1
|
Chen S, Yao C, Tian N, Zhang C, Chen Y, Wang X, Jiang Y, Zhang T, Zeng T, Song Y. The interplay between persistent pathogen infections with tumor microenvironment and immunotherapy in cancer. Cancer Med 2024; 13:e70154. [PMID: 39240588 PMCID: PMC11378724 DOI: 10.1002/cam4.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Chronic infections by pathogenic microorganisms play a significant role in cancer development, disrupting the body's immune system and microenvironment. This interference impairs the body's ability to eliminate these microorganisms promptly, allowing them to persist by evading immune defenses. AIMS This study aimed to explore how chronic pathogenic infections influence the immune microenvironment, impacting tumorigenesis, cancer progression, and treatment strategies. Additionally, it seeks to investigate the effects of these infections on specific immune checkpoints and identify potential targets for immunotherapy. METHODS We conducted searches, readings, and detailed analyses of key terms in databases like PubMed and Web of Science to evaluate the impact of chronic infections by pathogenic microorganisms on the immune microenvironment. RESULTS Our analysis demonstrates a significant association between persistent chronic infections by pathogenic microorganisms and tumorigenesis. Notable impacts on the immune microenvironment include changes in immune cell function and the regulation of immune checkpoints, offering insights into potential targets for cancer immunotherapy. DISCUSSION This study highlights the complex relationship between chronic infections and cancer development, presenting new opportunities for cancer immunotherapy by understanding their effects on the immune microenvironment. The influence of these infections on immune checkpoints emphasizes the crucial role of the immune system in cancer treatment. CONCLUSION Chronic infections by pathogenic microorganisms greatly affect the immune microenvironment, tumorigenesis, and cancer treatment. Unraveling the underlying mechanisms can unveil potential targets for immunotherapy, improving our comprehension of the immune response to cancer and potentially leading to more effective cancer treatments in the future.
Collapse
Affiliation(s)
- Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Caihong Yao
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Na Tian
- Anesthesiology Department, Qingdao Eighth People's Hospital, Qingdao, People's Republic of China
| | - Chunying Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Yuemei Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Xuting Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Yue Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Tonghao Zhang
- Department of Statistics, University of Virginia, Charlottesville, Virginia, USA
| | - Tingting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Yali Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Wang J, Lu H, Li Q. Hepatic macrophage niche: a bridge between HBV-mediated metabolic changes with intrahepatic inflammation. Front Immunol 2024; 15:1414594. [PMID: 39091506 PMCID: PMC11291371 DOI: 10.3389/fimmu.2024.1414594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Hepatitis B Virus (HBV) is a stealthy and insidious pathogen capable of inducing chronic necro-inflammatory liver disease and hepatocellular carcinoma (HCC), resulting in over one million deaths worldwide per year. The traditional understanding of Chronic Hepatitis B (CHB) progression has focused on the complex interplay among ongoing virus replication, aberrant immune responses, and liver pathogenesis. However, the dynamic progression and crucial factors involved in the transition from HBV infection to immune activation and intrahepatic inflammation remain elusive. Recent insights have illuminated HBV's exploitation of the sodium taurocholate co-transporting polypeptide (NTCP) and manipulation of the cholesterol transport system shared between macrophages and hepatocytes for viral entry. These discoveries deepen our understanding of HBV as a virus that hijacks hepatocyte metabolism. Moreover, hepatic niche macrophages exhibit significant phenotypic and functional diversity, zonal characteristics, and play essential roles, either in maintaining liver homeostasis or contributing to the pathogenesis of chronic liver diseases. Therefore, we underscore recent revelations concerning the importance of hepatic niche macrophages in the context of viral hepatitis. This review particularly emphasizes the significant role of HBV-induced metabolic changes in hepatic macrophages as a key factor in the transition from viral infection to immune activation, ultimately culminating in liver inflammation. These metabolic alterations in hepatic macrophages offer promising targets for therapeutic interventions and serve as valuable early warning indicators, shedding light on the disease progression.
Collapse
Affiliation(s)
- Jun Wang
- The Third People’s Hospital of Shenzhen (National Clinical Research Center for Infectious Diseases) and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
- Clinical Research Center, The Fifth People’s Hospital of Wuxi, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongzhou Lu
- The Third People’s Hospital of Shenzhen (National Clinical Research Center for Infectious Diseases) and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qian Li
- The Third People’s Hospital of Shenzhen (National Clinical Research Center for Infectious Diseases) and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Zong Q, Zhang H, Liu F, Li J, Liu Q, Duan Z, Duan W, Ruan M, Zhang J, Liu Y, Zhou Q, Wang Q. Activation of the cGAS-STING pathway by viral dsDNA leading to M1 polarization of macrophages mediates antiviral activity against hepatitis B virus. Immunobiology 2024; 229:152810. [PMID: 38772101 DOI: 10.1016/j.imbio.2024.152810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND AND AIMS Activation of the cGAS-STING pathway induces the production of type I interferons, initiating the antiviral immune response, which contributes to the clearance of pathogens. Previous studies have shown that STING agonists promote hepatitis B virus (HBV) clearance; however, few studies have investigated the effect of activating the cGAS-STING pathway in macrophages on HBV. METHODS The polarization status of HBV particle-stimulated RAW264.7 macrophages was analyzed. After stimulation with HBV particles, the analysis focused on determining whether the DNA sensors in RAW264.7 macrophages recognized the viral double-stranded DNA (dsDNA) and evaluating the activation of the cGAS-STING pathway. Coculture of mouse macrophages and hepatocytes harboring HBV was used to study the antiviral activity of HBV-stimulated RAW264.7 macrophages. RESULTS After stimulation with HBV particles, HBV relaxed circular DNA (rcDNA) was detected in RAW264.7 macrophages, and the protein expression of phospho-STING, phospho-TBK1, and phospho-IRF3 in the STING pathway was increased, as shown by Western blot analysis, which revealed that M1 polarization of macrophages was caused by increased expression of CD86. RT-PCR analyses revealed elevated expression of M1 macrophage polarization-associated cytokines such as TNFα, IL-1β, iNOS, and IFNα/β. In the coculture experiment, both HBsAg and HBeAg expression levels were significantly decreased in AML12-HBV1.3 cells cocultured with the supernatants of HBV-stimulated RAW264.7 macrophages. CONCLUSION The results suggest that macrophages can endocytose HBV particles. Additionally, viral dsDNA can be recognized by DNA pattern recognition receptors, which in turn activate the cGAS-STING pathway, promoting the M1 polarization of macrophages, while no significant M2 polarization is observed. Macrophages stimulated with HBV particles exhibit enhanced antiviral activity against HBV.
Collapse
Affiliation(s)
- Qiyin Zong
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hao Zhang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Futing Liu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianfei Li
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Liu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhi Duan
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wanlu Duan
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengqi Ruan
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingjing Zhang
- Department of Geriatric Cardiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Liu
- Department of Microbiology, School of Basic Medical, Anhui Medical University, Hefei, China
| | - Qiang Zhou
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Qin Wang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Xu L, Huang C, Zheng X, Gao H, Zhang S, Zhu M, Dai X, Wang G, Wang J, Chen H, Zhu H, Chen Z. Elevated CD169 expressing monocyte/macrophage promotes systemic inflammation and disease progression in cirrhosis. Clin Exp Med 2024; 24:45. [PMID: 38413535 PMCID: PMC10899294 DOI: 10.1007/s10238-024-01305-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/27/2024] [Indexed: 02/29/2024]
Abstract
Systemic inflammation is related to disease progression and prognosis in patients with advanced cirrhosis. However, the mechanisms underlying the initiation of inflammation are still not fully understood. The role of CD169+ monocyte/macrophage in cirrhotic systemic inflammation was undetected. Flow cytometry analysis was used to detect the percentage and phenotypes of CD169+ monocytes as well as their proinflammatory function in patient-derived cirrhotic tissue and blood. Transcriptome differences between CD169+ and CD169- monocytes were also compared. Additionally, a mouse model with specific depletion of CD169+ monocytes/macrophages was utilized to define their role in liver injury and fibrosis. We observed increased CD169 expression in monocytes from cirrhotic patients, which was correlated with inflammatory cytokine production and disease progression. CD169+ monocytes simultaneously highly expressed M1- and M2-like markers and presented immune-activated profiles. We also proved that CD169+ monocytes robustly prevented neutrophil apoptosis. Depletion of CD169+ monocytes/macrophages significantly inhibited inflammation and liver necrosis in acute liver injury, but the spontaneous fibrin resolution after repeated liver injury was impaired. Our results indicate that CD169 defines a subset of inflammation-associated monocyte that correlates with disease development in patients with cirrhosis. This provides a possible therapeutic target for alleviating inflammation and improving survival in cirrhosis.
Collapse
Affiliation(s)
- Lichen Xu
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Chunhong Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiaoping Zheng
- Department of Pathology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, People's Republic of China
| | - Hainv Gao
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, People's Republic of China
| | - Sainan Zhang
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, People's Republic of China
| | - Mengfei Zhu
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, People's Republic of China
| | - Xiahong Dai
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, People's Republic of China
| | - Gang Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People's Republic of China
| | - Jie Wang
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Haolu Chen
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Zhou D, Li Y. Gut microbiota and tumor-associated macrophages: potential in tumor diagnosis and treatment. Gut Microbes 2023; 15:2276314. [PMID: 37943609 PMCID: PMC10653702 DOI: 10.1080/19490976.2023.2276314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Avoiding immune destruction and polymorphic microbiomes are two key hallmarks of cancer. The tumor microenvironment (TME) is essential for the development of solid tumors, and the function of tumor-associated macrophages (TAMs) in the TME is closely linked to tumor prognosis. Therefore, research on TAMs could improve the progression and control of certain tumor patients. Additionally, the intestinal flora plays a crucial role in metabolizing substances and maintaining a symbiotic relationship with the host through a complex network of interactions. Recent experimental and clinical studies have suggested a potential link between gut microbiome and TME, particularly in regulating TAMs. Understanding this association could improve the efficacy of tumor immunotherapy. This review highlights the regulatory role of intestinal flora on TAMs, with a focus on gut microbiota and their metabolites. The implications of this association for tumor diagnosis and treatment are also discussed, providing a promising avenue for future clinical treatment strategies.
