1
|
Jiang L, Yi R, Chen H, Wu S. Quercetin alleviates metabolic-associated fatty liver disease by tuning hepatic lipid metabolism, oxidative stress and inflammation. Anim Biotechnol 2025; 36:2442351. [PMID: 39718035 DOI: 10.1080/10495398.2024.2442351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
The natural flavonoid quercetin, which exhibits a range of biological activities, has been implicated in liver disease resistance in recent research. In vivo study attesting to quercetin's protective effect against metabolic-associated fatty liver disease (MAFLD) is inadequate, however. Here, our investigation explored the potential benefits of quercetin in preventing MAFLD in C57BL/6 mice fed a high-fat diet (HFD). The results revealed that quercetin ameliorated the aberrant enhancement of body and liver weight. The hepatic histological anomalie induced by MAFLD were also mitigated by quercetin. HFD-induced imbalance in serum LDL, HDL, AST, ALT, TG, and LDH was mitigated by quercetin. Mechanically, we found that quercetin improved lipid metabolism by reducing lipogenesis proteins including ACC, FASN, and SREBP-1c and enhancing β-oxidation proteins including PPARα and CPT1A. In vitro study demonstrated that quercetin regulated hepatic lipid metabolism by targeting SREBP-1c and PPARα. Additionally, quercetin enhanced the antioxidant capacity in HFD-treated mice by downregulating Nrf2 and HO-1 expressions and upregulating SOD and GPX1 expressions. The hyper-activation of inflammation was also restored by quercetin via eliminating the phosphorylation of IκBα and NF-κB p65. Collectively, our observations highlight that quercetin exerts hepatoprotective properties in MAFLD mice by regulating hepatic lipid metabolism, oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Ling Jiang
- Department of Endocrinology and Metabolism, People's Hospital of Yichun City, Yichun, Jiangxi, People's Republic of China
| | - Rong Yi
- Department of Endocrinology and Metabolism, People's Hospital of Yichun City, Yichun, Jiangxi, People's Republic of China
| | - Huan Chen
- Department of Endocrinology and Metabolism, People's Hospital of Yichun City, Yichun, Jiangxi, People's Republic of China
| | - Shuwu Wu
- Department of Endocrinology and Metabolism, People's Hospital of Yichun City, Yichun, Jiangxi, People's Republic of China
| |
Collapse
|
2
|
Tuffs C, Dupovac M, Richter K, Holten S, Schaschinger T, Marg O, Poljo A, Tasdemir AN, Harnoss JM, Billeter A, Schneider M, Strowitzki MJ. Genetic Loss of HIF-Prolyl-Hydroxylase 1, but Not Pharmacological Inhibition, Mitigates Hepatic Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:480-493. [PMID: 39566823 DOI: 10.1016/j.ajpath.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
Liver fibrosis is characterized by excessive deposition of extracellular matrix due to chronic inflammation of the liver. Hepatic stellate cells (HSCs) become activated and produce increased amounts of extracellular matrix. Loss of HIF-prolyl-hydroxylase 1 (PHD1) attenuates HSC activation and fibrotic tissue remodeling in a murine model of biliary liver fibrosis. Herein, the protective effect of PHD1 deficiency (PHD1-/-) in an additional (toxic) model of liver fibrosis was validated and the effect of dimethyloxalylglycine (DMOG), a pan-HIF-prolyl-hydroxylase inhibitor, on the development of liver fibrosis, was evaluated. Liver fibrosis was induced utilizing carbon tetrachloride in wild-type (WT) and PHD1-/- mice treated with either vehicle or DMOG. To assess fibrosis development, expression of profibrotic genes in the livers was analyzed by Sirius red staining. When compared with WT mice, PHD1-/- mice developed less-severe liver fibrosis. DMOG treatment did not prevent this liver fibrosis. PHD1-/- mice had fewer α-SMA+ cells and less macrophage infiltration compared with WT mice. Expression of profibrogenic and proinflammatory genes was reduced in livers from carbon tetrachloride-exposed PHD1-/- mice. In vitro analyses of PHD1-deficient human HSCs revealed attenuated mRNA levels of profibrotic genes, as well as impaired migration and invasion. Although PHD1 deficiency attenuated activation of HSCs, pharmacologic PHD inhibition did not ameliorate fibrosis development. These data indicate that selective PHD1 inhibitors could prove effective in preventing and treating liver fibrosis.
Collapse
Affiliation(s)
- Christopher Tuffs
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany; Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany
| | - Mareen Dupovac
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Katrin Richter
- Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany; Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | - Sophia Holten
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Thomas Schaschinger
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Oliver Marg
- Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany
| | - Adisa Poljo
- Clarunis University Digestive Healthcare Center Basel, Basel, Switzerland
| | - Ayse Nur Tasdemir
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Jonathan M Harnoss
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany; Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany
| | - Adrian Billeter
- Clarunis University Digestive Healthcare Center Basel, Basel, Switzerland
| | - Martin Schneider
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany; Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany
| | - Moritz J Strowitzki
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany; Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany.
| |
Collapse
|
3
|
Marjot T. New evidence of cross-disease communication between heart and liver. J Hepatol 2025; 82:541-543. [PMID: 39721919 DOI: 10.1016/j.jhep.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024]
Affiliation(s)
- Thomas Marjot
- Oxford Centre for Diabetes Endocrinology and Metabolism (OCDEM), Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, UK; Translational Gastroenterology and Liver Unit (TGLU), Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, UK.
| |
Collapse
|
4
|
Ramachandran P, Tacke F. Exploring the role of macrophages in the pathogenesis of alcohol-associated liver disease. Hepatology 2025; 81:762-764. [PMID: 38889088 DOI: 10.1097/hep.0000000000000976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Affiliation(s)
- Prakash Ramachandran
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
5
|
Dong L, Lou W, Wang J. β-Carotene-loaded cationic nanoparticles ameliorate MASLD via modulating lipid homeostasis and gut microbiome. Food Res Int 2025; 205:115816. [PMID: 40032486 DOI: 10.1016/j.foodres.2025.115816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/19/2025] [Accepted: 01/19/2025] [Indexed: 03/05/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is, increasingly, a major threat to human health, yet without any approved drug. β-carotene (BC) contributes to alleviating several metabolic diseases. However, the bioavailability of BC is hindered by hydrophobicity and environmental sensitivity. Herein, we explore the utilization of cationic lipid-assisted nanoparticles to achieve efficient delivery of BC. In the MASLD model, NP-BC ameliorated the development of metabolic disorders, insulin resistance, inflammatory injury and hepatic steatosis. Transcriptomic analysis showed that NP-BA rectifies various pathways involved in steatosis development by inhibiting the PI3K/AKT/mTOR pathway and PPARγ gene expression. Meanwhile, NP-BC also reshaped the composition of gut microbiota in MASLD mice by reducing the Firmicutes/Bacteroidetes ratio and increasing the abundance of beneficial bacteria. Taken together, our study demonstrates that NP-BC can improve MASLD and may be a promising candidate for treating MASLD.
Collapse
Affiliation(s)
- Lu Dong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenyong Lou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Juan Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
6
|
Mao Y, Xie Z, Zhang X, Fu Y, Yu X, Deng L, Zhang X, Hou B, Wang X, Ma M, Ren F. Ergothioneine Ameliorates Liver Fibrosis by Inhibiting Glycerophospholipids Metabolism and TGF-β/Smads Signaling Pathway: Based on Metabonomics and Network Pharmacology. J Appl Toxicol 2025; 45:514-530. [PMID: 39579000 DOI: 10.1002/jat.4728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Ergothioneine (EGT) is a diet-derived natural sulfur-containing amino acid that exhibits strong anti-oxidant and anti-inflammation activities. Oxidative stress and chronic inflammatory injury are predominant pro-fibrogenic factors. Therefore, EGT may have therapeutic potential against liver fibrosis; however, its underlying mechanism is incompletely understood. This study aimed at investigating the protective effects of EGT on liver fibrosis based on metabonomics and network pharmacology. A mouse model of liver fibrosis was established by intraperitoneal injection with 40% CCl4 solution (2 mL/kg, twice a week) and intragastric administration with EGT (5, 10 mg/kg/d) for six weeks. Results showed that EGT improved liver function by reducing serum levels of ALT (alanine aminotransferase), AST (aspartate aminotransferase), and TBIL (total bilirubin), and alleviated liver fibrosis by reducing LN (laminin) and HyP (hydroxyproline) levels, decreasing expressions of α-SMA (α-smooth muscle actin), Col-I (collagen type I), and Col-III (collagen type III), and improving pathological changes. EGT also significantly inhibited CCl4-induced hepatic inflammation and TGF-β/Smads signaling pathway. Metabolomics identified six key metabolic pathways, such as purine metabolism, glycerophospholipid metabolism, and sphingolipid metabolism, and eight key metabolites, such as xanthine, guanine, ATP, phosphatidylcholine, and sphingosine. Network pharmacology analysis showed that IL-17, cAMP and NF-κB signaling pathways were potential key mechanisms. Integrated analysis revealed that PLA2G2A might be a potential target of EGT against liver fibrosis. EGT may inhibit the glycerophospholipid metabolism through PLA2G2A to inhibit the TGF-β/Smads signaling pathway, thereby alleviating fibrosis. The present study indicates that EGT may be considered a valid therapeutic strategy to regress liver fibrosis, and provides novel insights into the pharmacological mechanism of EGT against liver fibrosis.
Collapse
Affiliation(s)
- Yaping Mao
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Zhenghui Xie
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Xiangxia Zhang
- Department of Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, China
- Department of Morphology, School of Nursing and Health, Qingdao Huanghai University, Qingdao, China
| | - Yu Fu
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Xiaotong Yu
- Department of Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Lili Deng
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Xiu Zhang
- Department of Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Bo Hou
- Department of Morphology, School of Nursing and Health, Qingdao Huanghai University, Qingdao, China
| | - Xiao Wang
- Department of Gastroenterology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Mingyue Ma
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Fu Ren
- Department of Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, China
- Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, Shenyang, China
- Key Laboratory of Phenomics in Shenyang, Shenyang Medical College, Shenyang, China
| |
Collapse
|
7
|
Zhang S, You M, Shen Y, Zhao X, He X, Liu J, Ma N. Improving fatty liver hemorrhagic syndrome in laying hens through gut microbiota and oxylipin metabolism by Bacteroides fragilis: A potential involvement of arachidonic acid. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:182-199. [PMID: 39967692 PMCID: PMC11834063 DOI: 10.1016/j.aninu.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 08/02/2024] [Accepted: 08/18/2024] [Indexed: 02/20/2025]
Abstract
Bacteroides fragilis (B. fragilis), a crucial commensal bacterium within the gut, has shown connections with hepatic lipid metabolism and inflammation regulation. Nonetheless, the role of B. fragilis in the progression of fatty liver hemorrhagic syndrome (FLHS) remains unknown. This study aims to explore the ameliorative effects of B. fragilis on FLHS in laying hens, as well as its underlying mechanisms. This is the first study to employ a chicken FLHS model, combining microbiomics and oxylipin metabolomics to investigate the mechanism of action of intestinal symbiotic bacteria. Exp. 1: 40 laying hens at 25 weeks old were randomly divided into five treatment groups (eight replicates per group and one hen per replicate), including the control group (basal diet), the high-energy and low-protein (HELP) group, and the HELP group with three different levels (108, 109, and 1010 CFU) of B. fragilis. Exp. 2: 18 chickens at 25 weeks old were randomly divided into three treatment groups (six replicates per group and one hen per replicate) including the control group (basal diet), the model group (HELP diet), and the arachidonic acid (AA) group (HELP diet with 0.3% AA). The experiment period of Exp. 1 and Exp. 2 were 8 weeks. B. fragilis significantly improved body weight of seventh week (P = 0.006), liver lipid degeneration, blood lipid levels (triglycerides, cholesterol, and low-density lipoprotein cholesterol; P < 0.05), and liver function (alanine aminotransferase and aminotransferase; P < 0.05) in laying hens. B. fragilis downregulated the expression of lipid synthesis-related genes fatty acid synthase, acetyl-CoA carboxylase, and liver X receptor α, and inflammation-related genes tumor necrosis factor α, interleukin (IL)-1β, IL-6, and IL-8 in the liver of FLHS-affected hens (P < 0.05), while upregulating the expression of lipid oxidation-related genes carnitine palmitoyl transferase-1, peroxisome proliferator activated receptor (PPAR) α, and PPARγ (P < 0.05). The in-depth analysis indicated alterations in oxylipin pathways triggered by B. fragilis, as evidenced by changes in the expression of pivotal genes arachidonate 15-lipoxygenase, arachidonate 5-lipoxygenase (P < 0.05), subsequently causing modifications in relevant metabolites. This included a decrease in pro-inflammatory substances such as 15-oxoETE (P = 0.004), accompanied by an increase in AA (P = 0.008). B. fragilis regulated the homeostasis of intestinal flora by increasing the abundance of Bacteroides and decreasing the abundance of Succinatimonas and Faecalicoccus (P < 0.05). The integrated analysis revealed a robust positive correlation between Bacteroides abundance and AA levels (P = 0.007). This relationship was corroborated through in vitro experiments. Subsequently, the beneficial effect of AA in mitigating FLHS was confirmed in laying hens with FLHS, further supported by reverse transcription-polymerase chain reaction analysis demonstrating gene expression patterns akin to B. fragilis intervention. This study demonstrated that B. fragilis exerts an anti-FLHS effect through modulation of oxylipin metabolism and gut microbiota stability, with a pivotal role played by AA.
