger problematic side effects on stellate cells. Therefore, it is of great importance to gain more insight into the highly dynamic lipid metabolism of hepatocytes and stellate cells in both quiescent and activated states. In this review, part of the special issue entitled “Cellular and Molecular Mechanisms underlying the Pathogenesis of Hepatic Fibrosis 2020”, we discuss current and highly versatile aspects of neutral lipid metabolism in the pathogenesis of non-alcoholic fatty liver disease (NAFLD).
Collapse
|
22
|
Gliozzi M, Musolino V, Bosco F, Scicchitano M, Scarano F, Nucera S, Zito MC, Ruga S, Carresi C, Macrì R, Guarnieri L, Maiuolo J, Tavernese A, Coppoletta AR, Nicita C, Mollace R, Palma E, Muscoli C, Belzung C, Mollace V. Cholesterol homeostasis: Researching a dialogue between the brain and peripheral tissues. Pharmacol Res 2020; 163:105215. [PMID: 33007421 DOI: 10.1016/j.phrs.2020.105215] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Cholesterol homeostasis is a highly regulated process in human body because of its several functions underlying the biology of cell membranes, the synthesis of all steroid hormones and bile acids and the need of trafficking lipids destined to cell metabolism. In particular, it has been recognized that peripheral and central nervous system cholesterol metabolism are separated by the blood brain barrier and are regulated independently; indeed, peripherally, it depends on the balance between dietary intake and hepatic synthesis on one hand and its degradation on the other, whereas in central nervous system it is synthetized de novo to ensure brain physiology. In view of this complex metabolism and its relevant functions in mammalian, impaired levels of cholesterol can induce severe cellular dysfunction leading to metabolic, cardiovascular and neurodegenerative diseases. The aim of this review is to clarify the role of cholesterol homeostasis in health and disease highlighting new intriguing aspects of the cross talk between its central and peripheral metabolism.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Saverio Nucera
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Stefano Ruga
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Annamaria Tavernese
- Division of Cardiology, University Hospital Policlinico Tor Vergata, Rome, Italy.
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Caterina Nicita
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| | | | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| |
Collapse
|
23
|
Pillai SS, Lakhani HV, Zehra M, Wang J, Dilip A, Puri N, O’Hanlon K, Sodhi K. Predicting Nonalcoholic Fatty Liver Disease through a Panel of Plasma Biomarkers and MicroRNAs in Female West Virginia Population. Int J Mol Sci 2020; 21:ijms21186698. [PMID: 32933141 PMCID: PMC7554851 DOI: 10.3390/ijms21186698] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Nonalcoholic fatty liver disease (NAFLD) is primarily characterized by the presence of fatty liver, hepatic inflammation and fibrogenesis eventually leading to nonalcoholic steatohepatitis (NASH) or cirrhosis. Obesity and diabetes are common risk factors associated with the development and progression of NAFLD, with one of the highest prevalence of these diseased conditions in the West Virginia population. Currently, the diagnosis of NAFLD is limited to radiologic studies and biopsies, which are not cost-effective and highly invasive. Hence, this study aimed to develop a panel and assess the progressive levels of circulatory biomarkers and miRNA expression in patients at risk for progression to NASH to allow early intervention strategies. (2) Methods: In total, 62 female patients were enrolled and blood samples were collected after 8–10 h of fasting. Computed tomography was performed on abdomen/pelvis following IV contrast administration. The patients were divided into the following groups: Healthy subjects with normal BMI and normal fasting blood glucose (Control, n = 20), Obese with high BMI and normal fasting blood glucose (Obese, n = 20) and Obese with high fasting blood glucose (Obese + DM, n = 22). Based on findings from CT, another subset was created from Obese + DM group with patients who showed signs of fatty liver infiltration (Obese + DM(FI), n = 10). ELISA was performed for measurement of plasma biomarkers and RT-PCR was performed for circulating miRNA expression. (3) Results: Our results show significantly increased levels of plasma IL-6, Leptin and FABP-1, while significantly decreased level of adiponectin in Obese, Obese + DM and Obese + DM(FI) group, as compared to healthy controls. The level of CK-18 was significantly increased in Obese + DM(FI) group as compared to control. Subsequently, the expression of miR-122, miR-34a, miR-375, miR-16 and miR-21 was significantly increased in Obese + DM and Obese + DM(FI) group as compared to healthy control. Our results also show distinct correlation of IL-6, FABP-1 and adiponectin levels with the expression of miRNAs in relation to the extent of NAFLD progression. (4) Conclusion: Our results support the clinical application of these biomarkers and miRNAs in monitoring the progression of NAFLD, suggesting a more advanced diagnostic potential of this panel than conventional methods. This panel may provide an appropriate method for early prognosis and management of NAFLD and subsequent adverse hepatic pathophysiology, potentially reducing the disease burden on the West Virginia population.
Collapse
Affiliation(s)
- Sneha S. Pillai
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Hari Vishal Lakhani
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Mishghan Zehra
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Jiayan Wang
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Anum Dilip
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Nitin Puri
- Departments of Biomedical Sciences and Medical Education, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA;
| | - Kathleen O’Hanlon
- Departments of Family Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA;
| | - Komal Sodhi
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
- Correspondence: ; Tel.: +1-(304)-691-1704; Fax: +1-(914)-347-4956
| |
Collapse
|
24
|
Malhotra P, Gill RK, Saksena S, Alrefai WA. Disturbances in Cholesterol Homeostasis and Non-alcoholic Fatty Liver Diseases. Front Med (Lausanne) 2020; 7:467. [PMID: 32984364 PMCID: PMC7492531 DOI: 10.3389/fmed.2020.00467] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health problem associated with obesity and other features of the metabolic syndrome including insulin resistance and dyslipidemia. The accumulation of lipids in hepatocytes causes liver damage and triggers inflammation, fibrosis, and cirrhosis. Beside fatty acids and triglycerides, evidence showed an increased accumulation of free cholesterol in the liver with subsequent toxic effects contributing to liver damage. The maintenance of cholesterol homeostasis in the body requires a balance between several pathways responsible for cholesterol synthesis, transport and conversion into bile acids. Intestinal absorption is also one of the major determinants of cholesterol homeostasis. The nature of changes in cholesterol homeostasis associated with NAFLD has been a subject of extensive investigations. In this article, we will attempt to provide a brief overview of the current knowledge about the disturbances in cholesterol metabolism associated with NAFLD and discuss how certain molecular targets of these pathways could be exploited for the treatment of this multifactorial disease.