Collapse
Affiliation(s)
- Dongqin Zhou
- The Second Affliated Hospital & Yuying Children's Hospital / The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yongsheng Li
- The Second Affliated Hospital & Yuying Children's Hospital / The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
6
|
Bertoletti A, Le Bert N. Quest for immunological biomarkers in the management of CHB patients. Gut 2023; 72:2012-2014. [PMID: 36922017 DOI: 10.1136/gutjnl-2023-329437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Affiliation(s)
- Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| | - Nina Le Bert
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
7
|
Joshi SS, Sadler M, Patel NH, Osiowy C, Fonseca K, Coffin CS. Systemic cytokine and viral antigen-specific responses in hepatitis D virus RNA positive versus HDV RNA negative patients. Front Med (Lausanne) 2023; 10:1125139. [PMID: 37877022 PMCID: PMC10591067 DOI: 10.3389/fmed.2023.1125139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Background Hepatitis B virus (HBV)/Hepatitis D Virus (HDV) co-infection increases the risk of severe liver disease compared to HBV mono-infection. Adaptive immune responses to HDV are weakly detectable, and the involvement of innate immunity in the progression of HDV-related liver fibrosis is suggested. We hypothesize that an overall innate immune activation in HBV/HDV co-infection plays a role in liver disease progression and also impacts virus specific T cell response. Methods Sixteen HBV/HDV-co-infected-patients (median age 42y/7F/6 Asian/4 White/6 Black/15 HBeAg-) and 8 HBV monoinfected-patients (median age 39y/4F/4 Asian/3 Black/1 White/HBeAg-) with median follow-up of 5 years were enrolled. Liver fibrosis was assessed by liver stiffness measurement (LSM, FibroScan®). Proliferation of CD3 + CD4+ T cells in response to viral antigens using CFSE assays and cytokine secreting monocytes was analyzed by flow cytometry. Results Of 16 HBV/HDV, 11 were HDV-RNA+ (HBV-DNA 0-1,040 IU/mL), 5/11 Interferon (IFN) + Nucleos/tide Analog (NA), 3/11 NA monotherapy, median ALT 77 U/L at the time of sample collection, median LSM of 9.8. In 5 HDV RNA-, median HBV DNA 65 IU/mL, 4/5 prior IFN and/or NA, ALT 31 U/L, and median LSM 8.5 kPa. In 8 HBV controls, median HBV-DNA, ALT, LSM was 69 IU/mL, 33 U/L,5 kPa, respectively. PBMC stimulation with HBV core antigen (HBcAg) and HDV antigen (HDAg) showed weaker CD3 + CD4 + T-cell proliferation in HDV-RNA+ vs. HDV RNA- and HBV-mono-infected patients (p < 0.05). In HDV-RNA+ patients, a correlation between ALT and TNF-α (r = 0.76, p = 0.008), higher IL-10 levels and increased proportion of CD14 + TNF-α+ cells were found. Conclusion In summary, during HBV/HDV coinfection, HDV RNA+ patients had weaker HBV and HDV specific responses, associated with increased TNF-α + monocytes irrespective of IFN treatment.
Collapse
Affiliation(s)
- Shivali S. Joshi
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthew Sadler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nishi H. Patel
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carla Osiowy
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Kevin Fonseca
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carla S. Coffin
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Dalir Abdolahinia E, Han X. The Three-Dimensional In Vitro Cell Culture Models in the Study of Oral Cancer Immune Microenvironment. Cancers (Basel) 2023; 15:4266. [PMID: 37686542 PMCID: PMC10487272 DOI: 10.3390/cancers15174266] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The onset and progression of oral cancer are accompanied by a dynamic interaction with the host immune system, and the immune cells within the tumor microenvironment play a pivotal role in the development of the tumor. By exploring the cellular immunity of oral cancer, we can gain insight into the contribution of both tumor cells and immune cells to tumorigenesis. This understanding is crucial for developing effective immunotherapeutic strategies to combat oral cancer. Studies of cancer immunology present unique challenges in terms of modeling due to the extraordinary complexity of the immune system. With its multitude of cellular components, each with distinct subtypes and various activation states, the immune system interacts with cancer cells and other components of the tumor, ultimately shaping the course of the disease. Conventional two-dimensional (2D) culture methods fall short of capturing these intricate cellular interactions. Mouse models enable us to learn about tumor biology in complicated and dynamic physiological systems but have limitations as the murine immune system differs significantly from that of humans. In light of these challenges, three-dimensional (3D) culture systems offer an alternative approach to studying cancer immunology and filling the existing gaps in available models. These 3D culture models provide a means to investigate complex cellular interactions that are difficult to replicate in 2D cultures. The direct study of the interaction between immune cells and cancer cells of human origin offers a more relevant and representative platform compared to mouse models, enabling advancements in our understanding of cancer immunology. This review explores commonly used 3D culture models and highlights their significant contributions to expanding our knowledge of cancer immunology. By harnessing the power of 3D culture systems, we can unlock new insights that pave the way for improved strategies in the battle against oral cancer.
Collapse
Affiliation(s)
| | - Xiaozhe Han
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
9
|
Yong KSM, Anderson DE, Zheng AKE, Liu M, Tan SY, Tan WWS, Chen Q, Wang LF. Comparison of infection and human immune responses of two SARS-CoV-2 strains in a humanized hACE2 NIKO mouse model. Sci Rep 2023; 13:12484. [PMID: 37528224 PMCID: PMC10394059 DOI: 10.1038/s41598-023-39628-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023] Open
Abstract
The COVID-19 pandemic has sickened millions, cost lives and has devastated the global economy. Various animal models for experimental infection with SARS-CoV-2 have played a key role in many aspects of COVID-19 research. Here, we describe a humanized hACE2 (adenovirus expressing hACE2) NOD-SCID IL2Rγ-/- (NIKO) mouse model and compare infection with ancestral and mutant (SARS-CoV-2-∆382) strains of SARS-CoV-2. Immune cell infiltration, inflammation, lung damage and pro-inflammatory cytokines and chemokines was observed in humanized hACE2 NIKO mice. Humanized hACE2 NIKO mice infected with the ancestral and mutant SARS-CoV-2 strain had lung inflammation and production of pro-inflammatory cytokines and chemokines. This model can aid in examining the pathological basis of SARS-CoV-2 infection in a human immune environment and evaluation of therapeutic interventions.
Collapse
Affiliation(s)
- Kylie Su Mei Yong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Danielle E Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Adrian Kang Eng Zheng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Min Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Wilson Wei Sheng Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Singhealth Duke-NUS Global Health Institute, Singapore, Singapore.
| |
Collapse
|
10
|
Clain JA, Rabezanahary H, Racine G, Boutrais S, Soundaramourty C, Joly Beauparlant C, Jenabian MA, Droit A, Ancuta P, Zghidi-Abouzid O, Estaquier J. Early ART reduces viral seeding and innate immunity in liver and lungs of SIV-infected macaques. JCI Insight 2023; 8:e167856. [PMID: 37485876 PMCID: PMC10443800 DOI: 10.1172/jci.insight.167856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Identifying immune cells and anatomical tissues that contribute to the establishment of viral reservoirs is of central importance in HIV-1 cure research. Herein, we used rhesus macaques (RMs) infected with SIVmac251 to analyze viral seeding in the liver and lungs of either untreated or early antiretroviral therapy-treated (ART-treated) RMs. Consistent with viral replication and sensing, transcriptomic analyses showed higher levels of inflammation, pyroptosis, and chemokine genes as well as of interferon-stimulating gene (ISG) transcripts, in the absence of ART. Our results highlighted the infiltration of monocyte-derived macrophages (HLA-DR+CD11b+CD14+CD16+) in inflamed liver and lung tissues associated with the expression of CD183 and CX3CR1 but also with markers of tissue-resident macrophages (CD206+ and LYVE+). Sorting of myeloid cell subsets demonstrated that CD14+CD206-, CD14+CD206+, and CD14-CD206+ cell populations were infected, in the liver and lungs, in SIVmac251-infected RMs. Of importance, early ART drastically reduced viral seeding consistent with the absence of ISG detection but also of genes related to inflammation and tissue damage. Viral DNA was only detected in CD206+HLA-DR+CD11b+ cells in ART-treated RMs. The observation of pulmonary and hepatic viral rebound after ART interruption reinforces the importance of early ART implementation to limit viral seeding and inflammatory reactions.
Collapse
Affiliation(s)
- Julien A. Clain
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | | | - Gina Racine
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | - Steven Boutrais
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | | | | | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, University of Quebec in Montreal, Montreal, Quebec, Canada
| | - Arnaud Droit
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | - Petronela Ancuta
- Research Center of the University of Montreal Hospital Center, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology, and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | - Jérôme Estaquier
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
- INSERM U1124, University of Paris, Paris, France
| |
Collapse
|
11
|
Huang L, Wang F, Wang X, Su C, Wu S, Yang C, Luo M, Zhang J, Fu L. M2-like macrophage-derived exosomes facilitate metastasis in non-small-cell lung cancer by delivering integrin αVβ3. MedComm (Beijing) 2023; 4:e191. [PMID: 36582304 PMCID: PMC9789322 DOI: 10.1002/mco2.191] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 12/25/2022] Open
Abstract
Metastasis is the most prevalent cause of cancer deaths, and immunological components of the tumor microenvironment, especially tumor-associated macrophages (TAMs), play a vital role in cancer metastasis. However, the underlying mechanisms of TAMs on non-small-cell lung cancer (NSCLC) metastasis remain largely unexplored. Herein, we demonstrated that M2-like TAMs facilitate the migration and invasion of cancer cells in vitro and in vivo through intercellular delivery of M2-like macrophage-derived exosomes (M2-exos). Importantly, we found that M2-exos had considerably higher levels of integrin (ITG) αV and β3. The impact of M2-like macrophage-mediated invasion and migration of NSCLC cells was clearly decreased when ITG αVβ3 was blocked. Mechanistically, exosomal ITG αVβ3 produced from M2-like macrophages successfully triggered the focal adhesion kinase signaling pathway in recipient cells, boosting the migratory and invasive abilities of NSCLC cells. Clinically, we found that metastatic NSCLC patients had greater ITG αV and β3 expression, which was associated with a worse prognosis. This study reveals a novel mechanism by which M2-exos significantly increased NSCLC cell migration and invasion by delivering integrin αVβ3. Exosomal ITG αVβ3 can be used as a potential prognostic marker, and blocking ITG αVβ3 could be a viable treatment option for preventing tumor metastasis.
Collapse
Affiliation(s)
- Lamei Huang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Xueping Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Chaoyue Su
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyNMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP. R. China
| | - Shaocong Wu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Chuan Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Min Luo
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyNMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| |
Collapse
|
12
|
Zhou Z, Pan X, Li L. Crosstalk between liver macrophages and gut microbiota: An important component of inflammation-associated liver diseases. Front Cell Dev Biol 2022; 10:1070208. [PMID: 36483677 PMCID: PMC9723159 DOI: 10.3389/fcell.2022.1070208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 08/30/2023] Open
Abstract
Hepatic macrophages have been recognized as primary sensors and responders in liver inflammation. By processing host or exogenous biochemical signals, including microbial components and metabolites, through the gut-liver axis, hepatic macrophages can both trigger or regulate inflammatory responses. Crosstalk between hepatic macrophages and gut microbiota is an important component of liver inflammation and related liver diseases, such as acute liver injury (ALI), alcoholic liver disease (ALD), and nonalcoholic fatty liver disease (NAFLD). This review summarizes recent advances in knowledge related to the crosstalk between hepatic macrophages and gut microbiota, including the therapeutic potential of targeting hepatic macrophages as a component of gut microecology in inflammation-associated liver diseases.
Collapse
Affiliation(s)
| | | | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Zhao H, Ye W, Guo J, Wang J, Jiao D, Xu K, Yang C, Chen S, Jamal MA, Bai Z, Wei T, Cai J, Nguyen TD, Qing Y, Cheng W, Jia B, Li H, Zhao HY, Chen Q, Wei HJ. Development of RAG2-/-IL2Rγ-/Y immune deficient FAH-knockout miniature pig. Front Immunol 2022; 13:950194. [PMID: 36032112 PMCID: PMC9400017 DOI: 10.3389/fimmu.2022.950194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Human hepatocyte transplantation for liver disease treatment have been hampered by the lack of quality human hepatocytes. Pigs with their large body size, longevity and physiological similarities with human are appropriate animal models for the in vivo expansion of human hepatocytes. Here we report on the generation of RAG2-/-IL2Rγ-/YFAH-/- (RGFKO) pigs via CRISPR/Cas9 system and somatic cell nuclear transfer. We showed that thymic and splenic development in RGFKO pigs was impaired. V(D)J recombination processes were also inactivated. Consequently, RGFKO pigs had significantly reduced numbers of porcine T, B and NK cells. Moreover, due to the loss of FAH, porcine hepatocytes continuously undergo apoptosis and consequently suffer hepatic damage. Thus, RGFKO pigs are both immune deficient and constantly suffer liver injury in the absence of NTBC supplementation. These results suggest that RGFKO pigs have the potential to be engrafted with human hepatocytes without immune rejection, thereby allowing for large scale expansion of human hepatocytes.