Collapse
Affiliation(s)
- Shaobo Zhang
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Manhua You
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Youming Shen
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Xinghua Zhao
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Xin He
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Juxiang Liu
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Ning Ma
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
8
|
Pang Q, Zhou S, Wang Y, Pan H, Wang Z, Qin X, Zhu C, Chen S, Liu H, Hu X, Jin H. GAMG alleviates liver fibrosis through inducing ferroptosis in inflammatory macrophages via the IRF1/SLC7A11 signaling pathway. Redox Biol 2025; 80:103509. [PMID: 39904190 PMCID: PMC11847116 DOI: 10.1016/j.redox.2025.103509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 01/19/2025] [Indexed: 02/06/2025] Open
Abstract
The activation of inflammatory macrophages plays a pivotal role in the development of liver fibrosis (LF). Ferroptosis contributes to the clearance of inflammatory macrophages and the release of profibrotic factors. Glycyrrhetic Acid 3-O-Mono-β-d-glucuronide (GAMG) is a natural compound, the potential role of which on LF remains uncertain. In this study, GAMG treatment significantly reduced hepatocyte steatosis, fibroplasia, inflammatory cell infiltration, and collagen fiber deposition in LF mice. In addition, GAMG remarkably decreased the content of collagen protein and improved liver function indicators. Single-cell RNA sequencing revealed that GAMG significantly affected the changes of macrophage subsets in LF, and Funrich analysis identified IRF1 as a key transcription factor regulating the macrophage genome. IRF1 was significantly increased while ferroptosis related SLC7A11 was significantly down-regulated in GAMG treated inflammatory macrophages. Mass spectrometry metabolomics analysis showed that GAMG significantly affected metabolites associated with LF. In vivo and in vitro experiments further verified that GAMG induced ferroptosis of inflammatory macrophages through the IRF1/SLC7A11 axis, and ultimately alleviated LF. Therefore, GAMG induces ferroptosis of inflammatory macrophages by activating the IRF1/SLC7A11 axis, which provides a new strategy for the treatment of LF.
Collapse
Affiliation(s)
- Qing Pang
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China; Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Shuai Zhou
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China; Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China
| | - Yong Wang
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China; Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China
| | - Hongtao Pan
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China
| | - Zhicheng Wang
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China
| | - Xiliang Qin
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China
| | - Chao Zhu
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China
| | - Shilei Chen
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China
| | - Huichun Liu
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China.
| | - Xiaosi Hu
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China; Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China.
| | - Hao Jin
- Department of Hepatopancreatobiliary Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China; Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China.
| |
Collapse
|
9
|
Steinberg GR, Valvano CM, De Nardo W, Watt MJ. Integrative Metabolism in MASLD and MASH: Pathophysiology and Emerging Mechanisms. J Hepatol 2025:S0168-8278(25)00142-4. [PMID: 40032040 DOI: 10.1016/j.jhep.2025.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/09/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
The liver acts as a central metabolic hub, integrating signals from the gastrointestinal tract and adipose tissue to regulate carbohydrate, lipid, and amino acid metabolism. Gut-derived metabolites, such as acetate and ethanol and non-esterified fatty acids from white adipose tissue (WAT), influence hepatic processes, which rely on mitochondrial function to maintain systemic energy balance. Metabolic dysregulation from obesity, insulin resistance, and type 2 diabetes disrupt these pathways, leading to metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH). This review explores the metabolic fluxes within the gut-adipose tissue-liver axis, focusing on the pivotal role of de novo lipogenesis (DNL), dietary substrates like glucose and fructose, and changes in mitochondrial function during MASLD progression. It highlights the contributions of white adipose tissue insulin resistance and impaired mitochondrial dynamics to hepatic lipid accumulation. Further understanding how the interplay between substrate flux from the gastro-intestinal tract integrates with adipose tissue and intersects with structural and functional alterations to liver mitochondria will be important to identify novel therapeutic targets and advance the treatment of MASLD and MASH.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - Celina M Valvano
- Centre for Metabolism, Obesity and Diabetes Research, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - William De Nardo
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Eslam M, Fan JG, Yu ML, Wong VWS, Cua IH, Liu CJ, Tanwandee T, Gani R, Seto WK, Alam S, Young DY, Hamid S, Zheng MH, Kawaguchi T, Chan WK, Payawal D, Tan SS, Goh GBB, Strasser SI, Viet HD, Kao JH, Kim W, Kim SU, Keating SE, Yilmaz Y, Kamani L, Wang CC, Fouad Y, Abbas Z, Treeprasertsuk S, Thanapirom K, Al Mahtab M, Lkhagvaa U, Baatarkhuu O, Choudhury AK, Stedman CAM, Chowdhury A, Dokmeci AK, Wang FS, Lin HC, Huang JF, Howell J, Jia J, Alboraie M, Roberts SK, Yoneda M, Ghazinian H, Mirijanyan A, Nan Y, Lesmana CRA, Adams LA, Shiha G, Kumar M, Örmeci N, Wei L, Lau G, Omata M, Sarin SK, George J. The Asian Pacific association for the study of the liver clinical practice guidelines for the diagnosis and management of metabolic dysfunction-associated fatty liver disease. Hepatol Int 2025:10.1007/s12072-024-10774-3. [PMID: 40016576 DOI: 10.1007/s12072-024-10774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/28/2024] [Indexed: 03/01/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) affects over one-fourth of the global adult population and is the leading cause of liver disease worldwide. To address this, the Asian Pacific Association for the Study of the Liver (APASL) has created clinical practice guidelines focused on MAFLD. The guidelines cover various aspects of the disease, such as its epidemiology, diagnosis, screening, assessment, and treatment. The guidelines aim to advance clinical practice, knowledge, and research on MAFLD, particularly in special groups. The guidelines are designed to advance clinical practice, to provide evidence-based recommendations to assist healthcare stakeholders in decision-making and to improve patient care and disease awareness. The guidelines take into account the burden of clinical management for the healthcare sector.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia.
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal MedicineCollege of Medicine and Center for Liquid Biopsy and Cohort ResearchFaculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of MedicineSchool of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, Kaohsiung Medical University, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong, China
| | - Ian Homer Cua
- Institute of Digestive and Liver Diseases, St. Luke's Medical Center, Global City, Philippines
| | - Chun-Jen Liu
- Division of Gastroenterology and Hepatology, Department of Internal MedicineHepatitis Research CenterGraduate Institute of Clinical Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tawesak Tanwandee
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rino Gani
- Department of Internal Medicine, Hepatobiliary Division, Dr. Cipto Mangunkusumo National General Hospital, Universitas Indonesia, Pangeran Diponegoro Road No. 71St, Central Jakarta, 10430, Indonesia
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Shahinul Alam
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Dan Yock Young
- Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Saeed Hamid
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Diana Payawal
- Department of Medicine, Cardinal Santos Medical Center, Mandaluyong, Philippines
| | - Soek-Siam Tan
- Department of Hepatology, Selayang Hospital, Batu Caves, Malaysia
| | - George Boon-Bee Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Singapore
- Medicine Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Simone I Strasser
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Hang Dao Viet
- Internal Medicine Faculty, Hanoi Medical University, Hanoi, Vietnam
| | - Jia-Horng Kao
- Graduate Institute of Clinical MedicineDepartment of Internal MedicineHepatitis Research CenterDepartment of Medical Research, National Taiwan University College of Medicine, National Taiwan University, National Taiwan University Hospital, 1 Chang-Te Street, 10002, Taipei, Taiwan
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, 50-1, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Shelley E Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | | | - Chia-Chi Wang
- Buddhist Tzu Chi Medical Foundation and School of Medicine, Taipei Tzu Chi Hospital, Tzu Chi University, Taipei, Taiwan
| | - Yasser Fouad
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University, Cairo, Egypt
| | - Zaigham Abbas
- Department of Hepatogastroenterology, Dr.Ziauddin University Hospital, Clifton, Karachi, Pakistan
| | | | | | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Undram Lkhagvaa
- Department of Health Policy, School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Oidov Baatarkhuu
- Department of Infectious Diseases, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Ashok Kumar Choudhury
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | | | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - A Kadir Dokmeci
- Department of Medicine, Ankara University School of Medicine, Ankara, Turkey
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, 100039, China
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Institute of Clinical Medicine, School of Medicine, Taipei Veterans General Hospital, National Yang-Ming Chiao Tung University, No. 201, Section 2, Shipai RdNo. 155, Section 2, Linong St, Beitou District, Taipei City, 112, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal MedicineCollege of Medicine and Center for Liquid Biopsy and Cohort ResearchFaculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jess Howell
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Clayton, VIC, 3008, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, 3050, Australia
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Melbourne, VIC, 3165, Australia
| | - Jidong Jia
- Liver Research Center, Beijing Key Laboratory of Translational Medicine On Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Mohamed Alboraie
- Department of Internal Medicine, Al-Azhar University, Cairo, 11884, Egypt
| | - Stuart K Roberts
- Department of Gastroenterology and Hepatology, Central Clinical School, The Alfred, Monash University, Melbourne, Australia
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hasmik Ghazinian
- Gastroenterology and Hepatology Department, Yerevan Medical Scientific Center, Yerevan, Armenia
| | - Aram Mirijanyan
- Gastroenterology and Hepatology Department, Yerevan Medical Scientific Center, Yerevan, Armenia
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | | | - Leon A Adams
- Medical School, Faculty of Medicine and Health Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Gamal Shiha
- Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansoura, Egypt
| | - Manoj Kumar
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Necati Örmeci
- Department of Gastroenterohepatology, Istanbul Health and Technology University, Istanbul, Turkey
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - George Lau
- Humanity and Health Medical Group, Humanity and Health Clinical Trial Center, Hong Kong SAR, China
- The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 100039, China
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
- University of Tokyo, Tokyo, Japan
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia
| |
Collapse
|
11
|
Banki K, Perl A. Cell type-specific regulation of the pentose phosphate pathway during development and metabolic stress-driven autoimmune diseases: Relevance for inflammatory liver, renal, endocrine, cardiovascular and neurobehavioral comorbidities, carcinogenesis, and aging. Autoimmun Rev 2025; 24:103781. [PMID: 40010622 DOI: 10.1016/j.autrev.2025.103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
The pathogenesis of autoimmunity is incompletely understood which limits the development of effective therapies. New compelling evidence indicates that the pentose phosphate pathway (PPP) profoundly regulate lineage development in the immune system that are influenced by genetic and environmental factors during metabolic stress underlying the development of autoimmunity. The PPP provides two unique metabolites, ribose 5-phosphate for nucleotide biosynthesis in support of cell proliferation and NADPH for protection against oxidative stress. The PPP operates two separate branches, oxidative (OxPPP) and non-oxidative (NOxPPP). While the OxPPP functions in all organisms, the NOxPPP reflects adaptation to niche-specific metabolic requirements. The OxPPP primarily depends on glucose 6-phosphate dehydrogenase (G6PD), whereas transaldolase (TAL) controls the rate and directionality of metabolic flux though the NOxPPP. G6PD is essential for normal development but its partial deficiency protects from malaria. Although men and mice lacking TAL develop normally, they exhibit liver cirrhosis progressing to hepatocellular carcinoma. Mechanistic target of rapamycin-dependent loss of paraoxonase 1 drives autoimmunity and cirrhosis in TAL deficiency, while hepatocarcinogenesis hinges on polyol pathway activation via aldose reductase (AR). Accumulated polyols, such as erythritol, xylitol, and sorbitol, which are commonly used as non-caloric sweeteners, may act as pro-inflammatory oncometabolites under metabolic stress, such as TAL deficiency. The TAL/AR axis is identified as a checkpoint of pathogenesis and target for treatment of metabolic stress-driven systemic autoimmunity with relevance for inflammatory liver, renal and cardiovascular disorders, diabetes, carcinogenesis, and aging.
Collapse
Affiliation(s)
- Katalin Banki
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, and Pathology, State University of New York Upstate Medical University, Norton College of Medicine, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Andras Perl
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, and Pathology, State University of New York Upstate Medical University, Norton College of Medicine, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
12
|
Hong S, Hong Z, Hao Y, Sun L, Wei H. Metabolic dysfunction-associated fatty liver disease indicates more hepatic fibrosis than nonalcoholic fatty liver disease. Medicine (Baltimore) 2025; 104:e41455. [PMID: 39928810 PMCID: PMC11813007 DOI: 10.1097/md.0000000000041455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 02/12/2025] Open
Abstract
The term metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed based on a redefinition of the nonalcoholic fatty liver disease (NAFLD) criteria. Our study aimed to address the knowledge gap by comparing the diagnostic accuracy of MAFLD and NAFLD criteria in identifying significant fibrosis among patients with hepatic steatosis. A cross-sectional study was conducted on 2626 patients with hepatic steatosis treated at Beijing Ditan Hospital between January 2009 and December 2022. Patients with viral hepatitis were excluded. Significant fibrosis was defined as a Meta-analysis of Histological Data in Viral Hepatitis (METAVIR) score F ≥ 2. MAFLD and NAFLD were diagnosed in 478 and 428 patients, respectively. Clinicopathological characteristics were compared between the MAFLD+ NAFLD- group (patients who met the criteria for MAFLD but not NAFLD) and MAFLD- NAFLD+ group (patients who met the criteria for NAFLD but not MAFLD). A total of 743 patients with histologically verified hepatic steatosis were analyzed. The MAFLD+ NAFLD- group comprised 163 (21.9%) and the MAFLD- NAFLD+ group comprised 113 (15.2%) patients. Patients in the MAFLD+ NAFLD- group were older and more likely to be male and had higher body mass index and liver stiffness levels than those in the MAFLD- NAFLD+ group. The prevalence of significant fibrosis was higher in the MAFLD+ NAFLD- group than in the MAFLD- NAFLD+ group (43.6% vs 15.9%, P < .001). The MAFLD criteria may be a better indicator of fibrosis than the NAFLD criteria. Fibrosis in patients with MAFLD can be determined by metabolic disorders, not excessive alcohol consumption.
