1
|
Li Y, Leung PS, Zhang W, Zhang S, Liu Z, Kurth M, Patterson AD, Gershwin ME, Song J. Immunobiology of bile and cholangiocytes. J Autoimmun 2025; 151:103376. [PMID: 39892203 DOI: 10.1016/j.jaut.2025.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
The biliary tract is now recognized as an immune organ, and within the biliary tract, both bile and cholangiocytes play a key role in maintaining immune defense and homeostasis. First, immunoreactive proteins such as secretory IgA provide local antimicrobial effects. Second, bile acids (BAs) protect the biliary tree from immune-related injury through receptor signaling, mainly via the membrane-bound receptor TGR5 on cholangiocytes. Third, the biliary microbiota, similar to the intestinal microbiota, contributes to sustaining a stable physiobiological microenvironment. Fourth, cholangiocytes actively modulate the expression/release of adhesion molecules and cytokines/chemokines and are involved in antigen presentation; additionally, cholangiocyte senescence and apoptosis also influence immune responses. Conversely, aberrant bile composition, altered BA profiles, imbalances in the biliary microbiota, and cholangiocyte dysfunction are associated with immune-mediated cholangiopathies, including primary biliary cholangitis, primary sclerosing cholangitis, and biliary atresia. While current therapeutic agents that modulate BA homeostasis and receptor signaling have shown promise in preclinical and clinical studies, future research on biliary/intestinal microbiota and cholangiocyte function should focus on developing novel therapeutic strategies for treating cholangiopathies.
Collapse
Affiliation(s)
- Yang Li
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China
| | - Patrick Sc Leung
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Weici Zhang
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Shucheng Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China
| | - Zhenning Liu
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China
| | - Mark Kurth
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, Pennsylvania, 16802, USA
| | - M Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Junmin Song
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China.
| |
Collapse
|
2
|
Prosser AC, Klenerman P, Lucas M. Understanding Liver Transplantation Outcomes Through the Lens of Its Tissue-resident Immunobiome. Transplantation 2025:00007890-990000000-00973. [PMID: 39780303 DOI: 10.1097/tp.0000000000005303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Tissue-resident lymphocytes (TRLs) provide a front-line immunological defense mechanism uniquely placed to detect perturbations in tissue homeostasis. The heterogeneous TRL population spans the innate to adaptive immune continuum, with roles during normal physiology in homeostatic maintenance, tissue repair, pathogen detection, and rapid mounting of immune responses. TRLs are especially enriched in the liver, with every TRL subset represented, including liver-resident natural killer cells; tissue-resident memory B cells; conventional tissue-resident memory CD8, CD4, and regulatory T cells; and unconventional gamma-delta, natural killer, and mucosal-associated invariant T cells. The importance of donor- and recipient-derived TRLs after transplantation is becoming increasingly recognized, although it has not been examined in detail after liver transplantation. This review summarizes the evidence for the roles of TRLs in liver transplant immunology, focusing on their features, functions, and potential for their harnessing to improve transplant outcomes.
Collapse
Affiliation(s)
- Amy C Prosser
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Paul Klenerman
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Michaela Lucas
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Immunology, PathWest Laboratory Medicine, Perth, WA, Australia
- Department of Immunology, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Department of Immunology, Perth Children's Hospital, Perth, WA, Australia
| |
Collapse
|
3
|
Germain L, Veloso P, Lantz O, Legoux F. MAIT cells: Conserved watchers on the wall. J Exp Med 2025; 222:e20232298. [PMID: 39446132 PMCID: PMC11514058 DOI: 10.1084/jem.20232298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
MAIT cells are innate-like T cells residing in barrier tissues such as the lung, skin, and intestine. Both the semi-invariant T cell receptor of MAIT cells and the restricting element MR1 are deeply conserved across mammals, indicating non-redundant functions linked to antigenic specificity. MAIT cells across species concomitantly express cytotoxicity and tissue-repair genes, suggesting versatile functions. Accordingly, MAIT cells contribute to antibacterial responses as well as to the repair of damaged barrier tissues. MAIT cells recognize riboflavin biosynthetic pathway-derived metabolites, which rapidly cross epithelial barriers to be presented by antigen-presenting cells. Changes in gut ecology during intestinal inflammation drive the expansion of strong riboflavin and MAIT ligand producers. Thus, MAIT cells may enable real-time surveillance of microbiota dysbiosis across intact epithelia and provide rapid and context-dependent responses. Here, we discuss recent findings regarding the origin and regulation of MAIT ligands and the role of MAIT cells in barrier tissues. We speculate on the potential reasons for MAIT cell conservation during evolution.
Collapse
Affiliation(s)
- Lilou Germain
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
| | - Pablo Veloso
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
| | - Olivier Lantz
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Laboratoire d’immunologie Clinique, Institut Curie, Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - François Legoux
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| |
Collapse
|
4
|
Wang W, Weng J, Zhang H, Wu M, Zhou T, Jiang Y, Wu X, Ye C, Weng X. Dysregulation and impaired anti-bacterial potential of mucosal-associated invariant T cells in autoimmune liver diseases. Int Immunopharmacol 2024; 142:113175. [PMID: 39306887 DOI: 10.1016/j.intimp.2024.113175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Autoimmune liver diseases (AILD) encompass a group of conditions in which the immune system mistakenly attacks the liver tissue. Mucosal-associated invariant T (MAIT) cells are enriched in the liver, where they play crucial roles in antibacterial defense and inflammation regulation. Compared to other autoimmune conditions affecting the synovium of the joints, MAIT cells from AILD exhibited a greater deficiency in ratio, elevated activation markers, increased apoptosis, and higher pro-inflammatory cytokines production. However, the frequency of MAIT cells in AILD was negatively correlated with anti-bacterial indexes, and their impaired responsiveness and weakened anti-bacterial potential were evidenced by reduced expansion ability, lower maximal IFN-γ production, and diminished E. coli-induced cytotoxic mediators release. Similar shifts in MAIT cell ratios and phenotypes were observed in both primary biliary cirrhosis and autoimmune hepatitis, linked to upregulation of bile acid components in the affected tissue. Specifically, ursodeoxycholic acid, a metabolic intermediate and traditional anti-primary biliary cirrhosis drug, inhibited TCR-mediated expansion and downregulated pro-inflammatory cytokines and anti-bacterial-related mediators in MAIT cells. These findings underscore the intricate interplay between hepatic pathology and MAIT cells, and highlight the importance of antibacterial monitoring during ursodeoxycholic acid treatment in AILD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Junmei Weng
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haoquan Zhang
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mi Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Zhou
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Jiang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuefen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cong Ye
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xiufang Weng
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
5
|
Jalan-Sakrikar N, Guicciardi ME, O'Hara SP, Azad A, LaRusso NF, Gores GJ, Huebert RC. Central role for cholangiocyte pathobiology in cholestatic liver diseases. Hepatology 2024:01515467-990000000-01022. [PMID: 39250501 DOI: 10.1097/hep.0000000000001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Cholangiopathies comprise a spectrum of chronic intrahepatic and extrahepatic biliary tract disorders culminating in progressive cholestatic liver injury, fibrosis, and often cirrhosis and its sequela. Treatment for these diseases is limited, and collectively, they are one of the therapeutic "black boxes" in clinical hepatology. The etiopathogenesis of the cholangiopathies likely includes disease-specific mediators but also common cellular and molecular events driving disease progression (eg, cholestatic fibrogenesis, inflammation, and duct damage). The common pathways involve cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, which are central to the pathogenesis of these disorders. Current information suggests that cholangiocytes function as a signaling "hub" in biliary tract-associated injury. Herein, we review the pivotal role of cholangiocytes in cholestatic fibrogenesis, focusing on the crosstalk between cholangiocytes and portal fibroblasts and HSCs. The proclivity of these cells to undergo a senescence-associated secretory phenotype, which is proinflammatory and profibrogenic, and the intrinsic intracellular activation pathways resulting in the secretion of cytokines and chemokines are reviewed. The crosstalk between cholangiocytes and cells of the innate (neutrophils and macrophages) and adaptive (T cells and B cells) immune systems is also examined in detail. The information will help consolidate information on this topic and guide further research and potential therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Gastroenterology Research Unit, Department of Medicine, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria Eugenia Guicciardi
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven P O'Hara
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Adiba Azad
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicholas F LaRusso
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory J Gores
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert C Huebert
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Gastroenterology Research Unit, Department of Medicine, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Wang B, Zhou A, Wu Y, Pan Q, Wei X, Gao Y, Xiao W, Jin J, Zhou T, Luo Y, Zhan Z, Liu Y, Gao W, Liu Y, Xia Q. Establishment and validation of a predictive model of immune tolerance after pediatric liver transplantation: a multicenter cohort study. Int J Surg 2024; 110:5615-5626. [PMID: 38833360 PMCID: PMC11392161 DOI: 10.1097/js9.0000000000001671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Background: Side-effect of life-long immunosuppressants (IS) administration is a major obstacle for the long-term survival of pediatric liver transplantation (LT) recipients. Immunotolerance is the status that recipients discontinued IS with normal liver function and intrahepatic histology. So far, only a few clinical parameters were identified related with tolerance but failed to accurately discriminate tolerant recipients in clinical practice. Here, the authors aimed to provide a comprehensive view of pre-LT and post-LT risk factors associated with the achievement of tolerance after pediatric LT and established a tolerance predictive nomogram (ITPLT) with high accuracy and specificity. Methods: The authors enrolled 2228 pediatric recipients who received LT in Renji Hospital between October 2006 and December 2020. All participants survived over 3 years after transplantation with comprehensive and intact medical history and follow-up data. They were randomly assigned to training and validation cohorts in accordance with a ratio of 1:1. Univariate and multivariable Logistic regression were used to identify clinical factors associated with post-LT immune tolerance and establish a predictive model. The model was further validated in an independent external validation cohort from Tianjin First Central Hospital. Results: Among all participants, 6% recipients successfully tapered IS with intact allograft function. The most common reason for IS discontinuity was pneumonia. Univariate analysis identified 15 clinical factors associated with tolerance achievement, including age at LT, follow-up time, preoperative total bilirubin, creatinine, INR, CYP polymorphism, types of transplantation, massive postoperative ascites, episodes of acute rejection, and the severity of EBV and CMV infection. Using multivariable Logistic regression, the authors established the predictive ITPLT model for post-LT tolerance, which included seven easily accessible clinical factors (age at LT, CYP3A5 genotype, types of transplantation, post-LT massive ascites, preoperative INR, creatinine, and total bilirubin levels). Then, the authors visualized the model using nomogram. The c -statistics for predicting tolerance achievement in the training, internal validation, and external validation cohorts were 0.854, 0.787, and 0.746, respectively. Conclusion: Multiple pre-LT and post-LT clinical factors affected the process of immune remodeling after pediatric LT. The predictive ITPLT model, composed of seven easily accessible clinical factors, could comprehensively reveal the effect of these clinical parameters on immune remodeling and accurately identify tolerant recipients after pediatric LT. The application of ITPLT could facilitate the individualized IS strategy in the future.