Collapse
Affiliation(s)
- Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Weijian Ye
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianxiong Guo
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Jiaoxiang Wang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Deling Jiao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kaixiang Xu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chang Yang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Shuhan Chen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | | | - Zhongbin Bai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Taiyun Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Jie Cai
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Tien Dat Nguyen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yubo Qing
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Wenmin Cheng
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Baoyu Jia
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Honghui Li
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- *Correspondence: Hong-Jiang Wei, ; Qingfeng Chen, ; Hong-Ye Zhao,
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Hong-Jiang Wei, ; Qingfeng Chen, ; Hong-Ye Zhao,
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Hong-Jiang Wei, ; Qingfeng Chen, ; Hong-Ye Zhao,
| |
Collapse
|
14
|
Relationship between Intestinal Microflora and Hepatocellular Cancer Based on Gut-Liver Axis Theory. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6533628. [PMID: 35965618 PMCID: PMC9359835 DOI: 10.1155/2022/6533628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/14/2022] [Accepted: 07/03/2022] [Indexed: 12/26/2022]
Abstract
The intestinal microflora is a bacterial group that lives in the human digestive tract and has a long-term interdependence with the host. Due to the close anatomical and functional relationship between the liver and the intestine, the intestinal flora affects liver metabolism via the intestinal-hepatic circulation, thereby playing an extremely important role in the pathological process of liver inflammation, chronic fibrosis, and liver cancer. In recent years, the rapid development of technologies in high-throughput sequencing and genomics has opened up possibilities for a broader and deeper understanding of the crosstalk between the intestinal flora and the occurrence and development of liver cancer. This review aims to summarize the mechanisms by which the gut microbiota changes the body's metabolism, through the gut-liver axis, thereby affecting the occurrence and development of primary liver cancer. In addition, the potential regulation of intestinal microflora in the treatment of liver cancer is discussed.
Collapse
|
15
|
Geng A, Flint E, Bernsmeier C. Plasticity of monocytes and macrophages in cirrhosis of the liver. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:937739. [PMID: 36926073 PMCID: PMC10013015 DOI: 10.3389/fnetp.2022.937739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/27/2022] [Indexed: 06/06/2023]
Abstract
Cirrhosis of the liver is a systemic condition with raising prevalence worldwide. Patients with cirrhosis are highly susceptible to develop bacterial infections leading to acute decompensation and acute-on-chronic liver failure both associated with a high morbidity and mortality and sparse therapeutic options other than transplantation. Mononuclear phagocytes play a central role in innate immune responses and represent a first line of defence against pathogens. Their function includes phagocytosis, killing of bacteria, antigen presentation, cytokine production as well as recruitment and activation of immune effector cells. Liver injury and development of cirrhosis induces activation of liver resident Kupffer cells and recruitment of monocytes to the liver. Damage- and pathogen-associated molecular patterns promote systemic inflammation which involves multiple compartments besides the liver, such as the circulation, gut, peritoneal cavity and others. The function of circulating monocytes and tissue macrophages is severely impaired and worsens along with cirrhosis progression. The underlying mechanisms are complex and incompletely understood. Recent 'omics' technologies help to transform our understanding of cellular diversity and function in health and disease. In this review we point out the current state of knowledge on phenotypical and functional changes of monocytes and macrophages during cirrhosis evolution in different compartments and their role in disease progression. We also discuss the value of potential prognostic markers for cirrhosis-associated immuneparesis, and future immunotherapeutic strategies that may reduce the need for transplantation and death.
Collapse
Affiliation(s)
- Anne Geng
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Emilio Flint
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Christine Bernsmeier
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
16
|
Zhu H, Ren F, Wang T, Jiang Z, Sun Q, Li Z. Targeted Immunoimaging of Tumor-Associated Macrophages in Orthotopic Glioblastoma by the NIR-IIb Nanoprobes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202201. [PMID: 35771091 DOI: 10.1002/smll.202202201] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Developing dynamic and highly sensitive methods for imaging M2-type tumor-associated macrophages (TAMs) is vital for monitoring the tumor progression and assessing the therapeutic efficacy. Here, the fabrication and application of rationally designed Er-based rare-earth nanoprobes for the targeted imaging of M2-type TAMs in glioblastoma (GBM) through the second near-infrared (NIR-II) fluorescence beyond 1500 nm is reported. The NIR-IIb fluorescence of Er-based rare-earth nanoparticles can be remarkably enhanced by optimizing their core-shell structures and the shell thickness, which allows for in vivo imaging under excitation by a 980 nm laser with the lowest power density (40 mW cm-2 ). These bright Er-based nanoparticles functionalized with M2pep polypeptide show notable targeting ability to M2-type macrophages, which has been well tested in both in vitro and in vivo experiments by their up-conversion (UC) fluorescence (540 nm) and down-shifting (DS) fluorescence (1525 nm), respectively. The targeting capability of these nanoprobes in vivo is also demonstrated by the overlap of immunofluorescence of M2-type TAMs and Arsenazo III staining of rare-earth ions in tumor tissue. It is envisioned that these nanoprobes can serve as a companion diagnostic tool to dynamically assess the progression and prognosis of GBM.
Collapse
Affiliation(s)
- Hongqin Zhu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Feng Ren
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Tingting Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
17
|
Wang J, Liang C, Hu Y, Xia X, Li Z, Gao H, Sheng J, Huang K, Wang S, Zhu P, Hao J, Tao F. Effects of selenium levels on placental oxidative stress and inflammation during pregnancy: a prospective cohort study. J Matern Fetal Neonatal Med 2022; 35:9956-9965. [PMID: 35659169 DOI: 10.1080/14767058.2022.2078963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Studies on the impact of Se levels in different pregnancy periods on placental function are limited. AIM This cohort study sought to investigate the levels of the trace element Se and to assess their effects on placental oxidative stress (OS) and mRNA expression of inflammatory genes during pregnancy. METHODS The study population consisted of 2519 pregnant women from the Ma'anshan birth cohort. Se levels were measured in the first and second trimesters of pregnancy and in cord blood using inductively coupled plasma-mass spectrometry (ICP-MS). Placental stress and mRNA expression of inflammatory genes were assessed using RT-PCR. RESULTS A statistically significant negative association was noted between Se levels in the second trimester of pregnancy and mRNA expression of placental HO-1(β = -0.009, p < .01), HIF1α (β = -0.005, p = .010), GRP78 (β = -0.011, p < .001), CRP (β = -.007, p = .033) and CD68 (β = -0.006, p = .019). A negative association was noted between Se levels in cord blood and mRNA expression of placental HO-1 (β = -0.007, p = .004), HIF1α (β = -0.006, p = .005) and GRP78 (β = -0.009, p = .004). We found that prenatal Se status was associated with placental stress and mRNA expression of inflammatory genes. CONCLUSION Se deficiency during pregnancy, especially in the second trimester, leads to the production of OS and an increase in inflammatory mediators, affecting the growth and development of the fetus. Monitoring of pregnant women's nutritional status is necessary to prevent nutritional imbalances and deficiencies in important micronutrients in the fetal.
Collapse
Affiliation(s)
- Jianqing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China.,The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Chunmei Liang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Yabin Hu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Xun Xia
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China.,Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhijuan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Hui Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China.,Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jie Sheng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Sufang Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Jiahu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
18
|
Corbera-Bellalta M, Alba-Rovira R, Muralidharan S, Espígol-Frigolé G, Ríos-Garcés R, Marco-Hernández J, Denuc A, Kamberovic F, Pérez-Galán P, Joseph A, D'Andrea A, Bondensgaard K, Cid MC, Paolini JF. Blocking GM-CSF receptor α with mavrilimumab reduces infiltrating cells, pro-inflammatory markers and neoangiogenesis in ex vivo cultured arteries from patients with giant cell arteritis. Ann Rheum Dis 2022; 81:524-536. [PMID: 35045965 PMCID: PMC8921590 DOI: 10.1136/annrheumdis-2021-220873] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Effective and safe therapies are needed for the treatment of patients with giant cell arteritis (GCA). Emerging as a key cytokine in inflammation, granulocyte-macrophage colony stimulating factor (GM-CSF) may play a role in promoting inflammation in GCA. OBJECTIVES To investigate expression of GM-CSF and its receptor in arterial lesions from patients with GCA. To analyse activation of GM-CSF receptor-associated signalling pathways and expression of target genes. To evaluate the effects of blocking GM-CSF receptor α with mavrilimumab in ex vivo cultured arteries from patients with GCA. METHODS Quantitative real time PCR, in situ RNA hybridisation, immunohistochemistry, immunofluorescence and confocal microscopy, immunoassay, western blot and ex vivo temporal artery culture. RESULTS GM-CSF and GM-CSF receptor α mRNA and protein were increased in GCA lesions; enhanced JAK2/STAT5A expression/phosphorylation as well as increased expression of target genes CD83 and Spi1/PU.1 were observed. Treatment of ex vivo cultured GCA arteries with mavrilimumab resulted in decreased transcripts of CD3ε, CD20, CD14 and CD16 cell markers, and reduction of infiltrating CD16 and CD3ε cells was observed by immunofluorescence. Mavrilimumab reduced expression of molecules relevant to T cell activation (human leukocyte antigen-DR [HLA-DR]) and Th1 differentiation (interferon-γ), the pro-inflammatory cytokines: interleukin 6 (IL-6), tumour necrosis factor α (TNFα) and IL-1β, as well as molecules related to vascular injury (matrix metalloprotease 9, lipid peroxidation products and inducible nitric oxide synthase [iNOS]). Mavrilimumab reduced CD34 + cells and neoangiogenesis in GCA lesions. CONCLUSION The inhibitory effects of mavrilimumab on multiple steps in the GCA pathogenesis cascade in vitro are consistent with the clinical observation of reduced GCA flares in a phase 2 trial and support its development as a therapeutic option for patients with GCA.
Collapse
Affiliation(s)
- Marc Corbera-Bellalta
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roser Alba-Rovira
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Georgina Espígol-Frigolé
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roberto Ríos-Garcés
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Javier Marco-Hernández
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Farah Kamberovic
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | | - Maria C Cid
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - John F Paolini
- Kiniksa Pharmaceuticals Corp, Lexington, Massachusetts, USA
| |
Collapse
|
19
|
Abstract
As medical and pharmacological technology advances, new and complex modalities of disease treatment that are more personalized and targeted are being developed. Often these modalities must be validated in the presence of critical components of the human biological system. Given the incongruencies between murine and human biology, as well as the human-tropism of certain drugs and pathogens, the selection of animal models that accurately recapitulate the intricacies of the human biological system becomes more salient for disease modeling and preclinical testing. Immunodeficient mice engrafted with functional human tissues (so-called humanized mice), which allow for the study of physiologically relevant disease mechanisms, have thus become an integral aspect of biomedical research. This review discusses the recent advancements and applications of humanized mouse models on human immune system and liver humanization in modeling human diseases, as well as how they can facilitate translational medicine.