Collapse
Affiliation(s)
- Shan Hong
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zifan Hong
- Department of Applied Information, Tomsk State University, Tomsk, Russia
| | - Yiwei Hao
- Department of Medical Records and Statistics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongshan Wei
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Shen D, Cai X, Hu J, Song S, Zhu Q, Ma H, Zhang Y, Ma R, Zhou P, Yang W, Hong J, Zhang D, Li N. Inflammatory Indices and MAFLD Prevalence in Hypertensive Patients: A Large-Scale Cross-Sectional Analysis from China. J Inflamm Res 2025; 18:1623-1638. [PMID: 39925928 PMCID: PMC11806676 DOI: 10.2147/jir.s503648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025] Open
Abstract
Objective Hypertension development and progression are largely influenced by inflammation, which plays a critical role by activating the immune system and causing damage to the vascular endothelium. Metabolic dysfunction-associated fatty liver disease (MAFLD) is also associated with chronic low-grade inflammation, which drives disease progression via metabolic imbalances and adipose tissue dysfunction. This study investigates the relationship between inflammatory indices and MAFLD in hypertensive patients and assesses the predictive accuracy of these indices for MAFLD. Methods We performed a cross-sectional analysis involving 34,303 hypertensive patients from a Chinese hospital-based registry. The diagnosis of MAFLD was established using metabolic dysfunction criteria alongside evidence of hepatic steatosis confirmed through imaging. Complete blood counts were used to calculate inflammatory indices, including the monocyte-to-lymphocyte ratio (MLR), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic inflammatory response index (SIRI), systemic immune-inflammation index (SII), and aggregate index of systemic inflammation (AISI). To assess the relationship between inflammatory indices and MAFLD, multivariable logistic regression was performed with adjustments for potential confounders. The diagnostic performance of these indices was analyzed using receiver operating characteristic (ROC) curves and area under the curve (AUC) calculations. Results Patients with MAFLD exhibited significantly elevated levels of all inflammatory indices compared to those without. After multivariable adjustment, each standard deviation increase in AISI, SIRI, and SII was associated with a 74%, 62%, and 58% increased odds of MAFLD, respectively. The AUC for AISI was 0.659, indicating moderate diagnostic accuracy. The AUCs for SIRI and SII were 0.626 and 0.619, respectively, while NLR, PLR, and MLR had lower AUCs of 0.593, 0.558, and 0.589, respectively. Conclusion In hypertensive patients, inflammatory indices, especially AISI, show a strong association with MAFLD, indicating their potential utility in risk stratification within clinical settings. Further research is needed to evaluate the effectiveness of these markers in the management of MAFLD.
Collapse
Affiliation(s)
- Di Shen
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Xintian Cai
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Junli Hu
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Shuaiwei Song
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Qing Zhu
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Huimin Ma
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Yingying Zhang
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Rui Ma
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Pan Zhou
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Wenbo Yang
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Jing Hong
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Delian Zhang
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Nanfang Li
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
14
|
Wang J, Wang Z, Yu Y, Cheng S, Wu J. Advances in research on metabolic dysfunction-associated steatotic liver disease. Life Sci 2025; 362:123362. [PMID: 39761743 DOI: 10.1016/j.lfs.2024.123362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/13/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
The global increase in obesity-related metabolic disorders has led to metabolic dysfunction-associated steatotic liver disease (MASLD) emerging as one of the most prevalent chronic liver disease worldwide. Despite growing concerns, the exact pathogenesis of MASLD remains unclear and no definitive treatments have been made available. Consequently, the need for comprehensive research on MASLD is more critical than ever. Gaining insight into the mechanisms of the disease can lay the groundwork for identifying new therapeutic targets and can facilitate the development of diagnostic tools that enable the early detection and intervention of MASLD. Research has discovered a multifactorial etiology for MASLD, suggesting that potential therapeutic strategies should be considered from a variety of perspectives. This review delves into the pathogenesis of MASLD, current diagnostic approaches, potential therapeutic targets, the status of clinical trials for emerging drugs, and the most promising treatment methods available today. With a focus on therapeutic targets, the aim is to offer fresh insights and guide for future research in the treatment of MASLD.
Collapse
Affiliation(s)
- Jiawang Wang
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Zhongyu Wang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Yao Yu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Si Cheng
- Beijing Tiantan Hospital, Capital Medical University, Beijing 10070, China; China National Clinical Research Center for Neurological Diseases, Beijing 10070, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 10070, China.
| | - Jianping Wu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; Department of Pharmacology, Hubei University of Medicine, Shiyan 440070, China; Beijing Tiantan Hospital, Capital Medical University, Beijing 10070, China; China National Clinical Research Center for Neurological Diseases, Beijing 10070, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 10070, China.
| |
Collapse
|
15
|
Kineman RD, Del Rio-Moreno M, Waxman DJ. Liver-specific actions of GH and IGF1 that protect against MASLD. Nat Rev Endocrinol 2025; 21:105-117. [PMID: 39322791 DOI: 10.1038/s41574-024-01037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD; also known as nonalcoholic fatty liver disease) is a chronic condition associated with metabolic syndrome, a group of conditions that includes obesity, insulin resistance, hyperlipidaemia and cardiovascular disease. Primary growth hormone (GH) deficiency is associated with MASLD, and the decline in circulating levels of GH with weight gain might contribute to the development of MASLD. Raising endogenous GH secretion or administering GH replacement therapy in the context of MASLD enhances insulin-like growth factor 1 (IGF1) production and reduces steatosis and the severity of liver injury. GH and IGF1 indirectly control MASLD progression by regulating systemic metabolic function. Evidence supports the proposal that GH and IGF1 also have a direct role in regulating liver metabolism and health. This Review focuses on how GH acts on the hepatocyte in a sex-dependent manner to limit lipid accumulation, reduce stress, and promote survival and regeneration. In addition, we discuss how GH and IGF1 might regulate non-parenchymal cells of the liver to control inflammation and fibrosis, which have a major effect on hepatocyte survival and regeneration. Development of a better understanding of how GH and IGF1 coordinate the functions of specific, individual liver cell types might provide insight into the aetiology of MASLD initiation and progression and suggest novel approaches for the treatment of MASLD.
Collapse
Affiliation(s)
- Rhonda D Kineman
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA.
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA.
| | - Mercedes Del Rio-Moreno
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
16
|
He Y, Ye M, Xia Y, Zhong Z, Wang W, Li Q. The role of cytokines as predictors for NAFLD-related diseases: A bidirectional Mendelian randomization study. Clin Res Hepatol Gastroenterol 2025; 49:102545. [PMID: 39900199 DOI: 10.1016/j.clinre.2025.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND Prior research has highlighted associations between inflammatory cytokines and non-alcoholic fatty liver disease (NAFLD), but causal relationships remain unclear. Employing the Mendelian randomization (MR) approach, this investigation aims to explore the connection between 41 inflammatory cytokines and NAFLD-related diseases. METHODS Our research implemented bidirectional study focusing on 41 cytokines in 8,293 Finns, predicting genetic associations with NAFLD, nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. We primarily utilized the inverse variance weighted (IVW) method to evaluate the bidirectional relationships. Additionally, a sensitivity analysis was carried out to ensure the reliability of our findings. RESULTS An elevated risk for NAFLD was correlated with both IL-2 (OR = 1.226, 95 % CI = 1.018-1.477, p = 0.031) and TNF-β (OR = 1.151, 95 % CI = 1.011-1.310, p = 0.033). IL-16 is associated with decreased NAFLD risk (OR = 0.820, 95 % CI = 0.719-0.934, p = 0.033). β-NGF (OR = 2.495, 95 % CI = 1.019-6.108, p = 0.045) and SCGFβ (OR = 1.541, 95 % CI = 1.052-2.256, p = 0.026) are linked to higher NASH risk. No significant associations were found for fibrosis and cirrhosis. Furthermore, the causal relationship between genetic predisposition to NAFLD-related diseases and various inflammatory cytokines was established. CONCLUSIONS Our MR analysis identifies specific cytokines as genetic predictors for NAFLD and NASH. IL-2 and TNF-β increase NAFLD risk, IL-16 appears protective, and β-NGF and SCGFβ are associated with greater NASH risk. These insights are crucial for understanding the etiology and treatment of NAFLD-related diseases.
Collapse
Affiliation(s)
- Yijia He
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Miaomin Ye
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yin Xia
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ziyi Zhong
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weiping Wang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Li
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Wang Z, Gao H, Ma X, Zhu D, Zhao L, Xiao W. Adrenic acid: A promising biomarker and therapeutic target (Review). Int J Mol Med 2025; 55:20. [PMID: 39575474 PMCID: PMC11611323 DOI: 10.3892/ijmm.2024.5461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/06/2024] [Indexed: 01/05/2025] Open
Abstract
Adrenic acid is a 22‑carbon unsaturated fatty acid that is widely present in the adrenal gland, liver, brain, kidney and vascular system that plays a regulatory role in various pathophysiological processes, such as inflammatory reactions, lipid metabolism, oxidative stress, vascular function, and cell death. Adrenic acid is a potential biomarker for various ailments, including metabolic, neurodegenerative and cardiovascular diseases and cancer. In addition, adrenic acid is influenced by the pharmacological properties of several natural products, such as astragaloside IV, evodiamine, quercetin, kaempferol, Berberine‑baicalin and prebiotics, so it is a promising new target for clinical treatment and drug development. However, the molecular mechanisms by which adrenic acid exerts are unclear. The present study systematically reviewed the biosynthesis and metabolism of adrenic acid, focusing on intrinsic mechanisms that influence the progression of metabolic, cardiovascular and neurological disease. These mechanisms regulate several key processes, including immuno‑inflammatory response, oxidative stress, vascular function and cell death. In addition, the present study explored the potential clinical translational value of adrenic acid as a biomarker and therapeutic target. To the best of our knowledge, the present study is first systematic summary of the mechanisms of action of adrenic acid across a range of diseases. The present study provides understanding of the wide range of metabolic activities of adrenic acid and a basis for further exploring the pathogenesis and therapeutic targets of various diseases.
Collapse
Affiliation(s)
- Ze Wang
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Haoyang Gao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xiaotong Ma
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Danlin Zhu
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Linlin Zhao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
- School of Physical Education, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Weihua Xiao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| |
Collapse
|
18
|
Wang D, Yu X, Yang Y. Investigating SNHG3 as a potential therapeutic approach for HCC stem cells. Gene 2025; 935:149022. [PMID: 39427830 DOI: 10.1016/j.gene.2024.149022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Hepatocellular Carcinoma (HCC) is a common malignant tumor worldwide. Long Non-Coding RNA (lncRNA) has gained attention in tumor biology, and this study aims to investigate the role of lncRNA SNHG3 in HCC, specifically in the self-renewal and maintenance of liver cancer stem cells. METHODS The expression of lncRNA SNHG3 was analyzed in HCC and adjacent normal tissue using the TCGA database. The expression levels of SNHG3 in HCC cell lines (Hep3B, HepG2, Huh7) were detected using qRT-PCR and Western blot techniques. Functional assays, including CCK-8, soft agar colony formation, and tumor sphere formation, were performed to evaluate the impact of SNHG3 on HCC stem cell functionality. MeRIP-qPCR was also used to investigate the regulatory role of SNHG3 in m6A modification of ITGA6 mRNA mediated by METTL3. RESULTS The study found that SNHG3 was significantly upregulated in HCC tissue and cell lines compared to normal liver tissue. SNHG3 expression correlated with the pathological stage, metastasis status, and tumor size of liver cancer. Inhibiting SNHG3 reduced proliferation, colony formation, and tumor sphere formation ability in HCC stem cells. SNHG3 also played a role in regulating the m6A modification and expression of ITGA6 through METTL3. CONCLUSION This study emphasizes the upregulation of lncRNA SNHG3 and its role in HCC stem cell self-renewal. SNHG3 may regulate the m6A modification of ITGA6 mRNA through its interaction with METTL3, impacting the function of liver cancer stem cells. These findings support the potential of targeting SNHG3 as a therapeutic approach for HCC.
