1
|
Zhan H, Xiao J, Shi S, Zou F, Wang S, Mo F, Liu X, Zhang B, Dai M, Zeng J, Liu H. Pluripotent stem cell-derived CTLs targeting FGFR3-TACC3 fusion gene in osteosarcoma. Int Immunopharmacol 2024; 142:112862. [PMID: 39306889 DOI: 10.1016/j.intimp.2024.112862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 10/12/2024]
Abstract
Osteosarcoma, a highly aggressive bone cancer, poses significant treatment challenges. This study investigates a novel approach utilizing induced pluripotent stem cells (iPSCs) engineered with the FGFR3-TACC3 fusion gene to generate cytotoxic T lymphocytes (CTLs) targeting osteosarcoma. The aim was to assess the efficacy of iPSC-derived CTLs in combating osteosarcoma progression. Abnormal expression of the FGFR3-TACC3 fusion gene was confirmed in osteosarcoma samples. iPSCs were successfully modified to express the fusion gene and were then differentiated into CTLs. In vitro experiments demonstrated that these modified CTLs effectively killed osteosarcoma cells, induced apoptosis, and inhibited migration and invasion. Findings were validated in in vivo experiments. This study suggests that iPSC-derived CTLs targeting FGFR3-TACC3 hold promise for personalized immunotherapy against osteosarcoma.
Collapse
Affiliation(s)
- Haibo Zhan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Jun Xiao
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Shoujie Shi
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Fan Zou
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Departerment of orthopedic, Gaoxin Branch Of The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 7889, Changdong Ave., Gaoxin District, Nanchang, Jiangxi Province 330046, China
| | - Song Wang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Fengbo Mo
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Xuqiang Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Bin Zhang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Min Dai
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China.
| | - Jin Zeng
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China.
| | - Hucheng Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China.
| |
Collapse
|
2
|
Feng W, Liang J, Xu B, Huang L, Xu Q, Chen D, Lai J, Chen J. Fatty acid metabolism affects hepatocellular carcinoma progression via the PPAR-γ signaling pathway and fatty acid β-oxidation. Int Immunopharmacol 2024; 141:112917. [PMID: 39137630 DOI: 10.1016/j.intimp.2024.112917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/07/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
PURPOSE This study aimed to explore novel targets for hepatocellular carcinoma (HCC) treatment by investigating the role of fatty acid metabolism. METHODS RNA-seq and clinical data of HCC were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Bioinformatic analyses were employed to identify differentially expressed genes (DEGs) related to prognosis. A signature was then constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression to classify HCC patients from the TCGA database into low-risk and high-risk groups. The predictive performance of the signature was evaluated through principal components analysis (PCA), Kaplan Meier (KM) survival analysis, receiver operating characteristics (ROC) curves, nomogram, genetic mutations, drug sensitivity analysis, immunological correlation analysis, and enrichment analysis. Single-cell maps were constructed to illustrate the distribution of core genes. Immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR), and western blot were employed to verify the expression of core genes. The function of one core gene was validated through a series of in vitro assays, including cell viability, colony formation, wound healing, trans-well migration, and invasion assays. The results were analyzed in the context of relevant signaling pathways. RESULTS Bioinformatic analyses identified 15 FAMGs that were related to prognosis. A 4-gene signature was constructed, and patients were divided into high- and low-risk groups according to the signature. The high-risk group exhibited a poorer prognosis compared to the low-risk group in both the training (P < 0.001) and validation (P = 0.020) sets. Furthermore, the risk score was identified as an independent predictor of OS (P < 0.001, HR = 8.005). The incorporation of the risk score and clinicopathologic features into a nomogram enabled the effective prediction of patient prognosis. The model was able to effectively predict the immune microenvironment, drug sensitivity to chemotherapy, and gene mutation for each group. Single-cell maps demonstrated that FAMGs in the model were distributed in tumor cells. Enrichment analyses revealed that the cell cycle, fatty acid β oxidation and PPAR signaling pathways were the most significant pathways. Among the four key prognostically related FAMGs, Spermine Synthase (SMS) was selected and validated as a potential oncogene affecting cell cycle, PPAR-γ signaling pathway and fatty acid β oxidation in HCC. CONCLUSIONS The risk characteristics based on FAMGs could serve as independent prognostic indicators for predicting HCC prognosis and could also serve as evaluation criteria for gene mutations, immunity, and chemotherapy drug therapy in HCC patients. Meanwhile, targeted fatty acid metabolism could be used to treat HCC through related signaling pathways.
Collapse
Affiliation(s)
- Wei Feng
- Department of Pancreato-Biliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jiahua Liang
- Department of Pancreato-Biliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Borui Xu
- Department of Pancreato-Biliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Li Huang
- Department of Pancreato-Biliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Qiongcong Xu
- Department of Pancreato-Biliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Dong Chen
- Department of Pancreato-Biliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jiaming Lai
- Department of Pancreato-Biliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| | - Jiancong Chen
- Department of Pancreato-Biliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
3
|
Xu L, Sun J, Guo J, Guo S, Li J, Tang Y, Liu X. Transcriptional factor KLF9 overcomes 5-fluorouracil resistance in breast cancer via PTEN-dependent regulation of aerobic glycolysis. J Chemother 2024:1-12. [PMID: 39491797 DOI: 10.1080/1120009x.2024.2421701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The emergence of resistance to 5-Fluorouracil (5-FU) is a staple in breast cancer chemotherapy. This paper delves into the role of PTEN in breast cancer resistance to 5-FU and examines the underlying molecular pathways. PTEN expression was detected in bioinformatics databases and upstream transcription factors (TFs) were identified. PTEN mRNA and protein levels, aerobic glycolysis proteins, lactate production, glucose consumption, and cell viability were measured. Binding interactions were confirmed, and cell proliferation assessed. In breast cancer cells, PTEN expression was downregulated. PTEN overexpression counteracted 5-FU resistance through the suppression of aerobic glycolysis. KLF9, as a TF upstream of PTEN, enhanced the levels of PTEN. In conclusion, the TF KLF9 inhibits the aerobic glycolysis level of breast cancer cells by up-regulating PTEN expression, thereby reducing their resistance to 5-FU. The discovery of this mechanism provides a new theoretical basis for the treatment of breast cancer.
Collapse
Affiliation(s)
- Liang Xu
- Department of Medical Oncology, Anyang Cancer Hospital, Anyang, China
| | - Jing Sun
- Department of Medical Oncology, Anyang Cancer Hospital, Anyang, China
| | - Junlan Guo
- Department of Medical Oncology, Anyang Cancer Hospital, Anyang, China
| | - Shengnan Guo
- Department of Medical Oncology, Anyang Cancer Hospital, Anyang, China
| | - Jiangli Li
- Department of Medical Oncology, Anyang Cancer Hospital, Anyang, China
| | - Yijun Tang
- Department of Medical Oncology, Anyang Cancer Hospital, Anyang, China
| | - Xiaohui Liu
- Department of Medical Oncology, Anyang Cancer Hospital, Anyang, China
| |
Collapse
|
4
|
Deng M, Liu J, Zhang L, Lou Y, Qiu Y. Identification of molecular subtypes based on bile acid metabolism in cholangiocarcinoma. BMC Cancer 2024; 24:1313. [PMID: 39455933 PMCID: PMC11515294 DOI: 10.1186/s12885-024-13081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma is a highly heterogeneous tumor with bile acid metabolism involving in its development. The aim of this study was to characterize bile acid metabolism and identify specific subtypes to better stratify cholangiocarcinoma patients for individualized treatment and prognostic assessment. METHODS A total of 30 bile acids were quantified using the ultra-performance liquid chromatography tandem mass spectrometry. Using Consensus clustering, the molecular subtypes related to bile acid metabolism were identified. The prognosis, clinicopathologic characteristics, immune landscape, and therapeutic response were compared between these subtypes. The single-cell RNA sequencing (scRNA-seq) analysis and preliminary cell experiment were also conducted to verify our findings. RESULTS The altered bile acid profile and genetic variation of bile acid metabolism-related genes in cholangiocarcinoma were demonstrated. The cholangiocarcinoma was categorized into bile acid metabolism-active and -inactive subtypes with different prognoses, clinicopathologic characteristics, tumor microenvironments (TME) and therapeutic responses. This categorization was reproducible and predictable. Specifically, the bile acid metabolism-active subtype showed a poor prognosis with an immunosuppressive microenvironment and an inactive response to immunotherapy, while the bile acid metabolism-inactive subtype showed the opposite characteristics. Moreover, the scRNA-seq revealed that immunotherapy altered bile acid metabolism in TME of cholangiocarcinoma. Finally, a prognostic signature related to bile acid metabolism was developed, which exhibited strong power for prognostic assessment of cholangiocarcinoma. Consistently, these results were verified by immunohistochemistry, cell proliferation, migration, and apoptosis assays. CONCLUSION In conclusion, a novel cholangiocarcinoma classification based on bile acid metabolism was established. This classification was significant for the estimation of TME and prognosis.
Collapse
Affiliation(s)
- Mingxia Deng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jing Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Li Zhang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Yan Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
5
|
Qiao Q, Wang J, Liu S, Chang J, Zhou T, Li C, Zhang Y, Jiang W, Chen Y, Xu X, Wu M, Li X. USP28 promotes tumor progression and glycolysis by stabilizing PKM2/Hif1-α in cholangiocarcinoma. Cell Oncol (Dordr) 2024:10.1007/s13402-024-01002-z. [PMID: 39419941 DOI: 10.1007/s13402-024-01002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Ubiquitination is one of the important modification of proteins which can be reversed by deubiquitinating enzymes (DUBs). Ubiquitin specific protease 28 (USP28) belongs to the deubiquitinase family, which plays a cancer-promoting function in many types of cancers such as pancreatic cancer and breast cancer. So far, the molecular function and significance of USP 28 in cholangiocarcinoma remain unclear. METHODS In this study, we evaluated the expression of USP28 using tissue microarray (TMA), reverse transcription polymerase chain reaction (qRT-PCR), and online databases. We investigated the effect of USP28 on the progression of CCA through in vitro and in vivo functional experiments. In addition, we explored downstream molecular pathways using Western blotting (WB), immunofluorescence (IF), and mass spectrometry techniques. RESULTS Here, we found that cholangiocarcinoma tissue had higher USP 28 expression than normal bile duct tissue, and that high USP 28 levels were significantly associated with a malignant phenotype and poorer prognosis in cholangiocarcinoma patients. Both in vitro and in vivo, USP28 could mediate the deubiquitination of PKM2, thereby activating the downstream Hif1-α signaling pathway, promoting glycolysis and energy supply, and finally promoting tumor progression. CONCLUSION In summary, USP28 activated downstream Hif1-α by reducing the ubiquitination level of PKM2, furthermore, promoting the level of glycolysis in CCA cells for tumor progression.
Collapse
Affiliation(s)
- Qian Qiao
- Department of Hepatobiliary Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu Province, China
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jifei Wang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shuochen Liu
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jiang Chang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tao Zhou
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Changxian Li
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yaodong Zhang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wangjie Jiang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yananlan Chen
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiao Xu
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Mingyu Wu
- Department of Hepatobiliary Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu Province, China.
| | - Xiangcheng Li
- Department of Hepatobiliary Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu Province, China.
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
6
|
Zheng X, Zhang S, Ma H, Dong Y, Zheng J, Zeng L, Liu J, Dai Y, Yin Q. Replenishment of TCA cycle intermediates and long-noncoding RNAs regulation in breast cancer. Mol Cell Endocrinol 2024; 592:112321. [PMID: 38936596 DOI: 10.1016/j.mce.2024.112321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/13/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The tricarboxylic acid (TCA) cycle is an essential interface that coordinates cellular metabolism and is as a primary route determining the fate of a variety of fuel sources, including glucose, fatty acid and glutamate. The crosstalk of nutrients replenished TCA cycle regulates breast cancer (BC) progression by changing substrate levels-induced epigenetic alterations, especially the methylation, acetylation, succinylation and lactylation. Long non-coding RNAs (lncRNA) have dual roles in inhibiting or promoting energy reprogramming, and so altering the metabolic flux of fuel sources to the TCA cycle, which may regulate epigenetic modifications at the cellular level of BC. This narrative review discussed the central role of the TCA cycle in interconnecting numerous fuels and the induced epigenetic modifications, and the underlying regulatory mechanisms of lncRNAs in BC.
Collapse
Affiliation(s)
- Xuewei Zheng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - ShunShun Zhang
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - HaoDi Ma
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yirui Dong
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jiayu Zheng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Li Zeng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jiangbo Liu
- Department of General Surgery, First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yanzhenzi Dai
- Animal Science, School of Biosciences, University of Nottingham, UK.
| | - Qinan Yin
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
7
|
Shen P, Shi Y, Xu P, Rao L, Wang Z, Jiang J, Weng M. The construction of a prognostic model by apoptosis-related genes to predict survival, immune landscape, and medication in cholangiocarcinoma. Clin Res Hepatol Gastroenterol 2024; 48:102430. [PMID: 39069260 DOI: 10.1016/j.clinre.2024.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a highly aggressive and invasive malignant tumor of the bile duct, with a poor prognosis and a high mortality rate. Currently, there is a lack of effective targeted treatment methods and reliable biomarkers for prognosis. METHODS We downloaded RNA-seq and clinical data of CCA from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases as training and test sets. The apoptosis-related genes were obtained from the Molecular Signatures Database (MsigDB) database. We used univariate/multivariate Cox regression and Lasso regression analyses to construct a riskscore prognostic model. Based on the median riskscore, we clustered the patients into high-risk (HR) and low-risk (LR) groups. We carried out Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of differentially expressed genes (DEGs) in HR and LR groups. The single sample gene set enrichment analysis (ssGSEA) was employed to analyze the immune infiltration of the HR and LR groups. The CellMiner database was utilized to predict drugs and perform molecular docking on drugs and target proteins. RESULTS We identified 8 genes with prognostic significance to construct a prognostic model. Results of GO and KEGG demonstrated that DEGs were mainly enriched in biological functions such as fatty acid metabolic processes and pathways such as the cAMP signaling pathway. Results of ssGSEA uncovered that immune cells such as DCs and Macrophages in the HR group, as well as immune functions such as Check-point and Parainflammation, were considerably higher than those in the LR group. Drug sensitivity prediction and results of molecular docking revealed that Rigosertib targeted the prognostic genes MAP3K1. HYPOTHEMYCIN and AMG900 effectively targeted JUN. CONCLUSION Our project suggested that the prognostic model with apoptotic features can effectively predict prognosis in CCA patients, proffering prognostic biomarkers and potential therapeutic targets for CCA patients.