Collapse
Affiliation(s)
- Pooja Malhotra
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.,Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Waddah A Alrefai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.,Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|
25
|
Elucidating Potential Profibrotic Mechanisms of Emerging Biomarkers for Early Prognosis of Hepatic Fibrosis. Int J Mol Sci 2020; 21:ijms21134737. [PMID: 32635162 PMCID: PMC7369895 DOI: 10.3390/ijms21134737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis has been associated with a series of pathophysiological processes causing excessive accumulation of extracellular matrix proteins. Several cellular processes and molecular mechanisms have been implicated in the diseased liver that augments fibrogenesis, fibrogenic cytokines and associated liver complications. Liver biopsy remains an essential diagnostic tool for histological evaluation of hepatic fibrosis to establish a prognosis. In addition to being invasive, this methodology presents with several limitations including poor cost-effectiveness, prolonged hospitalizations, and risks of peritoneal bleeding, while the clinical use of this method does not reveal underlying pathogenic mechanisms. Several alternate noninvasive diagnostic strategies have been developed, to determine the extent of hepatic fibrosis, including the use of direct and indirect biomarkers. Immediate diagnosis of hepatic fibrosis by noninvasive means would be more palatable than a biopsy and could assist clinicians in taking early interventions timely, avoiding fatal complications, and improving prognosis. Therefore, we sought to review some common biomarkers of liver fibrosis along with some emerging candidates, including the oxidative stress-mediated biomarkers, epigenetic and genetic markers, exosomes, and miRNAs that needs further evaluation and would have better sensitivity and specificity. We also aim to elucidate the potential role of cardiotonic steroids (CTS) and evaluate the pro-inflammatory and profibrotic effects of CTS in exacerbating hepatic fibrosis. By understanding the underlying pathogenic processes, the efficacy of these biomarkers could allow for early diagnosis and treatment of hepatic fibrosis in chronic liver diseases, once validated.
Collapse
|
26
|
Chanyshev MD, Yarushkin AA, Koldysheva EV, Lushnikova EL, Gulyaeva LF. Downregulation of Acat1 by miR-21 may participate in liver fibrosis upon chronic DDT exposure. Toxicol Mech Methods 2020; 30:562-569. [PMID: 32508177 DOI: 10.1080/15376516.2020.1777493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The main objective of the present study was to investigate the toxic effect of long-term exposure to DDT (2,2-dichlorodiphenyl-1,1,1-trichloroethane) on rat livers. Female Wistar rats were treated with once-weekly i.p. doses of DDT (10 and 50 mg/kg) for 12 weeks. Histological analysis revealed significant changes in the liver structure, especially at a dose of 50 mg/kg, which consistent with a fibrotic state. Long-term DDT exposure increased micro RNA-21 (miR-21) level and decreased Acetyl-CoA acetyltransferase 1 (Acat1) mRNA and protein levels in a dose-dependent manner. A dual-luciferase reporter assay confirmed the regulation of the rat Acat1 3'-UTR by miR-21. Previous studies have described the involvement of ACAT1 in fibrogenesis; thus, regulation of the Acat1 gene by miR-21 may play a role in DDT exposure-mediated liver fibrosis.
Collapse
Affiliation(s)
- Mikhail D Chanyshev
- Laboratory of Molecular Onclogy, Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Andrey A Yarushkin
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Elena V Koldysheva
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Elena L Lushnikova
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Lyudmila F Gulyaeva
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
27
|
Xu C, Song D, Holck AL, Zhou Y, Liu R. Identifying Lipid Metabolites Influenced by Oleic Acid Administration Using High-Performance Liquid Chromatography-Mass Spectrometry-Based Lipidomics. ACS OMEGA 2020; 5:11314-11323. [PMID: 32478219 PMCID: PMC7254503 DOI: 10.1021/acsomega.9b04402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/14/2020] [Indexed: 05/09/2023]
Abstract
Oleic acid (OA), one of the most important monounsaturated fatty acids, possesses protective properties against chronic liver disease (CLD) development, but the underlying metabolic metabolism remains unknown. HPLC-MS-based lipidomics was utilized to identify and quantify the endogenously altered lipid metabolites when hepatocytes were exposed to OA administration. The identified lipids could be grouped into 22 lipid classes; of which, 10 classes were significantly influenced by the OA treatment: lysophosphatidylcholine (LPC), phosphatidylglycerol (PG), ceramides (Cer), hexosylceramides (Hex1Cer), dihexosylceramides (Hex2Cer), cholesterol ester (ChE), and coenzyme (Co) were decreased, while diglyceride (DG), triglyceride (TG), and acyl carnitine (AcCa) were increased. In addition, as the variable importance in projection (VIP) list (VIP > 1.0 and P < 0.05) showed, 478 lipid species showed significant difference with OA administration, and these molecules could be potential biomarkers in conjunction with OA administration. In summary, our results provided a novel perspective to understand the influences of OA administration by investigating endogenous altered levels of lipid metabolites via lipidomics.
Collapse
Affiliation(s)
- Chao Xu
- College
of Food Science and Technology, Nanjing
Agricultural University, Nanjing 210095, China
| | - Dan Song
- College
of Food Science and Technology, Nanjing
Agricultural University, Nanjing 210095, China
| | - Askild L. Holck
- NOFIMA
- Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, N-1431 Aas, Norway
| | - Youyou Zhou
- College
of Food Science and Technology, Nanjing
Agricultural University, Nanjing 210095, China
| | - Rong Liu
- College
of Food Science and Technology, Nanjing
Agricultural University, Nanjing 210095, China
- National
Center for International Research on Animal Gut Nutrition, Nanjing 210095, China
- Jiangsu
Collaborative Innovation Center of Meat Production and Processing, Nanjing 210095, China
| |
Collapse
|
28
|
Chan YT, Wang N, Tan HY, Li S, Feng Y. Targeting Hepatic Stellate Cells for the Treatment of Liver Fibrosis by Natural Products: Is It the Dawning of a New Era? Front Pharmacol 2020; 11:548. [PMID: 32425789 PMCID: PMC7212390 DOI: 10.3389/fphar.2020.00548] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a progressive liver damage condition that is worth studying widely. It is important to target and alleviate the disease at an early stage before turning into later cirrhosis or liver cancer. There are currently no direct medicines targeting the attenuation or reversal of liver fibrosis, and so there is an urgent need to look into this area. Traditional Chinese Medicine has a long history in using herbal medicines to treat liver diseases including fibrosis. It is time to integrate the ancient wisdom with modern science and technology to look for the best solution to the disease. In this review, the principal concept of the pathology of liver fibrosis will be described, and then some of the single compounds isolated from herbal medicines, including salvianolic acids, oxymatrine, curcumin, tetrandrine, etc. will be discussed from their effects to the molecular mechanism behind. Molecular targets of the compounds are analyzed by network pharmacology approach, and TGFβ/SMAD was identified as the most common pathway. This review serves to summarize the current findings of herbal medicines combining with modern medicines in the area of fibrosis. It hopefully provides insights in further pharmaceutical research directions.