Collapse
Affiliation(s)
- Dingmao Wang
- Department of Hepatobiliary Surgery, Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China
| | - Xiao Yu
- The 2nd Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, PR China.
| | - Yijun Yang
- Department of Hepatobiliary Surgery, Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China.
| |
Collapse
|
19
|
Xiang Y, Kuang G, Gong X, Xie H, Lin Y, Zhang X, Chen Z, Wan J, Li Z. Dihydrotanshinone I Attenuates Diet-Induced Nonalcoholic Fatty Liver Disease via Up-Regulation of IRG1. Phytother Res 2025. [PMID: 39853881 DOI: 10.1002/ptr.8443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, but effective therapeutic drugs are still lacking. Dihydrotanshinone I (DHTS), a natural product isolated from Salvia miltiorrhiza, has been shown to have ameliorative effects on NAFLD. The aim of this study was to investigate the hepatoprotective effect of DHTS on NAFLD and its mechanism. A model of NAFLD and DHTS treatment was established using a Western diet to observe the effect of DHTS on NAFLD, which were detected by immunohistochemical, immunofluorescence, and other experiments. The mechanism was further explored by constructing immune responsive gene 1 (IRG1) knockout mice, RNA sequence, and molecular docking. The results revealed that DHTS significantly improved diet-induced metabolic disorders in mice, notably alleviating liver inflammation, oxidative stress, and fibrosis. Further analysis revealed that the intervention of DHTS was associated with the activation of IRG1. Subsequent experiments confirmed that IRG1 gene deletion reversed the above protective effects of DHTS in NAFLD. Mechanistically, DHTS enhanced the antioxidant nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway through IRG1/itaconate and blocked the oxidative stress response in the liver. In addition, DHTS also inhibited the activation of NACHT-, leucine-rich repeat (LRR)-, and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome via IRG1/itaconate, blocking the inflammatory amplification effect in the liver. The study suggests that DHTS may be a potential drug for the treatment of NAFLD, which exerts protective regulatory effects mainly through the IRG1/itaconate molecular pathway.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Ge Kuang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Huang Xie
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yan Lin
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xijian Zhang
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Zhongpei Chen
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Jingyuan Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Zhenhan Li
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
20
|
Chen H, Zhang J, Chen X, Luo L, Dong W, Wang Y, Zhou J, Chen C, Wang W, Zhang W, Zhang Z, Cai Y, Kong D, Ding Y. Development and validation of machine learning models for MASLD: based on multiple potential screening indicators. Front Endocrinol (Lausanne) 2025; 15:1449064. [PMID: 39906042 PMCID: PMC11790477 DOI: 10.3389/fendo.2024.1449064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
Background Multifaceted factors play a crucial role in the prevention and treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). This study aimed to utilize multifaceted indicators to construct MASLD risk prediction machine learning models and explore the core factors within these models. Methods MASLD risk prediction models were constructed based on seven machine learning algorithms using all variables, insulin-related variables, demographic characteristics variables, and other indicators, respectively. Subsequently, the partial dependence plot(PDP) method and SHapley Additive exPlanations (SHAP) were utilized to explain the roles of important variables in the model to filter out the optimal indicators for constructing the MASLD risk model. Results Ranking the feature importance of the Random Forest (RF) model and eXtreme Gradient Boosting (XGBoost) model constructed using all variables found that both homeostasis model assessment of insulin resistance (HOMA-IR) and triglyceride glucose-waist circumference (TyG-WC) were the first and second most important variables. The MASLD risk prediction model constructed using the variables with top 10 importance was superior to the previous model. The PDP and SHAP methods were further utilized to screen the best indicators (including HOMA-IR, TyG-WC, age, aspartate aminotransferase (AST), and ethnicity) for constructing the model, and the mean area under the curve value of the models was 0.960. Conclusions HOMA-IR and TyG-WC are core factors in predicting MASLD risk. Ultimately, our study constructed the optimal MASLD risk prediction model using HOMA-IR, TyG-WC, age, AST, and ethnicity.
Collapse
Affiliation(s)
- Hao Chen
- Department of Epidemiology and Medical Statistics School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jingjing Zhang
- Department of Epidemiology and Medical Statistics School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Xueqin Chen
- Department of Epidemiology and Medical Statistics School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Ling Luo
- Department of Epidemiology and Medical Statistics School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Wenjiao Dong
- Department of Epidemiology and Medical Statistics School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yongjie Wang
- Department of Epidemiology and Medical Statistics School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiyu Zhou
- Department of Epidemiology and Medical Statistics School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Canjin Chen
- Department of Epidemiology and Medical Statistics School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Wenhao Wang
- Department of Epidemiology and Medical Statistics School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Wenbin Zhang
- Department of Epidemiology and Medical Statistics School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Zhiyi Zhang
- Department of Epidemiology and Medical Statistics School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yongguang Cai
- Department of Medical Oncology, Central Hospital of Guangdong Nongken, Zhanjiang, Guangdong, China
| | - Danli Kong
- Department of Epidemiology and Medical Statistics School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yuanlin Ding
- Department of Epidemiology and Medical Statistics School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
21
|
Jiao W, Lin J, Deng Y, Ji Y, Liang C, Wei S, Jing X, Yan F. The immunological perspective of major depressive disorder: unveiling the interactions between central and peripheral immune mechanisms. J Neuroinflammation 2025; 22:10. [PMID: 39828676 PMCID: PMC11743025 DOI: 10.1186/s12974-024-03312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
Major depressive disorder is a prevalent mental disorder, yet its pathogenesis remains poorly understood. Accumulating evidence implicates dysregulated immune mechanisms as key contributors to depressive disorders. This review elucidates the complex interplay between peripheral and central immune components underlying depressive disorder pathology. Peripherally, systemic inflammation, gut immune dysregulation, and immune dysfunction in organs including gut, liver, spleen and adipose tissue influence brain function through neural and molecular pathways. Within the central nervous system, aberrant microglial and astrocytes activation, cytokine imbalances, and compromised blood-brain barrier integrity propagate neuroinflammation, disrupting neurotransmission, impairing neuroplasticity, and promoting neuronal injury. The crosstalk between peripheral and central immunity creates a vicious cycle exacerbating depressive neuropathology. Unraveling these multifaceted immune-mediated mechanisms provides insights into major depressive disorder's pathogenic basis and potential biomarkers and targets. Modulating both peripheral and central immune responses represent a promising multidimensional therapeutic strategy.
Collapse
Affiliation(s)
- Wenli Jiao
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Jiayi Lin
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Yanfang Deng
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yelin Ji
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Chuoyi Liang
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Sijia Wei
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Xi Jing
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Fengxia Yan
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
22
|
Lan Y, Jin B, Fan Y, Huang Y, Zhou J. The Circadian Rhythm Regulates the Hepato-ovarian Axis Linking Polycystic Ovary Syndrome and Non-alcoholic Fatty Liver Disease. Biochem Genet 2025:10.1007/s10528-024-11010-1. [PMID: 39826031 DOI: 10.1007/s10528-024-11010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/17/2024] [Indexed: 01/20/2025]
Abstract
This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases. Single-sample and single-gene gene set enrichment analyses explored immune infiltration and pathways associated with CRRGs. Diagnostic biomarkers were identified using a random forest algorithm and validated through nomograms and a mouse model. Seven crosstalk CRRGs (FOS, ACHE, FOSB, EGR1, NR4A1, DUSP1, and EGR3) were associated with clinical features, immunoinflammatory microenvironment, and metabolic pathways in both diseases. EGR1, DUSP1, and NR4A1 were identified as diagnostic biomarkers, exhibiting robust diagnostic capacity (AUC = 0.7679 for PCOS, AUG = 0.9981 for NAFLD). Nomogram validation showed excellent calibration, and independent datasets confirmed their discriminatory ability (AUC = 0.6528 for PCOS, AUC = 0.8275 for NAFLD). Additionally, ceRNA networks and androgen receptor binding sites were identified, suggesting their regulatory roles. Mouse model validation confirmed significant downregulation of EGR1, DUSP1, and NR4A1 in liver tissues, consistent with sequencing data. This study identifies crosstalk CRRGs and diagnostic biomarkers shared between PCOS and NAFLD, highlighting their roles in immune and metabolic dysregulation. These biomarkers offer the potential for improving diagnosis and guiding targeted treatments for both diseases.
Collapse
Affiliation(s)
- Yibing Lan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Bihui Jin
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Yuhang Fan
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Jianhong Zhou
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China.
| |
Collapse
|
23
|
Al Ashi S, Rizvi AA, Rizzo M. Altered kidney function in fatty liver disease: confronting the "MAFLD-renal syndrome". FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2025; 5:1539117. [PMID: 39845775 PMCID: PMC11751235 DOI: 10.3389/fcdhc.2024.1539117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025]
Affiliation(s)
- Suleiman Al Ashi
- Endocrinology Fellow, UCF COM HCA Healthcare GME – Endocrinology, Diabetes, and Metabolism Fellowship Orlando VA Healthcare System, Orlando, FL, United States
| | - Ali A. Rizvi
- Department of Medicine, Division of Endocrinology, Orlando VA Medical Center and University of Central Florida College of Medicine, Orlando, FL, United States
| | - Manfredi Rizzo
- School of Medicine, Promise Department, University of Palermo, Palermo, Italy
- Department of Medicine, Ras Al Khaimah (RAK) Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
24
|
Zhou L, Zhao J, Ma K, Hao R, Yao C, Gou X, Tian C, Wan L, Li M, Tong X. Targeting immune cellular populations and transcription factors: unraveling the therapeutic potential of JQF for NAFLD. Front Immunol 2025; 15:1445924. [PMID: 39840059 PMCID: PMC11746100 DOI: 10.3389/fimmu.2024.1445924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) constitutes the most prevalent chronic liver disease worldwide. Progression to non-alcoholic steatohepatitis (NASH), the immune cell reservoir within the liver undergoes remodeling, exacerbating liver inflammation and potentially leading to liver fibrosis. Jiangtang Qingre Formula (JQF) is an effective prescription for the clinical treatment of NAFLD. However, its underlying mechanism of action remains unclear. Methods Using a high-fat diet-induced NAFLD mouse model, we evaluated JQF's effects with biochemical tests and histopathology. Single-cell RNA sequencing and spatial transcriptomics furthered our understanding of NAFLD pathophysiology and JQF's treatment mechanisms. Results Our findings initially revealed significant improvements in JQF on hepatic steatosis, inflammation, fibrosis and glucose tolerance in NAFLD mice. Furthermore, significant changes were observed in the immune cells including monocytes, macrophages, and T cells in the livers of NAFLD mice. Notably, regions infiltrated by T cells presented the most severe liver inflammation and fibrosis. Importantly, JQF effectively modulated these immune cells. Advanced subcluster and cell communication analyses identified key macrophage (KCs, MoMFs) and T cell (Tc, Th2) subpopulations in JQF's therapeutic actions. Further SCENIC analysis additionally uncovered the essential transcription factors that regulate these cell subclusters, such as Stat2, Mta3, Eomes, and Etv5. Conclusion Overall, our research suggests a promising potential therapeutic agent and identifies critical cell populations and transcription factors that contribute to its therapeutic effects, thereby revealing potential therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Lijuan Zhou
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyi Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Hao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chensi Yao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaowen Gou
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanxi Tian
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Li Wan
- Molecular Biology Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Molecular Biology Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Zeng D, Zeng Q, Li S, Lu J, Cheng N. Evaluating body roundness index and systemic immune inflammation index for mortality prediction in MAFLD patients. Sci Rep 2025; 15:330. [PMID: 39747385 PMCID: PMC11695853 DOI: 10.1038/s41598-024-83324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a major cause of liver-related morbidity and mortality, contributing to both cardiovascular and non-cardiovascular deaths. The Body Roundness Index (BRI) and Systemic Immune-Inflammation Index (SII) have emerged as predictors of adverse outcomes in metabolic diseases. This study investigates the association between BRI, SII, and mortality risk in MAFLD patients. A nationwide retrospective cohort study was conducted using data from the NHANES database (January 1999-December 2018), including patients diagnosed with MAFLD. BRI and SII were calculated at baseline. Cox proportional hazards models assessed the association between these indices and all-cause, cardiovascular, and non-cardiovascular mortality, adjusting for confounders. Among 12,435 participants diagnosed with MAFLD, 3,381 (27.2%) were classified into the low BRI and low SII group, 2,889 (23.2%) into the low BRI and high SII group, 2,802 (22.5%) into the high BRI and low SII group, and 3,363 (27.1%) into the high BRI and high SII group. Compared to the low BRI and low SII group, the high BRI and high SII group demonstrated significantly higher all-cause mortality, with an adjusted hazard ratio (HR) of 1.89. For cardiovascular mortality, the HR was 2.31, while for non-cardiovascular mortality, the HR was 1.78. The high BRI and high SII cohort exhibited the highest risk of all-cause mortality, cardiovascular mortality, and non-cardiovascular mortality. BRI and SII are independent predictors of mortality in MAFLD patients, and their combined use enhances risk stratification. Integrating these indices into clinical practice could improve personalized management strategies and outcomes in this high-risk population.
Collapse
Affiliation(s)
- Di Zeng
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qingyue Zeng
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiong Lu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Nansheng Cheng
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
26
|
Leopold M, Mass-Sanchez PB, Krizanac M, Štancl P, Karlić R, Prabutzki P, Parafianczuk V, Schiller J, Asimakopoulos A, Engel KM, Weiskirchen R. How the liver transcriptome and lipid composition influence the progression of nonalcoholic fatty liver disease to hepatocellular carcinoma in a murine model. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159574. [PMID: 39510374 DOI: 10.1016/j.bbalip.2024.159574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) has been steadily increasing in Western society in recent years and has been recognized as a risk factor for the development of hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying the progression from NAFLD to HCC are still unclear, despite the use of suitable mouse models. To identify the transcriptional and lipid profiles of livers from mice with NAFLD-HCC, we induced both NAFLD and NAFLD-HCC pathologies in C57BL/6J mice and performed RNA-sequencing (RNA-seq) and targeted lipidomic analysis. Our RNA-seq analysis revealed that the transcriptional signature of NAFLD in mice is characterized by changes in inflammatory response and fatty acid metabolism. Moreover, the signature of NAFLD-HCC is characterized by processes typically observed in cancer, such as epithelial to mesenchymal transition, angiogenesis and inflammatory responses. Furthermore, we found that the diet used in this study inhibited cholesterol synthesis in both models. The analysis of lipid composition also showed a significant impact of the provided diet. Therefore, our study supports the idea that a Western diet (WD) affects metabolic processes and hepatic lipid composition. Additionally, the combination of a WD with the administration of a carcinogen drives the progression from NAFLD to HCC.
Collapse
Affiliation(s)
- Marvin Leopold
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany; Klinik für Neurologie, Sana Klinikum Borna, 04552 Borna, Germany.
| | - Paola Berenice Mass-Sanchez
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany.
| | - Marinela Krizanac
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany.
| | - Paula Štancl
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Rosa Karlić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Patricia Prabutzki
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany.
| | - Victoria Parafianczuk
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany.