Collapse
Affiliation(s)
- Peng Shen
- Department of Hepatological surgery, People's Hospital of Qu Zhou, Quzhou City, Zhejiang Province 324000, China
| | - Yinsheng Shi
- Department of Hepatological surgery, People's Hospital of Qu Zhou, Quzhou City, Zhejiang Province 324000, China
| | - Pengcheng Xu
- Department of Hepatological surgery, People's Hospital of Qu Zhou, Quzhou City, Zhejiang Province 324000, China
| | - Linbin Rao
- Department of Hepatological surgery, People's Hospital of Qu Zhou, Quzhou City, Zhejiang Province 324000, China
| | - Zhengfei Wang
- Department of Hepatological surgery, People's Hospital of Qu Zhou, Quzhou City, Zhejiang Province 324000, China
| | - Junjie Jiang
- Department of Hepatological surgery, People's Hospital of Qu Zhou, Quzhou City, Zhejiang Province 324000, China
| | - Meiling Weng
- Department of Medical Oncology, People's Hospital of Qu Zhou, No. 100 Minjiang Avenue, Quzhou City, Zhejiang Province 324000, China.
| |
Collapse
|
8
|
Wang H, She X, Xu Q, Zhou X, Tang Q, Wei H, Huang T, Liang F. Linagliptin's impact on lymphatic barrier and lymphangiogenesis in oral cancer with high glucose. Oral Dis 2024; 30:4195-4208. [PMID: 38376102 DOI: 10.1111/odi.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVES Uncertainties remain regarding the effect of elevated glucose levels on lymphatic metastasis of cancer cells. Our study elucidated the mechanisms linking high glucose to lymphangiogenesis and lymphatic barrier-related factors and investigated the protective role of linagliptin against lymphatic barrier dysfunction. MATERIALS AND METHODS A CAL-27-LEC co-culture system was established. Sodium fluorescein permeability assay observed lymphatic endothelial cell permeability. Western blotting and RT-qPCR detected protein and mRNA expression under different conditions, respectively. CCK-8, scratch wound healing, and transwell assays revealed cell migration and proliferation. Tube formation experiment tested capacity for endothelial tube formation. Immunohistochemical staining analyzed tissue sections from 43 oral cancer individuals with/without diabetes. RESULTS In high-glucose co-culture system, we observed increased lymphatic barrier permeability and decreased expression of ZO-1 and occludin, two tight-junction proteins; conversely, the expression of PAR2, a high permeability-related protein, was increased. Following linagliptin treatment, the expression levels of VEGF-C, VEGFR-3, and PAR2 decreased, while those of ZO-1 and occludin increased. Considerably higher levels of LYVE-1 expression in individuals with diabetes than in those without diabetes. CONCLUSIONS By ameliorating the high glucose-induced disruption of the lymphatic endothelial barrier, linagliptin may reduce lymphangiogenesis and exhibit an inhibitory effect on lymphatic metastasis in oral cancer patients with diabetes.
Collapse
Affiliation(s)
- Hongyu Wang
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao She
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiongdong Xu
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xingyu Zhou
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Qinchao Tang
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Huakun Wei
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Tianjing Huang
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Feixin Liang
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
9
|
Bi Y, Ying X, Chen W, Wu J, Kong C, Hu W, Fang S, Yu J, Zhai M, Jiang C, Chen M, Shen L, Ji J, Tu J. Glycerophospholipid-driven lipid metabolic reprogramming as a common key mechanism in the progression of human primary hepatocellular carcinoma and cholangiocarcinoma. Lipids Health Dis 2024; 23:326. [PMID: 39354487 PMCID: PMC11443871 DOI: 10.1186/s12944-024-02298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
Metabolic reprogramming, a key mechanism regulating the growth and recurrence of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), still lacks effective clinical strategies for its integration into the precise screening of primary liver cancer. This study utilized ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry to conduct a comprehensive, non-targeted metabolomics analysis, revealing significant upregulation of lipid metabolites such as phosphatidylcholine and lysophosphatidylcholine in patients with HCC and CCA, particularly within the glycerophospholipid metabolic pathway. Hematoxylin and eosin and immunohistochemical staining demonstrated marked upregulation of phospholipase A2 in tumor tissues, further emphasizing the potential of lipid metabolism as a therapeutic target and its important part in the course of cancer. This work provides a new viewpoint for addressing the clinical challenges associated with HCC and CCA, laying the groundwork for the broad application of early diagnosis and personalized treatment strategies, and ultimately aiming to provide tailored and precise therapeutic options for patients.
Collapse
Affiliation(s)
- Yanran Bi
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Xihui Ying
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Wanbin Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Jiahao Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Chunli Kong
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Weiming Hu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Junchao Yu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Mengqian Zhai
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Chengli Jiang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui, 323000, China.
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China.
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China.
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China.
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China.
| |
Collapse
|
10
|
Zhang P, Wang X, Li R, Li X, Cheng K, Cao D. A case report: deep and durable response to low-dose lenvatinib and tislelizumab in an elderly patient with advanced intrahepatic cholangiocarcinoma. Front Pharmacol 2024; 15:1447582. [PMID: 39391699 PMCID: PMC11464426 DOI: 10.3389/fphar.2024.1447582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Background Older patients with advanced cholangiocarcinoma lack systemic therapy standards. These people have a high risk of chemotherapy, accompanied by adverse reactions and even discontinuation of treatment. Case presentation We report a 78-year-old female subject with advanced intrahepatic cholangiocarcinoma presenting with unresectable lesions involving the hepatic veins, along with extensive metastatic lymph nodes. After the geriatric assessment, capecitabine was utilized for only one cycle owing to adverse events (AEs). Next, a combination of low-dose lenvatinib and tislelizumab was administrated as a second-line treatment, which resulted in remarkable early tumor shrinkage. The following individual lenvatinib taper enabled a manageable safety profile and durable deep response. A near-complete response was achieved, with the primary tumor significantly reducing from 5.6 cm × 4.7 cm to nearly complete disappearance, accompanied by complete regression of lymph nodes, and both progression-free survival and overall survival exceeding 24 months. Conclusion The case provides valuable insights that could influence future treatment strategies for older patients with advanced cholangiocarcinoma who are unsuitable for chemotherapy. The dose-individualized chemotherapy-free regime of lenvatinib and tislelizumab might be used in similar cases to improve their outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Ke Cheng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Cao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Wang H, Cui W, Yue S, Zhu X, Li X, He L, Zhang M, Yang Y, Wei M, Wu H, Wang S. Malic enzymes in cancer: Regulatory mechanisms, functions, and therapeutic implications. Redox Biol 2024; 75:103273. [PMID: 39142180 PMCID: PMC11367648 DOI: 10.1016/j.redox.2024.103273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Malic enzymes (MEs) are metabolic enzymes that catalyze the oxidation of malate to pyruvate and NAD(P)H. While researchers have well established the physiological metabolic roles of MEs in organisms, recent research has revealed a link between MEs and carcinogenesis. This review collates evidence of the molecular mechanisms by which MEs promote cancer occurrence, including transcriptional regulation, post-transcriptional regulation, post-translational protein modifications, and protein-protein interactions. Additionally, we highlight the roles of MEs in reprogramming energy metabolism, suppressing senescence, and modulating the tumor immune microenvironment. We also discuss the involvement of these enzymes in mediating tumor resistance and how the development of novel small-molecule inhibitors targeting MEs might be a good therapeutic approach. Insights through this review are expected to provide a comprehensive understanding of the intricate relationship between MEs and cancer, while facilitating future research on the potential therapeutic applications of targeting MEs in cancer management.
Collapse
Affiliation(s)
- Huan Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China.
| | - Wanlin Cui
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China.
| | - Song Yue
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Xianglong Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China
| | - Xiaoyan Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China
| | - Lian He
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China
| | - Mingrong Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China
| | - Yan Yang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, No.4, Chongshan Road, Huanggu District, Shenyang, Liaoning Province, PR China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang City, Liaoning Province, PR China.
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China.
| | - Shuo Wang
- Department of Gynecology Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China.
| |
Collapse
|
12
|
Liu B, Peng Y, Su Y, Diao C, Qian J, Zhan X, Cheng R. Transcriptome and metabolome sequencing identifies glutamate and LPAR1 as potential factors of anlotinib resistance in thyroid cancer. Anticancer Drugs 2024; 35:741-751. [PMID: 38820067 DOI: 10.1097/cad.0000000000001626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
OBJECTIVE To explore the mechanism of anlotinib resistance in thyroid carcinoma. METHODS We constructed an anlotinib-resistant thyroid carcinoma cell line and observed the effect of drug resistance on the functional activity of these cell lines. Transcriptome sequencing and metabolomic sequencing combined with biosynthesis analysis were used to explore and screen possible drug resistance regulatory pathways. RESULTS Through transcriptomic sequencing analysis of drug-resistant cell lines, it was found that the differentially expressed genes of drug-resistant strains were enriched mainly in the interleukin 17, transforming growth factor-β, calcium, peroxisome proliferator activated receptor, and other key signaling pathways. A total of 354 differentially expressed metabolic ions were screened using liquid chromatography-mass spectrometry/mass spectrometry to determine the number of metabolic ions in the drug-resistant strains. The results of the Venn diagram correlation analysis showed that glutamate is closely related to multiple pathways and may be an important regulatory factor of anlotinib resistance in thyroid carcinoma. In addition, eight common differentially expressed genes were screened by comparing the gene expression profiling interactive analysis database and sequencing results. Further quantitative real time polymerase chain reaction verification, combined with reports in the literature, showed that LPAR1 may be an important potential target. CONCLUSION This is the first study in which the drug resistance of thyroid cancer to anlotinib was preliminarily discussed. We confirmed that anlotinib resistance in thyroid cancer promotes the progression of malignant biological behavior. We conclude that glutamate may be a potential factor for anlotinib resistance in thyroid cancer and that LPAR1 is also a potentially important target.
Collapse
Affiliation(s)
- Bin Liu
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
- Kunming Medical University, the First Clinical Medical School of Kunming Medical University, Yunnan, China
| | - Ying Peng
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
| | - Yanjun Su
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
| | - Chang Diao
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
| | - Jun Qian
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
| | - Xiangxiang Zhan
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
| | - Ruochuan Cheng
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
| |
Collapse
|
13
|
Li MY, Liu YH, Wei F, Zhang P, Sun XD, Wang M, Du XH, Ye JF, Qiu W, Shi XJ, Ji B, Wang YC, Jiang C, Chai WG, Huang B, Liu XK, Chen QM, Fu Y, Hu XT, Chen LG, He JX, Chai KY, Gou ZM, Yang T, Wang GY, Jiang YF, Fan ZQ, Lv GY. Identification of prognostic biomarkers for cholangiocarcinoma by combined analysis of molecular characteristics of clinical MVI subtypes and molecular subtypes. Genomics 2024; 116:110889. [PMID: 38901654 DOI: 10.1016/j.ygeno.2024.110889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Cholangiocarcinoma (CCA) is widely noted for its high degree of malignancy, rapid progression, and limited therapeutic options. This study was carried out on transcriptome data of 417 CCA samples from different anatomical locations. The effects of lipid metabolism related genes and immune related genes as CCA classifiers were compared. Key genes were derived from MVI subtypes and better molecular subtypes. Pathways such as epithelial mesenchymal transition (EMT) and cell cycle were significantly activated in MVI-positive group. CCA patients were classified into three (four) subtypes based on lipid metabolism (immune) related genes, with better prognosis observed in lipid metabolism-C1, immune-C2, and immune-C4. IPTW analysis found that the prognosis of lipid metabolism-C1 was significantly better than that of lipid metabolism-C2 + C3 before and after correction. KRT16 was finally selected as the key gene. And knockdown of KRT16 inhibited proliferation, migration and invasion of CCA cells.
Collapse
Affiliation(s)
- Ming-Yue Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ya-Hui Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Feng Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao-Dong Sun
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao-Hong Du
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-Feng Ye
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Qiu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao-Ju Shi
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Bai Ji
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ying-Chao Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chao Jiang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wen-Gang Chai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Huang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xing-Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Qing-Min Chen
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Fu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xin-Tong Hu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Li-Guo Chen
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jia-Xue He
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Kai-Yuan Chai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhao-Ming Gou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Tian Yang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China; Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai, China
| | - Guang-Yi Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yan-Fang Jiang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Zhong-Qi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Guo-Yue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
14
|
Zheng Q, Zou T, Wang W, Zhang C, Hu S, Cheng X, Liu R, Wang G, Sun P, Zhou X, Yang B, Xu J, Gao Y, Gu J. Necroptosis-Mediated Synergistic Photodynamic and Glutamine-Metabolic Therapy Enabled by a Biomimetic Targeting Nanosystem for Cholangiocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309203. [PMID: 38837691 PMCID: PMC11304281 DOI: 10.1002/advs.202309203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Indexed: 06/07/2024]
Abstract
Targeted delivery of glutamine metabolism inhibitors holds promise for cholangiocarcinoma therapy, yet effective delivery vehicles remain a challenge. This study reports the development of a biomimetic nanosystem, termed R-CM@MSN@BC, integrating mesoporous organosilicon nanoparticles with reactive oxygen species-responsive diselenide bonds for controlled release of the glutamine metabolism inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide (BPTES) and the photosensitizer Ce6. Erythrocyte membrane coating, engineered with Arg-Gly-Asp (RGD) peptides, not only enhanced biocompatibility but also improved tumor targeting and tissue penetration. Upon laser irradiation, R-CM@MSN@BC executed both photodynamic and glutamine-metabolic therapies, inducing necroptosis in tumor cells and triggering significant immunogenic cell death. Time-of-flight mass cytometry analysis revealed that R-CM@MSN@BC can remodel the immunosuppressive tumor microenvironment by polarizing M1-type macrophages, reducing infiltration of M2-type and CX3CR1+ macrophages, and decreasing T cell exhaustion, thereby increasing the effectiveness of anti-programmed cell death ligand 1 immunotherapy. This strategy proposed in this study presents a viable and promising approach for the treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Qichang Zheng
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Tianhao Zou
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Weimin Wang
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Chen Zhang
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shaobo Hu
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xiang Cheng
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Ran Liu
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Guoliang Wang
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Ping Sun
- Department of Hepatobiliary SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xing Zhou
- Department of Hepatobiliary SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Bing Yang
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jianjun Xu
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yang Gao
- Department of Hepatobiliary SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jinyang Gu
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory of Organ TransplantationMinistry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanHubei430022China
| |
Collapse
|
15
|
Xu L, Zhang Y, Lin Z, Deng X, Ren X, Huang M, Li S, Zhou Q, Fang F, Yang Q, Zheng G, Chen Z, Wu Z, Sun X, Lin J, Shen J, Guo J, Li X, Xue T, Tan J, Lin X, Tan L, Peng H, Shen S, Peng S, Li S, Liang L, Cleary JM, Lai J, Xie Y, Kuang M. FASN-mediated fatty acid biosynthesis remodels immune environment in Clonorchis sinensis infection-related intrahepatic cholangiocarcinoma. J Hepatol 2024; 81:265-277. [PMID: 38508240 DOI: 10.1016/j.jhep.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND & AIMS Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer and is highly lethal. Clonorchis sinensis (C. sinensis) infection is an important risk factor for iCCA. Here we investigated the clinical impact and underlying molecular characteristics of C. sinensis infection-related iCCA. METHODS We performed single-cell RNA sequencing, whole-exome sequencing, RNA sequencing, metabolomics and spatial transcriptomics in 251 patients with iCCA from three medical centers. Alterations in metabolism and the immune microenvironment of C. sinensis-related iCCAs were validated through an in vitro co-culture system and in a mouse model of iCCA. RESULTS We revealed that C. sinensis infection was significantly associated with iCCA patients' overall survival and response to immunotherapy. Fatty acid biosynthesis and the expression of fatty acid synthase (FASN), a key enzyme catalyzing long-chain fatty acid synthesis, were significantly enriched in C. sinensis-related iCCAs. iCCA cell lines treated with excretory/secretory products of C. sinensis displayed elevated FASN and free fatty acids. The metabolic alteration of tumor cells was closely correlated with the enrichment of tumor-associated macrophage (TAM)-like macrophages and the impaired function of T cells, which led to formation of an immunosuppressive microenvironment and tumor progression. Spatial transcriptomics analysis revealed that malignant cells were in closer juxtaposition with TAM-like macrophages in C. sinensis-related iCCAs than non-C. sinensis-related iCCAs. Importantly, treatment with a FASN inhibitor significantly reversed the immunosuppressive microenvironment and enhanced anti-PD-1 efficacy in iCCA mouse models treated with excretory/secretory products from C. sinensis. CONCLUSIONS We provide novel insights into metabolic alterations and the immune microenvironment in C. sinensis infection-related iCCAs. We also demonstrate that the combination of a FASN inhibitor with immunotherapy could be a promising strategy for the treatment of C. sinensis-related iCCAs. IMPACT AND IMPLICATIONS Clonorchis sinensis (C. sinensis)-infected patients with intrahepatic cholangiocarcinoma (iCCA) have a worse prognosis and response to immunotherapy than non-C. sinensis-infected patients with iCCA. The underlying molecular characteristics of C. sinensis infection-related iCCAs remain unclear. Herein, we demonstrate that upregulation of FASN (fatty acid synthase) and free fatty acids in C. sinensis-related iCCAs leads to formation of an immunosuppressive microenvironment and tumor progression. Thus, administration of FASN inhibitors could significantly reverse the immunosuppressive microenvironment and further enhance the efficacy of anti-PD-1 against C. sinensis-related iCCAs.