Collapse
Affiliation(s)
- Bingran Wang
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Aiwei Zhou
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Yichi Wu
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Qi Pan
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Xinzhe Wei
- Department of Pediatric Transplantation, Organ Transplantation Center, Tianjin First Central Hospital, Tianjin
| | - Yunmu Gao
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Wanglong Xiao
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Jing Jin
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Tao Zhou
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Yi Luo
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | | | - Yongbo Liu
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
- Shanghai Institute of Transplantation
| | - Wei Gao
- Department of Pediatric Transplantation, Organ Transplantation Center, Tianjin First Central Hospital, Tianjin
| | - Yuan Liu
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
- Shanghai Immune Therapy Institute
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
- Shanghai Institute of Transplantation
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Wang S, Wang Z, Liu Z, Wu J. Prognostic value of four immune-related genes in lower-grade gliomas: a biomarker discovery study. Front Genet 2024; 15:1403587. [PMID: 39192888 PMCID: PMC11347950 DOI: 10.3389/fgene.2024.1403587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction The tumor microenvironment and IRGs are highly correlated with tumor occurrence, progression, and prognosis. However, their roles in grade II and III gliomas, termed LGGs in this study, remain to be fully elucidated. Our research aims to develop immune-related features for risk stratification and prognosis prediction in LGG. Methods Using the ssGSEA method, we assessed the immune characteristics of the LGG population. We conducted differential analysis using LGG samples from the TCGA database and normal samples from GTEx, identifying 412 differentially expressed immune-related genes (DEIRGs). Subsequently, we utilized univariate Cox, LASSO, and multivariate Cox regression analyses to establish both a gene predictive model and a nomogram predictive model. Results Here, we found that the ESTIMATE score, immune score and stromal score of high-immunity, high-grade and isocitrate dehydrogenase (IDH) wild-type glioma were higher than those of the corresponding group, and the tumor purity was lower. Higher ESTIMATE scores, stromal scores and immune scores indicated a poor prognosis in patients with LGG. Our four-gene prognostic model demonstrated superior accuracy compared to other molecular features. Validation using the CGGA as a testing set and the combined TCGA and CGGA cohort confirmed its robust prognostic value. Additionally, a nomogram integrating the prognostic model and clinical variables showed enhanced predictive capability. Discussion Our study highlights the prognostic significance of the identified four DEIRGs (KLRC3, MR1, PDIA2, and RFXAP) in LGG patients. The predictive model and nomogram developed herein offer valuable tools for personalized treatment strategies in LGG. Future research should focus on further validating these findings and exploring the functional roles of these DEIRGs within the LGG tumor microenvironment.
Collapse
Affiliation(s)
- Shuowen Wang
- Capital Institute of Pediatrics, Beijing, China
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zijun Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zhuo Liu
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jianxin Wu
- Capital Institute of Pediatrics, Beijing, China
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Pirker AL, Vogl T. Development of systemic and mucosal immune responses against gut microbiota in early life and implications for the onset of allergies. FRONTIERS IN ALLERGY 2024; 5:1439303. [PMID: 39086886 PMCID: PMC11288972 DOI: 10.3389/falgy.2024.1439303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
The early microbial colonization of human mucosal surfaces is essential for the development of the host immune system. Already during pregnancy, the unborn child is prepared for the postnatal influx of commensals and pathogens via maternal antibodies, and after birth this protection is continued with antibodies in breast milk. During this critical window of time, which extends from pregnancy to the first year of life, each encounter with a microorganism can influence children's immune response and can have a lifelong impact on their life. For example, there are numerous links between the development of allergies and an altered gut microbiome. However, the exact mechanisms behind microbial influences, also extending to how viruses influence host-microbe interactions, are incompletely understood. In this review, we address the impact of infants' first microbial encounters, how the immune system develops to interact with gut microbiota, and summarize how an altered immune response could be implied in allergies.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Ito E, Yamasaki S. Regulation of MAIT cells through host-derived antigens. Front Immunol 2024; 15:1424987. [PMID: 38979423 PMCID: PMC11228242 DOI: 10.3389/fimmu.2024.1424987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a major subset of innate-like T cells that function at the interface between innate and acquired immunity. MAIT cells recognize vitamin B2-related metabolites produced by microbes, through semi-invariant T cell receptor (TCR) and contribute to protective immunity. These foreign-derived antigens are presented by a monomorphic antigen presenting molecule, MHC class I-related molecule 1 (MR1). MR1 contains a malleable ligand-binding pocket, allowing for the recognition of compounds with various structures. However, interactions between MR1 and self-derived antigens are not fully understood. Recently, bile acid metabolites were identified as host-derived ligands for MAIT cells. In this review, we will highlight recent findings regarding the recognition of self-antigens by MAIT cells.
Collapse
Affiliation(s)
- Emi Ito
- Department of Molecular Immunology, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| |
Collapse
|
10
|
Zheng Y, Han F, Wu Z, Wang B, Chen X, Boulouis C, Jiang Y, Ho A, He D, Sia WR, Mak JYW, Fairlie DP, Wang LF, Sandberg JK, Lobie PE, Ma S, Leeansyah E. MAIT cell activation and recruitment in inflammation and tissue damage in acute appendicitis. SCIENCE ADVANCES 2024; 10:eadn6331. [PMID: 38865451 PMCID: PMC11168461 DOI: 10.1126/sciadv.adn6331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are antimicrobial T cells abundant in the gut, but mechanisms for their migration into tissues during inflammation are poorly understood. Here, we used acute pediatric appendicitis (APA), a model of acute intestinal inflammation, to examine these migration mechanisms. MAIT cells were lower in numbers in circulation of patients with APA but were enriched in the inflamed appendix with increased production of proinflammatory cytokines. Using the patient-derived appendix organoid (PDAO) model, we found that circulating MAIT cells treated with inflammatory cytokines elevated in APA up-regulated chemokine receptors, including CCR1, CCR3, and CCR4. They exhibited enhanced infiltration of Escherichia coli-pulsed PDAO in a CCR1-, CCR2-, and CCR4-dependent manner. Close interactions of MAIT cells with infected organoids led to the PDAO structural destruction and death. These findings reveal a previously unidentified mechanism of MAIT cell tissue homing, their participation in tissue damage in APA, and their intricate relationship with mucosal tissues during acute intestinal inflammation in humans.
Collapse
Affiliation(s)
- Yichao Zheng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhengyu Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bingjie Wang
- Department of Pediatric Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, China
| | - Xingchi Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Yuebin Jiang
- Department of Pathology, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou 363000, China
| | - Amanda Ho
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Dan He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jeffrey Y. W. Mak
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - David P. Fairlie
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Peter E. Lobie
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
11
|
Trivedi PJ, Hirschfield GM, Adams DH, Vierling JM. Immunopathogenesis of Primary Biliary Cholangitis, Primary Sclerosing Cholangitis and Autoimmune Hepatitis: Themes and Concepts. Gastroenterology 2024; 166:995-1019. [PMID: 38342195 DOI: 10.1053/j.gastro.2024.01.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Autoimmune liver diseases include primary biliary cholangitis, primary sclerosing cholangitis, and autoimmune hepatitis, a family of chronic immune-mediated disorders that target hepatocytes and cholangiocytes. Treatments remain nonspecific, variably effective, and noncurative, and the need for liver transplantation is disproportionate to their rarity. Development of effective therapies requires better knowledge of pathogenic mechanisms, including the roles of genetic risk, and how the environment and gut dysbiosis cause immune cell dysfunction and aberrant bile acid signaling. This review summarizes key etiologic and pathogenic concepts and themes relevant for clinical practice and how such learning can guide the development of new therapies for people living with autoimmune liver diseases.
Collapse
Affiliation(s)
- Palak J Trivedi
- National Institute for Health Research Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom; Liver Unit, University Hospitals Birmingham, Birmingham, United Kingdom; Institute of Translational Medicine, University of Birmingham, Birmingham, United Kingdom.
| | - Gideon M Hirschfield
- Division of Gastroenterology and Hepatology, Toronto Centre for Liver Disease, University of Toronto, Toronto, Ontario, Canada
| | - David H Adams
- National Institute for Health Research Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom; Liver Unit, University Hospitals Birmingham, Birmingham, United Kingdom
| | - John M Vierling
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas; Division of Abdominal Transplantation, Department of Surgery, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
12
|
Bengtsson B, Maucourant C, Sandberg JK, Björkström NK, Hagström H. Evaluation of mucosal-associated invariant T-cells as a potential biomarker to predict infection risk in liver cirrhosis. PLoS One 2024; 19:e0294695. [PMID: 38691552 PMCID: PMC11062522 DOI: 10.1371/journal.pone.0294695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/07/2023] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND AND AIMS Infection is a serious complication in patients with cirrhosis. Mucosal-associated invariant T (MAIT) cells are involved in the immune defense against infections and known to be impaired in several chronic conditions, including cirrhosis. Here, we evaluated if MAIT cell levels in peripheral blood are associated with risk of bacterial infections in patients with cirrhosis. METHODS Patients with cirrhosis seen at the Karolinska University Hospital, Stockholm, Sweden, between 2016 and 2019 were included. Levels of MAIT cells in peripheral blood were determined using flow cytometry. Baseline and follow-up data after at least two years of follow-up were collected by chart review for the primary outcome (bacterial infection) and secondary outcomes (decompensation and death). Competing risk and Cox regression were performed. RESULTS We included 106 patients with cirrhosis. The median MAIT cells fraction in the circulation was 0.8% in cirrhosis compared to 6.1% in healthy controls. In contrast to our hypothesis, we found an association in the adjusted analysis between relatively preserved MAIT cell levels, and a slightly higher risk to develop bacterial infections (adjusted subdistribution hazard ratio (aSHR) 1.15 (95%CI = 1.01-1.31). However, MAIT cell levels were not associated with the risk of hepatic decompensation (aSHR 1.19 (95%CI = 0.91-1.56)) nor with death (adjusted hazard ratio 1.10 (95%CI = 0.97-1.22)). CONCLUSIONS Relatively preserved MAIT cell levels in blood of patients with cirrhosis were associated with a somewhat higher risk of bacterial infections. The clinical relevance of this might not be strong. MAIT cells might however be an interesting biomarker to explore in future studies.
Collapse
Affiliation(s)
- Bonnie Bengtsson
- Department of Internal Medicine, Section of Gastroenterology, Södersjukhuset, Stockholm, Sweden
- Unit of Gastroenterology and Rheumatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Maucourant
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Hagström
- Department of Internal Medicine, Section of Gastroenterology, Södersjukhuset, Stockholm, Sweden
- Unit of Gastroenterology and Rheumatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Xiao MH, Wu S, Liang P, Ma D, Zhang J, Chen H, Zhong Z, Liu J, Jiang H, Feng X, Luo Z. Mucosal-associated invariant T cells promote ductular reaction through amphiregulin in biliary atresia. EBioMedicine 2024; 103:105138. [PMID: 38678809 PMCID: PMC11077624 DOI: 10.1016/j.ebiom.2024.105138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Biliary atresia (BA) is a neonatal fibro-inflammatory cholangiopathy with ductular reaction as a key pathogenic feature predicting poor survival. Mucosal-associated invariant T (MAIT) cells are enriched in human liver and display multiple roles in liver diseases. We aimed to investigate the function of MAIT cells in BA. METHODS First, we analyzed correlations between liver MAIT cell and clinical parameters (survival, alanine transaminase, bilirubin, histological inflammation and fibrosis) in two public cohorts of patients with BA (US and China). Kaplan-Meier survival analysis and spearman correlation analysis were employed for survival data and other clinical parameters, respectively. Next, we obtained liver samples or peripheral blood from BA and control patients for bulk RNA sequencing, flow cytometry analysis, immunostaning and functional experiments of MAIT cells. Finally, we established two in vitro co-culture systems, one is the rhesus rotavirus (RRV) infected co-culture system to model immune dysfunction of human BA which was validated by single cell RNA sequencing and the other is a multicellular system composed of biliary organoids, LX-2 and MAIT cells to evaluate the role of MAIT cells on ductular reaction. FINDINGS Liver MAIT cells in BA were positively associated with low survival and ductular reaction. Moreover, liver MAIT cells were activated, exhibited a wound healing signature and highly expressed growth factor Amphiregulin (AREG) in a T cell receptor (TCR)-dependent manner. Antagonism of AREG abrogated the proliferative effect of BA MAIT cells on both cholangiocytes and biliary organoids. A RRV infected co-culture system, recapitulated immune dysfunction of human BA, disclosed that RRV-primed MAIT cells promoted cholangiocyte proliferation via AREG, and further induced inflammation and fibrosis in the multicellular system. INTERPRETATION MAIT cells exhibit a wound healing signature depending on TCR signaling and promote ductular reaction via AREG, which is associated with advanced fibrosis and predictive of low survival in BA. FUNDING This work was funded by National Natural Science Foundation of China grant (82001589 and 92168108), National Key R&D Program of China (2023YFA1801600) and by Basic and Applied Basic Research Foundation of Guangdong (2020A1515110921).