Collapse
Affiliation(s)
- Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hor Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
29
|
Xu S, Mao Y, Wu J, Feng J, Li J, Wu L, Yu Q, Zhou Y, Zhang J, Chen J, Ji J, Chen K, Wang F, Dai W, Fan X, Guo C. TGF-β/Smad and JAK/STAT pathways are involved in the anti-fibrotic effects of propylene glycol alginate sodium sulphate on hepatic fibrosis. J Cell Mol Med 2020; 24:5224-5237. [PMID: 32233073 PMCID: PMC7205790 DOI: 10.1111/jcmm.15175] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/14/2020] [Accepted: 03/01/2020] [Indexed: 12/25/2022] Open
Abstract
Liver fibrosis, a consequence of unhealthy modern lifestyles, has a growing impact on human health, particularly in developed countries. Here, we have explored the anti‐fibrotic effects of propylene glycol alginate sodium sulphate (PSS), a natural extract from brown algae, in fibrotic mice and cell models. Thus, we established bile duct ligature and carbon tetrachloride mouse models and LX‐2 cell models with or without PSS treatment. Liver pathological sections and the relevant indicators in serum and liver tissues were examined. PSS prevented hepatic injury and fibrosis to a significant extent, and induced up‐regulation of matrix metalloproteinase‐2 and down‐regulation of tissue inhibitor of metalloproteinase‐1 through suppressing the transforming growth factor β1 (TGF‐β1)/Smad pathway. PSS additionally exerted an anti‐autophagy effect through suppressing the Janus kinase (JAK) 2/transducer and activator of transcription 3 (STAT3) pathway. In conclusion, PSS prevents hepatic fibrosis by suppressing inflammation, promoting extracellular matrix (ECM) decomposition and inactivating hepatic stellate cells through mechanisms involving the TGF‐β1/Smad2/3 and JAK2/STAT3 pathways in vivo and in vitro.
Collapse
Affiliation(s)
- Shizan Xu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Yuqing Mao
- Department of Gerontology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Yuting Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Jiaojiao Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Buechler C, Aslanidis C. Role of lipids in pathophysiology, diagnosis and therapy of hepatocellular carcinoma. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158658. [PMID: 32058031 DOI: 10.1016/j.bbalip.2020.158658] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive and widespread cancer. Patients with liver cirrhosis of different aetiologies are at a risk to develop HCC. It is important to know that in approximately 20% of cases primary liver tumors arise in a non-cirrhotic liver. Lipid metabolism is variable in patients with chronic liver diseases, and lipid metabolites involved therein do play a role in the development of HCC. Of note, lipid composition of carcinogenic tissues differs from non-affected liver tissues. High cholesterol and low ceramide levels in the tumors protect the cells from oxidative stress and apoptosis, and do also promote cell proliferation. So far, detailed characterization of the mechanisms by which lipids enable the development of HCC has received little attention. Evaluation of the complex roles of lipids in HCC is needed to better understand the pathophysiology of HCC, the later being of paramount importance for the development of urgently needed therapeutic interventions. Disturbed hepatic lipid homeostasis has systemic consequences and lipid species may emerge as promising biomarkers for early diagnosis of HCC. The challenge is to distinguish lipids specifically related to HCC from changes simply related to the underlying liver disease. This review article discusses aberrant lipid metabolism in patients with HCC.
Collapse
Affiliation(s)
- Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany.
| | - Charalampos Aslanidis
- Institute for Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
31
|
Khomich O, Ivanov AV, Bartosch B. Metabolic Hallmarks of Hepatic Stellate Cells in Liver Fibrosis. Cells 2019; 9:E24. [PMID: 31861818 PMCID: PMC7016711 DOI: 10.3390/cells9010024] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis is a regenerative process that occurs after injury. It is characterized by the deposition of connective tissue by specialized fibroblasts and concomitant proliferative responses. Chronic damage that stimulates fibrogenic processes in the long-term may result in the deposition of excess matrix tissue and impairment of liver functions. End-stage fibrosis is referred to as cirrhosis and predisposes strongly to the loss of liver functions (decompensation) and hepatocellular carcinoma. Liver fibrosis is a pathology common to a number of different chronic liver diseases, including alcoholic liver disease, non-alcoholic fatty liver disease, and viral hepatitis. The predominant cell type responsible for fibrogenesis is hepatic stellate cells (HSCs). In response to inflammatory stimuli or hepatocyte death, HSCs undergo trans-differentiation to myofibroblast-like cells. Recent evidence shows that metabolic alterations in HSCs are important for the trans-differentiation process and thus offer new possibilities for therapeutic interventions. The aim of this review is to summarize current knowledge of the metabolic changes that occur during HSC activation with a particular focus on the retinol and lipid metabolism, the central carbon metabolism, and associated redox or stress-related signaling pathways.
Collapse
Affiliation(s)
- Olga Khomich
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Birke Bartosch
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
| |
Collapse
|
32
|
Endo-Umeda K, Makishima M. Liver X Receptors Regulate Cholesterol Metabolism and Immunity in Hepatic Nonparenchymal Cells. Int J Mol Sci 2019; 20:ijms20205045. [PMID: 31614590 PMCID: PMC6834202 DOI: 10.3390/ijms20205045] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
Excess dietary cholesterol intake and the dysregulation of cholesterol metabolism are associated with the pathogenesis and progression of nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and fibrosis. Hepatic accumulation of free cholesterol induces activation of nonparenchymal cells, including Kupffer cells, macrophages, and hepatic stellate cells, which leads to persistent inflammation and fibrosis. The nuclear receptors liver X receptor α (LXRα) and LXRβ act as negative regulators of cholesterol metabolism through the induction of hepatocyte cholesterol catabolism, excretion, and the reverse cholesterol transport pathway. Additionally, LXRs exert an anti-inflammatory effect in immune cell types, such as macrophages. LXR activation suppresses acute hepatic inflammation that is mediated by Kupffer cells/macrophages. Acute liver injury, diet-induced steatohepatitis, and fibrosis are exacerbated by significant hepatic cholesterol accumulation and inflammation in LXR-deficient mice. Therefore, LXRs regulate hepatic lipid metabolism and immunity and they are potential therapeutic targets in the treatment of hepatic inflammation that is associated with cholesterol accumulation.