Collapse
Affiliation(s)
- Lixia Xu
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Ying Zhang
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhilong Lin
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinlang Deng
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoxue Ren
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingle Huang
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shangru Li
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qianying Zhou
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fei Fang
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qingxia Yang
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Gaomin Zheng
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zebin Chen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jie Lin
- Second Department of General Surgery, Shunde Hospital, Southern Medical University, Foshan, China
| | - Jingxian Shen
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianping Guo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianchen Xue
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China; Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Xiaoxuan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Tan
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Peng
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shunli Shen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sui Peng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoqiang Li
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lijian Liang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Jiaming Lai
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
16
|
Kong R, Wang N, Zhou C, Zhou Y, Guo X, Wang D, Shi Y, Wan R, Zheng Y, Lu J. Sanguinarine Induces Necroptosis of HCC by Targeting PKM2 Mediated Energy Metabolism. Cancers (Basel) 2024; 16:2533. [PMID: 39061173 PMCID: PMC11274805 DOI: 10.3390/cancers16142533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUNDS Abnormal metabolism is the hallmark of hepatocellular carcinoma. Targeting energy metabolism has become the major focus of cancer therapy. The natural product, sanguinarine, displays remarkable anti-tumor properties by disturbing energy homeostasis; however, the underlying mechanism has not yet been elucidated. METHODS The anticancer activity of sanguinarine was determined using CCK-8 and colony formation assay. Morphological changes of induced cell death were observed under electron microscopy. Necroptosis and apoptosis related markers were detected using western blotting. PKM2 was identified as the target by transcriptome sequencing. Molecular docking assay was used to evaluate the binding affinity of sanguinarine to the PKM2 molecule. Furthermore, Alb-CreERT2; PKM2loxp/loxp; Rosa26RFP mice was used to construct the model of HCC-through the intervention of sanguinarine in vitro and in vivo-to accurately explore the regulation effect of sanguinarine on cancer energy metabolism. RESULTS Sanguinarine inhibited tumor proliferation, metastasis and induced two modes of cell death. Molecular docking of sanguinarine with PKM2 showed appreciable binding affinity. PKM2 kinase activity and aerobic glycolysis rate declined, and mitochondrial oxidative phosphorylation was inhibited by sanguinarine application; these changes result in energy deficits and lead to necroptosis. Additionally, sanguinarine treatment prevents the translocation of PKM2 into the nucleus and suppresses the interaction of PKM2 with β-catenin; the transcriptional activity of PKM2/β-catenin signaling and its downstream genes were decreased. CONCLUSIONS Sanguinarine showed remarkable anti-HCC activity via regulating energy metabolism by PKM2/β-catenin signaling. On the basis of these investigations, we propose that sanguinarine might be considered as a promising compound for discovery of anti-HCC drugs.
Collapse
Affiliation(s)
- Rui Kong
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Nan Wang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200072, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China;
| | - Chunli Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Yuqing Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Xiaoyan Guo
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
| | - Dongyan Wang
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
| | - Yihai Shi
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China;
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China;
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
| |
Collapse
|
17
|
Chen L, Elizalde M, Dubois LJ, Roeth AA, Neumann UP, Olde Damink SWM, Schaap FG, Alvarez-Sola G. GAL3ST1 Deficiency Reduces Epithelial-Mesenchymal Transition and Tumorigenic Capacity in a Cholangiocarcinoma Cell Line. Int J Mol Sci 2024; 25:7279. [PMID: 39000386 PMCID: PMC11242791 DOI: 10.3390/ijms25137279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Cholangiocarcinoma (CCA), or bile duct cancer, is the second most common liver malignancy, with an increasing incidence in Western countries. The lack of effective treatments associated with the absence of early symptoms highlights the need to search for new therapeutic targets for CCA. Sulfatides (STs), a type of sulfoglycosphingolipids, have been found in the biliary tract, with increased levels in CCA and other types of cancer. STs are involved in protein trafficking and cell adhesion as part of the lipid rafts of the plasma membrane. We aimed to study the role of STs in CCA by the genetic targeting of GAL3ST1, an enzyme involved in ST synthesis. We used the CRISPR-Cas9 system to generate GAL3ST1-deficient TFK1 cells. GAL3ST1 KO cells showed lower proliferation and clonogenic activity and reduced glycolytic activity compared to TFK1 cells. Polarized TFK1 GAL3ST1 KO cells displayed increased transepithelial resistance and reduced permeability compared to TFK1 wt cells. The loss of GAL3ST1 showed a negative effect on growth in 30 out of 34 biliary tract cancer cell lines from the DepMap database. GAL3ST1 deficiency partially restored epithelial identity and barrier function and reduced proliferative activity in CCA cells. Sulfatide synthesis may provide a novel therapeutic target for CCA.
Collapse
Affiliation(s)
- Lin Chen
- Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.C.); (A.A.R.); (U.P.N.); (S.W.M.O.D.); (F.G.S.)
| | - Montserrat Elizalde
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Anjali A. Roeth
- Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.C.); (A.A.R.); (U.P.N.); (S.W.M.O.D.); (F.G.S.)
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, 52074 Aachen, Germany
| | - Ulf P. Neumann
- Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.C.); (A.A.R.); (U.P.N.); (S.W.M.O.D.); (F.G.S.)
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, 52074 Aachen, Germany
| | - Steven W. M. Olde Damink
- Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.C.); (A.A.R.); (U.P.N.); (S.W.M.O.D.); (F.G.S.)
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, 52074 Aachen, Germany
| | - Frank G. Schaap
- Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.C.); (A.A.R.); (U.P.N.); (S.W.M.O.D.); (F.G.S.)
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, 52074 Aachen, Germany
| | - Gloria Alvarez-Sola
- Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.C.); (A.A.R.); (U.P.N.); (S.W.M.O.D.); (F.G.S.)
| |
Collapse
|
18
|
He Y, Yu Q, Ma X, Lv D, Wang H, Qiu W, Chen XF, Jiao Y, Liu Y. A metabolomics approach reveals metabolic disturbance of human cholangiocarcinoma cells after parthenolide treatment. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118075. [PMID: 38513779 DOI: 10.1016/j.jep.2024.118075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tanacetum parthenium (L.) Schultz-Bip, commonly known as feverfew, has been traditionally used to treat fever, migraines, rheumatoid arthritis, and cancer. Parthenolide (PTL), the main bioactive ingredient isolated from the shoots of feverfew, is a sesquiterpene lactone with anti-inflammatory and antitumor properties. Previous studies showed that PTL exerts anticancer activity in various cancers, including hepatoma, cholangiocarcinoma, acute myeloid leukemia, breast, prostate, and colorectal cancer. However, the metabolic mechanism underlying the anticancer effect of PTL remains poorly understood. AIM OF THE STUDY To explore the anticancer activity and underlying mechanism of PTL in human cholangiocarcinoma cells. MATERIAL AND METHODS In this investigation, the effects and mechanisms of PTL on human cholangiocarcinoma cells were investigated via a liquid chromatography/mass spectrometry (LC/MS)-based metabolomics approach. First, cell proliferation and apoptosis were evaluated using cell counting kit-8 (CCK-8), flow cytometry analysis, and western blotting. Then, LC/MS-based metabolic profiling along with orthogonal partial least-squares discriminant analysis (OPLS-DA) has been constructed to distinguish the metabolic changes between the negative control group and the PTL-treated group in TFK1 cells. Next, enzyme-linked immunosorbent assay (ELISA) was applied to investigate the changes of metabolic enzymes associated with significantly alerted metabolites. Finally, the metabolic network related to key metabolic enzymes, metabolites, and metabolic pathways was established using MetaboAnalyst 5.0 and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database. RESULTS PTL treatment could induce the proliferation inhibition and apoptosis of TFK1 in a concentration-dependent manner. Forty-three potential biomarkers associated with the antitumor effect of PTL were identified, which primarily related to glutamine and glutamate metabolism, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arginine biosynthesis, arginine and proline metabolism, glutathione metabolism, nicotinate and nicotinamide metabolism, pyrimidine metabolism, fatty acid metabolism, phospholipid catabolism, and sphingolipid metabolism. Pathway analysis of upstream and downstream metabolites, we found three key metabolic enzymes, including glutaminase (GLS), γ-glutamyl transpeptidase (GGT), and carnitine palmitoyltransferase 1 (CPT1), which mainly involved in glutamine and glutamate metabolism, glutathione metabolism, and fatty acid metabolism. The changes of metabolic enzymes associated with significantly alerted metabolites were consistent with the levels of metabolites, and the metabolic network related to key metabolic enzymes, metabolites, and metabolic pathways was established. PTL may exert its antitumor effect against cholangiocarcinoma by disturbing metabolic pathways. Furthermore, we selected two positive control agents that are considered as first-line chemotherapy standards in cholangiocarcinoma therapy to verify the reliability and accuracy of our metabolomic study on PTL. CONCLUSION This research enhanced our comprehension of the metabolic profiling and mechanism of PTL treatment on cholangiocarcinoma cells, which provided some references for further research into the anti-cancer mechanisms of other drugs.
Collapse
Affiliation(s)
- Yongping He
- School of Pharmacy, Guangxi Medical University, Guangxi, Nanning, 530021, China; School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Department of Pharmacy, The People's Hospital of Chongzuo, Guangxi, Chongzuo, 532200, China
| | - Qianxue Yu
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Xiaoyu Ma
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Diya Lv
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Hui Wang
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Weian Qiu
- School of Pharmacy, Guangxi Medical University, Guangxi, Nanning, 530021, China
| | - Xiao Fei Chen
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Yang Jiao
- School of Pharmacy, Guangxi Medical University, Guangxi, Nanning, 530021, China.
| | - Yue Liu
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| |
Collapse
|
19
|
Liu YY, Li YY, Liu YS, Zhang ZL, Gao YJ. Establishment and validation of a nomogram containing cytokeratin fragment antigen 21-1 for the differential diagnosis of intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Front Oncol 2024; 14:1404799. [PMID: 39007100 PMCID: PMC11239389 DOI: 10.3389/fonc.2024.1404799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Background Our study aimed to develop a nomogram incorporating cytokeratin fragment antigen 21-1 (CYFRA21-1) to assist in differentiating between patients with intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC). Methods A total of 487 patients who were diagnosed with ICC and HCC at Qilu Hospital of Shandong University were included in this study. The patients were divided into a training cohort and a validation cohort based on whether the data collection was retrospective or prospective. Univariate and multivariate analyses were employed to select variables for the nomogram. The discrimination and calibration of the nomogram were evaluated using the area under the receiver operating characteristic curve (AUC) and calibration plots. Decision curve analysis (DCA) was used to assess the nomogram's net benefits at various threshold probabilities. Results Six variables, including CYFRA21-1, were incorporated to establish the nomogram. Its satisfactory discriminative ability was indicated by the AUC (0.972 for the training cohort, 0.994 for the validation cohort), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) values. The Hosmer-Lemeshow test and the calibration plots demonstrated favorable consistency between the nomogram predictions and the actual observations. Moreover, DCA revealed the clinical utility and superior discriminative ability of the nomogram compared to the model without CYFRA21-1 and the model consisting of the logarithm of alpha-fetoprotein (Log AFP) and the logarithm of carbohydrate antigen 19-9 (Log CA19-9). Additionally, the AUC values suggested that the discriminative ability of Log CYFRA21-1 was greater than that of the other variables used as diagnostic biomarkers. Conclusions This study developed and validated a nomogram including CYFRA21-1, which can aid clinicians in the differential diagnosis of ICC and HCC patients.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Yue-Yue Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Yong-Shuai Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Zong-Li Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yan-Jing Gao
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
20
|
Jackson LE, Tomlinson JL, Alva-Ruiz R, Gregory LA, Byeon SK, Abdelrahman AM, Mun DG, Grant CW, Fogarty ZC, Wang C, Roberts LR, Graham RP, Borad MJ, Ilyas SI, Gores GJ, Pandey A, Athreya AP, Smoot RL. Metabolome-wide association identifies altered metabolites and metabolic pathways in the serum of patients with cholangiocarcinoma. JHEP Rep 2024; 6:101068. [PMID: 38882601 PMCID: PMC11179355 DOI: 10.1016/j.jhepr.2024.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 06/18/2024] Open
Abstract
Background & Aims Metabolomic and lipidomic analyses provide an opportunity for novel biological insights. Cholangiocarcinoma (CCA) remains a highly lethal cancer with limited response to systemic, targeted, and immunotherapeutic approaches. Using a global metabolomics and lipidomics platform, this study aimed to discover and characterize metabolomic variations and associated pathway derangements in patients with CCA. Methods Leveraging a biospecimen collection, including samples from patients with digestive diseases and normal controls, global serum metabolomic and lipidomic profiling was performed on 213 patients with CCA and 98 healthy controls. The CCA cohort of patients included representation of intrahepatic, perihilar, and distal CCA tumours. Metabolome-wide association studies utilizing multivariable linear regression were used to perform case-control comparisons, followed by pathway enrichment analysis, CCA subtype analysis, and disease stage analysis. The impact of biliary obstruction was evaluated by repeating analyses in subsets of patients only with normal bilirubin levels. Results Of the 420 metabolites that discriminated patients with CCA from controls, decreased abundance of cysteine-glutathione disulfide was most closely associated with CCA. Additional conjugated bile acid species were found in increased abundance even in the absence of clinically relevant biliary obstruction denoted by elevated serum bilirubin levels. Pathway enrichment analysis also revealed alterations in caffeine metabolism and mitochondrial redox-associated pathways in the serum of patients with CCA. Conclusions The presented metabolomic and lipidomic profiling demonstrated multiple alterations in the serum of patients with CCA. These exploratory data highlight novel metabolic pathways in CCA and support future work in therapeutic targeting of these pathways and the development of a precision biomarker panel for diagnosis. Impact and implications Cholangiocarcinoma (CCA) is a highly lethal hepatobiliary cancer with limited treatment response, highlighting the need for a better understanding of the disease biology. Using a global metabolomics and lipidomics platform, we characterized distinct changes in the serum of 213 patients with CCA compared with healthy controls. The results of this study elucidate novel metabolic pathways in CCA. These findings benefit stakeholders in both the clinical and research realms by providing a foundation for improved disease diagnostics and identifying novel targets for therapeutic design.