Collapse
Affiliation(s)
- Man-Huan Xiao
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Sihan Wu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Peishi Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Dong Ma
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Jiang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Huadong Chen
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhihai Zhong
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Juncheng Liu
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Hong Jiang
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Xuyang Feng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Zhenhua Luo
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
14
|
Yin S, Peng Y, Lin Y, Wu H, Wang B, Wang X, Chen W, Liu T, Peng H, Li X, Xu J, Wang M. Bacterial heat shock protein: A new crosstalk between T lymphocyte and macrophage via JAK2/STAT1 pathway in bloodstream infection. Microbiol Res 2024; 282:127626. [PMID: 38330817 DOI: 10.1016/j.micres.2024.127626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Bloodstream infection (BSI) refers to the infection of blood by pathogens. Severe immune response to BSI can lead to sepsis, a systemic infection leading to multiple organ dysfunction, coupled with drug resistance, mortality, and limited clinical treatment options. This work aims to further investigate the new interplay between bacterial exocrine regulatory protein and host immune cells in the context of highly drug-resistant malignant BSI. Whether interfering with related regulatory signaling pathways can reverse the inflammatory disorder of immune cells. In-depth analysis of single-cell sequencing results in Septic patients for potential immunodeficiency factors. Analysis of key proteins enriched by host cells and key pathways using proteomics. Cell models and animal models validate the pathological effects of DnaK on T cells, MAITs, macrophages, and osteoclasts. The blood of patients was analyzed for the immunosuppression of T cells and MAITs. We identified that S. maltophilia-DnaK was enriched in immunodeficient T cells. The activation of the JAK2/STAT1 axis initiated the exhaustion of T cells. Septic patients with Gram-negative bacterial infections exhibited deficiencies in MAITs, which correspond to IFN-γ. Cellular and animal experiments confirmed that DnaK could facilitate MAIT depletion and M1 polarization of macrophages. Additionally, Fludarabine mitigated M1 polarization of blood, liver, and spleen in mice. Interestingly, DnaK also repressed osteoclastogenesis of macrophages stimulated by RANKL. S.maltophilia-DnaK prompts the activation of the JAK2/STAT1 axis in T cells and the M1 polarization of macrophages. Targeting the DnaK's crosstalk can be a potentially effective approach for treating the inflammatory disorder in the broad-spectrum drug-resistant BSI.
Collapse
Affiliation(s)
- Sheng Yin
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Yizhi Peng
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Laboratory Medicine, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan 410031, China
| | - YingRui Lin
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongzheng Wu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bingqi Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaofan Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wanxin Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Tianyao Liu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Huanqie Peng
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
15
|
McWilliam HEG, Villadangos JA. MR1 antigen presentation to MAIT cells and other MR1-restricted T cells. Nat Rev Immunol 2024; 24:178-192. [PMID: 37773272 PMCID: PMC11108705 DOI: 10.1038/s41577-023-00934-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 10/01/2023]
Abstract
MHC antigen presentation plays a fundamental role in adaptive and semi-invariant T cell immunity. Distinct MHC molecules bind antigens that differ in chemical structure, origin and location and present them to specialized T cells. MHC class I-related protein 1 (MR1) presents a range of small molecule antigens to MR1-restricted T (MR1T) lymphocytes. The best studied MR1 ligands are derived from microbial metabolism and are recognized by a major class of MR1T cells known as mucosal-associated invariant T (MAIT) cells. Here, we describe the MR1 antigen presentation pathway: the known types of antigens presented by MR1, the location where MR1-antigen complexes form, the route followed by the complexes to the cell surface, the mechanisms involved in termination of MR1 antigen presentation and the accessory cellular proteins that comprise the MR1 antigen presentation machinery. The current road map of the MR1 antigen presentation pathway reveals potential strategies for therapeutic manipulation of MR1T cell function and provides a foundation for further studies that will lead to a deeper understanding of MR1-mediated immunity.
Collapse
Affiliation(s)
- Hamish E G McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
16
|
Li L, He Y, Liu K, Liu L, Shan S, Liu H, Ren J, Sun S, Wang M, Jia J, Wang P. GITRL impairs hepatocyte repopulation by liver progenitor cells to aggravate inflammation and fibrosis by GITR +CD8 + T lymphocytes in CDE Mice. Cell Death Dis 2024; 15:114. [PMID: 38321001 PMCID: PMC10847460 DOI: 10.1038/s41419-024-06506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024]
Abstract
As an alternative pathway for liver regeneration, liver progenitor cells and their derived ductular reaction cells increase during the progression of many chronic liver diseases. However, the mechanism underlying their hepatocyte repopulation after liver injury remains unknown. Here, we conducted progenitor cell lineage tracing in mice and found that fewer than 2% of hepatocytes were derived from liver progenitor cells after 9 weeks of injury with a choline-deficient diet supplemented with ethionine (CDE), and this percentage increased approximately three-fold after 3 weeks of recovery. We also found that the proportion of liver progenitor cells double positive for the ligand of glucocorticoid-induced tumour necrosis factor receptor (GITRL, also called Tnfsf18) and SRY-related HMG box transcription 9 (Sox9) among nonparenchymal cells increased time-dependently upon CDE injury and reduced after recovery. When GITRL was conditionally knocked out from hepatic progenitor cells, its expression in nonparenchymal cells was downregulated by approximately fifty percent, and hepatocyte repopulation increased by approximately three folds. Simultaneously, conditional knockout of GITRL reduced the proportion of liver-infiltrating CD8+ T lymphocytes and glucocorticoid-induced tumour necrosis factor receptor (GITR)-positive CD8+ T lymphocytes. Mechanistically, GITRL stimulated cell proliferation but suppressed the differentiation of liver progenitor organoids into hepatocytes, and CD8+ T cells further reduced their hepatocyte differentiation by downregulating the Wnt/β-catenin pathway. Therefore, GITRL expressed by liver progenitor cells impairs hepatocyte differentiation, thus hindering progenitor cell-mediated liver regeneration.
Collapse
Affiliation(s)
- Li Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Yu He
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Kai Liu
- Beijing Clinical Research Institute, Beijing, 100050, China
| | - Lin Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Shan Shan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Helin Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Jiangbo Ren
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Shujie Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Min Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China.
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China.
| | - Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China.
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China.
| |
Collapse
|
17
|
Abstract
Primary biliary cholangitis (PBC) is the most common of the autoimmune liver diseases, in which there is chronic small bile duct inflammation. The pathophysiology of PBC is multifactorial, involving immune dysregulation and damage to biliary epithelial cells, with influences from genetic factors, epigenetics, the gut-liver axis, and environmental exposures.
Collapse
Affiliation(s)
- Inbal Houri
- Division of Gastroenterology and Hepatology, Toronto Centre for Liver Disease, University of Toronto, 9th Floor Eaton Building, North Wing 219-B, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Gideon M Hirschfield
- Division of Gastroenterology and Hepatology, Toronto Centre for Liver Disease, University of Toronto, 9th Floor Eaton Building, North Wing 219-B, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
18
|
Davies SP, Ronca V, Wootton GE, Krajewska NM, Bozward AG, Fiancette R, Patten DA, Yankouskaya K, Reynolds GM, Pat S, Osei-Bordom DC, Richardson N, Grover LM, Weston CJ, Oo YH. Expression of E-cadherin by CD8 + T cells promotes their invasion into biliary epithelial cells. Nat Commun 2024; 15:853. [PMID: 38286990 PMCID: PMC10825166 DOI: 10.1038/s41467-024-44910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
The presence of CD8+ T cells in the cytoplasm of biliary epithelial cells (BEC) has been correlated with biliary damage associated with primary biliary cholangitis (PBC). Here, we characterise the mechanism of CD8+ T cell invasion into BEC. CD8+ T cells observed within BEC were large, eccentric, and expressed E-cadherin, CD103 and CD69. They were also not contained within secondary vesicles. Internalisation required cytoskeletal rearrangements which facilitated contact with BEC. Internalised CD8+ T cells were observed in both non-cirrhotic and cirrhotic diseased liver tissues but enriched in PBC patients, both during active disease and at the time of transplantation. E-cadherin expression by CD8+ T cells correlated with frequency of internalisation of these cells into BEC. E-cadherin+ CD8+ T cells formed β-catenin-associated interactions with BEC, were larger than E-cadherin- CD8+ T cells and invaded into BEC more frequently. Overall, we unveil a distinct cell-in-cell structure process in the liver detailing the invasion of E-cadherin+ CD103+ CD69+ CD8+ T cells into BEC.
Collapse
Affiliation(s)
- Scott P Davies
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- European Reference Network on Hepatological Diseases (ERN Rare-Liver), Birmingham, UK.
| | - Vincenzo Ronca
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- European Reference Network on Hepatological Diseases (ERN Rare-Liver), Birmingham, UK
| | - Grace E Wootton
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- European Reference Network on Hepatological Diseases (ERN Rare-Liver), Birmingham, UK
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, UK
| | - Natalia M Krajewska
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Amber G Bozward
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- European Reference Network on Hepatological Diseases (ERN Rare-Liver), Birmingham, UK
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, UK
| | - Rémi Fiancette
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Daniel A Patten
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Katharina Yankouskaya
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Gary M Reynolds
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Sofia Pat
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Daniel C Osei-Bordom
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Naomi Richardson
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- European Reference Network on Hepatological Diseases (ERN Rare-Liver), Birmingham, UK
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, UK
| | - Liam M Grover
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
- Healthcare Technologies Institute, University of Birmingham, Birmingham, UK
| | - Christopher J Weston
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Ye H Oo
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- European Reference Network on Hepatological Diseases (ERN Rare-Liver), Birmingham, UK.
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, UK.
| |
Collapse
|
19
|
Ito E, Inuki S, Izumi Y, Takahashi M, Dambayashi Y, Ciacchi L, Awad W, Takeyama A, Shibata K, Mori S, Mak JYW, Fairlie DP, Bamba T, Ishikawa E, Nagae M, Rossjohn J, Yamasaki S. Sulfated bile acid is a host-derived ligand for MAIT cells. Sci Immunol 2024; 9:eade6924. [PMID: 38277465 PMCID: PMC11147531 DOI: 10.1126/sciimmunol.ade6924] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/03/2024] [Indexed: 01/28/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognize bacterial riboflavin-based metabolites as activating antigens. Although MAIT cells are found in tissues, it is unknown whether any host tissue-derived antigens exist. Here, we report that a sulfated bile acid, cholic acid 7-sulfate (CA7S), binds the nonclassical MHC class I protein MR1 and is recognized by MAIT cells. CA7S is a host-derived metabolite whose levels were reduced by more than 98% in germ-free mice. Deletion of the sulfotransferase 2a family of enzymes (Sult2a1-8) responsible for CA7S synthesis reduced the number of thymic MAIT cells in mice. Moreover, recognition of CA7S induced MAIT cell survival and the expression of a homeostatic gene signature. By contrast, recognition of a previously described foreign antigen, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), drove MAIT cell proliferation and the expression of inflammatory genes. Thus, CA7S is an endogenous antigen for MAIT cells, which promotes their development and function.