Collapse
Affiliation(s)
- Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
33
|
Relationship between HDL Cholesterol Efflux Capacity, Calcium Coronary Artery Content, and Antibodies against ApolipoproteinA-1 in Obese and Healthy Subjects. J Clin Med 2019; 8:jcm8081225. [PMID: 31443207 PMCID: PMC6722652 DOI: 10.3390/jcm8081225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022] Open
Abstract
AIMS To explore the associations between cholesterol efflux capacity (CEC), coronary artery calcium (CAC) score, Framingham risk score (FRS), and antibodies against apolipoproteinA-1 (anti-apoA-1 IgG) in healthy and obese subjects (OS). METHODS AND RESULTS ABCA1-, ABCG1-, passive diffusion (PD)-CEC and anti-apoA-1 IgG were measured in sera from 34 controls and 35 OS who underwent CAC score determination by chest computed tomography. Anti-apoA-1 IgG ability to modulate CEC and macrophage cholesterol content (MCC) was tested in vitro. Controls and OS displayed similar ABCG1-, ABCA1-, PD-CEC, CAC and FRS scores. Logistic regression analyses indicated that FRS was the only significant predictor of CAC lesion. Overall, anti-apoA-1 IgG were significantly correlated with ABCA1-CEC (r = 0.48, p < 0.0001), PD-CEC (r = -0.33, p = 0.004), and the CAC score (r = 0.37, p = 0.03). ABCA1-CEC was correlated with CAC score (r = 0.47, p = 0.004) and FRS (r = 0.18, p = 0.29), while PD-CEC was inversely associated with the same parameters (CAC: r = -0.46, p = 0.006; FRS: score r = -0.40, p = 0.01). None of these associations was replicated in healthy controls or after excluding anti-apoA-1 IgG seropositive subjects. In vitro, anti-apoA-1 IgG inhibited PD-CEC (p < 0.0001), increased ABCA1-CEC (p < 0.0001), and increased MCC (p < 0.0001). CONCLUSIONS We report a paradoxical positive association between ABCA1-CEC and the CAC score, with the latter being inversely associated with PD in OS. Corroborating our clinical observations, anti-apoA-1 IgG enhanced ABCA1 while repressing PD-CEC, leading to MCC increase in vitro. These results indicate that anti-apoA-1 IgG have the potential to interfere with CEC and macrophage lipid metabolism, and may underpin paradoxical associations between ABCA1-CEC and cardiovascular risk.
Collapse
|
34
|
Kostallari E, Shah VH. Pericytes in the Liver. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1122:153-167. [PMID: 30937868 DOI: 10.1007/978-3-030-11093-2_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liver pericytes, commonly named hepatic stellate cells (HSCs), reside in the space between liver sinusoidal endothelial cells (LSECs) and hepatocytes. They display important roles in health and disease. HSCs ensure the storage of the majority of vitamin A in a healthy body, and they represent the major source of fibrotic tissue in liver disease. Surrounding cells, such as LSECs, hepatocytes, and Kupffer cells, present a significant role in modulating HSC behavior. Therapeutic strategies against liver disease are being currently developed, where HSCs represent an ideal target. In this chapter, we will discuss HSC quiescence and activation in the context of healthy liver and diseases, such as fibrosis, steatohepatitis, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
35
|
Bruschi FV, Claudel T, Tardelli M, Starlinger P, Marra F, Trauner M. PNPLA3 I148M Variant Impairs Liver X Receptor Signaling and Cholesterol Homeostasis in Human Hepatic Stellate Cells. Hepatol Commun 2019; 3:1191-1204. [PMID: 31497741 PMCID: PMC6719741 DOI: 10.1002/hep4.1395] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/14/2019] [Indexed: 12/24/2022] Open
Abstract
The patatin‐like phospholipase domain‐containing protein 3 (PNPLA3) I148M variant predisposes to hepatic steatosis and progression to advanced liver injury with development of fibrosis, cirrhosis, and cancer. Hepatic stellate cells (HSCs) drive the wound healing response to chronic injury, and lack of liver X receptor (LXR) signaling exacerbates liver fibrogenesis by impairing HSC cholesterol homeostasis. However, the contribution of the I148M variant to this process is still unknown. We analyzed LXR expression and transcriptional activity in primary human HSCs and overexpressing LX‐2 cells according to PNPLA3 genotype (wild type [WT] versus I148M). Here we demonstrate that LXRα protein increased whereas LXR target gene expression decreased during in vitro activation of primary human HSCs. Notably, LXRα levels and signaling were reduced in primary I148M HSCs compared to WT, as displayed by decreased expression of LXR target genes. Moreover, reduced expression of cholesterol efflux and enzymes generating oxysterols was associated with higher total and free cholesterol accumulation whereas endogenous cholesterol synthesis and uptake were diminished in I148M HSCs. Luciferase assays on LXR response element confirmed decreased LXR transcriptional activity in I148M HSCs; in contrast the synthetic LXR agonist T0901317 replenished LXR functionality, supported by adenosine triphosphate‐binding cassette subfamily A member 1 (ABCA1) induction, and reduced collagen1α1 and chemokine (C‐C motif) ligand 5 expression. Conversely, the peroxisome proliferator‐activated receptor gamma (PPARγ) agonist rosiglitazone had only partial effects on the LXR target gene ABCA1, and neither diminished expression of proinflammatory cytokines nor increased de novo lipogenic genes in I148M HSCs. Conclusion: As a consequence of reduced PPARγ activity, HSCs carrying I148M PNPLA3 show impaired LXR signaling, leading to cholesterol accumulation. The use of a specific LXR agonist shows beneficial effects for diminishing sustained HSC activation and development of liver fibrogenesis.
Collapse
Affiliation(s)
- Francesca Virginia Bruschi
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III Medical University of Vienna Vienna Austria
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III Medical University of Vienna Vienna Austria
| | - Matteo Tardelli
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III Medical University of Vienna Vienna Austria
| | | | - Fabio Marra
- Clinical Pathophysiology Department University of Florence Florence Italy
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III Medical University of Vienna Vienna Austria
| |
Collapse
|
36
|
Chen X, Bian M, Jin H, Lian N, Shao J, Zhang F, Zheng S. Dihydroartemisinin attenuates alcoholic fatty liver through regulation of lipin-1 signaling. IUBMB Life 2019; 71:1740-1750. [PMID: 31265202 DOI: 10.1002/iub.2113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/16/2019] [Indexed: 12/17/2022]
Abstract
Alcoholic liver disease (ALD) is generated from excessive alcohol consumption, characterized by hepatic steatosis. Mechanistically, excessive hepatic lipid accumulation was attributed to the aberrant lipin-1 signaling during the development of alcoholic steatosis in rodent species and human. Dihydroartemisinin (DHA) has been recently identified to relieve hepatocytes necrosis and prevent from hepatic steatosis in alcohol-induced liver diseases; however, the role of DHA in ALD has not been elucidated completely. Therefore, this study was aimed to further identify the potential mechanisms of pharmacological effects of DHA on ALD. Results demonstrated that DHA regulated the expression and nucleocytoplasmic shuttling of lipin-1 in mice with chronic ethanol exposure. Results confirmed that the disruption of lipin-1 signaling abolished the suppression of DHA on alcohol-induced hepatic steatosis. Interestingly, DHA also significantly improved liver injury, and inflammation mediated by lipin-1 signaling in chronic alcohol-fed mice. in vivo experiments further consolidated the concept that DHA protected against hepatocyte lipoapoptosis dependent on the regulation of nucleocytoplasmic shuttling of lipin-1 signaling, resulting in attenuated ratio of Lpin1 β/α. Obvious increases in cell apoptosis were observed in alcohol-treated lipin1β-overexpressed mice. Although DHA attenuated cell apoptosis, overexpression of lipin-1β neutralized DHA action. DHA ameliorated activation of endoplasmic reticulum stress through inhibiting activation of JNK and CHOP, which was abrogated by overexpression of lipin-1β. In summary, DHA significantly improved liver injury, steatosis and hepatocyte lipoapoptosis in chronic alcohol-fed mice via regulation of lipin-1 signaling.