Collapse
Affiliation(s)
- Linsey E Jackson
- Center For Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Caroline W Grant
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Zachary C Fogarty
- Department of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Chen Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Mitesh J Borad
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Phoenix, AZ, USA
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center For Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Arjun P Athreya
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Rory L Smoot
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
21
|
Ma K, Chu J, Liu Y, Sun L, Zhou S, Li X, Ji C, Zhang N, Guo X, Liang S, Cui T, Hu Q, Wang J, Liu Y, Liu L. Hepatocellular Carcinoma LINC01116 Outcompetes T Cells for Linoleic Acid and Accelerates Tumor Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400676. [PMID: 38460179 PMCID: PMC11151013 DOI: 10.1002/advs.202400676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Indexed: 03/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with a highly immunosuppressive tumor microenvironment and a typical pattern of disturbances in hepatic lipid metabolism. Long non-coding RNAs are shown to play an important role in the regulation of gene expression, but much remains unknown between tumor microenvironment and lipid metabolism as a bridging molecule. Here, long intergenic nonprotein coding RNA 01116 (LINC01116) acts as this molecular which is frequently upregulated in HCC patients and associated with HCC progression in vitro and in vivo is identified. Mechanistically, LINC01116 stabilizes EWS RNA-binding protein 1 (EWSR1) by preventing RAD18 E3 Ubiquitin Protein Ligase (RAD18) -mediated ubiquitination. The enhanced EWSR1 protein upregulates peroxisome proliferator activated receptor alpha (PPARA) and fatty acid binding protein1 (FABP1) expression, a long-chain fatty acid (LCFA) transporter, and thus cancer cells outcompete T cells for LCFAs, especially linoleic acid, for seeding their own growth, leading to T cell malfunction and HCC malignant progression. In a preclinical animal model, the blockade of LINC01116 leads to enhanced efficacy of anti-PD1 treatment accompanied by increased cytotoxic T cell and decreased exhausted T cell infiltration. Collectively, LINC01116 is an immunometabolic lncRNA and the LINC01116-EWSR1-PPARA-FABP1 axis may be targetable for cancer immunotherapy.
Collapse
Affiliation(s)
- Kun Ma
- Department of General SurgeryKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Junhui Chu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Yufeng Liu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Linmao Sun
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Shuo Zhou
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Xianying Li
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Changyong Ji
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Ning Zhang
- Department of General SurgeryKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Xinyu Guo
- Department of General SurgeryKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Shuhang Liang
- Department of Gastrointestinal SurgeryAnhui Province Key Laboratory of Hepatopancreatobiliary SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Tianming Cui
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Qingsong Hu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Jiabei Wang
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Yao Liu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Lianxin Liu
- Department of General SurgeryKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| |
Collapse
|
22
|
Meng X, Zhou Y, Xu L, Hu L, Wang C, Tian X, Zhang X, Hao Y, Cheng B, Ma J, Wang L, Liu J, Xie R. O-GlcNAcylation Facilitates the Interaction between Keratin 18 and Isocitrate Dehydrogenases and Potentially Influencing Cholangiocarcinoma Progression. ACS CENTRAL SCIENCE 2024; 10:1065-1083. [PMID: 38799671 PMCID: PMC11117311 DOI: 10.1021/acscentsci.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Glycosylation plays a pivotal role in the intricate landscape of human cholangiocarcinoma (CCA), actively participating in key pathophysiological processes driving tumor progression. Among the various glycosylation modifications, O-linked β-N-acetyl-glucosamine modification (O-GlcNAcylation) emerges as a dynamic regulator influencing diverse tumor-associated biological activities. In this study, we employed a state-of-the-art chemical proteomic approach to analyze intact glycopeptides, unveiling the critical role of O-GlcNAcylation in orchestrating Keratin 18 (K18) and its interplay with tricarboxylic acid (TCA) cycle enzymes, specifically isocitrate dehydrogenases (IDHs), to propel CCA progression. Our findings shed light on the mechanistic intricacies of O-GlcNAcylation, revealing that site-specific modification of K18 on Ser 30 serves as a stabilizing factor, amplifying the expression of cell cycle checkpoints. This molecular event intricately fosters cell cycle progression and augments cellular growth in CCA. Notably, the interaction between O-GlcNAcylated K18 and IDHs orchestrates metabolic reprogramming by down-regulating citrate and isocitrate levels while elevating α-ketoglutarate (α-KG). These metabolic shifts further contribute to the overall tumorigenic potential of CCA. Our study thus expands the current understanding of protein O-GlcNAcylation and introduces a new layer of complexity to post-translational control over metabolism and tumorigenesis.
Collapse
Affiliation(s)
- Xiangfeng Meng
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhou
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Lei Xu
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Limu Hu
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Changjiang Wang
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao Tian
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiang Zhang
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yi Hao
- College
of
Chemistry and Molecular Engineering, Peking
University, Beijing 100871, China
| | - Bo Cheng
- School
of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Ma
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
- Collaborative
Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Lei Wang
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jialin Liu
- State
Key Laboratory of Medical Proteomics, Beijing Proteome Research Center,
National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ran Xie
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Beijing
National Laboratory for Molecular Sciences, Beijing 100191, China
| |
Collapse
|
23
|
Wang H, Hu Q, Chen Y, Huang X, Feng Y, Shi Y, Li R, Yin X, Song X, Liang Y, Zhang T, Xu L, Dong G, Jiang F. Ferritinophagy mediates adaptive resistance to EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Nat Commun 2024; 15:4195. [PMID: 38760351 PMCID: PMC11101634 DOI: 10.1038/s41467-024-48433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
Osimertinib (Osi) is a widely used epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). However, the emergence of resistance is inevitable, partly due to the gradual evolution of adaptive resistant cells during initial treatment. Here, we find that Osi treatment rapidly triggers adaptive resistance in tumor cells. Metabolomics analysis reveals a significant enhancement of oxidative phosphorylation (OXPHOS) in Osi adaptive-resistant cells. Mechanically, Osi treatment induces an elevation of NCOA4, a key protein of ferritinophagy, which maintains the synthesis of iron-sulfur cluster (ISC) proteins of electron transport chain and OXPHOS. Additionally, active ISC protein synthesis in adaptive-resistant cells significantly increases the sensitivity to copper ions. Combining Osi with elesclomol, a copper ion ionophore, significantly increases the efficacy of Osi, with no additional toxicity. Altogether, this study reveals the mechanisms of NCOA4-mediated ferritinophagy in Osi adaptive resistance and introduces a promising new therapy of combining copper ionophores to improve its initial efficacy.
Collapse
Affiliation(s)
- Hui Wang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Qianfan Hu
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Yuzhong Chen
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- Department of Oncology, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China
| | - Xing Huang
- Department of Pathology, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China
| | - Yipeng Feng
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Yuanjian Shi
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Rutao Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuewen Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
| | - Xuming Song
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Yingkuan Liang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China
| | - Te Zhang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Lin Xu
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Jiangning District, Nanjing, China
| | - Gaochao Dong
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China.
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China.
| | - Feng Jiang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China.
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China.
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
24
|
Wang H, Cao Y, Gou Y, Wang H, Liang Z, Wu Q, Tan J, Liu J, Li Z, Cui J, Zhang H, Zhang Z. IGF2BP3 promotes glutamine metabolism of endometriosis by interacting with UCA1 to enhances the mRNA stability of GLS1. Mol Med 2024; 30:64. [PMID: 38760723 PMCID: PMC11102260 DOI: 10.1186/s10020-024-00834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Insulin like growth factor II mRNA binding protein 3 (IGF2BP3) has been implicated in numerous inflammatory and cancerous conditions. However, its precise molecular mechanisms in endometriosis (EMs) remains unclear. The aim of this study is to examine the influence of IGF2BP3 on the occurrence and progression of EMs and to elucidate its underlying molecular mechanism. METHODS Efects of IGF2BP3 on endometriosis were confrmed in vitro and in vivo. Based on bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down assays and Fluorescent in situ hybridization (FISH) were used to show the association between IGF2BP3 and UCA1. Single-cell spatial transcriptomics analysis shows the expression distribution of glutaminase 1 (GLS1) mRNA in EMs. Study the effect on glutamine metabolism after ectopic endometriotic stromal cells (eESCs) were transfected with Sh-IGF2BP3 and Sh-UCA1 lentivirus. RESULTS Immunohistochemical staining have revealed that IGF2BP3 was upregulated in ectopic endometriotic lesions (EC) compared to normal endometrial tissues (EN). The proliferation and migration ability of eESCs were greatly reduced by downregulating IGF2BP3. Additionally, IGF2BP3 has been observed to interact with urothelial carcinoma associated 1 (UCA1), leading to increased stability of GLS1 mRNA and subsequently enhancing glutamine metabolism. Results also demonstrated that IGF2BP3 directly interacts with the 3' UTR region of GLS1 mRNA, influencing its expression and stability. Furthermore, UCA1 was able to bind with c-MYC protein, stabilizing c-MYC mRNA and consequently enhancing GLS1 expression through transcriptional promotion. CONCLUSION These discoveries underscored the critical involvement of IGF2BP3 in the elevation and stability of GLS1 mRNA in the context of glutamine metabolism by interacting with UCA1 in EMs. The implications of our study extended to the identification of possible therapeutic targets for individuals with EMs.
Collapse
Affiliation(s)
- Honglin Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Yingying Cao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Yanling Gou
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Zongwen Liang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Qiong Wu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Jiahuan Tan
- Department of Obstetrics and Gynecology, Zhongda Hospital Southeast University (Jiangbei), NanJing, China
| | - Jinming Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Zhi Li
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Jing Cui
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Huiyan Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Zongfeng Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China.
| |
Collapse
|
25
|
Chen Y, Cai F, Liu Y, Fan W, Wang J, Yin G, Ren J, Cao J, Fu Y, Chen J. Construction of BaTiO 3-TiO 2 hollow sphere heterojunctions for enhanced microwave dynamic therapy in cancer treatment. Phys Chem Chem Phys 2024; 26:14131-14139. [PMID: 38690682 DOI: 10.1039/d3cp05472a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Cancer is one of the primary health concerns among humans due to its high incidence rate and lack of effective treatment. Currently, medical techniques to achieve the precise elimination of local cancer lesions with negligible damage to normal tissues are still intensely desired. Herein, we synthesized BaTiO3-TiO2 hollow spheres (BTHSs) for use in microwave dynamic therapy (MWDT) for cancer. Under UV irradiation, BTHSs can mediate the production of multiple reactive oxygen species (ROS), mainly 1O2, which results in a rapid photocatalytic degradation rate (97%), 1.6-fold that of commercial P25. Importantly, the ROS production process can be triggered by microwaves to effectively execute MWDT for cancer. Under microwave irradiation, BTHSs exhibit a remarkable therapeutic effect and slight cytotoxicity. In terms of mechanism, the enhanced ROS production efficiency of BTHSs can be attributed to their unique hollow structure and the formation of a type-II heterojunction by the incorporation of BaTiO3. The hollow structure increases the availability of active sites and enhances light scattering, while the BaTiO3-TiO2 heterojunction enhances the photocatalytic activity of TiO2 through charge transfer and electron-hole separation. Overall, this study provides important insights into the design and optimization of sensitizers for MWDT applications.
Collapse
Affiliation(s)
- Yaodong Chen
- Department of Ultrasonic Imaging, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Fangyu Cai
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Yadong Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Wenwen Fan
- Department of Ultrasonic Imaging, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Jingjie Wang
- Department of Ultrasonic Imaging, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Guolin Yin
- Department of Ultrasonic Imaging, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Jiayi Ren
- Department of Ultrasonic Imaging, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Jingwei Cao
- Department of Ultrasonic Imaging, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Yongming Fu
- School of Physics and Electronic Engineering, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China.
| | - Jie Chen
- Department of Infection Diseases, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
26
|
Wang Y, Peng J, Yang D, Xing Z, Jiang B, Ding X, Jiang C, Ouyang B, Su L. From metabolism to malignancy: the multifaceted role of PGC1α in cancer. Front Oncol 2024; 14:1383809. [PMID: 38774408 PMCID: PMC11106418 DOI: 10.3389/fonc.2024.1383809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
PGC1α, a central player in mitochondrial biology, holds a complex role in the metabolic shifts seen in cancer cells. While its dysregulation is common across major cancers, its impact varies. In some cases, downregulation promotes aerobic glycolysis and progression, whereas in others, overexpression escalates respiration and aggression. PGC1α's interactions with distinct signaling pathways and transcription factors further diversify its roles, often in a tissue-specific manner. Understanding these multifaceted functions could unlock innovative therapeutic strategies. However, challenges exist in managing the metabolic adaptability of cancer cells and refining PGC1α-targeted approaches. This review aims to collate and present the current knowledge on the expression patterns, regulators, binding partners, and roles of PGC1α in diverse cancers. We examined PGC1α's tissue-specific functions and elucidated its dual nature as both a potential tumor suppressor and an oncogenic collaborator. In cancers where PGC1α is tumor-suppressive, reinstating its levels could halt cell proliferation and invasion, and make the cells more receptive to chemotherapy. In cancers where the opposite is true, halting PGC1α's upregulation can be beneficial as it promotes oxidative phosphorylation, allows cancer cells to adapt to stress, and promotes a more aggressive cancer phenotype. Thus, to target PGC1α effectively, understanding its nuanced role in each cancer subtype is indispensable. This can pave the way for significant strides in the field of oncology.