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Kathrin M Engel
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany.
| |
Collapse
|
27
|
Iturbe-Rey S, Maccali C, Arrese M, Aspichueta P, Oliveira CP, Castro RE, Lapitz A, Izquierdo-Sanchez L, Bujanda L, Perugorria MJ, Banales JM, Rodrigues PM. Lipotoxicity-driven metabolic dysfunction-associated steatotic liver disease (MASLD). Atherosclerosis 2025; 400:119053. [PMID: 39581063 DOI: 10.1016/j.atherosclerosis.2024.119053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a spectrum of liver lesions, ranging from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH), that may further progress to cirrhosis. MASLD is estimated to affect more than one third of the general population and it represents a risk factor for end-stage liver failure and liver cancer, substantially contributing to liver-related morbidity and mortality. Although the pathogenesis of MASLD is incompletely understood, it is known to consist of a multifactorial process influenced by extrinsic and intrinsic factors such as metabolic, environmental and demographic features, gut microbiota and genetics. Dysregulation of both extracellular and intracellular lipid composition is known to promote the generation of toxic lipid species, thereby triggering lipotoxicity and cellular stress. These events ultimately lead to the activation of distinct cell death pathways, resulting in inflammation, fibrogenesis and, eventually, carcinogenesis. In this manuscript, we provide a comprehensive review of the role of lipotoxicity during MASLD pathogenesis, discussing the most relevant lipid species and related molecular mechanisms, summarizing the cell type-specific effects and highlighting the most promising putative therapeutic strategies for modulating lipotoxicity and lipid metabolism in MASLD.
Collapse
Affiliation(s)
- Santiago Iturbe-Rey
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Claudia Maccali
- Clinical and Experimental Gastroenterology Laboratory LIM-07, Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marco Arrese
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, 8330077, Chile
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Biobizkaia Health Research Institute, Cruces University Hospital, 48903, Barakaldo, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Claudia P Oliveira
- Clinical and Experimental Gastroenterology Laboratory LIM-07, Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ainhoa Lapitz
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
28
|
Zhang P, Watari K, Karin M. Innate immune cells link dietary cues to normal and abnormal metabolic regulation. Nat Immunol 2025; 26:29-41. [PMID: 39747429 DOI: 10.1038/s41590-024-02037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/24/2024] [Indexed: 01/04/2025]
Abstract
A slew of common metabolic disorders, including type 2 diabetes, metabolic dysfunction-associated steatotic liver disease and steatohepatitis, are exponentially increasing in our sedentary and overfed society. While macronutrients directly impact metabolism and bioenergetics, new evidence implicates immune cells as critical sensors of nutritional cues and important regulators of metabolic homeostasis. A deeper interrogation of the intricate and multipartite interactions between dietary components, immune cells and metabolically active tissues is needed for a better understanding of metabolic regulation and development of new treatments for common metabolic diseases. Responding to macronutrients and micronutrients, immune cells play pivotal roles in interorgan communication between the microbiota, small intestine, metabolically active cells including hepatocytes and adipocytes, and the brain, which controls feeding behavior and energy expenditure. This Review focuses on the response of myeloid cells and innate lymphocytes to dietary cues, their cross-regulatory interactions and roles in normal and aberrant metabolic control.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kosuke Watari
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
29
|
Zhang M, Li K, Huang X, Xu D, Zong R, Hu Q, Dong X, Zhang Q, Jiang C, Ge Y, Li C, Ping J. Macrophage Notch1 signaling modulates regulatory T cells via the TGFB axis in early MASLD. JHEP Rep 2025; 7:101242. [PMID: 39717502 PMCID: PMC11664078 DOI: 10.1016/j.jhepr.2024.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 12/25/2024] Open
Abstract
Background & Aims Hepatic immune imbalance is crucial for driving metabolic dysfunction-associated steatotic liver disease (MASLD) progression. However, the role of hepatic regulatory T cells (Tregs) in MASLD initiation and the mechanisms responsible for their change are not completely understood. Methods A mouse model subjected to a short-term high-fat diet (HFD) to mimic early steatosis, along with liver biopsy samples from patients with simple steatosis, and macrophage-specific Notch1-knockout mice (Notch1M-KO), were used to investigate the role of Tregs in early MASLD and the effect of hepatic macrophage Notch1 signaling on Treg frequency. The miRNAs correlated with Treg differentiation were analyzed using exosomal miRNA sequencing. Results A decrease in Tregs contributed to HFD-induced hepatic steatosis and insulin resistance (five/group/time point, p <0.001). Remarkably, the frequency of Tregs was negatively correlated with Notch1 activation in hepatic macrophages during hepatic steatosis (38/group, r = -0.735, p <0.001). Furthermore, Notch1 deficiency attenuated hepatic lipid deposition and reversed Treg levels (five/group, p <0.01 and <0.05, respectively). Moreover, Treg depletion in Notch1M-KO mice greatly diminished the ameliorative effect of macrophagic Notch1 deletion on hepatic steatosis. Mechanistically, macrophage Notch1 activation increased the level of exosomal miR-142a-3p (by one- to two- fold), impairing Treg differentiation by targeting transforming growth factor beta receptor 1 (TGFBR1) on T cells. Consistently, HFD-fed Notch1M-KO mice exhibited reduced miR-142a-3p levels, elevated TGFBR1 expression on T cells, and increased Treg frequency in the liver. Conclusions These findings highlight the crucial role of hepatic Tregs during the early stage of MASLD and add a novel, non-negligible pathway for macrophage involvement in hepatic steatosis. We identify a previously unrecognized molecular mechanism involving the macrophage Notch1/exosomal miR-142a-3p/TGFBR1 pathway in regulating Treg differentiation, providing a rationale for refined therapeutic strategies for MASLD. Impact and implications The immune mechanisms driving MASLD progression, particularly during the early stages of disease, are not fully understood, which limits the development of effective interventions. This study elucidated a novel mechanism by which hepatic macrophage Notch1 signaling modulated Tregs through the exosomal miR-142a-3p/TGFBR1 axis, contributing to the progression of MASLD. These findings provide a rationale for a potential immunological approach to treat MASLD in the future.
Collapse
Affiliation(s)
- Mengya Zhang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Kun Li
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Provincial Clinical Medicine Research Center for Minimally Invasive Diagnosis and Treatment of Hepatobiliary and Pancreatic Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaoxing Huang
- Department of Blood Transfusion, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Dongqin Xu
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Ruobin Zong
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Qintong Hu
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Xiaoyu Dong
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Qinyong Zhang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Chaochen Jiang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Yue Ge
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Changyong Li
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| |
Collapse
|
30
|
Sotoudeheian M. Value of Mac-2 Binding Protein Glycosylation Isomer (M2BPGi) in Assessing Liver Fibrosis in Metabolic Dysfunction-Associated Liver Disease: A Comprehensive Review of its Serum Biomarker Role. Curr Protein Pept Sci 2025; 26:6-21. [PMID: 38982921 DOI: 10.2174/0113892037315931240618085529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024]
Abstract
Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) is a broad condition characterized by lipid accumulation in the liver tissue, which can progress to fibrosis and cirrhosis if left untreated. Traditionally, liver biopsy is the gold standard for evaluating fibrosis. However, non-invasive biomarkers of liver fibrosis are developed to assess the fibrosis without the risk of biopsy complications. Novel serum biomarkers have emerged as a promising tool for non-invasive assessment of liver fibrosis in MAFLD patients. Several studies have shown that elevated levels of Mac-2 binding protein glycosylation isomer (M2BPGi) are associated with increased liver fibrosis severity in MAFLD patients. This suggests that M2BPGi could serve as a reliable marker for identifying individuals at higher risk of disease progression. Furthermore, the use of M2BPGi offers a non-invasive alternative to liver biopsy, which is invasive and prone to sampling errors. Overall, the usage of M2BPGi in assessing liver fibrosis in MAFLD holds great promise for improving risk stratification and monitoring disease progression in affected individuals. Further research is needed to validate its utility in clinical practice and establish standardized protocols for its implementation.
Collapse
|
31
|
Leng Y, Zhang Y, Cheng Y, Ye S, Zheng Y, He M, Wu E, Kong L, Zhang H. LIX1L aggravates MASH-HCC progression by reprogramming of hepatic metabolism and microenvironment via CD36. Pharmacol Res 2025; 211:107567. [PMID: 39725340 DOI: 10.1016/j.phrs.2024.107567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
Limb expression 1-like protein (LIX1L) is an essential player in liver disorders, but its function in metabolic dysfunction-associated steatohepatitis (MASH) and associated hepatocellular carcinoma (HCC) progression remains obscure. Here, we identify LIX1L as a key integrative regulator linking lipid metabolism and inflammation, adipose tissue and hepatic microenvironment, which promotes MASH progression. LIX1L significantly upregulates in MASH patients, mouse models, and palmitic acid-stimulated hepatocytes. Lix1l deletion inhibits hepatic lipid accumulation, inflammation, and fibrosis as well as adipocyte differentiation by downregulating CD36, alleviating MASH and associated HCC progression in mice. Mechanistically, metabolic stress promotes PARP1-mediated poly-ADP-ribosylation of LIX1L to increase stability and RNA binding ability of LIX1L. Subsequently, LIX1L binds to AU-rich element in the 3'UTR and CDS of CD36 mRNA, thus mitigating CD36 mRNA decay. Furthermore, LIX1L deficiency-mediated downregulation of CD36 reprograms the tumor-prone liver microenvironment with increased cytotoxic T lymphocytes and reduced immunosuppressive cell proportions. These data indicate a systematic function of LIX1L in the pathogenesis of MASH and underscore targeting PARP1/LIX1L/CD36 axis as a feasible strategy for treatment of MASH and associated HCC.
Collapse
Affiliation(s)
- Yingrong Leng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yanqiu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Cheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shengtao Ye
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Zheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengmeng He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Enyi Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
32
|
Gilgenkrantz H, Paradis V, Lotersztajn S. Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma. Hepatology 2025; 81:269-287. [PMID: 37212145 PMCID: PMC11643143 DOI: 10.1097/hep.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Progression of chronic liver injury to fibrosis, abnormal liver regeneration, and HCC is driven by a dysregulated dialog between epithelial cells and their microenvironment, in particular immune, fibroblasts, and endothelial cells. There is currently no antifibrogenic therapy, and drug treatment of HCC is limited to tyrosine kinase inhibitors and immunotherapy targeting the tumor microenvironment. Metabolic reprogramming of epithelial and nonparenchymal cells is critical at each stage of disease progression, suggesting that targeting specific metabolic pathways could constitute an interesting therapeutic approach. In this review, we discuss how modulating intrinsic metabolism of key effector liver cells might disrupt the pathogenic sequence from chronic liver injury to fibrosis/cirrhosis, regeneration, and HCC.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| | - Valérie Paradis
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
- Pathology Department, Beaujon Hospital APHP, Paris-Cité University, Clichy, France
| | - Sophie Lotersztajn
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| |
Collapse
|
33
|
Jia Q, Sun X, Li H, Guo J, Niu K, Chan KM, Bernards R, Qin W, Jin H. Perturbation of mRNA splicing in liver cancer: insights, opportunities and challenges. Gut 2024:gutjnl-2024-333127. [PMID: 39658264 DOI: 10.1136/gutjnl-2024-333127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Perturbation of mRNA splicing is commonly observed in human cancers and plays a role in various aspects of cancer hallmarks. Understanding the mechanisms and functions of alternative splicing (AS) not only enables us to explore the complex regulatory network involved in tumour initiation and progression but also reveals potential for RNA-based cancer treatment strategies. This review provides a comprehensive summary of the significance of AS in liver cancer, covering the regulatory mechanisms, cancer-related AS events, abnormal splicing regulators, as well as the interplay between AS and post-transcriptional and post-translational regulations. We present the current bioinformatic approaches and databases to detect and analyse AS in cancer, and discuss the implications and perspectives of AS in the treatment of liver cancer.
Collapse
Affiliation(s)
- Qi Jia
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiao Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianglong Guo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kongyan Niu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Noord-Holland, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Burra P, Zanetto A, Schnabl B, Reiberger T, Montano-Loza AJ, Asselta R, Karlsen TH, Tacke F. Hepatic immune regulation and sex disparities. Nat Rev Gastroenterol Hepatol 2024; 21:869-884. [PMID: 39237606 DOI: 10.1038/s41575-024-00974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/07/2024]
Abstract
Chronic liver disease is a major cause of morbidity and mortality worldwide. Epidemiology, clinical phenotype and response to therapies for gastrointestinal and liver diseases are commonly different between women and men due to sex-specific hormonal, genetic and immune-related factors. The hepatic immune system has unique regulatory functions that promote the induction of intrahepatic tolerance, which is key for maintaining liver health and homeostasis. In liver diseases, hepatic immune alterations are increasingly recognized as a main cofactor responsible for the development and progression of chronic liver injury and fibrosis. In this Review, we discuss the basic mechanisms of sex disparity in hepatic immune regulation and how these mechanisms influence and modify the development of autoimmune liver diseases, genetic liver diseases, portal hypertension and inflammation in chronic liver disease. Alterations in gut microbiota and their crosstalk with the hepatic immune system might affect the progression of liver disease in a sex-specific manner, creating potential opportunities for novel diagnostic and therapeutic approaches to be evaluated in clinical trials. Finally, we identify and propose areas for future basic, translational and clinical research that will advance our understanding of sex disparities in hepatic immunity and liver disease.