Collapse
Affiliation(s)
- Xingran Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mianli Bian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Naqi Lian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
37
|
Teratani T, Tomita K, Furuhashi H, Sugihara N, Higashiyama M, Nishikawa M, Irie R, Takajo T, Wada A, Horiuchi K, Inaba K, Hanawa Y, Shibuya N, Okada Y, Kurihara C, Nishii S, Mizoguchi A, Hozumi H, Watanabe C, Komoto S, Nagao S, Yamamoto J, Miura S, Hokari R, Kanai T. Lipoprotein Lipase Up-regulation in Hepatic Stellate Cells Exacerbates Liver Fibrosis in Nonalcoholic Steatohepatitis in Mice. Hepatol Commun 2019; 3:1098-1112. [PMID: 31388630 PMCID: PMC6671781 DOI: 10.1002/hep4.1383] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022] Open
Abstract
Lipoprotein lipase (LPL) plays a central role in incorporating plasma lipids into tissues and regulates lipid metabolism and energy balance in the human body. Conversely, LPL expression is almost absent in normal adult livers. Therefore, its physiological role in the liver remains unknown. We aimed to elucidate the role of LPL in the pathophysiology of nonalcoholic steatohepatitis (NASH), a hepatic manifestation of obesity. Hepatic stellate cell (HSC)–specific LPL‐knockout (LplHSC‐KO) mice, LPL‐floxed (Lplfl/fl) mice, or double‐mutant toll‐like receptor 4–deficient (Tlr4−/−) LplHSC‐KO mice were fed a high‐fat/high‐cholesterol diet for 4 weeks to establish the nonalcoholic fatty liver model or an high‐fat/high‐cholesterol diet for 24 weeks to establish the NASH model. Human samples, derived from patients with nonalcoholic fatty liver disease, were also examined. In human and mouse NASH livers, serum obesity‐related factors, such as free fatty acid, leptin, and interleukin‐6, dramatically increased the expression of LPL, specifically in HSCs through signal transducer and activator of transcription 3 signaling, as opposed to that in hepatocytes or hepatic macrophages. In the NASH mouse model, liver fibrosis was significantly reduced in LplHSC‐KO mice compared with that in Lplfl/fl mice. Nonenzymatic LPL‐mediated cholesterol uptake from serum lipoproteins enhanced the accumulation of free cholesterol in HSCs, which amplified TLR4 signaling, resulting in the activation of HSCs and progression of hepatic fibrosis in NASH. Conclusion: The present study reveals the pathophysiological role of LPL in the liver, and furthermore, clarifies the pathophysiology in which obesity, as a background factor, exacerbates NASH. The LPL‐mediated HSC activation pathway could be a promising therapeutic target for treating liver fibrosis in NASH.
Collapse
Affiliation(s)
- Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine Keio University School of Medicine Shinjuku-ku Tokyo Japan
| | - Kengo Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Hirotaka Furuhashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Nao Sugihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Masaaki Higashiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Makoto Nishikawa
- Department of Surgery National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Rie Irie
- Department of Pathology National Center for Child Health and Development Setagaya-ku Tokyo Japan
| | - Takeshi Takajo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Akinori Wada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Kazuki Horiuchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Kenichi Inaba
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Yoshinori Hanawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Naoki Shibuya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Yoshikiyo Okada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Chie Kurihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Shin Nishii
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Akinori Mizoguchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Hideaki Hozumi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Chikako Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Shunsuke Komoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Shigeaki Nagao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Junji Yamamoto
- Department of Pathology National Center for Child Health and Development Setagaya-ku Tokyo Japan
| | - Soichiro Miura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan.,International University of Health and Welfare Graduate School Minato-ku Tokyo Japan
| | - Ryota Hokari
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Tananori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine Keio University School of Medicine Shinjuku-ku Tokyo Japan
| |
Collapse
|
38
|
Arab JP, Arrese M, Trauner M. Recent Insights into the Pathogenesis of Nonalcoholic Fatty Liver Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 13:321-350. [PMID: 29414249 DOI: 10.1146/annurev-pathol-020117-043617] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a burgeoning health problem worldwide and an important risk factor for both hepatic and cardiometabolic mortality. The rapidly increasing prevalence of this disease and of its aggressive form nonalcoholic steatohepatitis (NASH) will require novel therapeutic approaches based on a profound understanding of its pathogenesis to halt disease progression to advanced fibrosis or cirrhosis and cancer. The pathogenesis of NAFLD involves a complex interaction among environmental factors (i.e., Western diet), obesity, changes in microbiota, and predisposing genetic variants resulting in a disturbed lipid homeostasis and an excessive accumulation of triglycerides and other lipid species in hepatocytes. Insulin resistance is a central mechanism that leads to lipotoxicity, endoplasmic reticulum stress, disturbed autophagy, and, ultimately, hepatocyte injury and death that triggers hepatic inflammation, hepatic stellate cell activation, and progressive fibrogenesis, thus driving disease progression. In the present review, we summarize the currently available data on the pathogenesis of NAFLD, emphasizing the most recent advances. A better understanding of NAFLD/NASH pathogenesis is crucial for the design of new and efficient therapeutic interventions.