Collapse
Affiliation(s)
- Emi Ito
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yuki Dambayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Lisa Ciacchi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ami Takeyama
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kensuke Shibata
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Shotaro Mori
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jeffrey Y. W. Mak
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Eri Ishikawa
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
20
|
Wu S, Yang X, Lou Y, Xiao X. MAIT cells in bacterial infectious diseases: heroes, villains, or both? Clin Exp Immunol 2023; 214:144-153. [PMID: 37624404 PMCID: PMC10714195 DOI: 10.1093/cei/uxad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Due to the aggravation of bacterial drug resistance and the lag in the development of new antibiotics, it is crucial to develop novel therapeutic regimens for bacterial infectious diseases. Currently, immunotherapy is a promising regimen for the treatment of infectious diseases. Mucosal-associated invariant T (MAIT) cells, a subpopulation of innate-like T cells, are abundant in humans and can mount a rapid immune response to pathogens, thus becoming a potential target of immunotherapy for infectious diseases. At the site of infection, activated MAIT cells perform complex biological functions by secreting a variety of cytokines and cytotoxic substances. Many studies have shown that MAIT cells have immunoprotective effects because they can bridge innate and adaptive immune responses, leading to bacterial clearance, tissue repair, and homeostasis maintenance. MAIT cells also participate in cytokine storm generation, tissue fibrosis, and cancer progression, indicating that they play a role in immunopathology. In this article, we review recent studies of MAIT cells, discuss their dual roles in bacterial infectious diseases and provide some promising MAIT cell-targeting strategies for the treatment of bacterial infectious diseases.
Collapse
Affiliation(s)
- Sihong Wu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xingxing Xiao
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Waterhölter A, Wunderlich M, Turner JE. MAIT cells in immune-mediated tissue injury and repair. Eur J Immunol 2023; 53:e2350483. [PMID: 37740567 DOI: 10.1002/eji.202350483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are T cells that express a semi-invariant αβ T-cell receptor (TCR), recognizing non-peptide antigens, such as microbial-derived vitamin B2 metabolites, presented by the nonpolymorphic MHC class I related-1 molecule. Like NKT cells and γδT cells, MAIT cells belong to the group of innate-like T cells that combine properties of the innate and adaptive immune systems. They account for up to 10% of the blood T-cell population in humans and are particularly abundant at mucosal sites. Beyond the emerging role of MAIT cells in antibacterial and antiviral defenses, increasing evidence suggests additional functions in noninfectious settings, including immune-mediated inflammatory diseases and tissue repair. Here, we discuss recent advances in the understanding of MAIT cell functions in sterile tissue inflammation, with a particular focus on autoimmunity, chronic inflammatory diseases, and tissue repair.
Collapse
Affiliation(s)
- Alex Waterhölter
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Wunderlich
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Ibidapo-Obe O, Bruns T. Tissue-resident and innate-like T cells in patients with advanced chronic liver disease. JHEP Rep 2023; 5:100812. [PMID: 37691689 PMCID: PMC10485156 DOI: 10.1016/j.jhepr.2023.100812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 09/12/2023] Open
Abstract
Chronic liver disease results from the orchestrated interplay of components of innate and adaptive immunity in response to liver tissue damage. Recruitment, positioning, and activation of immune cells can contribute to hepatic cell death, inflammation, and fibrogenesis. With disease progression and increasing portal pressure, repeated translocation of bacterial components from the intestinal lumen through the epithelial and vascular barriers leads to persistent mucosal, hepatic, and systemic inflammation which contributes to tissue damage, immune dysfunction, and microbial infection. It is increasingly recognised that innate-like and adaptive T-cell subsets located in the liver, mucosal surfaces, and body cavities play a critical role in the progression of advanced liver disease and inflammatory complications of cirrhosis. Mucosal-associated invariant T cells, natural killer T cells, γδ T cells, and tissue-resident memory T cells in the gut, liver, and ascitic fluid share certain characteristic features, which include that they recognise microbial products, tissue alarmins, cytokines, and stress ligands in tissues, and perform effector functions in chronic liver disease. This review highlights recent advances in the comprehension of human tissue-resident and unconventional T-cell populations and discusses the mechanisms by which they contribute to inflammation, fibrosis, immunosuppression, and antimicrobial surveillance in patients with cirrhosis. Understanding the complex interactions of immune cells in different compartments and their contribution to disease progression will provide further insights for effective diagnostic interventions and novel immunomodulatory strategies in patients with advanced chronic liver disease.
Collapse
Affiliation(s)
- Oluwatomi Ibidapo-Obe
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tony Bruns
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
23
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Park HJ, Choi J, Kim H, Yang DY, An TH, Lee EW, Han BS, Lee SC, Kim WK, Bae KH, Oh KJ. Cellular heterogeneity and plasticity during NAFLD progression. Front Mol Biosci 2023; 10:1221669. [PMID: 37635938 PMCID: PMC10450943 DOI: 10.3389/fmolb.2023.1221669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease that can progress to nonalcoholic steatohepatitis (NASH), NASH-related cirrhosis, and hepatocellular carcinoma (HCC). NAFLD ranges from simple steatosis (or nonalcoholic fatty liver [NAFL]) to NASH as a progressive form of NAFL, which is characterized by steatosis, lobular inflammation, and hepatocellular ballooning with or without fibrosis. Because of the complex pathophysiological mechanism and the heterogeneity of NAFLD, including its wide spectrum of clinical and histological characteristics, no specific therapeutic drugs have been approved for NAFLD. The heterogeneity of NAFLD is closely associated with cellular plasticity, which describes the ability of cells to acquire new identities or change their phenotypes in response to environmental stimuli. The liver consists of parenchymal cells including hepatocytes and cholangiocytes and nonparenchymal cells including Kupffer cells, hepatic stellate cells, and endothelial cells, all of which have specialized functions. This heterogeneous cell population has cellular plasticity to adapt to environmental changes. During NAFLD progression, these cells can exert diverse and complex responses at multiple levels following exposure to a variety of stimuli, including fatty acids, inflammation, and oxidative stress. Therefore, this review provides insights into NAFLD heterogeneity by addressing the cellular plasticity and metabolic adaptation of hepatocytes, cholangiocytes, hepatic stellate cells, and Kupffer cells during NAFLD progression.
Collapse
Affiliation(s)
- Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Juyong Choi
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Da-Yeon Yang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Baek-Soo Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
25
|
Wang NI, Ninkov M, Haeryfar SMM. Classic costimulatory interactions in MAIT cell responses: from gene expression to immune regulation. Clin Exp Immunol 2023; 213:50-66. [PMID: 37279566 PMCID: PMC10324557 DOI: 10.1093/cei/uxad061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are evolutionarily conserved, innate-like T lymphocytes with enormous immunomodulatory potentials. Due to their strategic localization, their invariant T cell receptor (iTCR) specificity for major histocompatibility complex-related protein 1 (MR1) ligands of commensal and pathogenic bacterial origin, and their sensitivity to infection-elicited cytokines, MAIT cells are best known for their antimicrobial characteristics. However, they are thought to also play important parts in the contexts of cancer, autoimmunity, vaccine-induced immunity, and tissue repair. While cognate MR1 ligands and cytokine cues govern MAIT cell maturation, polarization, and peripheral activation, other signal transduction pathways, including those mediated by costimulatory interactions, regulate MAIT cell responses. Activated MAIT cells exhibit cytolytic activities and secrete potent inflammatory cytokines of their own, thus transregulating the biological behaviors of several other cell types, including dendritic cells, macrophages, natural killer cells, conventional T cells, and B cells, with significant implications in health and disease. Therefore, an in-depth understanding of how costimulatory pathways control MAIT cell responses may introduce new targets for optimized MR1/MAIT cell-based interventions. Herein, we compare and contrast MAIT cells and mainstream T cells for their expression of classic costimulatory molecules belonging to the immunoglobulin superfamily and the tumor necrosis factor (TNF)/TNF receptor superfamily, based not only on the available literature but also on our transcriptomic analyses. We discuss how these molecules participate in MAIT cells' development and activities. Finally, we introduce several pressing questions vis-à-vis MAIT cell costimulation and offer new directions for future research in this area.
Collapse
Affiliation(s)
- Nicole I Wang
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Marina Ninkov
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario, Canada
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
26
|
Fu S, Liu M, Zhu C, Zhang H, Zhao C, Xie Y, Chen G, Sheng D, Pan J, He Z, Dai Y, Gao Y, Li X, Chen L, Qian Y, Jin T, Sun C, Tian Z, Wang H, Bai L. Regulatory mucosa-associated invariant T cells controlled by β1 adrenergic receptor signaling contribute to hepatocellular carcinoma progression. Hepatology 2023; 78:72-87. [PMID: 36626624 DOI: 10.1097/hep.0000000000000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS The innate-like mucosa-associated invariant T (MAIT) cells are enriched in human liver and have been linked to human HCC. However, their contributions to the progression of HCC are controversial due to the heterogeneity of MAIT cells, and new MAIT cell subsets remain to be explored. APPROACH AND RESULTS Combining single cell RNA sequencing (scRNA-seq) and flow cytometry analysis, we performed phenotypic and functional studies and found that FOXP3 + CXCR3 + MAIT cells in HCC patients were regulatory MAIT cells (MAITregs) with high immunosuppressive potential. These MAITregs were induced under Treg-inducing condition and predominantly from FOXP3 - CXCR3 + MAIT cells, which displayed mild Treg-related features and represented a pre-MAITreg reservoir. In addition, the induction and function of MAITregs were promoted by β1 adrenergic receptor signaling in pre-MAITregs and MAITregs, respectively. In HCC patients, high proportion of the intratumoral MAITregs inhibited antitumor immune responses and was associated with poor clinical outcomes. CONCLUSIONS Together, we reveal an immunosuppressive subset of MAIT cells in HCC patients that contributes to HCC progression, and propose a control through neuroimmune crosstalk.