Collapse
Affiliation(s)
- Patrizia Burra
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy.
| | - Alberto Zanetto
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, Department of Medicine, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Tom Hemming Karlsen
- Department of Transplantation Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
35
|
Pan L, Wang L, Ma H, Ding F. Relevance of combined influence of nutritional and inflammatory status on non-alcoholic fatty liver disease and advanced fibrosis: A mediation analysis of lipid biomarkers. J Gastroenterol Hepatol 2024; 39:2853-2862. [PMID: 39392197 DOI: 10.1111/jgh.16760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/27/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND AND AIM This study aimed to investigate the relationship between advanced lung cancer inflammation index (ALI) and non-alcoholic fatty liver disease (NAFLD) and advanced liver fibrosis (AF). METHODS A total of 5642 individuals from the National Health and Nutrition Examination Survey (NHANES) between 2017 and 2020 were examined. Limited cubic spline regression model, and weighted logistic regression were employed to determine if ALI levels were related to the prevalence of NAFLD and AF. Additionally, a mediating analysis was conducted to investigate the role of lipid biomarkers, such as total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C), in the effects of ALI on the prevalence of NAFLD and AF. RESULTS After adjusting for potential confounders, a significant positive association was found between ALI with NAFLD and AF prevalence. Compared with those in ALI Tertile 1, participants in Tertile 3 had higher odds of NAFLD prevalence (odds ratio [OR]: 3.16; 95% confidence interval [CI]: 2.52-3.97) and AF (OR: 3.17; 95% CI: 2.30-4.36). Participants in both Tertile 2 and Tertile 3 had lower odds of developing AF (P for trend = 0.005). Moreover, we discovered a nonlinear association between ALI and NAFLD. An inflection point of 74.25 for NAFLD was identified through a two-segment linear regression model. Moreover, TC and HDL-C levels mediated the association between ALI and NAFLD by 10.2% and 4.2%, respectively (both P < 0.001). CONCLUSION Our findings suggest that higher ALI levels are positively associated with an increased prevalence of NAFLD and AF, partly mediated by lipid biomarkers.
Collapse
Affiliation(s)
- Lei Pan
- Department of Histology and embryology, Hebei Medical University, Shijiazhuang, China
| | - Lixuan Wang
- Department of Histology and embryology, Hebei Medical University, Shijiazhuang, China
| | - Huijuan Ma
- Department of physiology, Hebei Medical University, Shijiazhuang, China
| | - Fan Ding
- Hubei Jingmen Maternal and Child Health Hospital, Jingmen, China
| |
Collapse
|
36
|
Liu Z, Wang H, Liang Y, Liu M, Huang Q, Wang M, Zhou J, Bu Q, Zhou H, Lu L. E2F2 Reprograms Macrophage Function By Modulating Material and Energy Metabolism in the Progression of Metabolic Dysfunction-Associated Steatohepatitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410880. [PMID: 39465673 PMCID: PMC11672278 DOI: 10.1002/advs.202410880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Indexed: 10/29/2024]
Abstract
Macrophages are essential for the development of steatosis, hepatic inflammation, and fibrosis in metabolic dysfunction-associated steatohepatitis(MASH). However, the roles of macrophage E2F2 in the progression of MASH have not been elucidated. This study reveals that the expression of macrophage E2F2 is dramatically downregulated in MASH livers from mice and humans, and that this expression is adversely correlated with the severity of the disease. Myeloid-specific E2F2 depletion aggravates intrahepatic inflammation, hepatic stellate cell activation, and hepatocyte lipid accumulation during MASH progression. Mechanistically, E2F2 can inhibit the SLC7A5 transcription directly. E2F2 deficiency upregulates the expression of SLC7A5 to mediate amino acids flux, resulting in enhanced glycolysis, impaired mitochondrial function, and increased macrophages proinflammatory response in a Leu-mTORC1-dependent manner. Moreover, bioinformatics analysis and CUT &Tag assay identify the direct binding of Nrf2 to E2F2 promoter to promote its transcription and nuclear translocation. Genetic or pharmacological activation of Nrf2 effectively activates E2F2 to attenuate the MASH progression. Finally, patients treated with CDK4/6 inhibitors demonstrate reduced E2F2 activity but increased SLC7A5 activity in PBMCs. These findings indicated macrophage E2F2 suppresses MASH progression by reprogramming amino acid metabolism via SLC7A5- Leu-mTORC1 signaling pathway. Activating E2F2 holds promise as a therapeutic strategy for MASH.
Collapse
Affiliation(s)
- Zheng Liu
- Department of General Surgerythe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Hao Wang
- Department of Liver SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Yuan Liang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical University& Research Unit of Liver Transplantation and Transplant ImmunologyChinese Academy of Medical SciencesNanjing210029China
- School of Biological Science & Medical EngineeringSoutheast UniversityNanjing210096China
| | - Mu Liu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical University& Research Unit of Liver Transplantation and Transplant ImmunologyChinese Academy of Medical SciencesNanjing210029China
| | - Qiyuan Huang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical University& Research Unit of Liver Transplantation and Transplant ImmunologyChinese Academy of Medical SciencesNanjing210029China
| | - Mingming Wang
- Department of Liver SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Jinren Zhou
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical University& Research Unit of Liver Transplantation and Transplant ImmunologyChinese Academy of Medical SciencesNanjing210029China
| | - Qingfa Bu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical University& Research Unit of Liver Transplantation and Transplant ImmunologyChinese Academy of Medical SciencesNanjing210029China
| | - Haoming Zhou
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical University& Research Unit of Liver Transplantation and Transplant ImmunologyChinese Academy of Medical SciencesNanjing210029China
| | - Ling Lu
- Affiliated Hospital of Xuzhou Medical UniversityXuzhou220005China
| |
Collapse
|
37
|
Chen HB, Miao Q, Liu YS, Lou XY, Zhang LD, Tan XD, Liang KK. The prognostic value of myosteatosis in pancreatic cancer: A systematic review and meta-analysis. Clin Nutr 2024; 43:116-123. [PMID: 39442392 DOI: 10.1016/j.clnu.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND AIMS The phenomenon of myosteatosis, characterized by the accumulation of ectopic fat within and surrounding skeletal muscle, has been identified as a potential adverse factor in the prognosis of individuals with cancer. This systematic review and meta-analysis sought to examine the association between myosteatosis and survival rates as well as postoperative complications in patients diagnosed with pancreatic cancer (PC). METHODS A systematic search was conducted on Web of Science, Embase, and Pubmed until March 25, 2024, to identify pertinent articles assessing the prognostic significance of myosteatosis in patients with PC, utilizing the search terms: myosteatosis, PC, and prognosis. The selected studies were utilized to investigate the prognostic impact of myosteatosis on the survival of PC patients. Forest plots and pooled effects models were employed to present the findings of this meta-analysis. The quality of the included studies was evaluated using the Newcastle-Ottawa Scale (NOS). A total of 565 studies were initially identified from the three databases, with 14 retrospective cohort studies ultimately included in the final quantitative analysis. RESULTS The meta-analysis revealed a significant association between myosteatosis and both overall survival (OS) [Hazard Ratio (HR): 1.55, 95 % Confidence Interval (CI): 1.40-1.72, P < 0.001, I2 = 0.0 %] and recurrence-free survival (RFS) (HR 1.48, 95 % CI: 1.17-1.86, P = 0.001, I2 = 0.0 %) in patients diagnosed with PC. Subgroup analyses revealed that myosteatosis continued to be a negative prognostic factor in PC across various treatment modalities, patient populations, and myosteatosis assessment methods. Additionally, myosteatosis was identified as a risk factor for postoperative complications, with a pooled odds ratio of 2.20 (95 % CI: 1.45-3.35, P < 0.001, I2 = 37.5 %). All included studies achieved NOS scores of 6 or higher, indicating a relatively high level of methodological quality. CONCLUSION These results suggest that myosteatosis is significantly associated with both survival outcomes and postoperative complications in patients with PC.
Collapse
Affiliation(s)
- Hong-Bo Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qi Miao
- Department of Radiology, The First Hospital of China Medical University, Shenyang 110002, China
| | - Ya-Shu Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin-Yu Lou
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lu-Dan Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiao-Dong Tan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ke-Ke Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
38
|
Wang S, Gao J, Yang M, Zhang G, Yin L, Tong X. OPN-Mediated Crosstalk Between Hepatocyte E4BP4 and Hepatic Stellate Cells Promotes MASH-Associated Liver Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405678. [PMID: 39473081 DOI: 10.1002/advs.202405678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Indexed: 12/19/2024]
Abstract
Stressed hepatocytes promote liver fibrosis through communications with hepatic stellate cells (HSCs) during chronic liver injury. However, intra-hepatocyte players that facilitate such cell-to-cell communications are largely undefined. It is previously reported that hepatocyte E4BP4 is potently induced by ER stress and hepatocyte deletion of E4bp4 protects mice from high-fat diet-induced liver steatosis. Here how hepatocyte E4bp4 deficiency impacts the activation of HSCs and the progression toward MASH-associated liver fibrosis is examined. Hepatic E4BP4 is increased in mouse models of NASH diet- or CCl4-induced liver fibrosis. Hepatocyte-specific E4bp4 deletion protected mice against NASH diet-induced liver injury, inflammation, and fibrosis without impacting liver steatosis. Hepatocyte E4BP4 overexpression activated HSCs in a medium transfer experiment, whereas hepatocyte E4bp4 depletion did the opposite. RNA-Seq analysis identified the pro-fibrogenic factor OPN as a critical target of E4BP4 within hepatocytes. Antibody neutralization or shRNA depletion of Opn abrogated hepatocyte E4BP4-induced HSC activation. E4BP4 interacted with and stabilized YAP, an established activator of OPN. Loss of hepatic Yap blocked OPN induction in the liver of Ad-E4bp4-injected mice. Hepatocyte E4BP4 induces OPN via YAP to activate HSCs and promote liver fibrosis during diet-induced MASH. Inhibition of the hepatocyte E4BP4-OPN pathway could offer a novel therapeutic avenue for treating MASLD/MASH.
Collapse
Affiliation(s)
- Sujuan Wang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Furong District, Changsha, Hunan, 410011, P. R. China
| | - Jiashi Gao
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Furong District, Changsha, Hunan, 410011, P. R. China
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, NCRC 20-3843, 2800 Plymouth Road, Ann Arbor, MI, 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, NCRC 20-3843, 2800 Plymouth Road, Ann Arbor, MI, 48105, USA
| | - Meichan Yang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, Guangdong, 51008, P. R. China
- Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, Guangdong, 51008, P. R. China
| | - Gary Zhang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, NCRC 20-3843, 2800 Plymouth Road, Ann Arbor, MI, 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, NCRC 20-3843, 2800 Plymouth Road, Ann Arbor, MI, 48105, USA
| | - Lei Yin
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, NCRC 20-3843, 2800 Plymouth Road, Ann Arbor, MI, 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, NCRC 20-3843, 2800 Plymouth Road, Ann Arbor, MI, 48105, USA
| | - Xin Tong
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, NCRC 20-3843, 2800 Plymouth Road, Ann Arbor, MI, 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, NCRC 20-3843, 2800 Plymouth Road, Ann Arbor, MI, 48105, USA
| |
Collapse
|
39
|
Huang L, Rao Q, Wang C, Mou Y, Zheng X, Hu E, Zheng J, Li Y, Liu L. Multi-omics joint analysis reveals that the Miao medicine Yindanxinnaotong formula attenuates non-alcoholic fatty liver disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156026. [PMID: 39388921 DOI: 10.1016/j.phymed.2024.156026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/04/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUD Non-alcoholic fatty liver disease (NAFLD) is a growing chronic liver disease worldwide, and no effective agent is approved yet for this condition. Traditional Chinese Medicine (TCM), which has been practiced for thousands of years in China and other Asian countries, is considered an important source for identifying novel medicines for various diseases. Miao medicine Yindanxinnaotong formula (YDX) is a classical TCM for the treatment of hyperlipidemia disease by reducing blood lipid content, while the role of YDX have not been clarified in NAFLD. PURPOSE To investigate the protective effect of YDX on NAFLD in mice induced by high fat diet (HFD) and clarify the potential mechanism. METHODS NAFLD mice model was constructed by receiving HFD for 10-week period with or without YDX administration. Lipid profiles, biochemical indicators, and histopathological staining were performed to evaluate the extent of hepatic lipid accumulation and hepatic steatosis. 16S rRNA sequencing was used to determine the gut microbial composition. Serum metabolomics was further used to investigate the changes in plasma biomarkers for NAFLD-associated by UPLC-Q-TOF/MS analysis. Subsequently, liver transcriptomics was employed to identify differentially expressed genes and explore regulatory pathways. Then, lipid metabolism-related proteins and inflammation factors were examined by Western blot and ELISA. RESULTS YDX reduced body weight gain, liver index and inflammatory cytokines levels, along with improved hepatic steatosis, serum lipid profile, sensitivity to insulin and also tolerance to glucose, and enhanced oxidative defense system in HFD-induced mice. Also, YDX remarkedly affected gut microbiota diversity and community richness and decreased the ratio of Firmicutes/Bacteroidetes. Meanwhile, YDX also reduced the production of harmful lipid metabolites in the sera of NAFLD mice, such as LPC(18:0), LPC(18:1) and carnitine. Notably, consistent with liver transcriptomics results, YDX downregulated the expression of proteins implicated in de novo lipid synthesis (Srebp-1c, Acaca, Fasn, Scd-1, and Cd36) and pro-inflammatory cytokines (IL-6 and TNF-α), and increased the expression of proteins-related fatty acid β-oxidation (Ampkα, Ppar-α, and Cpt-1) in the liver by activating Ampk pathway. CONCLUSION YDX is promisingly an effective therapy for preventing NAFLD by modulating the Ampk pathway, inhibiting gut microbiota disorder, and reducing the production of harmful lipid metabolites.