Collapse
Affiliation(s)
- Yue Wang
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Jianing Peng
- Division of Biosciences, University College London, London, United Kingdom
| | - Dengyuan Yang
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Zhongjie Xing
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Bo Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Xu Ding
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Chaoyu Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Bing Ouyang
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Lei Su
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
27
|
Zhong YJ, Luo XM, Liu F, He ZQ, Yang SQ, Ma WJ, Wang JK, Dai YS, Zou RQ, Hu YF, Lv TR, Li FY, Hu HJ. Integrative analyses of bulk and single-cell transcriptomics reveals the infiltration and crosstalk of cancer-associated fibroblasts as a novel predictor for prognosis and microenvironment remodeling in intrahepatic cholangiocarcinoma. J Transl Med 2024; 22:422. [PMID: 38702814 PMCID: PMC11071156 DOI: 10.1186/s12967-024-05238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a highly malignant neoplasm and characterized by desmoplastic matrix. The heterogeneity and crosstalk of tumor microenvironment remain incompletely understood. METHODS To address this gap, we performed Weighted Gene Co-expression Network Analysis (WGCNA) to identify and construct a cancer associated fibroblasts (CAFs) infiltration biomarker. We also depicted the intercellular communication network and important receptor-ligand complexes using the single-cell transcriptomics analysis of tumor and Adjacent normal tissue. RESULTS Through the intersection of TCGA DEGs and WGCNA module genes, 784 differential genes related to CAFs infiltration were obtained. After a series of regression analyses, the CAFs score was generated by integrating the expressions of EVA1A, APBA2, LRRTM4, GOLGA8M, BPIFB2, and their corresponding coefficients. In the TCGA-CHOL, GSE89748, and 107,943 cohorts, the high CAFs score group showed unfavorable survival prognosis (p < 0.001, p = 0.0074, p = 0.028, respectively). Additionally, a series of drugs have been predicted to be more sensitive to the high-risk group (p < 0.05). Subsequent to dimension reduction and clustering, thirteen clusters were identified to construct the single-cell atlas. Cell-cell interaction analysis unveiled significant enhancement of signal transduction in tumor tissues, particularly from fibroblasts to malignant cells via diverse pathways. Moreover, SCENIC analysis indicated that HOXA5, WT1, and LHX2 are fibroblast specific motifs. CONCLUSIONS This study reveals the key role of fibroblasts - oncocytes interaction in the remodeling of the immunosuppressive microenvironment in intrahepatic cholangiocarcinoma. Subsequently, it may trigger cascade activation of downstream signaling pathways such as PI3K-AKT and Notch in tumor, thus initiating tumorigenesis. Targeted drugs aimed at disrupting fibroblasts-tumor cell interaction, along with associated enrichment pathways, show potential in mitigating the immunosuppressive microenvironment that facilitates tumor progression.
Collapse
Affiliation(s)
- Yan-Jie Zhong
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xi-Mei Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Fei Liu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Zhi-Qiang He
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Si-Qi Yang
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Wen-Jie Ma
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jun-Ke Wang
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Yu-Shi Dai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Rui-Qi Zou
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Ya-Fei Hu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Tian-Run Lv
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Fu-Yu Li
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Hai-Jie Hu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
28
|
Zhang C, Qin C. Protein regulator of cytokinesis 1 accentuates cholangiocarcinoma progression via mTORC1-mediated glycolysis. Hum Cell 2024; 37:739-751. [PMID: 38416277 DOI: 10.1007/s13577-024-01032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
This study aimed to investigate the expression of protein regulator of cytokinesis 1 (PRC1) in cholangiocarcinoma (CHOL) and elucidate its potential impact as well as the underlying mechanisms governing the progression of CHOL. In this study, we used CHOL cells (HUCCT1, RBE, and CCLP1) and conducted a series of experiments, including qRT-PCR, cell counting kit-8 assays, EdU assays, flow cytometry, wound healing assays, Transwell assays, western blotting, double luciferase assays, and ELISA. Subsequently, a mouse model was established using cancer cell injections. Haematoxylin-eosin staining, along with Ki67 and TUNEL assays, were employed to assess tissue histopathology, cell proliferation, and apoptosis. Our findings revealed significantly elevated PRC1 expression in CHOL. According to bioinformatics analysis, it was found that the increased PRC1 level is correlated with the high tumour grades, metastases, and unfavourable prognoses. Notably, PRC1 knockdown inhibited cell viability, proliferation, migration, and invasion while promoting apoptosis in CHOL cells. Analysing TCGA-CHOL data and utilising transcription factor prediction tools (hTFtarget and HumanTFDB), we identified that genes positively correlated with PRC1 in TCGA-CHOL intersect with predicted transcription factors, revealing the activation of PRC1 by forkhead box protein M1 (FOXM1). Moreover, PRC1 was found to exert regulatory control over glycolysis and the mammalian target of rapamycin complex 1 (mTORC1) pathway in the context of CHOL based on KEGG and GSEA analysis. Collectively, these results underscore the pivotal role of PRC1 in CHOL progression, wherein it modulates glycolysis and the mTORC1 pathway under the regulatory influence of FOXM1.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, 324 Jingwuwei 7Th Road, Jinan, 250021, Shandong, People's Republic of China
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, 276034, Shandong, People's Republic of China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, 324 Jingwuwei 7Th Road, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
29
|
Cai X, Li X, Liang C, Zhang M, Dong Z, Yu W. The effect of metabolism-related lifestyle and clinical risk factors on digestive system cancers in East Asian populations: a two-sample Mendelian randomization analysis. Sci Rep 2024; 14:9474. [PMID: 38658636 PMCID: PMC11043381 DOI: 10.1038/s41598-024-60122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Metabolic factors play a critical role in the development of digestive system cancers (DSCs), and East Asia has the highest incidence of malignant tumors in the digestive system. We performed a two-sample Mendelian randomization analysis to explore the associations between 19 metabolism-related lifestyle and clinical risk factors and DSCs, including esophageal, gastric, colorectal, hepatocellular, biliary tract, and pancreatic cancer. The causal association was explored for all combinations of each risk factor and each DSC. We gathered information on the instrumental variables (IVs) from various sources and retrieved outcome information from Biobank Japan (BBJ). The data were all from studies of east Asian populations. Finally, 17,572 DSCs cases and 195,745 controls were included. Our analysis found that genetically predicted alcohol drinking was a strong indicator of gastric cancer (odds ratio (OR) = 0.95; 95% confidence interval (CI): 0.93-0.98) and hepatocellular carcinoma (OR = 1.11; 95% CI: 1.05-1.18), whereas coffee consumption had a potential protective effect on hepatocellular carcinoma (OR = 0.69; 95% CI: 0.53-0.90). Triglyceride was potentially associated with a decreased risk of biliary tract cancer (OR = 0.53; 95% CI: 0.34-0.81), and uric acid was associated with pancreatic cancer risk (OR = 0.59; 95% CI: 0.37-0.96). Metabolic syndrome (MetS) was associated with esophageal and gastric cancer. Additionally, there was no evidence for a causal association between other risk factors, including body mass index, waist circumference, waist-to-hip ratio, educational levels, lipoprotein cholesterol, total cholesterol, glycine, creatinine, gout, and Graves' disease, and DSCs. The leave-one-out analysis revealed that the single nucleotide polymorphism (SNP) rs671 from the ALDH2 gene has a disproportionately high contribution to the causal association between alcohol drinking and gastric cancer and hepatocellular carcinoma, as well as the association between coffee consumption and hepatocellular carcinoma. The present study revealed multiple metabolism-related lifestyle and clinical risk factors and a valuable SNP rs671 for DSCs, highlighting the significance of metabolic factors in both the prevention and treatment of DSCs.
Collapse
Affiliation(s)
- Xianlei Cai
- Department of Gastrointestinal Surgery, Ningbo Medical Center Lihuili Hospital, The Lihuili Affiliated Hospital, Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Xueying Li
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, 315000, Zhejiang, China
| | - Chao Liang
- Department of Gastrointestinal Surgery, Ningbo Medical Center Lihuili Hospital, The Lihuili Affiliated Hospital, Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Miaozun Zhang
- Department of Gastrointestinal Surgery, Ningbo Medical Center Lihuili Hospital, The Lihuili Affiliated Hospital, Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Zhebin Dong
- Department of Gastrointestinal Surgery, Ningbo Medical Center Lihuili Hospital, The Lihuili Affiliated Hospital, Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Weiming Yu
- Department of Gastrointestinal Surgery, Ningbo Medical Center Lihuili Hospital, The Lihuili Affiliated Hospital, Ningbo University, Ningbo, 315000, Zhejiang, China.
| |
Collapse
|
30
|
Zhou X, Huang T, Pan H, Du A, Wu T, Lan J, Song Y, Lv Y, He F, Yuan K. Bioinformatics and system biology approaches to determine the connection of SARS-CoV-2 infection and intrahepatic cholangiocarcinoma. PLoS One 2024; 19:e0300441. [PMID: 38648205 PMCID: PMC11034673 DOI: 10.1371/journal.pone.0300441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/27/2024] [Indexed: 04/25/2024] Open
Abstract
INTRODUCTION Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19), has infected millions of individuals worldwide, which poses a severe threat to human health. COVID-19 is a systemic ailment affecting various tissues and organs, including the lungs and liver. Intrahepatic cholangiocarcinoma (ICC) is one of the most common liver cancer, and cancer patients are particularly at high risk of SARS-CoV-2 infection. Nonetheless, few studies have investigated the impact of COVID-19 on ICC patients. METHODS With the methods of systems biology and bioinformatics, this study explored the link between COVID-19 and ICC, and searched for potential therapeutic drugs. RESULTS This study identified a total of 70 common differentially expressed genes (DEGs) shared by both diseases, shedding light on their shared functionalities. Enrichment analysis pinpointed metabolism and immunity as the primary areas influenced by these common genes. Subsequently, through protein-protein interaction (PPI) network analysis, we identified SCD, ACSL5, ACAT2, HSD17B4, ALDOA, ACSS1, ACADSB, CYP51A1, PSAT1, and HKDC1 as hub genes. Additionally, 44 transcription factors (TFs) and 112 microRNAs (miRNAs) were forecasted to regulate the hub genes. Most importantly, several drug candidates (Periodate-oxidized adenosine, Desipramine, Quercetin, Perfluoroheptanoic acid, Tetrandrine, Pentadecafluorooctanoic acid, Benzo[a]pyrene, SARIN, Dorzolamide, 8-Bromo-cAMP) may prove effective in treating ICC and COVID-19. CONCLUSION This study is expected to provide valuable references and potential drugs for future research and treatment of COVID-19 and ICC.
Collapse
Affiliation(s)
- Xinyi Zhou
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyuan Pan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ao Du
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Wu
- NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Jiang Lan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Song
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Lv
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fang He
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Yang CY, Guo LM, Li Y, Wang GX, Tang XW, Zhang QL, Zhang LF, Luo JY. Establishment of a cholangiocarcinoma risk evaluation model based on mucin expression levels. World J Gastrointest Oncol 2024; 16:1344-1360. [PMID: 38660669 PMCID: PMC11037065 DOI: 10.4251/wjgo.v16.i4.1344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 02/25/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a highly malignant cancer, characterized by frequent mucin overexpression. MUC1 has been identified as a critical oncogene in the progression of CCA. However, the comprehensive understanding of how the mucin family influences CCA progression and prognosis is still incomplete. AIM To investigate the functions of mucins on the progression of CCA and to establish a risk evaluation formula for stratifying CCA patients. METHODS Single-cell RNA sequencing data from 14 CCA samples were employed for elucidating the roles of mucins, complemented by bioinformatic analyses. Subsequent validations were conducted through spatial transcriptomics and immunohistochemistry. The construction of a risk evaluation model utilized the least absolute shrinkage and selection operator regression algorithm, which was further confirmed by independent cohorts and diverse data types. RESULTS CCA tumor cells with elevated levels of MUC1 and MUC4 showed activated nucleotide metabolic pathways and increased invasiveness. MUC5AC-high cells were found to promote CCA progression through WNT signaling. MUC5B-high cells exhibited robust cellular oxidation activities, leading to resistance against antitumoral treatments. MUC13-high cells were observed to secret chemokines, recruiting and transforming macrophages into the M2-polarized state, thereby suppressing antitumor immunity. MUC16-high cells were found to promote tumor progression through interleukin-1/nuclear factor kappa-light-chain-enhancer of activated B cells signaling upon interaction with neutrophils. Utilizing the expression levels of these mucins, a risk factor evaluation formula for CCA was developed and validated across multiple cohorts. CCA samples with higher risk factors exhibited stronger metastatic potential, chemotherapy resistance, and poorer prognosis. CONCLUSION Our study elucidates the functional mechanisms through which mucins contribute to CCA development, and provides tools for risk stratification in CCA.