Collapse
Affiliation(s)
- Weijian Ye
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| |
Collapse
|
20
|
De Muynck K, Vanderborght B, Van Vlierberghe H, Devisscher L. The Gut-Liver Axis in Chronic Liver Disease: A Macrophage Perspective. Cells 2021; 10:2959. [PMID: 34831182 PMCID: PMC8616442 DOI: 10.3390/cells10112959] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD) is a growing health concern which accounts for two million deaths per year. Obesity, alcohol overconsumption, and progressive cholestasis are commonly characterized by persistent low-grade inflammation and advancing fibrosis, which form the basis for development of end-stage liver disease complications, including hepatocellular carcinoma. CLD pathophysiology extends to the intestinal tract and is characterized by intestinal dysbiosis, bile acid dysregulation, and gut barrier disruption. In addition, macrophages are key players in CLD progression and intestinal barrier breakdown. Emerging studies are unveiling macrophage heterogeneity and driving factors of their plasticity in health and disease. To date, in-depth investigation of how gut-liver axis disruption impacts the hepatic and intestinal macrophage pool in CLD pathogenesis is scarce. In this review, we give an overview of the role of intestinal and hepatic macrophages in homeostasis and gut-liver axis disruption in progressive stages of CLD.
Collapse
Affiliation(s)
- Kevin De Muynck
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
| |
Collapse
|
21
|
Xu Q, Li T, Chen H, Kong J, Zhang L, Yin H. Design and optimisation of a small-molecule TLR2/4 antagonist for anti-tumour therapy. RSC Med Chem 2021; 12:1771-1779. [PMID: 34778778 PMCID: PMC8528216 DOI: 10.1039/d1md00175b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/19/2021] [Indexed: 11/21/2022] Open
Abstract
In anti-tumour therapy, the toll-like receptor 2/4 (TLR2/4) signalling pathway has been a double-edged sword. TLR2/4 agonists are commonly considered adjuvants for immune stimulation, whereas TLR2/4 antagonists demonstrate more feasibility for anti-tumour therapy under specific chronic inflammatory situations. In individuals with cancer retaliatory proliferation and metastasis after surgery, blocking the TLR2/4 signalling pathway may produce favourable prognosis for patients. Therefore, here, we developed a small-molecule co-inhibitor that targets the TLR2/4 signalling pathway. After high-throughput screening of a compound library containing 14 400 small molecules, followed by hit-to-lead structural optimisation, we finally obtained the compound TX-33, which has effective inhibitory properties against the TLR2/4 signalling pathways. This compound was found to significantly inhibit multiple pro-inflammatory cytokines released by RAW264.7 cells. This was followed by TX-33 demonstrating promising efficacy in subsequent anti-tumour experiments. The current results provide a novel understanding of the role of TLR2/4 in cancer and a novel strategy for anti-tumour therapy.
Collapse
Affiliation(s)
- Qun Xu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
| | - Tian Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Hekai Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
| | - Jun Kong
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Hang Yin
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University Beijing 100084 China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University Beijing 100084 China
| |
Collapse
|
22
|
Bertoletti A, Le Bert N, Qui M, Tan AT. SARS-CoV-2-specific T cells in infection and vaccination. Cell Mol Immunol 2021; 18:2307-2312. [PMID: 34471260 PMCID: PMC8408362 DOI: 10.1038/s41423-021-00743-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
During viral infections, antibodies and T cells act together to prevent pathogen spread and remove virus-infected cells. Virus-specific adaptive immunity can, however, also trigger pathological processes characterized by localized or systemic inflammatory events. The protective and/or pathological role of virus-specific T cells in SARS-CoV-2 infection has been the focus of many studies in COVID-19 patients and in vaccinated individuals. Here, we review the works that have elucidated the function of SARS-CoV-2-specific T cells in patients and in vaccinated individuals. Understanding whether SARS-CoV-2-specific T cells are more linked to protection or pathogenesis is pivotal to define future therapeutic and prophylactic strategies to manage the current pandemic.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Singapore Immunology Network, A*STAR, Singapore, Singapore.
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Martin Qui
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Anthony T Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
23
|
Mulder K, Patel AA, Kong WT, Piot C, Halitzki E, Dunsmore G, Khalilnezhad S, Irac SE, Dubuisson A, Chevrier M, Zhang XM, Tam JKC, Lim TKH, Wong RMM, Pai R, Khalil AIS, Chow PKH, Wu SZ, Al-Eryani G, Roden D, Swarbrick A, Chan JKY, Albani S, Derosa L, Zitvogel L, Sharma A, Chen J, Silvin A, Bertoletti A, Blériot C, Dutertre CA, Ginhoux F. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 2021; 54:1883-1900.e5. [PMID: 34331874 DOI: 10.1016/j.immuni.2021.07.007] [Citation(s) in RCA: 246] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/05/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Mononuclear phagocytes (MNPs) encompass dendritic cells, monocytes, and macrophages (MoMac), which exhibit antimicrobial, homeostatic, and immunoregulatory functions. We integrated 178,651 MNPs from 13 tissues across 41 datasets to generate a MNP single-cell RNA compendium (MNP-VERSE), a publicly available tool to map MNPs and define conserved gene signatures of MNP populations. Next, we generated a MoMac-focused compendium that revealed an array of specialized cell subsets widely distributed across multiple tissues. Specific pathological forms were expanded in cancer and inflammation. All neoplastic tissues contained conserved tumor-associated macrophage populations. In particular, we focused on IL4I1+CD274(PD-L1)+IDO1+ macrophages, which accumulated in the tumor periphery in a T cell-dependent manner via interferon-γ (IFN-γ) and CD40/CD40L-induced maturation from IFN-primed monocytes. IL4I1_Macs exhibited immunosuppressive characteristics through tryptophan degradation and promoted the entry of regulatory T cell into tumors. This integrated analysis provides a robust online-available platform for uniform annotation and dissection of specific macrophage functions in healthy and pathological states.
Collapse
Affiliation(s)
- Kevin Mulder
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore
| | - Amit Ashok Patel
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Wan Ting Kong
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore
| | - Cécile Piot
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore
| | - Evelyn Halitzki
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore; Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Garett Dunsmore
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Shabnam Khalilnezhad
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore
| | - Sergio Erdal Irac
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore
| | - Agathe Dubuisson
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Marion Chevrier
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore
| | - Xiao Meng Zhang
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore
| | - John Kit Chung Tam
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Tony Kiat Hon Lim
- Department of Pathology, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Regina Men Men Wong
- Genome Institute of Singapore, A(∗)STAR, 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore
| | - Rhea Pai
- Genome Institute of Singapore, A(∗)STAR, 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore
| | | | - Pierce Kah Hoe Chow
- Division of Surgical Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Suny Z Wu
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ghamdan Al-Eryani
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daniel Roden
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore; Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore 169857, Singapore; Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore; Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, the Academia, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore
| | - Lisa Derosa
- Gustave Roussy Cancer Campus, Villejuif, France; Cancer Medicine Department, Gustave Roussy, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Cancer Medicine Department, Gustave Roussy, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), 1428 Villejuif, France
| | - Ankur Sharma
- Genome Institute of Singapore, A(∗)STAR, 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore; Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, the University of Western Australia, PO Box 7214, 6 Verdun Street, Nedlands, Perth, WA 6009, Australia; School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Institute, Curtin University, Perth, WA 6102, Australia
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore
| | - Aymeric Silvin
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Antonio Bertoletti
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Camille Blériot
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Charles-Antoine Dutertre
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore; Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, the Academia, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore.
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore; Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, the Academia, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
24
|
Intestinal Microbiota and Liver Diseases: Insights into Therapeutic Use of Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6682581. [PMID: 33976705 PMCID: PMC8087485 DOI: 10.1155/2021/6682581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/01/2021] [Accepted: 04/10/2021] [Indexed: 11/18/2022]
Abstract
Liver disease is a leading cause of global morbidity and mortality, for which inflammation, alcohol use, lipid metabolic disorders, disturbance to bile acid metabolism, and endotoxins are common risk factors. Traditional Chinese Medicine (TCM) with its "holistic approach" is widely used throughout the world as a complementary, alternative therapy, due to its clinical efficacy and reduced side effects compared with conventional medicines. However, due to a lack of reliable scientific evidence, the role of TCM in the prevention and treatment of liver disease remains unclear. Over recent years, with the rapid development of high-throughput sequencing, 16S rRNA detection, and bioinformatics methodology, it has been gradually recognized that the regulation of intestinal microbiota by TCM can play a substantial role in the treatment of liver disease. To better understand how TCM regulates the intestinal microbiota and suppresses liver disease, we have reviewed and analyzed the results of existing studies and summarized the relationship and risk factors between intestinal microbiota and liver disease. The present review summarizes the related mechanisms by which TCM affects the composition and metabolites of the intestinal microbiome.
Collapse
|
25
|
Traum D, Wang YJ, Schwarz KB, Schug J, Wong DK, Janssen HLA, Terrault NA, Khalili M, Wahed AS, Murray KF, Rosenthal P, Ling SC, Rodriguez-Baez N, Sterling RK, Lau DT, Block TM, Feldman MD, Furth EE, Lee WM, Kleiner DE, Lok AS, Kaestner KH, Chang KM. Highly multiplexed 2-dimensional imaging mass cytometry analysis of HBV-infected liver. JCI Insight 2021; 6:146883. [PMID: 33621209 PMCID: PMC8119221 DOI: 10.1172/jci.insight.146883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Studies of human hepatitis B virus (HBV) immune pathogenesis are hampered by limited access to liver tissues and technologies for detailed analyses. Here, utilizing imaging mass cytometry (IMC) to simultaneously detect 30 immune, viral, and structural markers in liver biopsies from patients with hepatitis B e antigen+ (HBeAg+) chronic hepatitis B, we provide potentially novel comprehensive visualization, quantitation, and phenotypic characterizations of hepatic adaptive and innate immune subsets that correlated with hepatocellular injury, histological fibrosis, and age. We further show marked correlations between adaptive and innate immune cell frequencies and phenotype, highlighting complex immune interactions within the hepatic microenvironment with relevance to HBV pathogenesis.