Collapse
Affiliation(s)
- Lei Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Qing Rao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Chaoyan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Yu Mou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Xiuyan Zheng
- Guizhou Institute of Integrated Agriculture Development, Guiyang 550006, China
| | - Enming Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China.
| | - Yanmei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China.
| | - Lin Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
40
|
Wang Y, Chen X, Huws SA, Xu G, Li J, Ren J, Xu J, Guan LL, Yao J, Wu S. Ileal microbial microbiome and its secondary bile acids modulate susceptibility to nonalcoholic steatohepatitis in dairy goats. MICROBIOME 2024; 12:247. [PMID: 39578870 PMCID: PMC11585128 DOI: 10.1186/s40168-024-01964-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/02/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Liver damage from nonalcoholic steatohepatitis (NASH) presents a significant challenge to the health and productivity of ruminants. However, the regulatory mechanisms behind variations in NASH susceptibility remain unclear. The gut‒liver axis, particularly the enterohepatic circulation of bile acids (BAs), plays a crucial role in regulating the liver diseases. Since the ileum is the primary site for BAs reabsorption and return to the liver, we analysed the ileal metagenome and metabolome, liver and serum metabolome, and liver single-nuclei transcriptome of NASH-resistant and susceptible goats together with a mice validation model to explore how ileal microbial BAs metabolism affects liver metabolism and immunity, uncovering the key mechanisms behind varied NASH pathogenesis in dairy goats. RESULTS In NASH goats, increased total cholesterol (TC), triglyceride (TG), and primary BAs and decreased secondary BAs in the liver and serum promoted hepatic fat accumulation. Increased ileal Escherichia coli, Erysipelotrichaceae bacterium and Streptococcus pneumoniae as well as proinflammatory compounds damaged ileal histological morphology, and increased ileal permeability contributes to liver inflammation. In NASH-tolerance (NASH-T) goats, increased ursodeoxycholic acid (UDCA), isodeoxycholic acid (isoDCA) and isolithocholic acid (isoLCA) in the liver, serum and ileal contents were attributed to ileal secondary BAs-producing bacteria (Clostridium, Bifidobacterium and Lactobacillus) and key microbial genes encoding enzymes. Meanwhile, decreased T-helper 17 (TH17) cells and increased regulatory T (Treg) cells proportion were identified in both liver and ileum of NASH-T goats. To further validate whether these key BAs affected the progression of NASH by regulating the proliferation of TH17 and Treg cells, the oral administration of bacterial UDCA, isoDCA and isoLCA to a high-fat diet-induced NASH mouse model confirmed the amelioration of NASH through the TH17 cell differentiation/IL-17 signalling/PPAR signalling pathway by these bacterial secondary BAs. CONCLUSION This study revealed the roles of ileal microbiome and its secondary BAs in resilience and susceptibility to NASH by affecting the hepatic Treg and TH17 cells proportion in dairy goats. Bacterial UDCA, isoDCA and isoLCA were demonstrated to alleviate NASH and could be novel postbiotics to modulate and improve the liver health in ruminants. Video Abstract.
Collapse
Affiliation(s)
- Yue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| | - Sharon A Huws
- Institute of Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK
| | - Guanghao Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianrong Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingyi Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| | - Le Luo Guan
- Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
41
|
Pan X, Lv J, Liu M, Li Y, Zhang Y, Zhang R, Liu J, Sun C, Guo H. Chronic systemic inflammation predicts long-term mortality among patients with fatty liver disease: Data from the National Health and Nutrition Examination Survey 2007-2018. PLoS One 2024; 19:e0312877. [PMID: 39556576 PMCID: PMC11573152 DOI: 10.1371/journal.pone.0312877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Low-grade systemic inflammation (SI) in patients with fatty liver disease (FLD) is an important hallmark of disease onset and progression. This study aims to evaluate the prognostic significance of novel SI markers in FLD. METHODS This was a retrospective cohort study. We included adult patients with FLD with complete data and analyzed the association between chronic SI and long-term mortality in patients with FLD. Systemic immune-inflammation index (SII), pan-immune-inflammation value (PIV), and systemic inflammation response index (SIRI) were evaluated based on peripheral blood counts and FLD was determined by the Fatty Liver Index. RESULTS A total of 5497 patients with FLD were included in the final analysis. SII and PIV (but not SIRI) were found to be associated with all-cause and cardiovascular mortality in univariate analysis. Multivariate Cox regression analysis and KM analysis demonstrated that SII and PIV were associated with all-cause mortality, with SII showing a nonlinear correlation in RCS. PIV (but not SII) was associated with the cardiovascular-related survival probability over time. Stratified analysis indicated that the positive correlation between SII and PIV and all-cause mortality was not altered by subgroups. CONCLUSIONS SII and PIV are strongly and consistently associated with all-cause mortality in patients with FLD, with PIV potentially showing a closer association with cardiovascular mortality.
Collapse
Affiliation(s)
- Xinghe Pan
- Department of General Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Jie Lv
- Department of Clinical Laboratory Center, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China
| | - Man Liu
- School of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - You Li
- Department of General Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Yitong Zhang
- Department of General Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Rui Zhang
- Department of General Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Junliang Liu
- Department of General Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Chenglin Sun
- Department of General Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Hongpeng Guo
- Department of General Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| |
Collapse
|
42
|
Chen J, Yang S, Luo H, Fu X, Li W, Li B, Fu C, Chen F, Xu D, Cao N. Polysaccharide of Atractylodes macrocephala Koidz alleviates NAFLD-induced hepatic inflammation in mice by modulating the TLR4/MyD88/NF-κB pathway. Int Immunopharmacol 2024; 141:113014. [PMID: 39191120 DOI: 10.1016/j.intimp.2024.113014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) not only could cause abnormal lipid metabolism in the liver, but also could cause liver inflammation. Previous studies have shown that Polysaccharide of Atractylodes macrocephala Koidz (PAMK) could alleviate animal liver inflammatory damage and alleviate NAFLD in mice caused by high-fat diet(HFD), but regulation of liver inflammation caused by NAFLD has rarely been reported. In this study, an animal model of non-alcoholic fatty liver inflammation in the liver of mice was established to explore the protective effect of PAMK on the liver of mice. The results showed that PAMK could alleviate the abnormal increase of body weight and liver weight of mice caused by HFD, alleviate the abnormal liver structure of mice, reduce the level of oxidative stress and cytokine secretion in the liver of mice, and downregulate the mRNA expression of TLR4, MyD88, NF-κB and protein expression of P-IκB, P-NF-κB-P65, TLR4, MyD88, NF-κB in the liver. These results indicate that PAMK could alleviate hepatocyte fatty degeneration and damage, oxidative stress and inflammatory response of the liver caused by NAFLD in mice.
Collapse
Affiliation(s)
- Junyi Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Shuzhan Yang
- Technology Center, Guangzhou Customs, Guangzhou, Guangdong 510623, China
| | - Hanxia Luo
- Technology Center, Guangzhou Customs, Guangzhou, Guangdong 510623, China
| | - Xinliang Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Wanyan Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Bingxin Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Cheng Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Feiyue Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Danning Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Nan Cao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
43
|
Choi JW, Lee CM, Kang BK, Kim M. Perirenal fat thickness is an independent predictor for metabolic syndrome in steatotic liver disease. Sci Rep 2024; 14:26548. [PMID: 39489811 PMCID: PMC11532468 DOI: 10.1038/s41598-024-77512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
The objective of our study is to measure perirenal fat thickness using MRI in individuals with steatotic liver disease and investigate the relationship between perirenal fat thickness and metabolic syndrome. This retrospective study included consecutive patients with steatotic liver disease who underwent magnetic resonance imaging-proton density fat fraction from October 2018 to February 2020. Among them, patients with crossed fused kidneys or who underwent nephrectomy were excluded. The metabolic abnormalities were reviewed; presence of hypertension, type 2 diabetes, abdominal circumference, triglyceride, and high-density lipoprotein. Perirenal fat was measured in four directions in both kidneys and the total sum of them was calculated. A total of 250 patients (140 males and 110 females) were included. Perirenal fat thickness showed a moderate correlation with waist circumference, creatinine, and hepatic fat fraction (all p < 0.001). Perirenal fat thickness was significantly higher in patients with metabolic syndrome than in patients without (76.8 mm vs. 65.1 mm, p = 0.004). In multivariable regression analysis, the group with high perirenal fat thickness had as significantly higher odd ratio of 2.71 compared to the low group. The perirenal fat thickness is independently associated with metabolic syndrome in patients with steatotic liver disease.
Collapse
Affiliation(s)
- Jong Wook Choi
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Chul-Min Lee
- Department of Radiology, Hanyang University Medical Center, 222-1 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Bo-Kyeong Kang
- Department of Radiology, Hanyang University Medical Center, 222-1 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Mimi Kim
- Department of Radiology, Hanyang University Medical Center, 222-1 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
44
|
Yang Z, Chen Z, Wang J, Li Y, Zhang H, Xiang Y, Zhang Y, Shao Z, Wu P, Lu D, Lin H, Tong Z, Liu J, Dong Q. Multiple Machine Learning Identifies Key Gene PHLDA1 Suppressing NAFLD Progression. Inflammation 2024:10.1007/s10753-024-02164-6. [PMID: 39496918 DOI: 10.1007/s10753-024-02164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 11/06/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) poses a serious global health threat, with its progression mechanisms not yet fully understood. While several molecular markers for NAFLD have been developed in recent years, a lack of robust evidence hampers their clinical application. Therefore, identifying novel and potent biomarkers would directly aid in the prediction, prevention, and personalized treatment of NAFLD. We downloaded NAFLD-related datasets from the Gene Expression Omnibus (GEO). Differential expression analysis and functional analysis were initially conducted. Subsequently, Weighted Gene Co-expression Network Analysis (WGCNA) and multiple machine learning strategies were employed to screen and identify key genes, and the diagnostic value was assessed using Receiver Operating Characteristic (ROC) analysis. We then explored the relationship between genes and immune cells using transcriptome data and single-cell RNA sequencing (scRNA-seq) data. Finally, we validated our findings in cell and mouse NAFLD models. We obtained 23 overlapping differentially expressed genes (DEGs) across three NAFLD datasets. Enrichment analysis revealed that DEGs were associated with Apoptosis, Parathyroid hormone synthesis, secretion and action, Colorectal cancer, p53 signaling pathway, and Biosynthesis of unsaturated fatty acids. After employing machine learning strategies, we identified one gene, pleckstrin homology like domain family A member 1 (PHLDA1), downregulated in NAFLD and showing high diagnostic accuracy. CIBERSORT analysis revealed significant associations of PHLDA1 with various immune cells. Single-cell data analysis demonstrated downregulation of PHLDA1 in NAFLD, with PHLDA1 exhibiting a significant negative correlation with macrophages. Furthermore, we found PHLDA1 to be downregulated in an in vitro hepatic steatosis cell model, and overexpression of PHLDA1 significantly reduced lipid accumulation, as well as the expression of key molecules involved in hepatic lipogenesis and fatty acid uptake, such as FASN, SCD-1, and CD36. Additionally, gene set enrichment analysis (GSEA) pathway enrichment analysis suggested that PHLDA1 may influence NAFLD progression through pathways such as Cytokine Cytokine Receptor Interaction, Ecm Receptor Interaction, Parkinson's Disease, and Ribosome pathways. Our conclusions were further validated in a mouse model of NAFLD. Our study reveals that PHLDA1 inhibits the progression of NAFLD, as overexpression of PHLDA1 significantly reduces lipid accumulation in cells and markedly decreases the expression of key molecules involved in liver lipogenesis and fatty acid uptake. Therefore, PHLDA1 may emerge as a novel potential target for future prediction, diagnosis, and targeted prevention of NAFLD.
Collapse
Affiliation(s)
- Zhenwei Yang
- Department of Gastroenterology, The Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China.
| | - Zhiqin Chen
- Department of Gastroenterology, The Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Jingchao Wang
- Department of Biochemistry and Molecular Biology, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University School of Medicine, Shenzhen, China
| | - Yizhang Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hailin Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xiang
- Department of Gastroenterology, The Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Yuwei Zhang
- Department of Gastroenterology, The Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Zhaozhao Shao
- Department of Gastroenterology, The Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Pei Wu
- Department of Gastroenterology, The Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Ding Lu
- Department of Gastroenterology, The Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Huajiang Lin
- Department of Gastroenterology, The Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Zhaowei Tong
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, 313000, China
| | - Jiang Liu
- Department of Gastroenterology, The Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Quan Dong
- Department of Gastroenterology, The Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| |
Collapse
|
45
|
Zhu JH, Ouyang SX, Zhang GY, Cao Q, Xin R, Yin H, Wu JW, Zhang Y, Zhang Z, Liu Y, Fu JT, Chen YT, Tong J, Zhang JB, Liu J, Shen FM, Li DJ, Wang P. GSDME promotes MASLD by regulating pyroptosis, Drp1 citrullination-dependent mitochondrial dynamic, and energy balance in intestine and liver. Cell Death Differ 2024; 31:1467-1486. [PMID: 39009654 PMCID: PMC11519926 DOI: 10.1038/s41418-024-01343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Dysregulated metabolism, cell death, and inflammation contribute to the development of metabolic dysfunction-associated steatohepatitis (MASH). Pyroptosis, a recently identified form of programmed cell death, is closely linked to inflammation. However, the precise role of pyroptosis, particularly gasdermin-E (GSDME), in MASH development remains unknown. In this study, we observed GSDME cleavage and GSDME-associated interleukin-1β (IL-1β)/IL-18 induction in liver tissues of MASH patients and MASH mouse models induced by a choline-deficient high-fat diet (CDHFD) or a high-fat/high-cholesterol diet (HFHC). Compared with wild-type mice, global GSDME knockout mice exhibited reduced liver steatosis, steatohepatitis, fibrosis, endoplasmic reticulum stress, lipotoxicity and mitochondrial dysfunction in CDHFD- or HFHC-induced MASH models. Moreover, GSDME knockout resulted in increased energy expenditure, inhibited intestinal nutrient absorption, and reduced body weight. In the mice with GSDME deficiency, reintroduction of GSDME in myeloid cells-rather than hepatocytes-mimicked the MASH pathologies and metabolic dysfunctions, as well as the changes in the formation of neutrophil extracellular traps and hepatic macrophage/monocyte subclusters. These subclusters included shifts in Tim4+ or CD163+ resident Kupffer cells, Ly6Chi pro-inflammatory monocytes, and Ly6CloCCR2loCX3CR1hi patrolling monocytes. Integrated analyses of RNA sequencing and quantitative proteomics revealed a significant GSDME-dependent reduction in citrullination at the arginine-114 (R114) site of dynamin-related protein 1 (Drp1) during MASH. Mutation of Drp1 at R114 reduced its stability, impaired its ability to redistribute to mitochondria and regulate mitophagy, and ultimately promoted its degradation under MASH stress. GSDME deficiency reversed the de-citrullination of Drp1R114, preserved Drp1 stability, and enhanced mitochondrial function. Our study highlights the role of GSDME in promoting MASH through regulating pyroptosis, Drp1 citrullination-dependent mitochondrial function, and energy balance in the intestine and liver, and suggests that GSDME may be a potential therapeutic target for managing MASH.