Collapse
Affiliation(s)
- Sicheng Fu
- Division of Life Sciences and Medicine, Department of Oncology of the First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Muziying Liu
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, China
| | - Chenwen Zhu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huimin Zhang
- Division of Life Sciences and Medicine, Department of Oncology of the First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Changfeng Zhao
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Yaping Xie
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guanghou Chen
- Department of General Surgery, Organ Transplantation Center, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Daping Sheng
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Pan
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Ziqing He
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yufeng Gao
- Department of Infectious Disease, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaomei Li
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, the First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yeben Qian
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tengchuan Jin
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Cheng Sun
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Li Bai
- Division of Life Sciences and Medicine, Department of Oncology of the First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| |
Collapse
|
27
|
Zhang LP, Wang HF, Zhai XR, Zhou CB, Yuan JH, Ma YN, Yao ZT, Huang S, Li WZ, Jiao YM, Wang FS, Zou ZS, Zhang JY, Zeng QL. Pyroptotic MAITs link microbial translocation with severity of alcohol-associated liver disease. Hepatol Commun 2023; 7:e0159. [PMID: 37204414 PMCID: PMC10538909 DOI: 10.1097/hc9.0000000000000159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/19/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Mucosal-associated invariant T cells (MAITs) are markedly reduced in patients with alcohol-associated liver disease (ALD); however, the potential mechanism underlying MAITs' loss remains elusive. Hence, we aimed to explore what induced MAITs' loss and its clinical significance. METHODS The characteristics of pyroptotic MAITs were evaluated in a cohort of patients with ALD, including 41 patients with alcohol-associated liver cirrhosis (ALC) and 21 patients with ALC complicated with severe alcoholic hepatitis (ALC + SAH). RESULTS In patients with ALD, blood MAITs were significantly decreased, hyperactivated, and displayed enhanced cell death through pyroptosis. The frequencies of pyroptotic MAITs increased with disease severity in patients with ALC and patients with ALC + SAH. These frequencies were negatively associated with the frequencies of MAITs and positively correlated with the levels of MAITs' activation, plasma levels of intestinal fatty acid-binding protein (a marker of intestinal enterocyte damage), soluble CD14, lipopolysaccharide-binding protein, and peptidoglycan recognition proteins (surrogate markers of microbial translocation). Pyroptotic MAITs were also found in the liver of patients with ALD. Interestingly, MAITs underwent further activation and pyroptosis in vitro under stimulation by Escherichia coli or direct bilirubin. Notably, blocking IL-18 signaling reduced the activation and frequencies of pyroptotic MAITs. CONCLUSIONS The loss of MAITs in patients with ALD is, at least in part, due to cell death from pyroptosis and is associated with the severity of ALD. Such increased pyroptosis may be affected by dysregulated inflammatory responses to intestinal microbial translocation or direct bilirubin.
Collapse
Affiliation(s)
- Li-Ping Zhang
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Hui-Fang Wang
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Xing-Ran Zhai
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Hong Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ye-Nv Ma
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Zeng-Tao Yao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Shuo Huang
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Wei-Zhe Li
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Zheng-Sheng Zou
- Department of Liver Disease, Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Qing-Lei Zeng
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| |
Collapse
|
28
|
Cai X, Tacke F, Guillot A, Liu H. Cholangiokines: undervalued modulators in the hepatic microenvironment. Front Immunol 2023; 14:1192840. [PMID: 37261338 PMCID: PMC10229055 DOI: 10.3389/fimmu.2023.1192840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
The biliary epithelial cells, also known as cholangiocytes, line the intra- and extrahepatic bile ducts, forming a barrier between intra- and extra-ductal environments. Cholangiocytes are mostly known to modulate bile composition and transportation. In hepatobiliary diseases, bile duct injury leads to drastic alterations in cholangiocyte phenotypes and their release of soluble mediators, which can vary depending on the original insult and cellular states (quiescence, senescence, or proliferation). The cholangiocyte-secreted cytokines (also termed cholangiokines) drive ductular cell proliferation, portal inflammation and fibrosis, and carcinogenesis. Hence, despite the previous consensus that cholangiocytes are bystanders in liver diseases, their diverse secretome plays critical roles in modulating the intrahepatic microenvironment. This review summarizes recent insights into the cholangiokines under both physiological and pathological conditions, especially as they occur during liver injury-regeneration, inflammation, fibrosis and malignant transformation processes.
Collapse
Affiliation(s)
- Xiurong Cai
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Hanyang Liu
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Center of Gastrointestinal Diseases, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
29
|
Papanastasatou M, Verykokakis M. Innate-like T lymphocytes in chronic liver disease. Front Immunol 2023; 14:1114605. [PMID: 37006304 PMCID: PMC10050337 DOI: 10.3389/fimmu.2023.1114605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
In addition to its metabolic activities, it is now clear that the liver hosts a number of diverse immune cell types that control tissue homeostasis. Foremost among these are innate-like T lymphocytes, including natural killer T (NKT) and mucosal-associated innate T (MAIT) cells, which are a population of specialized T cells with innate characteristics that express semi-invariant T cell receptors with non-peptide antigen specificity. As primary liver residents, innate-like T cells have been associated with immune tolerance in the liver, but also with a number of hepatic diseases. Here, we focus on the biology of NKT and MAIT cells and how they operate during the course of chronic inflammatory diseases that eventually lead to hepatocellular carcinoma.
Collapse
|
30
|
Li YR, Zhou K, Wilson M, Kramer A, Zhu Y, Dawson N, Yang L. Mucosal-associated invariant T cells for cancer immunotherapy. Mol Ther 2023; 31:631-646. [PMID: 36463401 PMCID: PMC10014234 DOI: 10.1016/j.ymthe.2022.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Human mucosal-associated invariant T (MAIT) cells are characterized by their expression of an invariant TCR α chain Vα7.2-Jα33/Jα20/Jα12 paired with a restricted TCR β chain. MAIT cells recognize microbial peptides presented by the highly conserved MHC class I-like molecule MR1 and bridge the innate and acquired immune systems to mediate augmented immune responses. Upon activation, MAIT cells rapidly proliferate, produce a variety of cytokines and cytotoxic molecules, and trigger efficient antitumor immunity. Administration of a representative MAIT cell ligand 5-OP-RU effectively activates MAIT cells and enhances their antitumor capacity. In this review, we introduce MAIT cell biology and their importance in antitumor immunity, summarize the current development of peripheral blood mononuclear cell-derived and stem cell-derived MAIT cell products for cancer treatment, and discuss the potential of genetic engineering of MAIT cells for off-the-shelf cancer immunotherapy.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kuangyi Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew Wilson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adam Kramer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Niels Dawson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
31
|
Bozward A, Ce M, Dell'oro L, Oo YH, Ronca V. Breakdown in hepatic tolerance and its relation to autoimmune liver diseases. Minerva Gastroenterol (Torino) 2023; 69:10-22. [PMID: 33793157 DOI: 10.23736/s2724-5985.21.02853-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The liver is a complex immunological organ. It has both immunogenic and tolerogenic capacity. Tolerogenic potential of human liver with its protective firewalls is required to guard the body against the continuous influx of microbial product from the gut via the sinusoids and biliary tree. Immunotolerance and anergic state is maintained by a combined effort of both immune cells, parenchyma cells, epithelial and endothelial cells. Despite this, an unknown trigger can ignite the pathway towards breakdown in hepatic tolerance leading to autoimmune liver diseases. Understanding the initial stimulus which causes the hepatic immune system to switch from the regulatory arm towards self-reactive effector arm remains challenging. Dissecting this pathology using the current technological advances is crucial to develop curative immune based therapy in autoimmune liver diseases. We discuss the hepatic immune cells and non-immune cells which maintain liver tolerance and the evidence of immune system barrier breach which leads to autoimmune hepatitis, primary biliary cholangitis and primary sclerosing cholangitis.
Collapse
Affiliation(s)
- Amber Bozward
- Center for Liver and Gastro Research and NIHR Biomedical Research Center, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Center for Rare Diseases, European Reference Network Centre - Rare Liver, Birmingham, UK
| | - Maurizio Ce
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Ye H Oo
- Center for Liver and Gastro Research and NIHR Biomedical Research Center, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Center for Rare Diseases, European Reference Network Centre - Rare Liver, Birmingham, UK.,Liver Transplant and Hepatobiliary Unit, University Hospital of Birmingham NHS Foundation Trust, Birmingham, UK
| | - Vincenzo Ronca
- Center for Liver and Gastro Research and NIHR Biomedical Research Center, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK - .,Center for Rare Diseases, European Reference Network Centre - Rare Liver, Birmingham, UK.,Liver Transplant and Hepatobiliary Unit, University Hospital of Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
32
|
Ashley CL, McSharry BP, McWilliam HEG, Stanton RJ, Fielding CA, Mathias RA, Fairlie DP, McCluskey J, Villadangos JA, Rossjohn J, Abendroth A, Slobedman B. Suppression of MR1 by human cytomegalovirus inhibits MAIT cell activation. Front Immunol 2023; 14:1107497. [PMID: 36845106 PMCID: PMC9950634 DOI: 10.3389/fimmu.2023.1107497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction The antigen presentation molecule MHC class I related protein-1 (MR1) is best characterized by its ability to present bacterially derived metabolites of vitamin B2 biosynthesis to mucosal-associated invariant T-cells (MAIT cells). Methods Through in vitro human cytomegalovirus (HCMV) infection in the presence of MR1 ligand we investigate the modulation of MR1 expression. Using coimmunoprecipitation, mass spectrometry, expression by recombinant adenovirus and HCMV deletion mutants we investigate HCMV gpUS9 and its family members as potential regulators of MR1 expression. The functional consequences of MR1 modulation by HCMV infection are explored in coculture activation assays with either Jurkat cells engineered to express the MAIT cell TCR or primary MAIT cells. MR1 dependence in these activation assays is established by addition of MR1 neutralizing antibody and CRISPR/Cas-9 mediated MR1 knockout. Results Here we demonstrate that HCMV infection efficiently suppresses MR1 surface expression and reduces total MR1 protein levels. Expression of the viral glycoprotein gpUS9 in isolation could reduce both cell surface and total MR1 levels, with analysis of a specific US9 HCMV deletion mutant suggesting that the virus can target MR1 using multiple mechanisms. Functional assays with primary MAIT cells demonstrated the ability of HCMV infection to inhibit bacterially driven, MR1-dependent activation using both neutralizing antibodies and engineered MR1 knockout cells. Discussion This study identifies a strategy encoded by HCMV to disrupt the MR1:MAIT cell axis. This immune axis is less well characterized in the context of viral infection. HCMV encodes hundreds of proteins, some of which regulate the expression of antigen presentation molecules. However the ability of this virus to regulate the MR1:MAIT TCR axis has not been studied in detail.
Collapse
Affiliation(s)
- Caroline L. Ashley
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Brian P. McSharry
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Hamish E. G. McWilliam
- Department of Microbiology and Immunology, The Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, Institute of Molecular Science and Biotechnology (Bio21), The University of Melbourne, Melbourne, VIC, Australia
| | - Richard J. Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ceri A. Fielding
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Rommel A. Mathias
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - David P. Fairlie
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Jose A. Villadangos
- Department of Microbiology and Immunology, The Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, Institute of Molecular Science and Biotechnology (Bio21), The University of Melbourne, Melbourne, VIC, Australia
| | - Jamie Rossjohn
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
33
|
Tang W, Ge K, Shen L, Wang H, Feng W, Sun X, Chu X, Zhu D, Yin H, Bi Y. Th1 bias of liver mucosal-associated invariant T cells promotes hepatic gluconeogenesis in type 2 diabetes mellitus. Diabetes Metab Res Rev 2023; 39:e3620. [PMID: 36738300 DOI: 10.1002/dmrr.3620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/23/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
AIMS It is acknowledged that aberrant liver immunity contributes to the development of type 2 diabetes mellitus (T2DM). Mucosal-associated invariant T (MAIT) cells, an innate-like T-cell subset, are enriched in the human liver. Nevertheless, the characterisation and potential role of hepatic MAIT cells in T2DM remain unclear. MATERIALS AND METHODS Fourteen newly diagnosed T2DM subjects and 15 controls received liver biopsy. The frequency and cytokine production of MAIT cells were analysed by flow cytometry. The expression of genes involved in glucose metabolism was determined in HepG2 cells co-cultured with hepatic MAIT cells. RESULTS Compared with controls, hepatic MAIT cell frequency was significantly increased in T2DM patients (24.66% vs. 14.61%, p = 0.001). There were more MAIT cells producing interferon-γ (IFN-γ, 60.49% vs. 33.33%, p = 0.021) and tumour necrosis factor-α (TNF-α, 46.84% vs. 5.91%, p = 0.021) in T2DM than in controls, whereas their production of interleukin 17 (IL-17) was comparable (15.25% vs. 4.55%, p = 0.054). Notably, an IFN-γ+ TNF-α+ IL-17+/- producing MAIT cell subset was focussed, which showed an elevated proportion in T2DM (42.66% vs. 5.85%, p = 0.021) and positively correlated with plasma glucose levels. A co-culture experiment further indicated that hepatic MAIT cells from T2DM upregulated the gene expression of pyruvate carboxylase, a key molecule involved in gluconeogenesis, in HepG2 cells, and this response was blocked with neutralising antibodies against IFN-γ and TNF-α. CONCLUSIONS Our data implicate an increased Th1-like MAIT cell subset in the liver of newly diagnosed T2DM subjects, which induces hyperglycaemia by promoting hepatic gluconeogenesis. It provides novel insights into the immune regulation of metabolic homoeostasis. CLINICAL TRIAL REGISTRATION NUMBER NCT03296605 (registered at www. CLINICALTRIALS gov on 12 October 2018).