Collapse
Affiliation(s)
- Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile.,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile.,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna A-1090, Austria;
| |
Collapse
|
39
|
Cheng B, Zhu Q, Lin W, Wang L. MicroRNA-122 inhibits epithelial-mesenchymal transition of hepatic stellate cells induced by the TGF-β1/Smad signaling pathway. Exp Ther Med 2018; 17:284-290. [PMID: 30651793 PMCID: PMC6307443 DOI: 10.3892/etm.2018.6962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor (TGF)-β1 may stimulate the activation of hepatic stellate cells (HSCs), resulting in the development of liver fibrosis. As micro RNA (miRNA)-122 is known to be associated with liver inflammation, its effects on the epithelial-mesenchymal transition (EMT) of HSCs through the inhibition of the TGF-β1/drosophila mothers against decapentaplegic protein 4 (Smad4) signaling pathway were investigated. The MTT assay was performed to explore the optimum TGF-β1 concentration suitable for HSC stimulation. Fluorescence microscopy was used to observe the transfection efficiency and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were used to observe gene and protein expression levels of α-smooth muscle actin (α-SMA), E-cadherin, N-cadherin and Smad4, respectively, in HSCs treated with TGF-β1 or TGF-β1 and miRNA-122. MTT assay results indicated that the concentration of 10 µg/l TGF-β1 was suitable for maximum growth and survival of HSCs. Notably, the mRNA expression levels of N-cadherin and α-SMA were significantly increased (each, P<0.05), but the expression levels of E-cadherin were decreased following 10 µg/l TGF-β1 treatment. Similar results were observed regarding the protein expression levels of N-cadherin, α-SMA and E-cadherin. Furthermore, the expression of F-actin was increased in the 10 µg/l TGF-β1 treated group compared with the 0 µg/l TGF-β1 treaded group and stretching of the muscle fiber filament was observed. miRNA-122 lentiviral vector transfection significantly decreased the mRNA expression of N-cadherin and increased the mRNA expression of E-cadherin in HSCs stimulated with TGF-β1, as evident from RT-qPCR results. Similar results were also observed regarding the protein expression levels of N-cadherin and E-cadherin. The expression levels of Smad4, the primary component of the TGF-β1 signaling pathway, were significantly lower in cells treated with TGF-β1 and miRNA-122 (P<0.01) compared those treated with TGF-β1. Thus, miRNA-122 may inhibit the activation and EMT of HSCs stimulated by TGF-β1.
Collapse
Affiliation(s)
- Bianqiao Cheng
- Department of Hepatology, The Second Hospital of Fuzhou Affiliated Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Qi Zhu
- Department of Hepatology, The Second Hospital of Fuzhou Affiliated Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Weiguo Lin
- Department of Hepatology, The Second Hospital of Fuzhou Affiliated Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Lihui Wang
- Department of Hepatology, The Second Hospital of Fuzhou Affiliated Xiamen University, Fuzhou, Fujian 350007, P.R. China
| |
Collapse
|
40
|
Hou W, Syn WK. Role of Metabolism in Hepatic Stellate Cell Activation and Fibrogenesis. Front Cell Dev Biol 2018; 6:150. [PMID: 30483502 PMCID: PMC6240744 DOI: 10.3389/fcell.2018.00150] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Activation of hepatic stellate cell (HSC) involves the transition from a quiescent to a proliferative, migratory, and fibrogenic phenotype (i.e., myofibroblast), which is characteristic of liver fibrogenesis. Multiple cellular and molecular signals which contribute to HSC activation have been identified. This review specially focuses on the metabolic changes which impact on HSC activation and fibrogenesis.
Collapse
Affiliation(s)
- Wei Hou
- Tianjin Second People's Hospital and Tianjin Institute of Hepatology, Tianjin, China.,Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.,Section of Gastroenterology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States
| |
Collapse
|
41
|
Wang YH, Twu YC, Wang CK, Lin FZ, Lee CY, Liao YJ. Niemann-Pick Type C2 Protein Regulates Free Cholesterol Accumulation and Influences Hepatic Stellate Cell Proliferation and Mitochondrial Respiration Function. Int J Mol Sci 2018; 19:ijms19061678. [PMID: 29874879 PMCID: PMC6032364 DOI: 10.3390/ijms19061678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/23/2022] Open
Abstract
Liver fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. A high-cholesterol diet is associated with liver fibrosis via the accumulation of free cholesterol in hepatic stellate cells (HSCs). Niemann-Pick type C2 (NPC2) plays an important role in the regulation of intracellular free cholesterol homeostasis via direct binding with free cholesterol. Previously, we reported that NPC2 was downregulated in liver cirrhosis tissues. Loss of NPC2 enhanced the accumulation of free cholesterol in HSCs and made them more susceptible to transforming growth factor (TGF)-β1. In this study, we showed that knockdown of NPC2 resulted in marked increases in platelet-derived growth factor BB (PDGF-BB)-induced HSC proliferation through enhanced extracellular signal-regulated kinases (ERK), p38, c-Jun N-terminal kinases (JNK), and protein kinase B (AKT) phosphorylation. In contrast, NPC2 overexpression decreased PDGF-BB-induced cell proliferation by inhibiting p38, JNK, and AKT phosphorylation. Although NPC2 expression did not affect caspase-related apoptosis, the autophagy marker light chain 3β (LC3B) was decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs. The mitochondrial respiration functions (such as oxygen consumption rate, ATP production, and maximal respiratory capacity) were decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs, while NPC2-overexpressed cells remained normal. In addition, NPC2 expression did not affect the susceptibility of HSCs to lipopolysaccharides (LPS), and U18666A treatment induced free cholesterol accumulation, which enhanced LPS-induced Toll-like receptor 4 (TLR4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 phosphorylation, interleukin (IL)-1 and IL-6 expression. Our study demonstrated that NPC2-mediated free cholesterol homeostasis controls HSC proliferation and mitochondrial function.
Collapse
Affiliation(s)
- Yuan-Hsi Wang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Chung-Kwe Wang
- Department of International Medicine, Taipei City Hospital Ranai Branch, Taipei 106, Taiwan.
| | - Fu-Zhen Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Chun-Ya Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
42
|
Hypoxic Signaling and Cholesterol Lipotoxicity in Fatty Liver Disease Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2548154. [PMID: 29955245 PMCID: PMC6000860 DOI: 10.1155/2018/2548154] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Cholesterol is the only lipid whose absorption in the gastrointestinal tract is limited by gate-keeping transporters and efflux mechanisms, preventing its rapid absorption and accumulation in the liver and blood vessels. In this review, I explored the current data regarding cholesterol accumulation in liver cells and key mechanisms in cholesterol-induced fatty liver disease associated with the activation of deleterious hypoxic and nitric oxide signal transduction pathways. Although nonalcoholic fatty liver disease (NAFLD) affects both obese and nonobese individuals, the mechanism of NAFLD progression in lean individuals with healthy metabolism is puzzling. Lean NAFLD individuals exhibit normal metabolic responses, implying that liver damage is not associated with impaired metabolism per se and that direct lipotoxic effects are crucial for disease progression. Several redox and oxidant signaling pathways involving cholesterol are at play in fatty liver disease development. These include impairment of the mitochondrial and lysosomal function by cholesterol loading of the inner-cell membranes; formation of cholesterol crystals and hepatocyte degradation; and crown-like structures surrounding degrading hepatocytes, activating Kupffer cells, and evoking inflammation. The current review focuses on the induction of liver inflammation, fibrosis, and steatosis by free cholesterol via the hypoxia-inducible factor 1α (HIF-1α), a main oxygen-sensing transcription factor involved in all stages of NAFLD. Cholesterol loading in hepatocytes can result in chronic HIF-1α activity because of the decreased oxygen availability and excessive production of nitric oxide and mitochondrial reactive oxygen species.