Collapse
Affiliation(s)
- Chun-Yuan Yang
- Department of Pathology, Institute of Systems Biomedicine, School of Basic Medical Sciences Peking University, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Li-Mei Guo
- Department of Pathology, Institute of Systems Biomedicine, School of Basic Medical Sciences Peking University, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Yang Li
- Department of Pathology, Institute of Systems Biomedicine, School of Basic Medical Sciences Peking University, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Guang-Xi Wang
- Department of Pathology, Institute of Systems Biomedicine, School of Basic Medical Sciences Peking University, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Xiao-Wei Tang
- Department of Pathology, Institute of Systems Biomedicine, School of Basic Medical Sciences Peking University, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Qiu-Lu Zhang
- Department of Pathology, Institute of Systems Biomedicine, School of Basic Medical Sciences Peking University, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Ling-Fu Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Jian-Yuan Luo
- Department of Medical Genetics, Department of Biochemistry and Biophysics, School of Basic Medical Sciences Peking University, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
32
|
Zhang FB, Gan L, Zhu TH, Ding HQ, Wu CH, Guan YT, Chen XQ. Pan-cancer analyses reveal genomics and clinical outcome association of the fatty acid oxidation regulators in cancer. Heliyon 2024; 10:e28441. [PMID: 38590909 PMCID: PMC10999922 DOI: 10.1016/j.heliyon.2024.e28441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
Background Fatty acid oxidation (FAO) is considered to play a vital part in tumor metabolic reprogramming. But the comprehensive description of FAO dysregulation in tumors has not been unknown. Methods We obtained FAO genes, RNA-seq data and clinical information from the Msigdb, TCGA and GTEx databases. We assessed their prognosis value using univariate cox analysis, survival analysis and Kaplan-Meier curve. We determined the function of FAO genes using gene set variation analysis. The correlation analysis was calculated by corrplot R package. Immunotherapy response was assessed through TIDE scores. The protein expression levels of FAO genes were validated using immunohistochemistry (IHC). Results The FAO scores were highest in COAD but lowest in PCPG. FAO scores were significantly associated with the prognosis of some cancers in OS, DSS, DFI and PFI. Besides, gene set variation analysis identified that FAO scores were related to immune-related pathways, and immune infiltration analysis showed FAO scores were positively related to cancer-associated fibroblasts and various immune-related genes. TIDE scores were significantly decreased in ACC, CHOL, ESCA, GBM, LAML, SARC, SKCM and THCA compared with normal samples, while it was significantly increased in BLCA, LUAD, LUSC, PCPG, PRAD and STAD. Besides, most FAO genes were downregulated in pan-cancer compared with normal samples. Moreover, we found copy number variation (CNV) of FAO genes played a positive role in their mRNA expression, while methylation was negative. We determined FAO genes were closely related to some drugs in pan-cancer. Conclusions FAO score is a novel and promising factor for predicting outcomes.
Collapse
Affiliation(s)
- Fu-bin Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Lei Gan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Tian-hong Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Hui-qing Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Cheng-hao Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China
| | - Yu-tao Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Xue-qin Chen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| |
Collapse
|
33
|
Barbato A, Piscopo F, Salati M, Pollastro C, Evangelista L, Ferrante L, Limongello D, Brillante S, Iuliano A, Reggiani-Bonetti L, Salatiello M, Iaccarino A, Pisapia P, Malapelle U, Troncone G, Indrieri A, Dominici M, Franco B, Carotenuto P. A MiR181/Sirtuin1 regulatory circuit modulates drug response in biliary cancers. Clin Exp Med 2024; 24:74. [PMID: 38598008 PMCID: PMC11006774 DOI: 10.1007/s10238-024-01332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Despite recent advances, biliary tract cancer (BTC) remains one of the most lethal tumor worldwide due to late diagnosis, limited therapeutic strategies and resistance to conventional therapies. In recent years, high-throughput technologies have enabled extensive genome, and transcriptome sequencing unveiling, among others, the regulatory potential of microRNAs (miRNAs). Compelling evidence shown that miRNA are attractive therapeutic targets and promising candidates as biomarkers for various therapy-resistant tumors. The analysis of miRNA profile successfully identified miR-181c and -181d as significantly downregulated in BTC patients. Low miR-181c and -181d expression levels were correlated with worse prognosis and poor treatment efficacy. In fact, progression-free survival analysis indicated poor survival rates in miR-181c and -181d low expressing patients. The expression profile of miR-181c and -181d in BTC cell lines revealed that both miRNAs were dysregulated. Functional in vitro experiments in BTC cell lines showed that overexpression of miR-181c and -181d affected cell viability and increased sensitivity to chemotherapy compared to controls. In addition, by using bioinformatic tools we showed that the miR-181c/d functional role is determined by binding to their target SIRT1 (Sirtuin 1). Moreover, BTC patients expressing high levels of miR-181 and low SIRT1 shown an improved survival and treatment response. An integrative network analysis demonstrated that, miR-181/SIRT1 circuit had a regulatory effect on several important metabolic tumor-related processes. Our study demonstrated that miR-181c and -181d act as tumor suppressor miRNA in BTC, suggesting the potential use as therapeutic strategy in resistant cancers and as predictive biomarker in the precision medicine of BTC.
Collapse
Affiliation(s)
- Anna Barbato
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
| | - Fabiola Piscopo
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
| | - Massimiliano Salati
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41125, Modena, Italy
| | - Carla Pollastro
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
| | - Lorenzo Evangelista
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Luigi Ferrante
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Davide Limongello
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Simona Brillante
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- IRGB, Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Antonella Iuliano
- Department of Mathematics, Computer Science and Economics (DIMIE), University of Basilicata, 85100, Potenza, Italy
| | - Luca Reggiani-Bonetti
- Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, 41125, Modena, Italy
| | - Maria Salatiello
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Alessia Indrieri
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- IRGB, Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41125, Modena, Italy
| | - Brunella Franco
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, 80078, Naples, Italy
| | - Pietro Carotenuto
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy.
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
34
|
Li L, Liu S, Wang Q, Wang Y, Yu G. Hepatic artery infusion chemotherapy with systemic capecitabine and camrelizumab for treating unresectable hilar cholangiocarcinoma: An initial investigation of efficacy and safety. J Cancer Res Ther 2024; 20:578-583. [PMID: 38687927 DOI: 10.4103/jcrt.jcrt_1549_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 02/02/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE This study aimed to evaluate the efficacy and safety of sequential treatment of continuous transcatheter hepatic artery infusion chemotherapy (HAIC) with systemic capecitabine monotherapy and camrelizumab for treating unresectable hilar cholangiocarcinoma (HCCA). METHODS This study retrospectively analyzed patients with unresectable HCCA admitted to Linyi Cancer Hospital in Shandong Province from October 2019 to December 2021. All enrolled patients were treated with HAIC (mFOLFOX7) + camrelizumab for 2-6 cycles and administered systemic therapy with capecitabine and camrelizumab. The objective response rate (ORR), disease control rate (DCR), and adverse reactions of patients were assessed. The Kaplan-Meier method was used to describe overall survival (OS), and univariate and multivariate Cox regression models were utilized to analyze the influencing factors of OS. RESULTS This study included 34 patients, ORR was 61.76% (21/34), and DCR was 97.06% (33/34) after two HAIC cycles. The median follow-up time was 17.5 months, with an average of 18.32 ± 8.06 months, and the median OS was 20.0 months. HAIC-related adverse reactions included mainly gastrointestinal symptoms and hematological toxicity caused by chemotherapy drugs, all of which were grades 1-2. Further, adverse events for camrelizumab treatment included fatigue, skin rash, and hypothyroidism, all of which were grade <3. Cox regression analysis revealed that the periductal infiltrating type of growth pattern indicated a worse OS, whereas more HAIC cycles (5 ~ 6) were a protective factor for OS. CONCLUSION HAIC sequentially combined with systemic capecitabine chemotherapy and a programmed death-1 inhibitor displayed favorable effects for unresectable HCCA, with controllable adverse reactions.
Collapse
Affiliation(s)
- Long Li
- Qingdao Medical College of Qingdao University, No. 1, Ningde Road, Qingdao 266073, Shandong Province, China
- Interventional Medicine Center, Linyi Cancer Hospital, Intersection of Zhicheng Road and Zhongsheng Street, Linyi 276034, Shandong Province, China
| | - Song Liu
- Interventional Medicine Center, Linyi Cancer Hospital, Intersection of Zhicheng Road and Zhongsheng Street, Linyi 276034, Shandong Province, China
- Graduate School of Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshun District, Dalian, 116044, Liaoning Province, China
| | - Qingdong Wang
- Interventional Medicine Center, Linyi Cancer Hospital, Intersection of Zhicheng Road and Zhongsheng Street, Linyi 276034, Shandong Province, China
| | - Yanhua Wang
- Qingdao Medical College of Qingdao University, No. 1, Ningde Road, Qingdao 266073, Shandong Province, China
- Interventional Medicine Center, Affiliated Hospital of Qingdao University, No. 369, Shanghai Road, Pingdu City, Qingdao 266073, Shandong Province, China
| | - Guangji Yu
- Interventional Medicine Center, Linyi Cancer Hospital, Intersection of Zhicheng Road and Zhongsheng Street, Linyi 276034, Shandong Province, China
| |
Collapse
|
35
|
Yuwei X, Bingzi D, Zhaowei S, Yujie F, Wei Z, Kun L, Kui L, Jingyu C, Chengzhan Z. FEN1 promotes cancer progression of cholangiocarcinoma by regulating the Wnt/β-catenin signaling pathway. Dig Liver Dis 2024; 56:695-704. [PMID: 37648642 DOI: 10.1016/j.dld.2023.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE Cholangiocarcinoma (CHOL) comprises a cluster of highly heterogeneous malignant biliary tumors. Flap endonuclease-1 (FEN1) is a member of the Rad2 structure-specific nuclease family. This study aimed to explore the biological functions and mechanisms of FEN1 in CHOL. METHODS FEN1 expression was analyzed in tissues of patients with CHOL and FEN1 mutations. We observe the influence of FEN1 on cellular proliferation, migration, and invasion, as well as on DNA damage repair and glycolysis. Western blotting was performed to determine the regulatory mechanism of FEN1 in CHOL progression. RESULTS FEN1 was highly expressed in the cancer tissues of CHOL patients. The high mutation rate of FEN1 in CHOL tissues was mainly due to the amplified repeats. FEN1 promotes the proliferation, migration, and invasion of HUCCT1 and QBC939 cells. In addition, FEN1 induced DNA damage repair and aerobic glycolysis in CHOL cells. FEN1 also promoted xenograft tumor growth in vivo. Moreover, we showed that FEN1 mediated the epithelial-mesenchymal transition (EMT) of CHOL. FEN1-mediated EMT was found to be transduced by the Wnt/β-catenin signaling pathway. CONCLUSION FEN1 was significantly overexpressed in CHOL tissues, and FEN1 regulates the progression of CHOL through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xie Yuwei
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Dong Bingzi
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Sun Zhaowei
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Feng Yujie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Zhao Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Li Kun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Liu Kui
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Cao Jingyu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong 266000, China.
| | - Zhu Chengzhan
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong 266000, China.
| |
Collapse
|
36
|
Cantallops Vilà P, Ravichandra A, Agirre Lizaso A, Perugorria MJ, Affò S. Heterogeneity, crosstalk, and targeting of cancer-associated fibroblasts in cholangiocarcinoma. Hepatology 2024; 79:941-958. [PMID: 37018128 DOI: 10.1097/hep.0000000000000206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/25/2022] [Indexed: 04/06/2023]
Abstract
Cholangiocarcinoma (CCA) comprises diverse tumors of the biliary tree and is characterized by late diagnosis, short-term survival, and chemoresistance. CCAs are mainly classified according to their anatomical location and include diverse molecular subclasses harboring inter-tumoral and intratumoral heterogeneity. Besides the tumor cell component, CCA is also characterized by a complex and dynamic tumor microenvironment where tumor cells and stromal cells crosstalk in an intricate network of interactions. Cancer-associated fibroblasts, one of the most abundant cell types in the tumor stroma of CCA, are actively involved in cholangiocarcinogenesis by participating in multiple aspects of the disease including extracellular matrix remodeling, immunomodulation, neo-angiogenesis, and metastasis. Despite their overall tumor-promoting role, recent evidence indicates the presence of transcriptional and functional heterogeneous CAF subtypes with tumor-promoting and tumor-restricting properties. To elucidate the complexity and potentials of cancer-associated fibroblasts as therapeutic targets in CCA, this review will discuss the origin of cancer-associated fibroblasts, their heterogeneity, crosstalk, and role during tumorigenesis, providing an overall picture of the present and future perspectives toward cancer-associated fibroblasts targeting CCA.
Collapse
Affiliation(s)
| | - Aashreya Ravichandra
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, Munich, Germany
| | - Aloña Agirre Lizaso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
- CIBERehd, Institute of Health Carlos III, Madrid, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Silvia Affò
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
37
|
Ye C, Sun Q, Yan J, Xue D, Xu J, Ma H, Li F. Development of fatty acid metabolism score based on gene signature for predicting prognosis and immunotherapy response in colon cancer. Clin Transl Oncol 2024; 26:630-643. [PMID: 37480430 DOI: 10.1007/s12094-023-03282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
PURPOSE Metabolic reprogramming is a novel hallmark and therapeutic target of cancer. Our study aimed to establish fatty acid metabolism-associated scores based on gene signature and investigated its effects on immunotherapy in colon cancer. METHODS Gene expression and clinical information were collected from Gene Expression Omnibus (GEO) database to identify a gene signature by non-negative matrix factorization (NMF) clustering and Cox regression analysis. Subsequently, we constructed the fatty acid metabolism score (FA-score) model by principal component analysis (PCA) and explored its relativity of prognosis and the response to immunotherapy in colon cancer. Finally, the Cancer Genome Atlas (TCGA) database was introduced and in vitro study was performed for verification. RESULTS The FA-score-high group had a higher level of fatty acid metabolism and was associated with worse patient overall survival. Significantly, FA-score correlated closely with the biomarkers of immunotherapy, and the FA-score-high group had a poorer therapeutic efficacy of immune checkpoint blockade. In vitro experiments demonstrated that ACSL5 may be a critical metabolic regulatory target. CONCLUSIONS Our study provided a comprehensive analysis of the heterogeneity of fatty acid metabolism in colon cancer. We highlighted the potential clinical utility of fatty acid metabolism-related genes to be biomarkers of colon cancer prognosis and targets to improve the effect of immunotherapy.
Collapse
Affiliation(s)
- Changchun Ye
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qi Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jun Yan
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dong Xue
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiarui Xu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Haiyun Ma
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fanni Li
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
38
|
Zeng C, Han S, Pan Y, Huang Z, Zhang B, Zhang B. Revisiting the chaperonin T-complex protein-1 ring complex in human health and disease: A proteostasis modulator and beyond. Clin Transl Med 2024; 14:e1592. [PMID: 38363102 PMCID: PMC10870801 DOI: 10.1002/ctm2.1592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Disrupted protein homeostasis (proteostasis) has been demonstrated to facilitate the progression of various diseases. The cytosolic T-complex protein-1 ring complex (TRiC/CCT) was discovered to be a critical player in orchestrating proteostasis by folding eukaryotic proteins, guiding intracellular localisation and suppressing protein aggregation. Intensive investigations of TRiC/CCT in different fields have improved the understanding of its role and molecular mechanism in multiple physiological and pathological processes. MAIN BODY In this review, we embark on a journey through the dynamic protein folding cycle of TRiC/CCT, unraveling the intricate mechanisms of its substrate selection, recognition, and intriguing folding and assembly processes. In addition to discussing the critical role of TRiC/CCT in maintaining proteostasis, we detail its involvement in cell cycle regulation, apoptosis, autophagy, metabolic control, adaptive immunity and signal transduction processes. Furthermore, we meticulously catalogue a compendium of TRiC-associated diseases, such as neuropathies, cardiovascular diseases and various malignancies. Specifically, we report the roles and molecular mechanisms of TRiC/CCT in regulating cancer formation and progression. Finally, we discuss unresolved issues in TRiC/CCT research, highlighting the efforts required for translation to clinical applications, such as diagnosis and treatment. CONCLUSION This review aims to provide a comprehensive view of TRiC/CCT for researchers to inspire further investigations and explorations of potential translational possibilities.