Collapse
Affiliation(s)
- Daniel Traum
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Medical Research, The Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Yue J Wang
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Biomedical Sciences, College of Medicine, Florida State University, Tallahasee, Florida, USA
| | | | - Jonathan Schug
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David Kh Wong
- Toronto Centre for Liver Disease, University of Toronto, Toronto, Ontario, Canada
| | - Harry LA Janssen
- Toronto Centre for Liver Disease, University of Toronto, Toronto, Ontario, Canada
| | - Norah A Terrault
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Mandana Khalili
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Abdus S Wahed
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Karen F Murray
- Cleveland Clinic Pediatric Institute, Cleveland, Ohio, USA
| | | | - Simon C Ling
- The Hospital for Sick Children and Department of Paediatrics and University of Toronto, Toronto, Canada
| | - Norberto Rodriguez-Baez
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Richard K Sterling
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Daryl Ty Lau
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Michael D Feldman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elizabeth E Furth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - William M Lee
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Anna S Lok
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kyong-Mi Chang
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Medical Research, The Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Sellau J, Puengel T, Hoenow S, Groneberg M, Tacke F, Lotter H. Monocyte dysregulation: consequences for hepatic infections. Semin Immunopathol 2021; 43:493-506. [PMID: 33829283 PMCID: PMC8025899 DOI: 10.1007/s00281-021-00852-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Liver disorders due to infections are a substantial health concern in underdeveloped and industrialized countries. This includes not only hepatotropic viruses (e.g., hepatitis B, hepatitis C) but also bacterial and parasitic infections such as amebiasis, leishmaniasis, schistosomiasis, or echinococcosis. Recent studies of the immune mechanisms underlying liver disease show that monocytes play an essential role in determining patient outcomes. Monocytes are derived from the mononuclear phagocyte lineage in the bone marrow and are present in nearly all tissues of the body; these cells function as part of the early innate immune response that reacts to challenge by external pathogens. Due to their special ability to develop into tissue macrophages and dendritic cells and to change from an inflammatory to an anti-inflammatory phenotype, monocytes play a pivotal role in infectious and non-infectious liver diseases: they can maintain inflammation and support resolution of inflammation. Therefore, tight regulation of monocyte recruitment and termination of monocyte-driven immune responses in the liver is prerequisite to appropriate healing of organ damage. In this review, we discuss monocyte-dependent immune mechanisms underlying hepatic infectious disorders. Better understanding of these immune mechanisms may lead to development of new interventions to treat acute liver disease and prevent progression to organ failure.
Collapse
Affiliation(s)
- Julie Sellau
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tobias Puengel
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Stefan Hoenow
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Marie Groneberg
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Hannelore Lotter
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
27
|
Singanayagam A, Triantafyllou E. Macrophages in Chronic Liver Failure: Diversity, Plasticity and Therapeutic Targeting. Front Immunol 2021; 12:661182. [PMID: 33868313 PMCID: PMC8051585 DOI: 10.3389/fimmu.2021.661182] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver injury results in immune-driven progressive fibrosis, with risk of cirrhosis development and impact on morbidity and mortality. Persistent liver cell damage and death causes immune cell activation and inflammation. Patients with advanced cirrhosis additionally experience pathological bacterial translocation, exposure to microbial products and chronic engagement of the immune system. Bacterial infections have a high incidence in cirrhosis, with spontaneous bacterial peritonitis being the most common, while the subsequent systemic inflammation, organ failure and immune dysregulation increase the mortality risk. Tissue-resident and recruited macrophages play a central part in the development of inflammation and fibrosis progression. In the liver, adipose tissue, peritoneum and intestines, diverse macrophage populations exhibit great phenotypic and functional plasticity determined by their ontogeny, epigenetic programming and local microenvironment. These changes can, at different times, promote or ameliorate disease states and therefore represent potential targets for macrophage-directed therapies. In this review, we discuss the evidence for macrophage phenotypic and functional alterations in tissue compartments during the development and progression of chronic liver failure in different aetiologies and highlight the potential of macrophage modulation as a therapeutic strategy for liver disease.
Collapse
Affiliation(s)
- Arjuna Singanayagam
- Infection and Immunity Clinical Academic Group, St. George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
Lai F, Wee CYY, Chen Q. Establishment of Humanized Mice for the Study of HBV. Front Immunol 2021; 12:638447. [PMID: 33679796 PMCID: PMC7933441 DOI: 10.3389/fimmu.2021.638447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
Viral hepatitis particularly Hepatitis B Virus (HBV) is still an ongoing health issue worldwide. Despite the vast technological advancements in research and development, only HBV vaccines, typically given during early years, are currently available as a preventive measure against acquiring the disease from a secondary source. In general, HBV can be cleared naturally by the human immune system if detected at low levels early. However, long term circulation of HBV in the peripheral blood may be detrimental to the human liver, specifically targeting human hepatocytes for cccDNA integration which inevitably supports HBV life cycle for the purpose of reinfection in healthy cells. Although there is some success in using nucleoside analogs or polyclonal antibodies targeting HBV surface antigens (HBsAg) in patients with acute or chronic HBV+ (CHB), majority of them would either respond only partially or succumb to the disease entirely unless they undergo liver transplants from a fully matched healthy donor and even so may not necessarily guarantee a 100% chance of survival. Indeed, in vitro/ex vivo cultures and various transgenic animal models have already provided us with a good understanding of HBV but they primarily lack human specificity or virus-host interactions in the presence of human immune surveillance. Therefore, the demand of utilizing humanized mice has increased over the last decade as a pre-clinical platform for investigating human-specific immune responses against HBV as well as identifying potential immunotherapeutic strategies in eradicating the virus. Basically, this review covers some of the recent developments and key advantages of humanized mouse models over other conventional transgenic mice platforms.
Collapse
Affiliation(s)
- Fritz Lai
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cherry Yong Yi Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Doyle EH, Aloman C, El-Shamy A, Eng F, Rahman A, Klepper AL, Haydel B, Florman SS, Fiel MI, Schiano T, Branch AD. A subset of liver resident natural killer cells is expanded in hepatitis C-infected patients with better liver function. Sci Rep 2021; 11:1551. [PMID: 33452360 PMCID: PMC7810844 DOI: 10.1038/s41598-020-80819-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Viral hepatitis leads to immune-mediated liver injury. The rate of disease progression varies between individuals. We aimed to phenotype immune cells associated with preservation of normal liver function during hepatitis C virus (HCV) infection. Clinical data and specimens were obtained from 19 HCV-infected patients undergoing liver transplantation. Liver and peripheral blood mononuclear cells were isolated and eight subsets of innate immune cells were delineated by multiparameter flow cytometry. Cytokine assays and microarrays were performed. Intrahepatic CD56Bright/CD16- natural killer (NK) cells comprised the only subset correlating with better liver function, i.e., lower bilirubin (p = 0.0002) and lower model for end stage of liver disease scores (p = 0.03). The signature of liver NK cells from HCV-infected patients included genes expressed by NK cells in normal liver and by decidual NK cells. Portal vein blood had a higher concentration of interleukin (IL)-10 than peripheral blood (p = 0.03). LMCs were less responsive to toll-like receptor (TLR) stimulation than PBMCs, with fewer pro-inflammatory gene-expression pathways up-regulated after in vitro exposure to lipopolysaccharide and a TLR-7/8 agonist. Hepatic CD56Bright/CD16- NK cells may be critical for maintaining liver homeostasis. Portal vein IL-10 may prime inhibitory pathways, attenuating TLR signaling and reducing responsiveness to pro-inflammatory stimuli.
Collapse
Affiliation(s)
- Erin H Doyle
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai School, 1425 Madison Ave., Icahn 11-23, New York, NY, 10029, USA
| | | | - Ahmed El-Shamy
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai School, 1425 Madison Ave., Icahn 11-23, New York, NY, 10029, USA
| | - Francis Eng
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai School, 1425 Madison Ave., Icahn 11-23, New York, NY, 10029, USA
| | - Adeeb Rahman
- Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arielle L Klepper
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai School, 1425 Madison Ave., Icahn 11-23, New York, NY, 10029, USA
| | - Brandy Haydel
- Recanati Miller Transplantation Institute, The Mount Sinai Hospital, New York, NY, USA
| | - Sander S Florman
- Recanati Miller Transplantation Institute, The Mount Sinai Hospital, New York, NY, USA
| | - M Isabel Fiel
- Department of Pathology, The Mount Sinai Hospital, New York, NY, USA
| | - Thomas Schiano
- Recanati Miller Transplantation Institute, The Mount Sinai Hospital, New York, NY, USA
| | - Andrea D Branch
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai School, 1425 Madison Ave., Icahn 11-23, New York, NY, 10029, USA.
| |
Collapse
|
30
|
Li Y, Li S, Duan X, Yang C, Xu M, Chen L. Macrophage Phenotypes and Hepatitis B Virus Infection. J Clin Transl Hepatol 2020; 8:424-431. [PMID: 33447526 PMCID: PMC7782119 DOI: 10.14218/jcth.2020.00046] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/20/2020] [Accepted: 09/06/2020] [Indexed: 12/14/2022] Open
Abstract
Globally, hepatitis B virus (HBV) infection and its related liver diseases account for 780,000 deaths every year. Outcomes of HBV infection depend on the interaction between the virus and host immune system. It is becoming increasingly apparent that Kupffer cells (KCs), the largest population of resident and monocyte-derived macrophages in the liver, contribute to HBV infection in various aspects. These cells play an important role not only in the anti-HBV immunity including virus recognition, cytokine production to directly inhibit viral replication and recruitment and activation of other immune cells involved in virus clearance but also in HBV outcome and progression, such as persistent infection and development of end-stage liver diseases. Since liver macrophages play multiple roles in HBV infection, they are directly targeted by HBV to benefit its life cycle. In the present review, we briefly outline the current advances of research of macrophages, especially the studies of their phenotypes, in chronic HBV infection.
Collapse
Affiliation(s)
- Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Chunhui Yang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Min Xu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
- Toronto General Research Institute, University of Toronto, Toronto, ON M5G 1L6, Canada
- Correspondence to: Limin Chen, Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, 26 Huacai Street, Chengdu, Sichuan 610052, China. Tel: +86-28-61648530, E-mail: or
| |
Collapse
|
31
|
Dutertre CA, Ginhoux F. [Identification of circulating inflammatory dendritic cells by a multi-omic approach]. Med Sci (Paris) 2020; 36:976-979. [PMID: 33151857 DOI: 10.1051/medsci/2020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Charles-Antoine Dutertre
- Singapore immunology network, A*STAR, 8A Biomedical grove, Immunos building, Singapore 138648, Singapour. - Program in emerging infectious disease, Duke-NUS medical school, 8 College road, Singapore 169857, Singapour. - Translational immunology institute, Singhealth/Duke-NUS academic medical centre, the Academia, 20 College road, Discovery tower level 8, Singapore 169856, Singapour
| | - Florent Ginhoux
- Singapore immunology network, A*STAR, 8A Biomedical grove, Immunos building, Singapore 138648, Singapour. - Translational immunology institute, Singhealth/Duke-NUS academic medical centre, the Academia, 20 College road, Discovery tower level 8, Singapore 169856, Singapour. - Shanghai institute of immunology, Department of immunology and microbiology, Shanghai, Chine
| |
Collapse
|
32
|
Her Z, Tan JHL, Lim YS, Tan SY, Chan XY, Tan WWS, Liu M, Yong KSM, Lai F, Ceccarello E, Zheng Z, Fan Y, Chang KTE, Sun L, Chang SC, Chin CL, Lee GH, Dan YY, Chan YS, Lim SG, Chan JKY, Chandy KG, Chen Q. CD4 + T Cells Mediate the Development of Liver Fibrosis in High Fat Diet-Induced NAFLD in Humanized Mice. Front Immunol 2020; 11:580968. [PMID: 33013934 PMCID: PMC7516019 DOI: 10.3389/fimmu.2020.580968] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been on a global rise. While animal models have rendered valuable insights to the pathogenesis of NAFLD, discrepancy with patient data still exists. Since non-alcoholic steatohepatitis (NASH) involves chronic inflammation, and CD4+ T cell infiltration of the liver is characteristic of NASH patients, we established and characterized a humanized mouse model to identify human-specific immune response(s) associated with NAFLD progression. Immunodeficient mice engrafted with human immune cells (HIL mice) were fed with high fat and high calorie (HFHC) or chow diet for 20 weeks. Liver histology and immune profile of HIL mice were analyzed and compared with patient data. HIL mice on HFHC diet developed steatosis, inflammation and fibrosis of the liver. Human CD4+ central and effector memory T cells increased within the liver and in the peripheral blood of our HIL mice, accompanied by marked up-regulation of pro-inflammatory cytokines (IL-17A and IFNγ). In vivo depletion of human CD4+ T cells in HIL mice reduced liver inflammation and fibrosis, but not steatosis. Our results highlight CD4+ memory T cell subsets as important drivers of NAFLD progression from steatosis to fibrosis and provides a humanized mouse model for pre-clinical evaluation of potential therapeutics.