Collapse
|
43
|
Toriniwa Y, Muramatsu M, Ishii Y, Riya E, Miyajima K, Ohshida S, Kitatani K, Takekoshi S, Matsui T, Kume S, Yamada T, Ohta T. Pathophysiological characteristics of non-alcoholic steatohepatitis-like changes in cholesterol-loaded type 2 diabetic rats. Physiol Res 2018; 67:601-612. [PMID: 29750881 DOI: 10.33549/physiolres.933784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spontaneously Diabetic Torii (SDT) fatty rats, a new obese diabetic model, reportedly presented with features of non-alcoholic steatohepatitis (NASH) after 32 weeks of age. We tried to accelerate the onset of NASH in SDT fatty rats using dietary cholesterol loading and noticed changes in the blood choline level which is expected to be a NASH biomarker. Body weight and biochemical parameters were measured from 8 to 24 weeks of age. At 16, 20, 24 weeks, pathophysiological analysis of the livers were performed. Hepatic lipids, lipid peroxides, and the expression of mRNA related to triglyceride (TG) synthesis, inflammation, and fibrosis were evaluated at 24 weeks. Hepatic fibrosis was observed in SDT fatty rats fed cholesterol-enriched diets (SDT fatty-Cho) from 16 weeks. Furthermore, hepatic lipids and lipid peroxide were significantly higher in SDT fatty-Cho than SDT fatty rats fed normal diets at 24 weeks. Hepatic mRNA expression related to TG secretion decreased in SDT fatty-Cho, and the mRNA expression related to inflammation and fibrosis increased in SDT fatty-Cho at 24 weeks. Furthermore, SDT fatty-Cho presented with increased plasma choline, similar to human NASH. There were no significant changes in the effects of feeding a cholesterol-enriched diet in Sprague-Dawley rats. SDT fatty-Cho has the potential to become a valuable animal model for NASH associated with type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Y Toriniwa
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Furuhashi H, Tomita K, Teratani T, Shimizu M, Nishikawa M, Higashiyama M, Takajo T, Shirakabe K, Maruta K, Okada Y, Kurihara C, Watanabe C, Komoto S, Aosasa S, Nagao S, Yamamoto J, Miura S, Hokari R. Vitamin A-coupled liposome system targeting free cholesterol accumulation in hepatic stellate cells offers a beneficial therapeutic strategy for liver fibrosis. Hepatol Res 2018; 48:397-407. [PMID: 29243365 DOI: 10.1111/hepr.13040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 02/08/2023]
Abstract
AIM Liver fibrosis is a life-threatening disorder for which no approved therapy is available. Recently, we reported that mouse hepatic stellate cell (HSC) activation increased free cholesterol (FC) accumulation, partly by enhancing signaling through sterol regulatory element-binding protein 2 (SREBP2) and microRNA-33a (miR-33a), which resulted in HSC sensitization to transforming growth factor-β (TGFβ)-induced activation in a "vicious cycle" of liver fibrosis. METHODS Human HSCs were isolated from surgical liver specimens from control patients and patients with liver fibrosis. C57BL/6 mice were treated with carbon tetrachloride for 4 weeks and concurrently given SREBP2-siRNA- or anti-miR-33a-bearing vitamin A-coupled liposomes. RESULTS In human activated HSCs obtained from patients with liver fibrosis, FC accumulation was enhanced independently of serum cholesterol levels through increased signaling by both SREBP2 and miR-33a. This increased FC accumulation enhanced Toll-like receptor 4 (TLR4) protein levels and lowered the TGFβ-pseudoreceptor Bambi (bone morphogenetic protein and activin membrane-bound inhibitor) mRNA levels in HSCs. Notably, in a mouse liver fibrosis model, reduction of FC accumulation, specifically in activated HSCs by suppression of SREBP2 or miR-33a expression using SREBP2-siRNA- or anti-miR-33a-bearing vitamin A-coupled liposomes, downregulated TLR4 signaling, increased Bambi expression, and consequently ameliorated liver fibrosis. CONCLUSIONS Our results suggest that FC accumulation in HSCs, as an intracellular mediator promoting HSC activation, contributes to a vicious cycle of HSC activation in human and mouse liver fibrosis independent of serum cholesterol levels. Targeting FC accumulation-related molecules in HSCs through a vitamin A-coupled liposomal system represents a favorable therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Hirotaka Furuhashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Kengo Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Motonori Shimizu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Makoto Nishikawa
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masaaki Higashiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Takeshi Takajo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Kazuhiko Shirakabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Koji Maruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Yoshikiyo Okada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Chie Kurihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Chikako Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Shunsuke Komoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Suefumi Aosasa
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Shigeaki Nagao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Junji Yamamoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Soichiro Miura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Ryota Hokari
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
45
|
Herrera B, Addante A, Sánchez A. BMP Signalling at the Crossroad of Liver Fibrosis and Regeneration. Int J Mol Sci 2017; 19:ijms19010039. [PMID: 29295498 PMCID: PMC5795989 DOI: 10.3390/ijms19010039] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Bone Morphogenetic Proteins (BMPs) belong to the Transforming Growth Factor-β (TGF-β) family. Initially identified due to their ability to induce bone formation, they are now known to have multiple functions in a variety of tissues, being critical not only during development for tissue morphogenesis and organogenesis but also during adult tissue homeostasis. This review focus on the liver as a target tissue for BMPs actions, devoting most efforts to summarize our knowledge on their recently recognized and/or emerging roles on regulation of the liver regenerative response to various insults, either acute or chronic and their effects on development and progression of liver fibrosis in different pathological conditions. In an attempt to provide the basis for guiding research efforts in this field both the more solid and more controversial areas of research were highlighted.
Collapse
Affiliation(s)
- Blanca Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Annalisa Addante
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| |
Collapse
|
46
|
Chen M, Liu J, Yang W, Ling W. Lipopolysaccharide mediates hepatic stellate cell activation by regulating autophagy and retinoic acid signaling. Autophagy 2017; 13:1813-1827. [PMID: 29160747 DOI: 10.1080/15548627.2017.1356550] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacterial translocation and lipopolysaccharide (LPS) leakage occur at a very early stage of liver fibrosis in animal models. We studied the role of LPS in hepatic stellate cell (HSC) activation and the underlying mechanisms in vitro and in vivo. Herein, we demonstrated that LPS treatment led to a dramatic increase in autophagosome formation and autophagic flux in LX-2 cells and HSCs, which was mediated through the AKT-MTOR and AMPK-ULK1 pathway. LPS significantly decreased the lipid content, including the lipid droplet (LD) number and lipid staining area in HSCs; pretreatment with macroautophagy/autophagy inhibitors or silencing ATG5 attenuated this decrease. Furthermore, lipophagy was induced by LPS through the autophagy-lysosomal pathway in LX-2 cells and HSCs. Additionally, LPS-induced autophagy further reduced retinoic acid (RA) signaling, as demonstrated by a decrease in the intracellular RA level and Rar target genes, resulting in the downregulation of Bambi and promoting the sensitization of the HSC's fibrosis response to TGFB. Compared with CCl4 injection alone, CCl4 plus LPS injection exaggerated liver fibrosis in mice, as demonstrated by increased Col1a1 (collagen, type I, α 1), Acta2, Tgfb and Timp1 mRNA expression, ACTA2/α-SMA and COL1A1 protein expression, and Sirius Red staining area, which could be attenuated by injection of an autophagy inhibitor. LPS also reduced lipid content in HSCs in vivo, with this change being attenuated by chloroquine (CQ) administration. In conclusion, LPS-induced autophagy resulted in LD loss, RA signaling dysfunction, and downregulation of the TGFB pseudoreceptor Bambi, thus sensitizing HSCs to TGFB signaling.