Collapse
Affiliation(s)
- Wenjuan Tang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanjing, China
| | - Kang Ge
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanjing, China
| | - Lei Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongdong Wang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanjing, China
| | - Wenhuan Feng
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanjing, China
| | - Xitai Sun
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuehui Chu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Dalong Zhu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanjing, China
| | - Hongli Yin
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanjing, China
| |
Collapse
|
34
|
Zhang H, Shen H, Zhou L, Xie L, Kong D, Wang H. Mucosal-Associated Invariant T Cells in the Digestive System: Defender or Destroyer? Cell Mol Gastroenterol Hepatol 2023; 15:809-819. [PMID: 36584816 PMCID: PMC9971522 DOI: 10.1016/j.jcmgh.2022.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of innate T lymphocytes that express the semi-invariant T cell receptor and recognize riboflavin metabolites via the major histocompatibility complex class I-related protein. Given the abundance of MAIT cells in the human body, their role in human diseases has been increasingly studied in recent years. MAIT cells may serve as targets for clinical therapy. Specifically, this review discusses how MAIT cells are altered in gastric, esophageal, intestinal, and hepatobiliary diseases and describes their protective or pathogenic roles. A greater understanding of MAIT cells will provide a more favorable therapeutic approach for digestive diseases in the clinical field.
Collapse
Affiliation(s)
- Hejiao Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Liangliang Zhou
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Linxi Xie
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Derun Kong
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| |
Collapse
|
35
|
Yang Zhou J. Innate immunity and early liver inflammation. Front Immunol 2023; 14:1175147. [PMID: 37205101 PMCID: PMC10187146 DOI: 10.3389/fimmu.2023.1175147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/30/2023] [Indexed: 05/21/2023] Open
Abstract
The innate system constitutes a first-line defence mechanism against pathogens. 80% of the blood supply entering the human liver arrives from the splanchnic circulation through the portal vein, so it is constantly exposed to immunologically active substances and pathogens from the gastrointestinal tract. Rapid neutralization of pathogens and toxins is an essential function of the liver, but so too is avoidance of harmful and unnecessary immune reactions. This delicate balance of reactivity and tolerance is orchestrated by a diverse repertoire of hepatic immune cells. In particular, the human liver is enriched in many innate immune cell subsets, including Kupffer cells (KCs), innate lymphoid cells (ILCs) like Natural Killer (NK) cells and ILC-like unconventional T cells - namely Natural Killer T cells (NKT), γδ T cells and Mucosal-associated Invariant T cells (MAIT). These cells reside in the liver in a memory-effector state, so they respond quickly to trigger appropriate responses. The contribution of aberrant innate immunity to inflammatory liver diseases is now being better understood. In particular, we are beginning to understand how specific innate immune subsets trigger chronic liver inflammation, which ultimately results in hepatic fibrosis. In this review, we consider the roles of specific innate immune cell subsets in early inflammation in human liver disease.
Collapse
Affiliation(s)
- Jordi Yang Zhou
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- *Correspondence: Jordi Yang Zhou,
| |
Collapse
|
36
|
Lim HJ, Wubben JM, Garcia CP, Cruz-Gomez S, Deng J, Mak JY, Hachani A, Anderson RJ, Painter GF, Goyette J, Amarasinghe SL, Ritchie ME, Roquilly A, Fairlie DP, Gaus K, Rossjohn J, Villadangos JA, McWilliam HE. A specialized tyrosine-based endocytosis signal in MR1 controls antigen presentation to MAIT cells. J Cell Biol 2022; 221:213489. [PMID: 36129434 PMCID: PMC9499830 DOI: 10.1083/jcb.202110125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/23/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022] Open
Abstract
MR1 is a highly conserved microbial immune-detection system in mammals. It captures vitamin B-related metabolite antigens from diverse microbes and presents them at the cell surface to stimulate MR1-restricted lymphocytes including mucosal-associated invariant T (MAIT) cells. MR1 presentation and MAIT cell recognition mediate homeostasis through host defense and tissue repair. The cellular mechanisms regulating MR1 cell surface expression are critical to its function and MAIT cell recognition, yet they are poorly defined. Here, we report that human MR1 is equipped with a tyrosine-based motif in its cytoplasmic domain that mediates low affinity binding with the endocytic adaptor protein 2 (AP2) complex. This interaction controls the kinetics of MR1 internalization from the cell surface and minimizes recycling. We propose MR1 uses AP2 endocytosis to define the duration of antigen presentation to MAIT cells and the detection of a microbial metabolic signature by the immune system.
Collapse
Affiliation(s)
- Hui Jing Lim
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Jacinta M. Wubben
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia
| | - Cristian Pinero Garcia
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Sebastian Cruz-Gomez
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Jieru Deng
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Jeffrey Y.W. Mak
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Regan J. Anderson
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Gavin F. Painter
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Shanika L. Amarasinghe
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Matthew E. Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Antoine Roquilly
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064; F-44000, Nantes, France
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Jose A. Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Jose A. Villadangos:
| | - Hamish E.G. McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Correspondence to Hamish E.G. McWilliam:
| |
Collapse
|
37
|
Increased Number of Mucosal-Associated Invariant T Cells Is Associated with the Inhibition of Nonalcoholic Fatty Liver Disease in High Fat Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms232315309. [PMID: 36499635 PMCID: PMC9739562 DOI: 10.3390/ijms232315309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an emerging worldwide health concern. The disease may involve immune cells including T cells, but little is known about the role(s) of the innate-like T cells in the liver. Furthermore, the most abundant innate-like T cells in the human liver are mucosal-associated invariant T (MAIT) cells, but the involvement of MAIT cells in NAFLD remains largely unexplored because of their paucity in mice. In this study, we used a novel mouse line, Vα19, in which the number of MAIT cells is equivalent to or greater than that in humans. Compared with the control mice, Vα19 mice fed a high-fat diet (HFD) exhibited a reduction in lipid accumulation, NAFLD activity score, and transcripts relevant to lipogenesis. In addition, serum triglyceride and non-esterified fatty acids were lower in Vα19 mice fed normal chow or HFD. In contrast, the Vα19 mice showed little or no change in glucose tolerance, insulin sensitivity, inflammation in adipose tissues, or intestinal permeability compared with the controls, irrespective of diet. These results suggest that the presence of MAIT cells is associated with reduced lipogenesis and lipid accumulation in the liver; however, further studies are needed to clarify the role of MAIT cells in hepatic lipid metabolism.
Collapse
|
38
|
Lett MJ, Mehta H, Keogh A, Jaeger T, Jacquet M, Powell K, Meier MA, Fofana I, Melhem H, Vosbeck J, Cathomas G, Heigl A, Heim MH, Burri E, Mertz KD, Niess JH, Kollmar O, Zech CJ, Ivanek R, Duthaler U, Klenerman P, Stroka D, Filipowicz Sinnreich M. Stimulatory MAIT cell antigens reach the circulation and are efficiently metabolised and presented by human liver cells. Gut 2022; 71:2526-2538. [PMID: 35058274 PMCID: PMC9664123 DOI: 10.1136/gutjnl-2021-324478] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 01/08/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Mucosal-associated invariant T (MAIT) cells are the most abundant T cells in human liver. They respond to bacterial metabolites presented by major histocompatibility complex-like molecule MR1. MAIT cells exert regulatory and antimicrobial functions and are implicated in liver fibrogenesis. It is not well understood which liver cells function as antigen (Ag)-presenting cells for MAIT cells, and under which conditions stimulatory Ags reach the circulation. DESIGN We used different types of primary human liver cells in Ag-presentation assays to blood-derived and liver-derived MAIT cells. We assessed MAIT cell stimulatory potential of serum from healthy subjects and patients with portal hypertension undergoing transjugular intrahepatic portosystemic shunt stent, and patients with inflammatory bowel disease (IBD). RESULTS MAIT cells were dispersed throughout healthy human liver and all tested liver cell types stimulated MAIT cells, hepatocytes being most efficient. MAIT cell activation by liver cells occurred in response to bacterial lysate and pure Ag, and was prevented by non-activating MR1 ligands. Serum derived from peripheral and portal blood, and from patients with IBD stimulated MAIT cells in MR1-dependent manner. CONCLUSION Our findings reveal previously unrecognised roles of liver cells in Ag metabolism and activation of MAIT cells, repression of which creates an opportunity to design antifibrotic therapies. The presence of MAIT cell stimulatory Ags in serum rationalises the observed activated MAIT cell phenotype in liver. Increased serum levels of gut-derived MAIT cell stimulatory ligands in patients with impaired intestinal barrier function indicate that intrahepatic Ag-presentation may represent an important step in the development of liver disease.
Collapse
Affiliation(s)
- Martin J Lett
- Department of Biomedicine, Liver Immunology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Hema Mehta
- Peter Medawar Building for Pathogen Research and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Adrian Keogh
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Tina Jaeger
- Department of Biomedicine, Liver Immunology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Maxime Jacquet
- Department of Biomedicine, Liver Immunology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Kate Powell
- Peter Medawar Building for Pathogen Research and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marie-Anne Meier
- Department of Biomedicine, Hepatology, University Hospital Basel and University of Basel, Basel, Switzerland,Division of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Isabel Fofana
- Department of Biomedicine, Hepatology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Hassan Melhem
- Department of Biomedicine, Gastroenterology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jürg Vosbeck
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Gieri Cathomas
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Andres Heigl
- Department of Surgery, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Markus H Heim
- Department of Biomedicine, Hepatology, University Hospital Basel and University of Basel, Basel, Switzerland,Division of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Emanuel Burri
- Gastroenterology and Hepatology, University Department of Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Jan Hendrik Niess
- Division of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland,Department of Biomedicine, Gastroenterology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Otto Kollmar
- Division of Visceral Surgery, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Christoph J Zech
- Radiology and Nuclear Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, Bioinformatics Core Facility, University Hospital Basel and University of Basel, Basel, Switzerland,DBM Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Urs Duthaler
- Department of Biomedicine, Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Magdalena Filipowicz Sinnreich
- Department of Biomedicine, Liver Immunology, University Hospital Basel and University of Basel, Basel, Switzerland .,Gastroenterology and Hepatology, University Department of Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| |
Collapse
|
39
|
Björkström NK. Immunobiology of the biliary tract system. J Hepatol 2022; 77:1657-1669. [PMID: 36116989 PMCID: PMC7615184 DOI: 10.1016/j.jhep.2022.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022]
Abstract
The biliary tract is a complex tubular organ system spanning from the liver to the duodenum. It is the site of numerous acute and chronic disorders, many of unknown origin, that are often associated with cancer development and for which there are limited treatment options. Cholangiocytes with proinflammatory capacities line the lumen and specialised types of immune cells reside in close proximity. Recent technological breakthroughs now permit spatiotemporal assessments of immune cells within distinct niches and have increased our understanding of immune cell tissue residency. In this review, a comprehensive overview of emerging knowledge on the immunobiology of the biliary tract system is provided, with a particular emphasis on the role of distinct immune cells in biliary disorders.