Collapse
Affiliation(s)
- Zhisheng Her
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Joel Heng Loong Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Yee-Siang Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Xue Ying Chan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Wilson Wei Sheng Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Min Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Kylie Su Mei Yong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Fritz Lai
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Erica Ceccarello
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Programme in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Zhiqiang Zheng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kenneth Tou En Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Lei Sun
- Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Shih Chieh Chang
- Laboratory of Molecular Physiology, Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chih-Liang Chin
- Translational Biomarkers, Merck Research Laboratories, MSD, Singapore, Singapore
| | - Guan Huei Lee
- Division of Gastroenterology and Hepatology, National University Hospital, National University Health System, Singapore, Singapore
| | - Yock Young Dan
- Division of Gastroenterology and Hepatology, National University Hospital, National University Health System, Singapore, Singapore
| | - Yun-Shen Chan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Seng Gee Lim
- Division of Gastroenterology and Hepatology, National University Hospital, National University Health System, Singapore, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - K George Chandy
- Laboratory of Molecular Physiology, Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Chen W, Bian H, Xie X, Yang X, Bi B, Li C, Zhang Y, Zhu Q, Song J, Qin C, Qi J. Negative feedback loop of ERK/CREB/miR-212-3p inhibits HBeAg-induced macrophage activation. J Cell Mol Med 2020; 24:10935-10945. [PMID: 32767729 PMCID: PMC7521245 DOI: 10.1111/jcmm.15723] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/07/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022] Open
Abstract
The activation of liver macrophages is closely related to liver injury after HBV infection. Our previous results demonstrated that HBeAg played a key role in inducing macrophage activation. As we all know, miRNAs are involved in the regulation of multiple immune cell functions. Meanwhile, we have shown that miR‐155 positively regulates HBeAg‐induced macrophage activation and accelerates liver injury. Subsequently, based on our previous miRNA sequencing results, we further evaluated the role of miR‐212‐3p called ‘neurimmiR’ in HBeAg‐induced macrophages in this study. First, miR‐212‐3p expression was significantly elevated in HBeAg‐treated macrophages. Meanwhile, we found up‐regulation of miR‐212‐3p significantly decreased the production of cytokines, whereas knockdown of miR‐212‐3p held the opposite effect by gains and losses of function. Mechanically, although MAPK signal pathway, including ERK, JNK and p38, was activated in HBeAg‐induced macrophages, only ERK promoted the expression of miR‐212‐3p via transcription factor CREB, which was able to bind to the promoter of miR‐212‐3p verified by ChIP assay. Moreover, we further indicated that up‐regulated miR‐212‐3p inhibited HBeAg‐induced inflammatory cytokine production through targeting MAPK1. In conclusion, miR‐212‐3p was augmented in HBeAg‐stimulated macrophages via ERK/CREB signal pathway and the elevated miR‐212‐3p suppressed inflammatory cytokine production induced by HBeAg through targeting MAPK1.
Collapse
Affiliation(s)
- Wenjun Chen
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, China
| | - Hongjun Bian
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyu Xie
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Xia Yang
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Benjun Bi
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chunliu Li
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yuejuan Zhang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Zhu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Jing Song
- The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, China
| | - Chengyong Qin
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Jianni Qi
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| |
Collapse
|
34
|
Mechanisms of HBV immune evasion. Antiviral Res 2020; 179:104816. [PMID: 32387476 DOI: 10.1016/j.antiviral.2020.104816] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023]
Abstract
The concept of immune evasion is a longstanding topic of debate during chronic Hepatitis B Virus infection. The 292 million individuals chronically infected by HBV are clear evidence that the virus avoids elimination by the immune system. The exact mechanisms of immune evasion remain undefined and are distinct, but likely interconnected, between innate and adaptive immunity. There is a significant body of evidence that supports peripheral tolerance and exhaustion of adaptive immunity but our understanding of the role that central tolerance plays is still developing. Innate immunity instructs the adaptive immune response and subversion of its functionality will impact both T and B cell responses. However, literature around the interaction of HBV with innate immunity is inconsistent, with reports suggesting that HBV avoids innate recognition, suppresses innate recognition, or activates innate immunity. This complexity has led to confusion and controversy. This review will discuss the mechanisms of central and peripheral tolerance/exhaustion of adaptive immunity in the context of chronic HBV infection. We also cover the interaction of HBV with cells of the innate immune system and propose concepts for the heterogeneity of responses in chronically infected patients.
Collapse
|
35
|
KRUGER ANNIEJ. Can Macrophages in Cirrhotic Ascites Fluid Predict Clinical Outcome in Spontaneous Bacterial Peritonitis? Gastroenterology 2020; 158:1540-1543. [PMID: 32135164 PMCID: PMC7292615 DOI: 10.1053/j.gastro.2020.02.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
|
36
|
Stengel S, Quickert S, Lutz P, Ibidapo-Obe O, Steube A, Köse-Vogel N, Yarbakht M, Reuken PA, Busch M, Brandt A, Bergheim I, Deshmukh SD, Stallmach A, Bruns T. Peritoneal Level of CD206 Associates With Mortality and an Inflammatory Macrophage Phenotype in Patients With Decompensated Cirrhosis and Spontaneous Bacterial Peritonitis. Gastroenterology 2020; 158:1745-1761. [PMID: 31982413 DOI: 10.1053/j.gastro.2020.01.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Peritoneal macrophages (PMs) regulate inflammation and control bacterial infections in patients with decompensated cirrhosis. We aimed to characterize PMs and associate their activation with outcomes of patients with spontaneous bacterial peritonitis (SBP). METHODS We isolated PMs from ascites samples of 66 patients with decompensated cirrhosis (19 with SBP) and analyzed them by flow cytometry, quantitative real-time polymerase chain reaction, functional analysis, and RNA microarrays. We used ascites samples of a separate cohort of 111 patients with decompensated cirrhosis (67 with SBP) and quantified the soluble form of the mannose receptor (CD206) and tumor necrosis factor by enzyme-linked immunosorbent assay (test cohort). We performed logistic regression analysis to identify factors associated with 90-day mortality. We validated our findings using data from 71 patients with cirrhosis and SBP. Data from 14 patients undergoing peritoneal dialysis for end-stage renal disease but without cirrhosis were included as controls. RESULTS We used surface levels of CD206 to identify subsets of large PMs (LPM) and small PMs (SPM), which differed in granularity and maturation markers, in ascites samples from patients with cirrhosis. LPMs vs SPMs from patients with cirrhosis had different transcriptomes; we identified more than 4000 genes that were differentially regulated in LPMs vs SPMs, including those that regulate the cycle, metabolism, self-renewal, and immune cell signaling. LPMs had an inflammatory phenotype, were less susceptible to tolerance induction, and released more tumor necrosis factor than SPMs. LPMs from patients with cirrhosis produced more inflammatory cytokines than LPMs from controls. Activation of PMs by Toll-like receptor agonists and live bacteria altered levels of CD206 on the surface of LPMs and release of soluble CD206. Analysis of serial ascites fluid from patients with SBP revealed loss of LPMs in the early phase of SBP, but levels increased after treatment. In the test and validation cohorts, patients with SBP and higher concentrations of soluble CD206 in ascites fluid (>0.53 mg/L) were less likely to survive for 90 days than those with lower levels. CONCLUSIONS Surface level of CD206 can be used to identify mature, resident, inflammatory PMs in patients with cirrhosis. Soluble CD206 is released from activated LPMs and increased concentrations in patients with cirrhosis and SBP indicate reduced odds of surviving for 90 days.
Collapse
Affiliation(s)
- Sven Stengel
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Stefanie Quickert
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Philipp Lutz
- Department of Internal Medicine I, University of Bonn, Bonn, Germany; German Center for Infection Research, University of Bonn, Bonn, Germany
| | - Oluwatomi Ibidapo-Obe
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Arndt Steube
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Nilay Köse-Vogel
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Melina Yarbakht
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany; The Integrated Research and Treatment Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Philipp A Reuken
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Martin Busch
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Annette Brandt
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Sachin D Deshmukh
- The Integrated Research and Treatment Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Tony Bruns
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany; The Integrated Research and Treatment Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Department of Internal Medicine III, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany.
| |
Collapse
|
37
|
Dan H, Liu S, Liu J, Liu D, Yin F, Wei Z, Wang J, Zhou Y, Jiang L, Ji N, Zeng X, Li J, Chen Q. RACK1 promotes cancer progression by increasing the M2/M1 macrophage ratio via the NF-κB pathway in oral squamous cell carcinoma. Mol Oncol 2020; 14:795-807. [PMID: 31997535 PMCID: PMC7138402 DOI: 10.1002/1878-0261.12644] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/14/2019] [Accepted: 01/28/2020] [Indexed: 02/05/2023] Open
Abstract
Receptor for activated C kinase 1 (RACK1) has been shown to promote oral squamous cell carcinoma (OSCC) progression, and RACK1 expression levels have been negatively correlated with prognosis in patients with OSCC. Here, we investigated the impact of RACK1 OSCC expression on the recruitment and differentiation of tumor-associated macrophages. High RACK1 expression in OSCC cells correlated with increased M2 macrophage infiltration in tumor samples from a clinical cohort study. Moreover, the combination of RACK1 expression and the M2/M1 ratio could successfully predict prognosis in OSCC. OSCC cells with high RACK1 expression inhibited the migration of THP-1 cells, promoted M2-like macrophage polarization in vitro, and increased the proportion of M2-like macrophages in a xenograft mouse model. Moreover, both M1- and M2-like macrophage polarization-associated proteins were induced in macrophages cocultured with RACK1-silenced cell supernatant. A mechanistic study revealed that the expression and secretion of C-C motif chemokine 2 (CCL2), C-C motif chemokine 5 (CCL5), interleukin-6 (IL-6), and interleukin-1 (IL-1) are closely related to RACK1 expression. In addition, blocking nuclear factor-kappa B (NF-κB) could promote M2-like macrophage polarization. These results indicate that RACK1 and the M2/M1 ratio are predictors of a poor prognosis in OSCC. RACK1 promotes M2-like polarization by regulating NF-κB and could be used as a potential therapeutic target for antitumor immunity.