Collapse
Affiliation(s)
- Ming Chen
- a Department of Nutrition , School of Public Health, Sun Yat-Sen University , Guangzhou , Guangdong , People's Republic of China.,b Guangdong Provincial Key Laboratory of Food, Nutrition and Health , Guangzhou , Guangdong , China
| | - Jiaxing Liu
- a Department of Nutrition , School of Public Health, Sun Yat-Sen University , Guangzhou , Guangdong , People's Republic of China.,b Guangdong Provincial Key Laboratory of Food, Nutrition and Health , Guangzhou , Guangdong , China
| | - Wenqi Yang
- a Department of Nutrition , School of Public Health, Sun Yat-Sen University , Guangzhou , Guangdong , People's Republic of China.,b Guangdong Provincial Key Laboratory of Food, Nutrition and Health , Guangzhou , Guangdong , China
| | - Wenhua Ling
- a Department of Nutrition , School of Public Health, Sun Yat-Sen University , Guangzhou , Guangdong , People's Republic of China.,b Guangdong Provincial Key Laboratory of Food, Nutrition and Health , Guangzhou , Guangdong , China
| |
Collapse
|
47
|
Chanyshev MD, Ushakov DS, Gulyaeva LF. Expression of miR-21 and its Acat1, Armcx1, and Pten target genes in liver of female rats treated with DDT and benzo[a]pyrene. Mol Biol 2017. [DOI: 10.1134/s0026893317040082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Abstract
Hepatic fibrosis is a dynamic process characterized by the net accumulation of extracellular matrix resulting from chronic liver injury of any aetiology, including viral infection, alcoholic liver disease and NASH. Activation of hepatic stellate cells (HSCs) - transdifferentiation of quiescent, vitamin-A-storing cells into proliferative, fibrogenic myofibroblasts - is now well established as a central driver of fibrosis in experimental and human liver injury. Yet, the continued discovery of novel pathways and mediators, including autophagy, endoplasmic reticulum stress, oxidative stress, retinol and cholesterol metabolism, epigenetics and receptor-mediated signals, reveals the complexity of HSC activation. Extracellular signals from resident and inflammatory cells including macrophages, hepatocytes, liver sinusoidal endothelial cells, natural killer cells, natural killer T cells, platelets and B cells further modulate HSC activation. Finally, pathways of HSC clearance have been greatly clarified, and include apoptosis, senescence and reversion to an inactivated state. Collectively, these findings reinforce the remarkable complexity and plasticity of HSC activation, and underscore the value of clarifying its regulation in hopes of advancing the development of novel diagnostics and therapies for liver disease.
Collapse
Affiliation(s)
- Takuma Tsuchida
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1123, New York, New York 10029, USA.,Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda-shi, Saitama 335-8505, Japan
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1123, New York, New York 10029, USA
| |
Collapse
|
49
|
Yue F, Li W, Zou J, Jiang X, Xu G, Huang H, Liu L. Spermidine Prolongs Lifespan and Prevents Liver Fibrosis and Hepatocellular Carcinoma by Activating MAP1S-Mediated Autophagy. Cancer Res 2017; 77:2938-2951. [PMID: 28386016 DOI: 10.1158/0008-5472.can-16-3462] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/31/2017] [Accepted: 03/31/2017] [Indexed: 12/23/2022]
Abstract
Liver fibrosis and hepatocellular carcinoma (HCC) have worldwide impact but continue to lack safe, low cost, and effective treatments. In this study, we show how the simple polyamine spermidine can relieve cancer cell defects in autophagy, which trigger oxidative stress-induced cell death and promote liver fibrosis and HCC. We found that the autophagic marker protein LC3 interacted with the microtubule-associated protein MAP1S, which positively regulated autophagy flux in cells. MAP1S stability was regulated in turn by its interaction with the histone deacetylase HDAC4. Notably, MAP1S-deficient mice exhibited a 20% reduction in median survival and developed severe liver fibrosis and HCC under stress. Wild-type mice or cells treated with spermidine exhibited a relative increase in MAP1S stability and autophagy signaling via depletion of cytosolic HDAC4. Extending recent evidence that orally administered spermidine can extend lifespan in mice, we determined that life extension of up to 25% can be produced by lifelong administration, which also reduced liver fibrosis and HCC foci as induced by chemical insults. Genetic investigations established that these observed impacts of oral spermidine administration relied upon MAP1S-mediated autophagy. Our findings offer a preclinical proof of concept for the administration of oral spermidine to prevent liver fibrosis and HCC and potentially extend lifespan. Cancer Res; 77(11); 2938-51. ©2017 AACR.
Collapse
Affiliation(s)
- Fei Yue
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Wenjiao Li
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Jing Zou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Xianhan Jiang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas.,The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Guibin Xu
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas.,The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Hai Huang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Leyuan Liu
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas. .,The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas
| |
Collapse
|
50
|
FOXO transcription factors protect against the diet-induced fatty liver disease. Sci Rep 2017; 7:44597. [PMID: 28300161 PMCID: PMC5353679 DOI: 10.1038/srep44597] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/10/2017] [Indexed: 12/19/2022] Open
Abstract
Forkhead O transcription factors (FOXOs) have been implicated in glucose and lipid homeostasis; however, the role of FOXOs in the development of nonalcoholic fatty liver disease (NAFLD) is not well understood. In this study, we designed experiments to examine the effects of two different diets-very high fat diet (HFD) and moderately high fat plus cholesterol diet (HFC)-on wildtype (WT) and liver-specific Foxo1/3/4 triple knockout mice (LTKO). Both diets induced severe hepatic steatosis in the LTKO mice as compared to WT controls. However, the HFC diet led to more severe liver injury and fibrosis compared to the HFD diet. At the molecular levels, hepatic Foxo1/3/4 deficiency triggered a significant increase in the expression of inflammatory and fibrotic genes including Emr1, Ccl2, Col1a1, Tgfb, Pdgfrb, and Timp1. Thus, our data suggest that FOXO transcription factors play a salutary role in the protection against the diet-induced fatty liver disease.
Collapse
|