Collapse
Affiliation(s)
- Chenglong Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Binhao Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ Transplantation, Ministry of EducationWuhanChina
- Key Laboratory of Organ Transplantation, National Health CommissionWuhanChina
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhanChina
| |
Collapse
|
39
|
Xue W, Wu K, Guo X, Chen C, Huang T, Li L, Liu B, Chang H, Zhao J. The pan-cancer landscape of glutamate and glutamine metabolism: A comprehensive bioinformatic analysis across 32 solid cancer types. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166982. [PMID: 38065270 DOI: 10.1016/j.bbadis.2023.166982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
Glutamine metabolism is a hallmark of cancer metabolism, which matters in the progression of the tumor. This synthetic study conducted a large-scale systematic analysis at the pan-cancer level on the glutamate and glutamine metabolism (GGM) across 32 solid tumors from the TCGA database. The glutamine metabolism activity was quantified through a scoring system. This study revealed that the GGM score in tumor tissues was up-regulated in 13 cancer types (BCLA, BRCA, COAD, KICH, KIRP, LUAD, LUSC, PAAD, PRAD, READ, STAD, THYM, UCEC) and down-regulated in 4 cancer types (CHOL, GBM, LIHC, THCA), exhibiting tissue specificity. The mRNA expression levels of glutamine metabolism-related genes were relatively high, and GLUL exhibited the highest expression level. The expression levels were up-regulated with copy number amplification. ALDH18A1, PYCR1, and PYCR2 show a significant upregulation in protein levels in cancer tissues compared to normal tissues, making them potential pan-cancer therapeutic targets. For the TME related to glutamine metabolism, the GGM score exhibited significant immune and stromal environment inhibitory effects in all involved tumors. Up-regulated GGM score indicated the widespread promotion of drug resistance at the pan-cancer level. GGM score and glutamine metabolism-related genes signature tended to be risk factors for the overall survival of cancer patients.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Medical School, Huanghe Science and Technology University, Zhengzhou 450052, China.
| | - Kai Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaona Guo
- Medical School, Huanghe Science and Technology University, Zhengzhou 450052, China
| | - Chengxin Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tao Huang
- Medical School, Huanghe Science and Technology University, Zhengzhou 450052, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Hao Chang
- Department of Cancer Research, Hanyu Biomed Center Beijing, Beijing 102488, China.
| | - Jie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
40
|
Liu F, Liu Y, Hao X, Liu B, Yan X, Li A, Jiang P, Huang W, Liu SM, Yuan Y. Altered bile metabolome and its diagnostic potential for biliopancreatic malignancies. Clin Chim Acta 2024; 554:117777. [PMID: 38220138 DOI: 10.1016/j.cca.2024.117777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/01/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Due to the difficulty of pathological sampling, the clinical differentiation between benign and malignant biliopancreatic diseases remains challenging. Endoscopic retrograde cholangiopancreatography (ERCP) is used to investigate biliary diseases, enabling the collection of bile. This study assessed potential metabolic alterations in biliopancreatic malignancies by exploring changes in the bile metabolome and the diagnostic potential of bile metabolome analysis. METHODS A total of 264 bile samples were collected from patients who were divided into a discovery cohort (n = 85) and a validation cohort (n = 179). Untargeted metabolomic analysis was used in the discovery cohort, while targeted metabolomic analysis was used in the validation cohort for further investigation of the differentially abundant metabolites. RESULTS The untargeted metabolomic analysis revealed that the metabolic changes associated with biliopancreatic malignancies occurred mainly in lipid metabolites, among which fatty acid metabolism was most significantly altered, and differentially abundant metabolites identified in the discovery cohort were mainly enriched in unsaturated fatty acid synthesis and linolenic acid synthesis pathways. Analysis of free fatty acid (FFA) metabolism in the validation cohort revealed that the FFA levels and related indicators verified the abnormal fatty acid metabolism associated with biliopancreatic malignancies. The combined model for biliopancreatic malignancies based on the fatty acid indexes and clinical test results improved the diagnostic performance of current clinical level. Then, we used machine learning to define three different FFA metabolic clusters of biliopancreatic malignancies, and survival analysis showed significant differences in prognostic outcomes among the three clusters. CONCLUSIONS This study found metabolic alterations in biliopancreatic malignancies based on bile samples, which may provide new insights for the clinical diagnosis and prognostic assessment of biliopancreatic malignancies.
Collapse
Affiliation(s)
- Fusheng Liu
- Department of Hepatobiliary & Pancreatic Surgery Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Yingyi Liu
- Department of Hepatobiliary & Pancreatic Surgery Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Xingyuan Hao
- Department of Hepatobiliary & Pancreatic Surgery Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Bin Liu
- Department of Hepatobiliary & Pancreatic Surgery Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Xuyun Yan
- Department of Hepatobiliary & Pancreatic Surgery Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Anling Li
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China
| | - Ping Jiang
- Department of Hepatobiliary & Pancreatic Surgery Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Weihua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, Hubei, PR China.
| |
Collapse
|
41
|
Lin J, Rao D, Zhang M, Gao Q. Metabolic reprogramming in the tumor microenvironment of liver cancer. J Hematol Oncol 2024; 17:6. [PMID: 38297372 PMCID: PMC10832230 DOI: 10.1186/s13045-024-01527-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024] Open
Abstract
The liver is essential for metabolic homeostasis. The onset of liver cancer is often accompanied by dysregulated liver function, leading to metabolic rearrangements. Overwhelming evidence has illustrated that dysregulated cellular metabolism can, in turn, promote anabolic growth and tumor propagation in a hostile microenvironment. In addition to supporting continuous tumor growth and survival, disrupted metabolic process also creates obstacles for the anticancer immune response and restrains durable clinical remission following immunotherapy. In this review, we elucidate the metabolic communication between liver cancer cells and their surrounding immune cells and discuss how metabolic reprogramming of liver cancer impacts the immune microenvironment and the efficacy of anticancer immunotherapy. We also describe the crucial role of the gut-liver axis in remodeling the metabolic crosstalk of immune surveillance and escape, highlighting novel therapeutic opportunities.
Collapse
Affiliation(s)
- Jian Lin
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongning Rao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Mao Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Qiang Gao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
42
|
Li D, Cao D, Sun Y, Cui Y, Zhang Y, Jiang J, Cao X. The roles of epigallocatechin gallate in the tumor microenvironment, metabolic reprogramming, and immunotherapy. Front Immunol 2024; 15:1331641. [PMID: 38348027 PMCID: PMC10859531 DOI: 10.3389/fimmu.2024.1331641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Cancer, a disease that modern medicine has not fully understood and conquered, with its high incidence and mortality, deprives countless patients of health and even life. According to global cancer statistics, there were an estimated 19.3 million new cancer cases and nearly 10 million cancer deaths in 2020, with the age-standardized incidence and mortality rates of 201.0 and 100.7 per 100,000, respectively. Although remarkable advancements have been made in therapeutic strategies recently, the overall prognosis of cancer patients remains not optimistic. Consequently, there are still many severe challenges to be faced and difficult problems to be solved in cancer therapy today. Epigallocatechin gallate (EGCG), a natural polyphenol extracted from tea leaves, has received much attention for its antitumor effects. Accumulating investigations have confirmed that EGCG can inhibit tumorigenesis and progression by triggering apoptosis, suppressing proliferation, invasion, and migration, altering tumor epigenetic modification, and overcoming chemotherapy resistance. Nevertheless, its regulatory roles and biomolecular mechanisms in the immune microenvironment, metabolic microenvironment, and immunotherapy remain obscure. In this article, we summarized the most recent updates about the effects of EGCG on tumor microenvironment (TME), metabolic reprogramming, and anti-cancer immunotherapy. The results demonstrated EGCG can promote the anti-cancer immune response of cytotoxic lymphocytes and dendritic cells (DCs), attenuate the immunosuppression of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), and inhibit the tumor-promoting functions of tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), and various stromal cells including cancer-associated fibroblasts (CAFs), endothelial cells (ECs), stellate cells, and mesenchymal stem/stromal cells (MSCs). Additionally, EGCG can suppress multiple metabolic reprogramming pathways, including glucose uptake, aerobic glycolysis, glutamine metabolism, fatty acid anabolism, and nucleotide synthesis. Finally, EGCG, as an immunomodulator and immune checkpoint blockade, can enhance immunotherapeutic efficacy and may be a promising candidate for antitumor immunotherapy. In conclusion, EGCG plays versatile regulatory roles in TME and metabolic reprogramming, which provides novel insights and combined therapeutic strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yangyu Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Jing Jiang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Zheng X, Shi Y, Kulabieke D, Wang Z, Cheng Y, Qian J. Prognostic significance of 18F-Fluorodeoxyglucose positron-emission tomography parameters in patients with biliary tract cancers: a meta-analysis. BMC Med Imaging 2024; 24:9. [PMID: 38166643 PMCID: PMC10763065 DOI: 10.1186/s12880-023-01182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Numerous previous studies have assessed the prognostic role of 18F-fluorodeoxyglucose positron-emission tomography (18F FDG PET) in patients with biliary tract cancer (BTC), but those results were inconsistent. The present study aims to determine the predictive value of 18F FDG PET in BTC patients via a meta-analysis. METHODS The underlying studies related to 18F FDG PET and BTC patients` outcomes were searched and identified in the online databases. The interested parameters include total lesion glycolysis (TLG), metabolic tumor volume (MTV), primary tumor and metastatic lymph node (LN) maximum standardized uptake value (SUVmax), as well as change of SUVmax (ΔSUVmax) during treatment. Overall survival (OS), disease-free survival (DFS), and progression-free survival (PFS) were considered as the primary endpoints. Hazard ratio (HR) and corresponding 95% confidence intervals (CIs) were defined as the effective measure and calculated by a pooled analysis. Publication bias was assessed by funnel plot, Bagg's and Egger's tests. RESULTS Totally, 23 studies involving 1478 patients were included in the present meta-analysis. After a pooled analysis, it revealed that a high SUVmax was significantly associated with a poor OS (HR:2.07, 95%CI: 1.74-2.46, P = 0.000) and DFS (HR: 2.28, 95%CI: 1.53-3.41, P = 0.000). In addition, an increased TLG level contributed to a shorter OS (HR:1.91, 95%CI: 1.26-2.90, P = 0.002) and DFS (HR: 4.34, 95%CI: 1.42-13.27, P = 0.01). Moreover, we confirmed that an elevated MTV was significantly associated with increased mortality (HR:2.04, 95%CI:1.26-3.31, P = 0.004) and disease relapse (HR: 3.88, 95%CI:1.25-12.09, P = 0.019) risks. Besides, the present study uncovered that increased ΔSUVmax could predict poor OS (HR:1.26, 95%CI:1.06-1.50, P = 0.008) instead of PFS (HR: 1.96, 95%CI: 0.82-4.72, P = 0.280). Lastly, we found that LN SUVmax did not link to OS (HR: 1.49, 95%CI: 0.83-2.68, P = 0.178). No obvious publication bias was detected in the present study. CONCLUSION 18F FDG PET parameters, including SUVmax, TLG, MTV, and ΔSUVmax, could be applied as convenient and reliable factors for predicting BTC patients` outcomes.
Collapse
Affiliation(s)
- Xia Zheng
- Oncology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, No.155 Hanzhong Avenue, Nanjing, 210000, China
| | - Yue Shi
- Dermatology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, No.155 Hanzhong Avenue, Nanjing, 210000, China
| | - Delida Kulabieke
- Oncology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, No.155 Hanzhong Avenue, Nanjing, 210000, China
| | - Zihao Wang
- Oncology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, No.155 Hanzhong Avenue, Nanjing, 210000, China
| | - Ying Cheng
- Oncology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, No.155 Hanzhong Avenue, Nanjing, 210000, China
| | - Jun Qian
- Oncology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, No.155 Hanzhong Avenue, Nanjing, 210000, China.
| |
Collapse
|
44
|
Chen J, Tang Y, Qin D, Yu X, Tong H, Tang C, Tang Z. ALOX5 acts as a key role in regulating the immune microenvironment in intrahepatic cholangiocarcinoma, recruiting tumor-associated macrophages through PI3K pathway. J Transl Med 2023; 21:923. [PMID: 38124204 PMCID: PMC10734103 DOI: 10.1186/s12967-023-04804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is poorly treated due to the presence of an inhibitory immune microenvironment. Tumor-associated macrophages (TAM) are an important component of TME. ALOX5 is an important lipid metabolism enzyme in cancer progression, but the mechanism by which it regulates TAM to promote ICC progression is unknown. The aim of this study was to investigate the potential mechanism of TAM regulation by ALOX5 and the translational effect of targeting ALOX5. METHODS In this study, we investigated the association between the spatial localization of epithelial cells and TAMs by combining scRNA-seq analysis with multiplex immunofluorescence analysis. Through bulk sequencing analysis and spatial analysis, lipid metabolism genes closely related to TAM infiltration were screened. In vitro co-culture model was constructed to verify that ALOX5 and its downstream metabolite LTB4 promote M2 macrophage migration. Bulk sequencing after co-culture combined with single-cell analysis was performed to identify key pathways for up-regulation of M2 macrophage migration. Finally, the effect of CSF1R inhibitor (PLX3397) combined with ALOX5 inhibitor (Zileuton) in vivo was investigated by by xenograft tumor formation experiment in nude mice. RESULTS ALOX5 in ICC cells was a key lipid metabolism gene affecting the infiltration of M2 macrophages in TME. Mechanically, LTB4, a metabolite downstream of ALOX5, recruited M2 macrophages to migrate around tumor cells by binding to BLT1/BLT2 and activating the PI3K pathway, which ultimately lead to the promotion of ICC progression. Targeting CSF1R in combination with ALOX5 inhibitor effectively reduced tumor volume and M2 macrophage infiltration abundance. CONCLUSION In ICC, LTB4, a metabolite secreted by ALOX5 of epithelial cells, binded to BLT1/BLT2 on TAM surface to activate PI3K pathway and promote TAM migration, thus promoting ICC progression. Targeting CSF1R in combination with ALOX5 inhibitor for ICC is a promising combination therapy modality.
Collapse
Affiliation(s)
- Jialu Chen
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yue Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Delong Qin
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaopeng Yu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Huanjun Tong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chengwei Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
| | - Zhaohui Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China.