Collapse
Affiliation(s)
- Jia-Hui Zhu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shen-Xi Ouyang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Yan Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qi Cao
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, China
- The National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University, Shanghai, China
| | - Rujuan Xin
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hang Yin
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing-Wen Wu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Liu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiang-Tao Fu
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yi-Ting Chen
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia-Bao Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jian Liu
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Pei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, China.
- The National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University, Shanghai, China.
| |
Collapse
|
46
|
Kurbatova IV, Topchieva LV, Dudanova OP, Shipovskaya AA. Role of MMP-2 and MMP-9 in the Relationship between Inflammation, Fibrosis, and Apoptosis during Progression of Non-Alcoholic Fatty Liver Disease and Diagnostic Significance of Plasma Levels of Their Active Forms. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1998-2022. [PMID: 39647828 DOI: 10.1134/s0006297924110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 12/10/2024]
Abstract
MMP-2 and MMP-9 play an important role in pathogenesis of chronic liver diseases, participating in the processes of inflammation and fibrosis. Their role in progression of non-alcoholic fatty liver disease (NAFLD) is poorly understood. Analysis of MMP-2, -9 levels in the blood plasma of patients with different forms of NAFLD [liver steatosis (LS) and non-alcoholic steatohepatitis (NASH) of weak (-WA), moderate (MA), high (-HA) activity without pronounced fibrosis] was performed. Correlations between the levels of MMP-2, -9 and mRNA of the genes MMP2, MMP9, ADAM17, NLRP3, caspase 3 activity in peripheral blood leukocytes (PBL), TNFα, IL-6, sIL-6R, cytokeratin-18 fragments in plasma were assessed. In steatosis, the levels of MMP2 gene mRNA in PBL and MMP-2 in plasma are lower than in the control, and expression of the NLRP3 gene in PBL is increased relative to other groups. In the NASH-WA, the level of MMP-9 is higher than in the control, in LS, and in NASH-MA, which could be associated with activation of inflammation during transformation of LS into NASH. The plasma level of MMP-9 over 389.50 pg/ml has been shown to be diagnostically significant for identification of NASH-WA among the patients with steatosis (AUC ROC = 0.818, 95% CI = 0.689-0.948, p < 0.001). In NAFLD, the level of MMP-9 could be associated not only with inflammation, but also with apoptosis. ADAM17 probably plays a certain role in this regard. In the advanced NASH, hepatocyte apoptosis is increased, the level of caspase 3 activity in PBL is increased, the level of MMP-9 in the blood is reduced to the level of the control and LS. In the NASH-HA, the level of mRNA of the ADAM17 gene in PBL is increased compared to the control, NASH-WA, and NASH-MA. Thus, MMP-2 and MMP-9 are involved in pathogenesis of NAFLD already at the early stages and their level in blood could be associated with the presence and severity of inflammation in the liver parenchyma.
Collapse
Affiliation(s)
- Irina V Kurbatova
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Karelia, 185910, Russia.
| | - Lyudmila V Topchieva
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Karelia, 185910, Russia
| | - Olga P Dudanova
- Zilber Medical Institute, Petrozavodsk State University, Petrozavodsk, Karelia, 185910, Russia
| | - Anastasia A Shipovskaya
- Zilber Medical Institute, Petrozavodsk State University, Petrozavodsk, Karelia, 185910, Russia
| |
Collapse
|
47
|
Cardamone A, Coppoletta AR, Macrì R, Nucera S, Ruga S, Scarano F, Mollace R, Mollace A, Maurotti S, Micotti E, Carresi C, Musolino V, Gliozzi M, Mollace V. Targeting leptin/CCL3-CCL4 axes in NAFLD/MAFLD: A novel role for BPF in counteracting thalamic inflammation and white matter degeneration. Pharmacol Res 2024; 209:107417. [PMID: 39276957 DOI: 10.1016/j.phrs.2024.107417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), redefined as Metabolic Associated Fatty Liver Disease (MAFLD), is characterized by an extensive multi-organ involvement. MAFLD-induced systemic inflammatory status and peripheral metabolic alteration lead to an impairment of cerebral function. Herein, we investigated a panel of leptin-related inflammatory mediators as predictive biomarkers of neuroinflammation and evaluated the possible role of Bergamot Polyphenolic Fraction (BPF) in counteracting this MAFLD-induced inflammatory cascade. Male DIAMOND mice were randomly assigned to fed chow diet and tap water or high fat diet with sugar water. Starting from week 16, mice were further divided and treated with vehicle or BPF (50 mg/kg/day), via gavage, until week 30. Magnetic resonance imaging was performed at the baseline and at week 30. Correlation and regression analyses were performed to discriminate the altered lipid metabolism in the onset of cerebral alterations. Steatohepatitis led to an increase in leptin levels, resulting in a higher expression of proinflammatory mediators. The inflammatory biomarkers involved in leptin/CCL3-CCL4 axes were correlated with the altered thalamus energetic metabolism and the white matter degeneration. BPF administration restored leptin level, improved glucose and lipid metabolism, and reduced chronic low-grade inflammatory mediators, resulting in a prevention of white matter degeneration, alterations of thalamus metabolism and brain atrophy. The highlighted positive effect of BPF, mediated by the downregulation of the inflammatory biomarkers involved in leptin/CCL3-CCL4 axes, affording novel elements to candidate BPF for the development of a therapeutic strategy aimed at counteracting MAFLD-related brain inflammation.
Collapse
Affiliation(s)
- Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Stefano Ruga
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Rocco Mollace
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Annachiara Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Samantha Maurotti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Edoardo Micotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University "Magna Græcia" of Catanzaro, Catanzaro, 88100, Italy.
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|
48
|
Yang X, Zhuo S, Zhuang H, Fang T. Interaction between the systemic immune-inflammation index and trouble sleeping in nonalcoholic fatty liver disease: a cross-sectional study of the NHANES 2005-2018 data. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:175. [PMID: 39478637 PMCID: PMC11526651 DOI: 10.1186/s41043-024-00670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND The systemic immune-inflammation index (SII) and trouble sleeping are independent risk factors for nonalcoholic fatty liver disease (NAFLD). Nevertheless, studies investigating the combined effects of the SII and troubled sleeping on NAFLD are lacking. In this study, we investigated the independent relationships and interactions between trouble sleeping and the SII among patients with NAFLD. METHODS Data from seven survey cycles of the National Health and Nutrition Examination Survey (NHANES) (2005-2018) were analyzed. The SII was obtained by counting platelets, neutrophils, and lymphocytes. NAFLD was diagnosed using the US fatty liver index. Trouble sleeping was diagnosed using a sleep disorder questionnaire. The correlation between trouble sleeping and the SII in NAFLD was investigated using multiple regression analysis, subgroup stratification, interaction tests, and restricted cubic spline, and the presence or absence of additive or multiplicative interactions was determined. Additionally, mediation analyses were performed to explore the role of the SII in mediating the effects of trouble sleeping on NAFLD. RESULTS The survey included 10 963 participants. Multivariate logistic regression revealed that SII (OR: 1.21, 95% CI 1.08-1.35) and trouble sleeping (OR: 1.24, 95% CI 1.05-1.47) were positively correlated with NAFLD. For NAFLD, an additive but not multiplicative interaction was noted between the SII and trouble sleeping. The SII partially mediated the association between trouble sleeping and NAFLD, accounting for approximately 3.11% of the total effect (95% CI 0.01-0.05). CONCLUSION The SII and trouble sleeping were independently correlated with NAFLD risk. Furthermore, a combined effect may exist between SII and trouble sleeping, which increases the risk of NAFLD.
Collapse
Affiliation(s)
- Xinxia Yang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Shitu Zhuo
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Huie Zhuang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Taiyong Fang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| |
Collapse
|
49
|
Sheptulina AF, Mamutova EM, Elkina AY, Timofeev YS, Metelskaya VA, Kiselev AR, Drapkina OM. Serum Irisin, Myostatin, and Myonectin Correlate with Metabolic Health Markers, Liver Disease Progression, and Blood Pressure in Patients with Metabolic Dysfunction-Associated Fatty Liver Disease and Hypertension. Metabolites 2024; 14:584. [PMID: 39590820 PMCID: PMC11596689 DOI: 10.3390/metabo14110584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Recent data indicate the involvement of skeletal muscles in the regulation of metabolism and in the pathogenesis of chronic noncommunicable diseases. The goal of our study was to describe the serum concentrations of myokines in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) and hypertension (HTN) and their correlation with laboratory parameters, blood pressure (BP), and MASLD severity. METHODS A total of 67 patients with MASLD and HTN underwent anthropometric measurements, laboratory tests, and point shear-wave elastography. The serum concentrations of myokines were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS Patients with detectable serum myonectin concentrations had significantly higher maximum systolic blood pressure (p = 0.022) and higher blood levels of uric acid (p = 0.029). Serum irisin concentration ≥ 6.1 μg/mL was associated with higher FLI values (p = 0.042) and liver stiffness (p = 0.034), as well as with slightly higher waist circumference (p = 0.082) and triglyceride level (p = 0.062). Patients with serum myostatin concentration ≥ 4.98 ng/mL were significantly older (p = 0.033) and had a lower blood albumin level (p = 0.043). CONCLUSIONS In conclusion, the myokine profile in patients with MASLD and HTN correlates both with the severity of MASLD and the parameters characteristic of metabolic health, suggesting the possible contribution of altered irisin, myonectin, and myostatin concentrations to the occurrence of cardiometabolic risks in patients with MASLD.
Collapse
Affiliation(s)
- Anna F. Sheptulina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Elvira M. Mamutova
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anastasia Yu. Elkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Intermediate Level Therapy, Saratov State Medical University, 410012 Saratov, Russia
| | - Yuriy S. Timofeev
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Victoria A. Metelskaya
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anton R. Kiselev
- Coordinating Center for Fundamental Research, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Oxana M. Drapkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| |
Collapse
|
50
|
Xiao Z, Zhou J, Chen H, Chen X, Wang L, Liu D, Kang X. Synthesis, characterization and MAFLD prevention potential of Ganoderma lucidum spore polysaccharide-stabilized selenium nanoparticles. Int J Biol Macromol 2024; 282:136962. [PMID: 39490485 DOI: 10.1016/j.ijbiomac.2024.136962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The unstability of selenium nanoparticles (SeNPs) results in decreased activity which limits its therapeutic potential. In this study, we utilized Ganoderma lucidum spore polysaccharide (GLP, Mw = 983.96 kDa) as a novel stabilizer to synthesize GLP-SeNPs. GLP-SeNPs (Se/GLP = 1/3) with an average diameter of 149 nm were successfully prepared and it was stable for at least 30 days at 4 °C. It exhibited an orange-red color, zero valence state, amorphous structure, selenium uniform distribution, a zeta potential of -29.73 mV, selenium content of 16.04 %. GLP-SeNPs pretreatment decreased lipid accumulation, reduced ROS content and enhanced SOD and CAT activity in HepG2 cells. Fe2+ and MDA contents were decreased, while GPX4 and GSH activities were increased. All these ameliorated effects could be abolished by NRF2 antagonist ML385. The expression of anti-oxidant genes and iron exporter was up-regulated, while that of pro-oxidant and lipid biosynthesis gene was down-regulated. The GPX4 activity could be reduced by ML385 addition. In conclusion, GLP-SeNPs was successfully constructed at the ratio of 1/3 (Se/GLP). It prevents MAFLD by targeting ferroptosis, including lowering iron overload, inhibiting lipid accumulation and attenuating oxidative stress. The improvement was conducted via activating SLC40A1-mediated iron pathway, ACSL4-mediated lipid metabolism and NRF2-mediated GSH-GPX4 pathway. Therefore, GLP-SeNPs can be used as potential selenium nutritional supplements or adjuvants for MAFLD prevention.
Collapse
Affiliation(s)
- Zhengpeng Xiao
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, PR China; State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China
| | - Jiali Zhou
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, PR China; State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China
| | - Hanqi Chen
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, PR China; State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China
| | - Xuan Chen
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, PR China; State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China; Hunan Provincial Engineering Research Center of Medical Nutrition Intervention Technology for Metabolic Diseases, Hunan Agricultural University, Changsha, Hunan, PR China; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan, PR China
| | - Lei Wang
- State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China; Changsha Nengfeng Biotechnology Co., Ltd, Changsha, Hunan, PR China
| | - Dongbo Liu
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, PR China; State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China; Hunan Provincial Engineering Research Center of Medical Nutrition Intervention Technology for Metabolic Diseases, Hunan Agricultural University, Changsha, Hunan, PR China; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan, PR China.
| | - Xincong Kang
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, PR China; State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China; Hunan Provincial Engineering Research Center of Medical Nutrition Intervention Technology for Metabolic Diseases, Hunan Agricultural University, Changsha, Hunan, PR China; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan, PR China.
| |
Collapse
|