Collapse
Affiliation(s)
- Hongxia Dan
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Sai Liu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of Oral PathologyDepartment of Dental MaterialsSchool of StomatologyChina Medical UniversityShenyangChina
| | - Jiajia Liu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Dongjuan Liu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of Oral PathologyDepartment of Dental MaterialsSchool of StomatologyChina Medical UniversityShenyangChina
| | - Fengying Yin
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Zihao Wei
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Jiongke Wang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yu Zhou
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Lu Jiang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ning Ji
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin Zeng
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Jing Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Qianming Chen
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
38
|
Tan AT, Schreiber S. Adoptive T-cell therapy for HBV-associated HCC and HBV infection. Antiviral Res 2020; 176:104748. [DOI: 10.1016/j.antiviral.2020.104748] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
|
39
|
Saldarriaga OA, Freiberg B, Krishnan S, Rao A, Burks J, Booth AL, Dye B, Utay N, Ferguson M, Akil A, Yi M, Beretta L, Stevenson HL. Multispectral Imaging Enables Characterization of Intrahepatic Macrophages in Patients With Chronic Liver Disease. Hepatol Commun 2020; 4:708-723. [PMID: 32363321 PMCID: PMC7193134 DOI: 10.1002/hep4.1494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
Intrahepatic macrophages influence the composition of the microenvironment, host immune response to liver injury, and development of fibrosis. Compared with stellate cells, the role of macrophages in the development of fibrosis remains unclear. Multispectral imaging allows detection of multiple markers in situ in human formalin‐fixed, paraffin‐embedded tissue. This cutting‐edge technology is ideal for analyzing human liver tissues, as it allows spectral unmixing of fluorophore signals, subtraction of auto‐fluorescence, and preservation of hepatic architecture. We analyzed five different antibodies commonly observed on macrophage populations (CD68, MAC387, CD163, CD14, and CD16). After optimization of the monoplex stains and development of a Spectral Library, we combined all of the antibodies into a multiplex protocol and used them to stain biopsies collected from representative patients with chronic liver diseases, including chronic hepatitis C, nonalcoholic steatohepatitis, and autoimmune hepatitis. Various imaging modalities were tested, including cell phenotyping, tissue segmentation, t‐distributed stochastic neighbor embedding plots, and phenotype matrices that facilitated comparison and visualization of the identified macrophage and other cellular profiles. We then tested the feasibility of this platform to analyze numerous regions of interest from liver biopsies with multiple patients per group, using batch analysis algorithms. Five populations showed significant differences between patients positive for hepatitis C virus with advanced fibrosis when compared with controls. Three of these were significantly increased in patients with advanced fibrosis when compared to controls, and these included CD163+CD16+, CD68+, and CD68+MAC387+. Conclusion: Spectral imaging microscopy is a powerful tool that enables in situ analysis of macrophages and other cells in human liver biopsies and may lead to more personalized therapeutic approaches in the future.
Collapse
Affiliation(s)
| | | | - Santhoshi Krishnan
- Department of Electrical and Computer Engineering Rice University Houston TX.,Department of Computational Medicine and Bioinformatics University of Michigan Ann Arbor MI
| | - Arvind Rao
- Department of Electrical and Computer Engineering Rice University Houston TX.,Department of Computational Medicine and Bioinformatics University of Michigan Ann Arbor MI.,Department of Radiation Oncology University of Michigan Ann Arbor MI
| | - Jared Burks
- Department of Leukemia University of Texas MD Anderson Cancer Center Houston TX
| | - Adam L Booth
- Department of Pathology University of Texas Medical Branch Galveston TX
| | - Bradley Dye
- Department of Pathology University of Texas Medical Branch Galveston TX
| | - Netanya Utay
- Department of Internal Medicine University of Texas Health Science Center at Houston Houston TX
| | - Monique Ferguson
- Department of Internal Medicine University of Texas Medical Branch Galveston TX
| | - Abdellah Akil
- Department of Microbiology and Immunology University of Texas Medical Branch Galveston TX
| | - Minkyung Yi
- Department of Microbiology and Immunology University of Texas Medical Branch Galveston TX
| | - Laura Beretta
- Department of Molecular and Cellular Oncology University of Texas MD Anderson Cancer Center Houston TX
| | | |
Collapse
|
40
|
Liver fibrosis and CD206 + macrophage accumulation are suppressed by anti-GM-CSF therapy. JHEP Rep 2020; 2:100062. [PMID: 32039403 PMCID: PMC7005658 DOI: 10.1016/j.jhepr.2019.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background & Aims Chronic liver inflammation leads to fibrosis and cirrhosis and is associated with an accumulation of intrahepatic TNFα-secreting CD206+ macrophages, which may participate in maintaining chronic liver disease in a GM-CSF-dependent manner. We aimed to elucidate the exact role of GM-CSF in the development and progression of chronic liver disease. Methods Liver immunohistochemistry and serum quantification were performed in patients with viral and non-viral-related liver disease to compare CD206+ monocyte/macrophages, fibrosis and GM-CSF. This was followed by functional validations in vitro and in vivo in humanised mice. Results Using multiplex immunofluorescence and histo-cytometry, we show that highly fibrotic livers had a greater density of CD206+ macrophages that produced more TNFα and GM-CSF in the non-tumour liver regions of patients with hepatocellular carcinoma (n = 47), independent of aetiology. In addition, the absolute number of CD206+ macrophages strongly correlated with the absolute number of GM-CSF-producing macrophages. In non-HCC chronic HCV+ patients (n = 40), circulating GM-CSF levels were also increased in proportion to the degree of liver fibrosis and serum viral titres. We then demonstrated in vitro that monocytes converted to TNFα-producing CD206+ macrophage-like cells in response to bacterial products (lipopolysaccharide) in a GM-CSF-dependent manner, confirming the in vivo normalisation of serum GM-CSF concentration following oral antibiotic treatment observed in HBV-infected humanised mice. Finally, anti-GM-CSF neutralising antibody treatment reduced intrahepatic CD206+ macrophage accumulation and abolished liver fibrosis in HBV-infected humanised mice. Conclusions While the direct involvement of CD206+ macrophages in liver fibrosis remains to be demonstrated, these findings show that GM-CSF may play a central role in liver fibrosis and could guide the development of anti-GM-CSF antibody-based therapy for the management of patients with chronic liver disease. Lay summary Liver fibrosis is a major driver of liver disease progression. Herein, we have shown that granulocyte-macrophage colony-stimulating factor (GM-CSF) plays an important role in the development of liver fibrosis. Our findings support the use of anti-GM-CSF neutralising antibodies for the management of patients with chronic liver disease resulting from both viral and non-viral causes. GM-CSF and TNFα producing CD206+ macrophages accumulate in human fibrotic liver Serum GM-CSF is increased in HCV+ patients with higher liver fibrosis GM-CSF drives monocyte to CD206+ macrophage conversion Anti-GM-CSF therapy suppresses liver fibrosis and CD206+ macrophage accumulation
Collapse
Key Words
- ALT, alanine aminotransferase
- BAMBI, BMP and Activin Membrane-bound Inhibitor
- CD206+ macrophages
- DAA, direct-acting antiviral
- DC, dendritic cell
- FFPE, formalin-fixed paraffin-embedded
- GM-CSF
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HCC, hepatocellular carcinoma
- HCV
- HIER, heat-induced epitope retrieval
- HSC, hepatic stellate cells
- ICS, intracellular cytokine staining
- Intrahepatic macrophages
- LPS, lipopolysaccharide
- LSM, liver stiffness measurement
- MS, multiple sclerosis
- NASH
- NASH, non-alcoholic steatohepatitis
- PBMCs, peripheral blood mononuclear cells
- RA, rheumatoid arthritis
- SVR, sustained virological response
- TCR, T cell receptor
- TMA, tissue microarray
- TNFα, tumour necrosis factor-α
- TSA, tyramide signal amplification
- anti-GM-CSF neutralizing antibody
- fibrosis
- moMΦs, monocyte-derived macrophage-like cells
- t-SNE, t-distributed stochastic neighbour embedding
Collapse
|
41
|
Wang Y, Luan Z, Zhao C, Bai C, Yang K. Target delivery selective CSF-1R inhibitor to tumor-associated macrophages via erythrocyte-cancer cell hybrid membrane camouflaged pH-responsive copolymer micelle for cancer immunotherapy. Eur J Pharm Sci 2019; 142:105136. [PMID: 31704343 DOI: 10.1016/j.ejps.2019.105136] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
Abstract
Tumor-associated macrophages (TAMs) is a promising therapeutic target for cancer immunotherapy, while TAMs targeting therapy using nano-sized drug delivery system (NDDS) is a great challenge. To overcome these drawbacks, a novel erythrocyte-cancer cell hybrid membrane camouflaged pH-responsive copolymer micelle (dextran-grafted-poly (histidine) copolymer) was prepared to target deliver a selective CSF-1R inhibitor: BLZ-945 (shorten as DH@ECm) to TAMs for TAMs depletion. The prepared DH@ECm possessed favorable particle size (~190 nm) preferable immune camouflage and tumor homologies targeting characteristic when it was intravenously administrated into blood system. In tumor acidic microenvironment, DH@ECm possessed pH-responsive characteristic and unique "membrane escape effect" to facilitate recognition and internalization by TAMs via dextran-CD206 receptor specific interaction (about 3.9 fold than free drug), followed by TAMs depletion in vitro. For in vivo studies, DH@ECm could reverse tumor immune-microenvironment with the elevation of CD8+ T cells and possess sufficient tumor immunotherapy (inhibition rate: 64.5%). All the in vitro and in vivo studies demonstrated the therapeutical potential of DH@ECm for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuchi Wang
- Department of Cell Biology and Medical Genetics, School of Medicine, Yanbian University 977 Gongyuan Road, Yanji, Jilin 133002, China; Changchun Children's Hospital. 1321 Beian Road, Changchun, Jilin 130051, China
| | - Zhiyong Luan
- Changchun Children's Hospital. 1321 Beian Road, Changchun, Jilin 130051, China
| | - Chaoyue Zhao
- Changchun Children's Hospital. 1321 Beian Road, Changchun, Jilin 130051, China; School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chunhua Bai
- Oncology, Changchun Central Hospital, 1810 Renmin Street, Changchun, Jilin 130121, China
| | - Kangjuan Yang
- Department of Cell Biology and Medical Genetics, School of Medicine, Yanbian University 977 Gongyuan Road, Yanji, Jilin 133002, China.
| |
Collapse
|
42
|
Single-Cell Analysis of Human Mononuclear Phagocytes Reveals Subset-Defining Markers and Identifies Circulating Inflammatory Dendritic Cells. Immunity 2019; 51:573-589.e8. [PMID: 31474513 DOI: 10.1016/j.immuni.2019.08.008] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/24/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Human mononuclear phagocytes comprise phenotypically and functionally overlapping subsets of dendritic cells (DCs) and monocytes, but the extent of their heterogeneity and distinct markers for subset identification remains elusive. By integrating high-dimensional single-cell protein and RNA expression data, we identified distinct markers to delineate monocytes from conventional DC2 (cDC2s). Using CD88 and CD89 for monocytes and HLA-DQ and FcεRIα for cDC2s allowed for their specific identification in blood and tissues. We also showed that cDC2s could be subdivided into phenotypically and functionally distinct subsets based on CD5, CD163, and CD14 expression, including a distinct subset of circulating inflammatory CD5-CD163+CD14+ cells related to previously defined DC3s. These inflammatory DC3s were expanded in systemic lupus erythematosus patients and correlated with disease activity. These findings further unravel the heterogeneity of DC subpopulations in health and disease and may pave the way for the identification of specific DC subset-targeting therapies.