- Department of Blood Transfusion, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
45
|
Chen Y, He J, Jin T, Zhang Y, Ou Y. Functional enrichment analysis of LYSET and identification of related hub gene signatures as novel biomarkers to predict prognosis and immune infiltration status of clear cell renal cell carcinoma. J Cancer Res Clin Oncol 2023; 149:16905-16929. [PMID: 37740762 PMCID: PMC10645642 DOI: 10.1007/s00432-023-05280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/10/2023] [Indexed: 09/25/2023]
Abstract
PURPOSE The latest research shows that the lysosomal enzyme trafficking factor (LYSET) encoded by TMEM251 is a key regulator of the amino acid metabolism reprogramming (AAMR) and related pathways significantly correlate with the progression of some tumors. The purpose of this study was to explore the potential pathways of the TMEM251 in clear cell renal cell carcinoma (ccRCC) and establish related predictive models based on the hub genes in these pathways for prognosis and tumor immune microenvironment (TIME). METHODS We obtained mRNA expression data and clinical information of ccRCC samples from The Cancer Genome Atlas (TCGA), E-MATE-1980, and immunotherapy cohorts. Single-cell sequencing data (GSE152938) were downloaded from the Gene Expression Omnibus (GEO) database. We explored biological pathways of the LYSET by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of TMEM251-coexpression genes. The correlation of LYSET-related pathways with the prognosis was conducted by Gene Set Variation Analysis (GSVA) and unsupervised cluster analysis. The least absolute shrinkage and selection operator (LASSO) and Cox regression were used to identify hub prognostic genes and construct the risk score. Immune infiltration analysis was conducted by CIBERSORTx and Tumor Immune Estimation Resource (TIMER) databases. The predictive value of the risk score and hub prognostic genes on immunotherapy responsiveness was analyzed through the tumor mutation burden (TMB) score, immune checkpoint expression, and survival analysis. Immunohistochemistry (IHC) was finally used to verify the expressions of hub prognostic genes. RESULTS The TMEM251 was found to be significantly correlated with some AAMR pathways. AAGAB, ENTR1, SCYL2, and WDR72 in LYSET-related pathways were finally identified to construct a risk score model. Immune infiltration analysis showed that LYSET-related gene signatures significantly influenced the infiltration of some vital immune cells such as CD4 + cells, NK cells, M2 macrophages, and so on. In addition, the constructed risk score was found to be positively correlated with TMB and some common immune checkpoint expressions. Different predictive values of these signatures for Nivolumab therapy responsiveness were also uncovered in immunotherapy cohorts. Finally, based on single-cell sequencing analysis, the TMEM251 and the hub gene signatures were found to be expressed in tumor cells and some immune cells. Interestingly, IHC verification showed a potential dual role of four hub genes in ccRCC progression. CONCLUSION The novel predictive biomarkers we built may benefit clinical decision-making for ccRCC. Our study may provide some evidence that LYSET-related gene signatures could be novel potential targets for treating ccRCC and improving immunotherapy efficacy. Our nomogram might be beneficial to clinical choices, but the results need more experimental verifications in the future.
Collapse
Affiliation(s)
- Yuxing Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Jinhang He
- First Clinical Medical College, Chongqing Medical University, Chongqing, China
| | - Tian Jin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ye Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
46
|
Yang F, Hilakivi-Clarke L, Shaha A, Wang Y, Wang X, Deng Y, Lai J, Kang N. Metabolic reprogramming and its clinical implication for liver cancer. Hepatology 2023; 78:1602-1624. [PMID: 36626639 PMCID: PMC10315435 DOI: 10.1097/hep.0000000000000005] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Cancer cells often encounter hypoxic and hypo-nutrient conditions, which force them to make adaptive changes to meet their high demands for energy and various biomaterials for biomass synthesis. As a result, enhanced catabolism (breakdown of macromolecules for energy production) and anabolism (macromolecule synthesis from bio-precursors) are induced in cancer. This phenomenon is called "metabolic reprogramming," a cancer hallmark contributing to cancer development, metastasis, and drug resistance. HCC and cholangiocarcinoma (CCA) are 2 different liver cancers with high intertumoral heterogeneity in terms of etiologies, mutational landscapes, transcriptomes, and histological representations. In agreement, metabolism in HCC or CCA is remarkably heterogeneous, although changes in the glycolytic pathways and an increase in the generation of lactate (the Warburg effect) have been frequently detected in those tumors. For example, HCC tumors with activated β-catenin are addicted to fatty acid catabolism, whereas HCC tumors derived from fatty liver avoid using fatty acids. In this review, we describe common metabolic alterations in HCC and CCA as well as metabolic features unique for their subsets. We discuss metabolism of NAFLD as well, because NAFLD will likely become a leading etiology of liver cancer in the coming years due to the obesity epidemic in the Western world. Furthermore, we outline the clinical implication of liver cancer metabolism and highlight the computation and systems biology approaches, such as genome-wide metabolic models, as a valuable tool allowing us to identify therapeutic targets and develop personalized treatments for liver cancer patients.
Collapse
Affiliation(s)
- Flora Yang
- BA/MD Joint Admission Scholars Program, University of Minnesota, Minneapolis, Minnesota
| | - Leena Hilakivi-Clarke
- Food Science and Nutrition Section, The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Aurpita Shaha
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yibin Deng
- Department of Urology, Masonic Cancer Center, The University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jinping Lai
- Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, California
| | - Ningling Kang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| |
Collapse
|
47
|
Li X, Tan Y, Liu B, Guo H, Zhou Y, Yuan J, Wang F. Mitochondrial Lipid Metabolism Genes as Diagnostic and Prognostic Indicators in Hepatocellular Carcinoma. Curr Genomics 2023; 24:110-127. [PMID: 37994323 PMCID: PMC10662382 DOI: 10.2174/1389202924666230914110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 08/09/2023] [Indexed: 11/24/2023] Open
Abstract
Background Due to the heterogeneity of Hepatocellular carcinoma (HCC), there is an urgent need for reliable diagnosis and prognosis. Mitochondria-mediated abnormal lipid metabolism affects the occurrence and progression of HCC. Objective This study aims to investigate the potential of mitochondrial lipid metabolism (MTLM) genes as diagnostic and independent prognostic biomarkers for HCC. Methods MTLM genes were screened from the Gene Expression Omnibus (GEO) and Gene Set Enrichment Analysis (GSEA) databases, followed by an evaluation of their diagnostic values in both The Cancer Genome Atlas Program (TCGA) and the Affiliated Cancer Hospital of Guangxi Medical University (GXMU) cohort. The TCGA dataset was utilized to construct a gene signature and investigate the prognostic significance, immune infiltration, and copy number alterations. The validity of the prognostic signature was confirmed through GEO, International Cancer Genome Consortium (ICGC), and GXMU cohorts. Results The diagnostic receiver operating characteristic (ROC) curve revealed that eight MTLM genes have excellent diagnostic of HCC. A prognostic signature comprising 5 MTLM genes with robust predictive value was constructed using the lasso regression algorithm based on TCGA data. The results of the Stepwise regression model showed that the combination of signature and routine clinical parameters had a higher area under the curve (AUC) compared to a single risk score. Further, a nomogram was constructed to predict the survival probability of HCC, and the calibration curves demonstrated a perfect predictive ability. Finally, the risk score also unveiled the different immune and mutation statuses between the two different risk groups. Conclusion MTLT-related genes may serve as diagnostic and prognostic biomarkers for HCC as well as novel therapeutic targets, which may be beneficial for facilitating further understanding the molecular pathogenesis and providing potential therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Xuejing Li
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Research Center for Biomedical Photonics, Institute of Life Science, Guangxi Medical University, Nanning, China
| | - Ying Tan
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Research Center for Biomedical Photonics, Institute of Life Science, Guangxi Medical University, Nanning, China
| | - Bihan Liu
- Research Center for Biomedical Photonics, Institute of Life Science, Guangxi Medical University, Nanning, China
| | - Houtian Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yongjian Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Jianhui Yuan
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Research Center for Biomedical Photonics, Institute of Life Science, Guangxi Medical University, Nanning, China
| | - Feng Wang
- Research Center for Biomedical Photonics, Institute of Life Science, Guangxi Medical University, Nanning, China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| |
Collapse
|
48
|
Tan J, Shu M, Liao J, Liang R, Liu S, Kuang M, Peng S, Xiao H, Zhou Q. Identification and validation of a plasma metabolomics-based model for risk stratification of intrahepatic cholangiocarcinoma. J Cancer Res Clin Oncol 2023; 149:12365-12377. [PMID: 37436513 DOI: 10.1007/s00432-023-05119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Liver resection is the mainstay of curative treatment for intrahepatic cholangiocarcinoma (ICC) while the postoperative prognosis varies greatly, with no recognized biomarker. We aimed to identify the plasma metabolomic biomarkers that could be used for preoperative risk stratification of ICC patients. METHODS 108 eligible ICC patients who underwent radical surgical resection between August 2012 and October 2020 were enrolled. Patients were randomly divided into a discovery cohort (n = 76) and a validation cohort (n = 32) by 7:3. Metabolomics profiling of preoperative plasma was performed and clinical data were collected. The least absolute shrinkage and selection operator (LASSO) regression, Cox regression, and receiver operating characteristic (ROC) analyses were used to screen and validate the survival-related metabolic biomarker panel and construct a LASSO-Cox prediction model. RESULTS 10 survival-related metabolic biomarkers were used for construction of a LASSO-Cox prediction model. In the discovery and validation cohorts, the LASSO-Cox prediction model achieved an AUC of 0.876 (95%CI: 0.777-0.974) and 0.860 (95%CI: 0.711-1.000) in evaluating 1-year OS of ICC patients, respectively. The OS of ICC patients in the high-risk group was significantly worse than that in the low-risk group (discovery cohort, p < 0.0001; validation cohort: p = 0.041). Also, the LASSO-Cox risk score (HR 2.43, 95%CI: 1.81-3.26, p < 0.0001) was a significant independent risk factor associated with OS. CONCLUSIONS The LASSO-Cox prediction model has potential as an important tool in evaluating the OS of ICC patients after surgical resection and can be used as prediction tools to implement the best treatment options that could result in better outcomes.
Collapse
Affiliation(s)
- Jiehui Tan
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, Guangdong Province, China
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, Guangdong Province, China
| | - Man Shu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, Guangdong Province, China
| | - Junbin Liao
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, Guangdong Province, China
| | - Ruiming Liang
- Department of Medical Statistics, Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, Guangdong Province, China
| | - Shiyi Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, Guangdong Province, China
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, Guangdong Province, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, Guangdong Province, China
- Zhongshan School of Medicine, Sun Yat-Sen University, No. 58, Zhongshan Road 2, 510080, Guangzhou, People's Republic of China
| | - Sui Peng
- Department of Medical Statistics, Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, Guangdong Province, China
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, Guangdong Province, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, Guangdong Province, China
| | - Han Xiao
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Road 2, 510080, Guangzhou, People's Republic of China.
| | - Qian Zhou
- Department of Medical Statistics, Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, Guangdong Province, China.
- Zhongshan School of Medicine, Sun Yat-Sen University, No. 58, Zhongshan Road 2, 510080, Guangzhou, People's Republic of China.
| |
Collapse
|
49
|
Wang H, Wang Z, Zhang Z, Liu J, Hong L. β-Sitosterol as a Promising Anticancer Agent for Chemoprevention and Chemotherapy: Mechanisms of Action and Future Prospects. Adv Nutr 2023; 14:1085-1110. [PMID: 37247842 PMCID: PMC10509430 DOI: 10.1016/j.advnut.2023.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Cancer is one of the primary causes of death worldwide, and its incidence continues to increase yearly. Despite significant advances in research, the search for effective and nontoxic preventive and therapeutic agents remains greatly important. Cancer is a multimodal disease, where various mechanisms play significant roles in its occurrence and progression. This highlights the need for multitargeted approaches that are not only safe and inexpensive but also provide effective alternatives for current therapeutic regimens. β-Sitosterol (SIT), the most abundant phytosterol found in various plant foods, represents such an option. Preclinical evidence over the past few decades has overwhelmingly shown that SIT exhibits multiple anticancer activities against varied cancers, such as liver, cervical, colon, stomach, breast, lung, pancreatic, and prostate cancers, in addition to leukemia, multiple myeloma, melanoma, and fibrosarcoma. In this article, we present the latest advances and perspectives on SIT-systematically summarizing its antitumor mechanisms of action into 7 main sections and combining current challenges and prospects-for its use as a promising agent for cancer prevention and treatment. In particular, SIT plays a role in cancer prevention and treatment mainly by enhancing apoptosis, inducing cell cycle arrest, bidirectionally regulating oxidative stress, improving metabolic reprogramming, inhibiting invasion and metastasis, modulating immunity and inflammation, and combating drug resistance. Although SIT holds such great promise, the poor aqueous solubility and bioavailability coupled with low targeting efficacy limit its therapeutic efficacy and clinical application. Further research on novel drug delivery systems may improve these deficiencies. Overall, through complex and pleiotropic mechanisms, SIT has good potential for tumor chemoprevention and chemotherapy. However, no clinical trials have yet proven this potential. This review provides theoretical basis and rationality for the further design and conduct of clinical trials to confirm the anticancer activity of SIT.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zihui Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingchun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
50
|
Liang X, Tang S, Song Y, Li D, Zhang L, Wang S, Duan Y, Du H. Effect of 2-deoxyglucose-mediated inhibition of glycolysis on migration and invasion of HTR-8/SVneo trophoblast cells. J Reprod Immunol 2023; 159:104123. [PMID: 37487312 DOI: 10.1016/j.jri.2023.104123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
The proper invasion of trophoblasts is crucial for embryo implantation and placental development, which is helpful to establish a correct maternal-fetal relationship. Trophoblasts can produce a large amount of lactate through aerobic glycolysis during early pregnancy. Lactate creates a low pH microenvironment around the embryo to help uterine tissue decompose and promote the invasion of trophoblasts. The purpose of this study is to reveal the the potential mechanism of aerobic glycolysis regulating the invasiveness of trophoblasts by investigating the effect of 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor, on the biological function of HTR-8/SVneo trophoblast cells, the expressions of epithelial mesenchymal transformation (EMT) markers and invasion-related factors. 2-DG could inhibit the aerobic glycolysis of trophoblasts and decrease the activity of trophoblasts in a dose-dependent manner. Moreover, 2-DG inhibited the EMT of HTR-8/SVneo cells, down-regulated the expression of invasion-related factors matrix metalloproteinase 2/9 (MMP2/9) and up-regulated the expression of tissue inhibitor of matrix metalloproteinases 1/2 (TIMP1/2), thus inhibiting cell migration and invasion. This paper provides a foundation in the significance of aerobic glycolysis of trophoblasts in the process of invasion, and also provides ideas and insights for the promotion of embryo implantation.
Collapse
Affiliation(s)
- Xiao Liang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Siling Tang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yajing Song
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Zhang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shuhui Wang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yancang Duan
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China; Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive Disease, Shijiazhuang, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang, China
| | - Huilan Du
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China; Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive Disease, Shijiazhuang, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang, China.
| |
Collapse
|