Collapse
Affiliation(s)
- Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
40
|
Chen R, Tang R, Ma X, Gershwin ME. Immunologic Responses and the Pathophysiology of Primary Biliary Cholangitis. Clin Liver Dis 2022; 26:583-611. [PMID: 36270718 DOI: 10.1016/j.cld.2022.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease with a female predisposition and selective destruction of intrahepatic small bile ducts leading to nonsuppurative destructive cholangitis. It is characterized by seropositivity of antimitochondrial antibodies or PBC-specific antinuclear antibodies, progressive cholestasis, and typical liver histologic manifestations. Destruction of the protective bicarbonate-rich umbrella is attributed to the decreased expression of membrane transporters in biliary epithelial cells (BECs), leading to the accumulation of hydrophobic bile acids and sensitizing BECs to apoptosis. A recent X-wide association study reveals a novel risk locus on the X chromosome, which reiterates the importance of Treg cells.
Collapse
Affiliation(s)
- Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - M Eric Gershwin
- Division of Rheumatology-Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, USA.
| |
Collapse
|
41
|
Li H, Tang Y, Wang Y, Li Y, Yang Y, Liao K, Song F, Deng S, Chen Y. Single-cell sequencing resolves the landscape of immune cells and regulatory mechanisms in HIV-infected immune non-responders. Cell Death Dis 2022; 13:849. [PMID: 36195585 PMCID: PMC9532384 DOI: 10.1038/s41419-022-05225-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022]
Abstract
Immune non-responder after highly active antiretroviral therapy (HAART) is the main cause of opportunistic infections and high mortality in AIDS patients, but the mechanism underlying immune reconstitution failure is poorly understood. Here, we performed scRNA-seq, and scATAC-seq analysis of peripheral blood mononuclear cells (PBMCs) derived from immune non-responder (INR) and responder (IR) HIV-1-infected subjects. We found low expression of mucosal-associated invariant T (MAIT) cells in INRs, which exhibited transcriptional profiles associated with impaired mitochondrial function and apoptosis signaling. Single-cell assays for transposase-accessible chromatin (scATAC-seq) and flow cytometry revealed diminished mitochondrial fitness in MAIT cells from INRs, and MAIT had low expression of transcription factor A for mitochondria (TFAM) and peroxisomal proliferator-activated receptor alpha (PPARA). These findings demonstrate that restoring mitochondrial function could modulate the immune dysfunction characteristic of MAIT against bacterial co-infections in INRs subjects.
Collapse
Affiliation(s)
- Haiyu Li
- grid.507893.00000 0004 8495 7810Department of Infectious Disease, Chongqing Public Health Medical Center, 400036 Chongqing, China ,grid.9227.e0000000119573309Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714 Chongqing, China
| | - Yongyao Tang
- grid.203458.80000 0000 8653 0555School of Medical Information, Chongqing Medical University, 400016 Chongqing, China
| | - Yujing Wang
- grid.203458.80000 0000 8653 0555School of Medical Information, Chongqing Medical University, 400016 Chongqing, China
| | - Yue Li
- grid.203458.80000 0000 8653 0555Basic Medical College, Chongqing Medical University, 400016 Chongqing, China
| | - Yi Yang
- grid.203458.80000 0000 8653 0555The First Clinical College of Chongqing Medical University, Chongqing Medical University, 400016 Chongqing, China
| | - Kui Liao
- grid.452206.70000 0004 1758 417XDepartment of radiotherapy, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Fangzhou Song
- grid.203458.80000 0000 8653 0555Basic Medical College, Chongqing Medical University, 400016 Chongqing, China
| | - Shixiong Deng
- grid.203458.80000 0000 8653 0555Basic Medical College, Chongqing Medical University, 400016 Chongqing, China
| | - Yaokai Chen
- grid.507893.00000 0004 8495 7810Department of Infectious Disease, Chongqing Public Health Medical Center, 400036 Chongqing, China
| |
Collapse
|
42
|
Hoogerland JA, Staels B, Dombrowicz D. Immune-metabolic interactions in homeostasis and the progression to NASH. Trends Endocrinol Metab 2022; 33:690-709. [PMID: 35961913 DOI: 10.1016/j.tem.2022.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/16/2022]
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) has increased significantly over the past two decades. NAFLD ranges from simple steatosis (NAFL) to nonalcoholic steatohepatitis (NASH) and predisposes to fibrosis and hepatocellular carcinoma (HCC). The importance of the immune system in hepatic physiology and in the progression of NAFLD is increasingly recognized. At homeostasis, the liver participates in immune defense against pathogens and in tolerance of gut-derived microbial compounds. Hepatic immune cells also respond to metabolic stimuli and have a role in NAFLD progression to NASH. In this review, we discuss how metabolic perturbations affect immune cell phenotype and function in NAFL and NASH, and then focus on the role of immune cells in liver homeostasis and in the development of NASH.
Collapse
Affiliation(s)
- Joanne A Hoogerland
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Bart Staels
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - David Dombrowicz
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France.
| |
Collapse
|
43
|
Moreira MDL, Borges-Fernandes LO, Pascoal-Xavier MA, Ribeiro ÁL, Pereira VHS, Pediongco T, Araújo MSDS, Teixeira-Carvalho A, de Carvalho AL, Mourão MVA, Campos FA, Borges M, Carneiro M, Chen Z, Saunders E, McConville M, Tsuji M, McCluskey J, Martins-Filho OA, Eckle SBG, Coelho-dos-Reis JGA, Peruhype-Magalhães V. The role of mucosal-associated invariant T cells in visceral leishmaniasis. Front Immunol 2022; 13:926446. [PMID: 36189274 PMCID: PMC9521739 DOI: 10.3389/fimmu.2022.926446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are restricted by MR1 and are known to protect against bacterial and viral infections. Our understanding of the role of MAIT cells in parasitic infections, such as visceral leishmaniasis (VL) caused by protozoan parasites of Leishmania donovani, is limited. This study showed that in response to L. infantum, human peripheral blood MAIT cells from children with leishmaniasis produced TNF and IFN-γ in an MR1-dependent manner. The overall frequency of MAIT cells was inversely correlated with alanine aminotransferase levels, a specific marker of liver damage strongly associated with severe hepatic involvement in VL. In addition, there was a positive correlation between total protein levels and the frequency of IL-17A+ CD8+ MAIT cells, whereby reduced total protein levels are a marker of liver and kidney damage. Furthermore, the frequencies of IFN-γ+ and IL-10+ MAIT cells were inversely correlated with hemoglobin levels, a marker of severe anemia. In asymptomatic individuals and VL patients after treatment, MAIT cells also produced IL-17A, a cytokine signature associated with resistance to visceral leishmaniasis, suggesting that MAIT cells play important role in protecting against VL. In summary, these results broaden our understanding of MAIT-cell immunity to include protection against parasitic infections, with implications for MAIT-cell-based therapeutics and vaccines. At last, this study paves the way for the investigation of putative MAIT cell antigens that could exist in the context of Leishmania infection.
Collapse
Affiliation(s)
- Marcela de Lima Moreira
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Marcelo Antônio Pascoal-Xavier
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ágata Lopes Ribeiro
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
| | | | - Troi Pediongco
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Andréa Teixeira-Carvalho
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
| | - Andrea Lucchesi de Carvalho
- João Paulo II Children’s Hospital, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Flávia Alves Campos
- João Paulo II Children’s Hospital, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marineide Borges
- João Paulo II Children’s Hospital, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariângela Carneiro
- Parasitology Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Eleanor Saunders
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Malcolm McConville
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Sidonia Barbara Guiomar Eckle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jordana Grazziela Alves Coelho-dos-Reis
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
- Department of Microbiology, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- *Correspondence: Vanessa Peruhype-Magalhães, ; ; Jordana Grazziela Alves Coelho-dos-Reis, ;
| | - Vanessa Peruhype-Magalhães
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
- *Correspondence: Vanessa Peruhype-Magalhães, ; ; Jordana Grazziela Alves Coelho-dos-Reis, ;
| |
Collapse
|
44
|
Mulinacci G, Palermo A, Gerussi A, Asselta R, Gershwin ME, Invernizzi P. New insights on the role of human leukocyte antigen complex in primary biliary cholangitis. Front Immunol 2022; 13:975115. [PMID: 36119102 PMCID: PMC9471323 DOI: 10.3389/fimmu.2022.975115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/11/2022] [Indexed: 01/04/2023] Open
Abstract
Primary Biliary Cholangitis (PBC) is a rare autoimmune cholangiopathy. Genetic studies have shown that the strongest statistical association with PBC has been mapped in the human leukocyte antigen (HLA) locus, a highly polymorphic area that mostly contribute to the genetic variance of the disease. Furthermore, PBC presents high variability throughout different population groups, which may explain the different geoepidemiology of the disease. A major role in defining HLA genetic contribution has been given by genome-wide association studies (GWAS) studies; more recently, new technologies have been developed to allow a deeper understanding. The study of the altered peptides transcribed by genetic alterations also allowed the development of novel therapeutic strategies in the context of immunotolerance. This review summarizes what is known about the immunogenetics of PBC with a focus on the HLA locus, the different distribution of HLA alleles worldwide, and how HLA modifications are associated with the pathogenesis of PBC. Novel therapeutic strategies are also outlined.
Collapse
Affiliation(s)
- Giacomo Mulinacci
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Andrea Palermo
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Merrill Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
- *Correspondence: Pietro Invernizzi,
| |
Collapse
|
45
|
Cheng TC, Xue H, Li H, Liu YC, Tian LJ, Bian ZL, Chen FS. MAIT cells predict long-term prognosis in liver failure patients. Medicine (Baltimore) 2022; 101:e29809. [PMID: 36042623 PMCID: PMC9410595 DOI: 10.1097/md.0000000000029809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Liver failure (LF) is a life-threatening clinical syndrome characterized by intense systemic inflammation and organ failure(s), leading to a high mortality rate. The pathogenesis of LF is multifactorial, immune response, and gut bacterial translocation are thought to be major contributing factors. Mucosal-associated invariant T (MAIT) cells play a critical role in immune response and gut bacterial translocation. We aimed to investigate changes of the MAIT cell ratio in patients with LF and to explore the predictive value for long-term prognosis in patients with LF. MATERIAL AND METHOD We recruited 75 patients with LF from Nantong Third People's Hospital, isolated peripheral blood mononuclear cells, and detected the proportion of circulating MAIT cells by flow cytometry. Statistical analyses were performed using the GraphPad Prism software. RESULTS Our data showed that the proportion of MAIT cells alterations was independent of the cause of viral infection in patients with LF. Kaplan-Meier survival analysis showed that LF patients with low level of MAIT cells had poor long-term prognosis. The area under the receiver operating characteristic curve of the MAIT cell proportion was larger than that of the Model for End-Stage Liver Disease (MELD) score. More importantly, the combination of MAIT cell proportion and MELD score had a better effect in predicting long-term prognosis of LF patients than any single index (AUC = 0.91, 95% CI:0.84-0.97), and multivariate logistic regression analysis indicated that the circulating MAIT cell proportion was an independent risk factor for LF. CONCLUSION The proportion of MAIT cells in PBMC is an outstanding predictor for the long-term prognosis in patients with LF.