Collapse
|
43
|
Fanning GC, Zoulim F, Hou J, Bertoletti A. Therapeutic strategies for hepatitis B virus infection: towards a cure. Nat Rev Drug Discov 2019; 18:827-844. [PMID: 31455905 DOI: 10.1038/s41573-019-0037-0] [Citation(s) in RCA: 354] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a common cause of liver disease globally, with a disproportionately high burden in South-East Asia. Vaccines and nucleoside or nucleotide drugs are available and reduce both new infection rates and the development of liver disease in HBV-positive persons who adhere to long-term suppressive treatment. Although there is still considerable value in optimizing access to virus-suppressing regimens, the scientific and medical communities have embarked on a concerted journey to identify new antiviral drugs and immune interventions aimed at curing infection. The mechanisms and drug targets being explored are diverse; however, the field universally recognizes the importance of addressing the persistence of episomal covalently closed circular DNA, the existence of integrated HBV DNA in the host genome and the large antigen load, particularly of hepatitis B surface antigen. Another major challenge is to reinvigorate the exhausted immune response within the liver microenvironment. Ultimately, combinations of new drugs will be required to cure infection. Here we critically review the recent literature that describes the rationale for curative therapies and the resulting compounds that are being tested in clinical trials for hepatitis B.
Collapse
Affiliation(s)
- Gregory C Fanning
- Janssen Pharmaceuticals, China Research & Development, Shanghai, China.
| | - Fabien Zoulim
- Cancer Research Centre of Lyon, INSERM U1052, Lyon University, Hospices Civils de Lyon, Lyon, France
| | - Jinlin Hou
- Department of Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
44
|
Humanized Mouse Models for the Study of Hepatitis C and Host Interactions. Cells 2019; 8:cells8060604. [PMID: 31213010 PMCID: PMC6627916 DOI: 10.3390/cells8060604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) infection is commonly attributed as a major cause of chronic hepatotropic diseases, such as, steatosis, cirrhosis and hepatocellular carcinoma. As HCV infects only humans and primates, its narrow host tropism hampers in vivo studies of HCV-mammalian host interactions and the development of effective therapeutics and vaccines. In this context, we will focus our discussion on humanized mice in HCV research. Here, these humanized mice are defined as animal models that encompass either only human hepatocytes or both human liver and immune cells. Aspects related to immunopathogenesis, anti-viral interventions, drug testing and perspectives of these models for future HCV research will be discussed.
Collapse
|
45
|
Guillot A, Tacke F. Liver Macrophages: Old Dogmas and New Insights. Hepatol Commun 2019; 3:730-743. [PMID: 31168508 PMCID: PMC6545867 DOI: 10.1002/hep4.1356] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a hallmark of virtually all liver diseases, such as liver cancer, fibrosis, nonalcoholic steatohepatitis, alcoholic liver disease, and cholangiopathies. Liver macrophages have been thoroughly studied in human disease and mouse models, unravelling that the hepatic mononuclear phagocyte system is more versatile and complex than previously believed. Liver macrophages mainly consist of liver‐resident phagocytes, or Kupffer cells (KCs), and bone marrow‐derived recruited monocytes. Although both cell populations in the liver demonstrate principal functions of macrophages, such as phagocytosis, danger signal recognition, cytokine release, antigen processing, and the ability to orchestrate immune responses, KCs and recruited monocytes retain characteristic ontogeny markers and remain remarkably distinct on several functional aspects. While KCs dominate the hepatic macrophage pool in homeostasis (“sentinel function”), monocyte‐derived macrophages prevail in acute or chronic injury (“emergency response team”), making them an interesting target for novel therapeutic approaches in liver disease. In addition, recent data acquired by unbiased large‐scale techniques, such as single‐cell RNA sequencing, unraveled a previously unrecognized complexity of human and murine macrophage polarization abilities, far beyond the old dogma of inflammatory (M1) and anti‐inflammatory (M2) macrophages. Despite tremendous progress, numerous challenges remain in deciphering the full spectrum of macrophage activation and its implication in either promoting liver disease progression or repairing injured liver tissue. Being aware of such heterogeneity in cell origin and function is of crucial importance when studying liver diseases, developing novel therapeutic interventions, defining macrophage‐based prognostic biomarkers, or designing clinical trials. Growing knowledge in gene expression modulation and emerging technologies in drug delivery may soon allow shaping macrophage populations toward orchestrating beneficial rather than detrimental inflammatory responses.
Collapse
Affiliation(s)
- Adrien Guillot
- Laboratory of Liver Diseases National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Bethesda MD.,Department of Hepatology/Gastroenterology Charité University Medical Center Berlin Germany
| | - Frank Tacke
- Department of Hepatology/Gastroenterology Charité University Medical Center Berlin Germany
| |
Collapse
|
46
|
Bertoletti A, Le Bert N. Immunotherapy for Chronic Hepatitis B Virus Infection. Gut Liver 2019; 12:497-507. [PMID: 29316747 PMCID: PMC6143456 DOI: 10.5009/gnl17233] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/15/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
While new therapies for chronic hepatitis C virus infection have delivered remarkable cure rates, curative therapies for chronic hepatitis B virus (HBV) infection remain a distant goal. Although current direct antiviral therapies are very efficient in controlling viral replication and limiting the progression to cirrhosis, these treatments require lifelong administration due to the frequent viral rebound upon treatment cessation, and immune modulation with interferon is only effective in a subgroup of patients. Specific immunotherapies can offer the possibility of eliminating or at least stably maintaining low levels of HBV replication under the control of a functional host antiviral response. Here, we review the development of immune cell therapy for HBV, highlighting the potential antiviral efficiency and potential toxicities in different groups of chronically infected HBV patients. We also discuss the chronic hepatitis B patient populations that best benefit from therapeutic immune interventions.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore.,Viral Hepatitis Laboratory, Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Nina Le Bert
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore.,Viral Hepatitis Laboratory, Singapore Institute for Clinical Sciences, A*STAR, Singapore
| |
Collapse
|
47
|
Yang Y, Tu ZK, Liu XK, Zhang P. Mononuclear phagocyte system in hepatitis C virus infection. World J Gastroenterol 2018; 24:4962-4973. [PMID: 30510371 PMCID: PMC6262249 DOI: 10.3748/wjg.v24.i44.4962] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/30/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023] Open
Abstract
The mononuclear phagocyte system (MPS), which consists of monocytes, dendritic cells (DCs), and macrophages, plays a vital role in the innate immune defense against pathogens. Hepatitis C virus (HCV) is efficient in evading the host immunity, thereby facilitating its development into chronic infection. Chronic HCV infection is the leading cause of end-stage liver diseases, liver cirrhosis, and hepatocellular carcinoma. Acquired immune response was regarded as the key factor to eradicate HCV. However, innate immunity can regulate the acquired immune response. Innate immunity-derived cytokines shape the adaptive immunity by regulating T-cell differentiation, which determines the outcome of acute HCV infection. Inhibition of HCV-specific T-cell responses is one of the most important strategies for immune system evasion. It is meaningful to illustrate the role of innate immune response in HCV infection. With the MPS being the important factor in innate immunity, therefore, understanding the role of the MPS in HCV infection will shed light on the pathophysiology of chronic HCV infection. In this review, we outline the impact of HCV infection on the MPS and cytokine production. We discuss how HCV is detected by the MPS and describe the function and impairment of MPS components in HCV infection.
Collapse
Affiliation(s)
- Yu Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Zheng-Kun Tu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Xing-Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
48
|
Humanized Mouse Models for the Study of Infection and Pathogenesis of Human Viruses. Viruses 2018; 10:v10110643. [PMID: 30453598 PMCID: PMC6266013 DOI: 10.3390/v10110643] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
The evolution of infectious pathogens in humans proved to be a global health problem. Technological advancements over the last 50 years have allowed better means of identifying novel therapeutics to either prevent or combat these infectious diseases. The development of humanized mouse models offers a preclinical in vivo platform for further characterization of human viral infections and human immune responses triggered by these virus particles. Multiple strains of immunocompromised mice reconstituted with a human immune system and/or human hepatocytes are susceptible to infectious pathogens as evidenced by establishment of full viral life cycles in hope of investigating viral–host interactions observed in patients and discovering potential immunotherapies. This review highlights recent progress in utilizing humanized mice to decipher human specific immune responses against viral tropism.
Collapse
|
49
|
Viral hepatitis, inflammation, and cancer: A lesson for autoimmunity. J Autoimmun 2018; 95:58-68. [PMID: 30509387 DOI: 10.1016/j.jaut.2018.10.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 12/23/2022]
Abstract
In the present review, we analyzed the various overlapping and non-mutually exclusive mechanisms that intersect and form complex and highly flexible immunological networks allowing the defense against liver infections and tumors. Liver immunity results from the combination of the skills of systemic and local immune system(s) to sense and recognize pathogen or tumor antigens, to sensitize a wide range of innate and adaptive immune cells, and to clear the "invaders", through the establishment of a transient liver immunopathology state undergoing resolution/control of infections or tumors, and memory development. Then, a special emphasis is placed on discussing about the capacity of the immune system(s) to develop a state of chronic low-level immunopathology adapting through the intervention of simultaneous immunoregulatory mechanisms, when the liver is infected by highly mutable viruses (e.g., hepatitis B or C viruses [HBV or HCV]) capable to escape from the immune recognition. The establishment of chronic inflammation represents an advantage for the species survival, because it guarantees the long-term survival of human hosts despite the virus persistence. However, chronic inflammation, in the long run, can evolve towards severe consequences (decompensated cirrhosis and hepatocellular carcinoma) in some individuals, finding requiring the impelling need of discovering new therapeutic anti-viral and immunostimulatory agents addressed, in combination, to fight especially HBV that, in contrast to HCV, lacks antivirals capable to eradicate the virus. Finally, we discussed the concept proposing that the divergent immunoregulatory mechanisms that develop in persisting infections or tumors, on the one hand, and autoimmunity, on the other hand, are the mirror image of each other, whose understanding is also relevant for preparing novel immunotherapeutic approaches in autoimmune diseases.
Collapse
|
50
|
Faure-Dupuy S, Durantel D, Lucifora J. Liver macrophages: Friend or foe during hepatitis B infection? Liver Int 2018; 38:1718-1729. [PMID: 29772112 DOI: 10.1111/liv.13884] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/07/2018] [Indexed: 12/15/2022]
Abstract
The Hepatitis B virus chronically infects the liver of 250 million people worldwide. Over the past decades, major advances have been made in the understanding of Hepatitis B virus life cycle in hepatocytes. Beside these parenchymal cells, the liver also contains resident and infiltrating myeloid cells involved in immune responses to pathogens and much less is known about their interplay with Hepatitis B virus. In this review, we summarized and discussed the current knowledge of the role of liver macrophages (including Kupffer cells and liver monocyte-derived macrophages), in HBV infection. While it is still unclear if liver macrophages play a role in the establishment and persistence of HBV infection, several studies disclosed data suggesting that HBV would favour liver macrophage anti-inflammatory phenotypes and thereby increase liver tolerance. In addition, alternatively activated liver macrophages might also play in the long term a key role in hepatitis B-associated pathogenesis, especially through the activation of hepatic stellate cells. Therapies aiming at a transient activation of pro-inflammatory liver macrophages should therefore be considered for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Suzanne Faure-Dupuy
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,University of Lyon, University Claude-Bernard (UCBL), Lyon, France
| | - David Durantel
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,University of Lyon, University Claude-Bernard (UCBL), Lyon, France.,Laboratoire d'excellence (LabEx), DEVweCAN, Lyon, France
| | - Julie Lucifora
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,University of Lyon, University Claude-Bernard (UCBL), Lyon, France
| |
Collapse
|