Collapse
Affiliation(s)
- Tiao-Chun Cheng
- Medical School of Nantong University, Nantong 226006, Jiangsu Province, China
| | - Hong Xue
- Department of Liver Diseases, Nantong Third People’s Hospital, Nantong University, Nantong 226006, Jiangsu Province, China
| | - Han Li
- Medical School of Nantong University, Nantong 226006, Jiangsu Province, China
| | - Yi-Cun Liu
- Medical School of Nantong University, Nantong 226006, Jiangsu Province, China
| | - Li-Jun Tian
- Department of Critical Care Medicine, Nantong Third People’s Hospital, Nantong University, Nantong 226006, Jiangsu Province, China
| | - Zhao-Lian Bian
- Department of Gastroenterology and Hepatology, Nantong Third People’s Hospital, Nantong University, Nantong 226006, Jiangsu Province, China
- *Correspondence: Zhao-Lian Bian, Department of Gastroenterology and Hepatology, Nantong Third People’s Hospital, Nantong University, 60 Middle Qingnian Road, Nantong 226006, Jiangsu Province, China (e-mail: )
| | - Feng-Song Chen
- Department of Gastroenterology, Haimen People’s Hospital, Nantong 226100, Jiangsu Province, China
- *Correspondence: Zhao-Lian Bian, Department of Gastroenterology and Hepatology, Nantong Third People’s Hospital, Nantong University, 60 Middle Qingnian Road, Nantong 226006, Jiangsu Province, China (e-mail: )
| |
Collapse
|
46
|
Jensen O, Trivedi S, Li K, Aubé J, Hale JS, Ryan ET, Leung DT. Use of a MAIT-Activating Ligand, 5-OP-RU, as a Mucosal Adjuvant in a Murine Model of Vibrio cholerae O1 Vaccination. Pathog Immun 2022; 7:122-144. [PMID: 36072570 PMCID: PMC9438945 DOI: 10.20411/pai.v7i1.525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Mucosal-associated invariant T (MAIT) cells are innate-like T cells enriched in the mucosa with capacity for B-cell help. We hypothesize that targeting MAIT cells, using a MAIT-activating ligand as an adjuvant, could improve mucosal vaccine responses to bacterial pathogens such as Vibrio cholerae. Methods We utilized murine models of V. cholerae vaccination to test the adjuvant potential of the MAIT-activating ligand, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU). We measured V. cholerae-specific antibody and antibody-secreting cell responses and used flow cytometry to examine MAIT-cell and B-cell phenotype, in blood, bronchoalveolar lavage fluid (BALF), and mucosal tissues, following intranasal vaccination with live V. cholerae O1 or a V. cholerae O1 polysaccharide conjugate vaccine. Results We report significant expansion of MAIT cells in the lungs (P < 0.001) and BALF (P < 0.001) of 5-OP-RU treated mice, and higher mucosal (BALF, P = 0.045) but not systemic (serum, P = 0.21) V. cholerae O-specific-polysaccharide IgG responses in our conjugate vaccine model when adjuvanted with low-dose 5-OP-RU. In contrast, despite significant MAIT cell expansion, no significant differences in V. cholerae-specific humoral responses were found in our live V. cholerae vaccination model. Conclusions Using a murine model, we demonstrate the potential, as well as the limitations, of targeting MAIT cells to improve antibody responses to mucosal cholera vaccines. Our study highlights the need for future research optimizing MAIT-cell targeting for improving mucosal vaccines.
Collapse
Affiliation(s)
- Owen Jensen
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Shubhanshi Trivedi
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - J. Scott Hale
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Edward T. Ryan
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Immunology and Infectious diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Daniel T. Leung
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
47
|
Montanari NR, Ramírez R, Aggarwal A, van Buuren N, Doukas M, Moon C, Turner S, Diehl L, Li L, Debes JD, Feierbach B, Boonstra A. Multi-parametric analysis of human livers reveals variation in intrahepatic inflammation across phases of chronic hepatitis B infection. J Hepatol 2022; 77:332-343. [PMID: 35218813 DOI: 10.1016/j.jhep.2022.02.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Chronic HBV is clinically categorized into 4 phases by a combination of serum HBV DNA levels, HBeAg status and alanine aminotransferase (ALT): immunotolerant (IT), immune-active (IA), inactive carrier (IC) and HBeAg-negative hepatitis (ENEG). Immune and virological measurements in the blood have proven useful but are insufficient to explain the interrelation between the immune system and the virus since immune dynamics differ in the blood and liver. Furthermore, the inflammatory response in the liver and parenchymal cells cannot be fully captured in blood. METHODS Immunological composition and transcriptional profiles of core needle liver-biopsies in chronic HBV phases were compared to those of healthy controls by multiplex immunofluorescence and RNA-sequencing (n = 37 and 78, respectively) analyses. RESULTS Irrespective of the phase-specific serological profiles, increased immune-gene expression and frequency was observed in chronic HBV compared to healthy livers. Greater transcriptomic deregulation was seen in IA and ENEG (172 vs. 243 DEGs) than in IT and IC (13 vs. 35 DEGs) livers. Interferon-stimulated genes, immune-activation and exhaustion genes (ICOS, CTLA4, PDCD1) together with chemokine genes (CXCL10, CXCL9) were significantly induced in IA and ENEG livers. Moreover, distinct immune profiles associated with ALT elevation and a more accentuated immune-exhaustion profile (CTLA4, TOX, SLAMF6, FOXP3) were observed in ENEG, which set it apart from the IA phase (LGALS9, PDCD1). Interestingly, all HBV phases showed downregulation of metabolic pathways vs. healthy livers (fatty and bile acid metabolism). Finally, increased leukocyte infiltrate correlated with serum ALT, but not with HBV DNA or viral proteins. CONCLUSION Our comprehensive multi-parametric analysis of human livers revealed distinct inflammatory profiles and pronounced differences in intrahepatic gene profiles across all chronic HBV phases in comparison to healthy liver. LAY SUMMARY Immunological studies on chronic HBV remain largely restricted to assessment of peripheral responses due to the limited access to the site of infection, the liver. In this study, we comprehensively analyzed livers from a well-defined cohort of patients with chronic HBV and uninfected controls with state-of-the-art techniques, and evaluated the differences in gene expression profiles and inflammation characteristics across distinct disease phases in patients with chronic HBV.
Collapse
Affiliation(s)
- Noe Rico Montanari
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | - Michael Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | - Li Li
- Gilead Sciences, Foster City, CA, USA
| | - Jose D Debes
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Medicine, Division of Gastroenterology & Division of Infectious Diseases, University of Minnesota, Minneapolis, MN, USA
| | | | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
48
|
Intestinal homeostasis in autoimmune liver diseases. Chin Med J (Engl) 2022; 135:1642-1652. [PMID: 36193976 PMCID: PMC9509077 DOI: 10.1097/cm9.0000000000002291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Intestinal homeostasis depends on complex interactions between the gut microbiota and host immune system. Emerging evidence indicates that the intestinal microbiota is a key player in autoimmune liver disease (AILD). Autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and IgG4-related sclerosing cholangitis have been linked to gut dysbiosis. Diverse mechanisms contribute to disturbances in intestinal homeostasis in AILD. Bacterial translocation and molecular mimicry can lead to hepatic inflammation and immune activation. Additionally, the gut and liver are continuously exposed to microbial metabolic products, mediating variable effects on liver immune pathologies. Importantly, microbiota-specific or associated immune responses, either hepatic or systemic, are abnormal in AILD. Comprehensive knowledge about host-microbiota interactions, included but not limited to this review, facilitates novel clinical practice from a microbiome-based perspective. However, many challenges and controversies remain in the microbiota field of AILD, and there is an urgent need for future investigations.
Collapse
|
49
|
Park JW, Kim JH, Kim SE, Jung JH, Jang MK, Park SH, Lee MS, Kim HS, Suk KT, Kim DJ. Primary Biliary Cholangitis and Primary Sclerosing Cholangitis: Current Knowledge of Pathogenesis and Therapeutics. Biomedicines 2022; 10:biomedicines10061288. [PMID: 35740310 PMCID: PMC9220082 DOI: 10.3390/biomedicines10061288] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023] Open
Abstract
Cholangiopathies encompass various biliary diseases affecting the biliary epithelium, resulting in cholestasis, inflammation, fibrosis, and ultimately liver cirrhosis. Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are the most important progressive cholangiopathies in adults. Much research has broadened the scope of disease biology to genetic risk, epigenetic changes, dysregulated mucosal immunity, altered biliary epithelial cell function, and dysbiosis, all of which interact and arise in the context of ill-defined environmental triggers. An in-depth understanding of the molecular pathogenesis of these cholestatic diseases will help clinicians better prevent and treat diseases. In this review, we focus on the main underlying mechanisms of disease initiation and progression, and novel targeted therapeutics beyond currently approved treatments.
Collapse
Affiliation(s)
- Ji-Won Park
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Jung-Hee Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Sung-Eun Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Jang Han Jung
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Myoung-Kuk Jang
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Sang-Hoon Park
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
| | - Myung-Seok Lee
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
| | - Hyoung-Su Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Ki Tae Suk
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Dong Joon Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
- Correspondence: ; Tel.: +82-33-240-5646
| |
Collapse
|
50
|
Mehta H, Lett MJ, Klenerman P, Filipowicz Sinnreich M. MAIT cells in liver inflammation and fibrosis. Semin Immunopathol 2022; 44:429-444. [PMID: 35641678 PMCID: PMC9256577 DOI: 10.1007/s00281-022-00949-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/06/2022] [Indexed: 02/07/2023]
Abstract
Mucosal-associated invariant T cells or MAIT cells are an abundant cell type in humans and especially so in the liver. MAIT cells are a subset of T lymphocytes that sit at a bridge between innate and adaptive immunity, so-called innate-like or "unconventional" T cells. The specificity of their antigen receptor (T cell receptor or TCR) is for the conserved major histocompatibility complex (MHC)-related molecule MR1, which presents a modified bacterial metabolite from the vitamin B2 biosynthesis pathway - this allows them to respond in the presence of many bacteria or yeast. MAIT cells also possess an array of cytokine receptors, which allows triggering independently of the TCR. The combination of such signals drives their functionality - this means they can respond to a range of stimuli and likely play a role not only in infection or inflammation, but also under homeostatic conditions.In this review, we will look at the question of what MAIT cells are doing in the normal liver and how they behave in the setting of disease. These questions are of relevance because MAIT cells are such a distinctive cell type enriched in the liver under normal conditions, and their modulation could be of therapeutic benefit. The recent discovery that they appear to be involved in liver fibrosis is particularly of interest in this context.
Collapse
Affiliation(s)
- Hema Mehta
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, South Parks Rd, Oxford, OX1 3SY, UK
| | - Martin Joseph Lett
- Liver Immunology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, South Parks Rd, Oxford, OX1 3SY, UK.
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Magdalena Filipowicz Sinnreich
- Liver Immunology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, Basel University Medical Clinic, Cantonal Hospital Baselland, Liestal, Switzerland
| |
Collapse
|