1
|
Wilson GE, Knight J, Liu Q, Shelar A, Stewart E, Wang X, Yan X, Sanders J, Visness C, Gill M, Gruchalla R, Liu AH, Kattan M, Khurana Hershey GK, Togias A, Becker PM, Altman MC, Busse WW, Jackson DJ, Montgomery RR, Chupp GL. Activated sputum eosinophils associated with exacerbations in children on mepolizumab. J Allergy Clin Immunol 2024; 154:297-307.e13. [PMID: 38485057 PMCID: PMC11305967 DOI: 10.1016/j.jaci.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/22/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND MUPPITS-2 was a randomized, placebo-controlled clinical trial that demonstrated mepolizumab (anti-IL-5) reduced exacerbations and blood and airway eosinophils in urban children with severe eosinophilic asthma. Despite this reduction in eosinophilia, exacerbation risk persisted in certain patients treated with mepolizumab. This raises the possibility that subpopulations of airway eosinophils exist that contribute to breakthrough exacerbations. OBJECTIVE We aimed to determine the effect of mepolizumab on airway eosinophils in childhood asthma. METHODS Sputum samples were obtained from 53 MUPPITS-2 participants. Airway eosinophils were characterized using mass cytometry and grouped into subpopulations using unsupervised clustering analyses of 38 surface and intracellular markers. Differences in frequency and immunophenotype of sputum eosinophil subpopulations were assessed based on treatment arm and frequency of exacerbations. RESULTS Median sputum eosinophils were significantly lower among participants treated with mepolizumab compared with placebo (58% lower, 0.35% difference [95% CI 0.01, 0.74], P = .04). Clustering analysis identified 3 subpopulations of sputum eosinophils with varied expression of CD62L. CD62Lint and CD62Lhi eosinophils exhibited significantly elevated activation marker and eosinophil peroxidase expression, respectively. In mepolizumab-treated participants, CD62Lint and CD62Lhi eosinophils were more abundant in participants who experienced exacerbations than in those who did not (100% higher for CD62Lint, 0.04% difference [95% CI 0.0, 0.13], P = .04; 93% higher for CD62Lhi, 0.21% difference [95% CI 0.0, 0.77], P = .04). CONCLUSIONS Children with eosinophilic asthma treated with mepolizumab had significantly lower sputum eosinophils. However, CD62Lint and CD62Lhi eosinophils were significantly elevated in children on mepolizumab who had exacerbations, suggesting that eosinophil subpopulations exist that contribute to exacerbations despite anti-IL-5 treatment.
Collapse
Affiliation(s)
- Gabriella E Wilson
- Department of Internal Medicine, Yale School of Medicine, New Haven, Conn
| | - James Knight
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Conn
| | - Qing Liu
- Department of Internal Medicine, Yale School of Medicine, New Haven, Conn
| | - Ashish Shelar
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Conn
| | - Emma Stewart
- Committee on Immunology, University of Chicago, Chicago, Ill
| | - Xiaomei Wang
- Department of Internal Medicine, Yale School of Medicine, New Haven, Conn
| | - Xiting Yan
- Department of Internal Medicine, Yale School of Medicine, New Haven, Conn
| | | | | | - Michelle Gill
- Department of Pediatric Infectious Diseases, Washington University in St Louis School of Medicine, St Louis, Mo
| | - Rebecca Gruchalla
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Andrew H Liu
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo
| | - Meyer Kattan
- Department of Pediatric Pulmonology, Columbia University Irving Medical Center, New York, NY
| | | | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Patrice M Becker
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | | | - William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Conn
| | - Geoffrey L Chupp
- Department of Internal Medicine, Yale School of Medicine, New Haven, Conn.
| |
Collapse
|
2
|
Kamolratanakul S, Ariyanon W, Udompornpitak K, Bhunyakarnjanarat T, Leelahavanichkul A, Dhitavat J, Wilairatana P, Chancharoenthana W. Comparison of the Single Cell Immune Landscape between Subjects with High Mycobacterium tuberculosis Bacillary Loads during Active Pulmonary Tuberculosis and Household Members with Latent Tuberculosis Infection. Cells 2024; 13:362. [PMID: 38391975 PMCID: PMC10887672 DOI: 10.3390/cells13040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
It is unclear how the immune system controls the transition from latent tuberculosis (TB) infection (LTBI) to active pulmonary infection (PTB). Here, we applied mass spectrometry cytometry time-of-flight (CyTOF) analysis of peripheral blood mononuclear cells to compare the immunological landscapes in patients with high tuberculous bacillary load PTB infections and LTBI. A total of 32 subjects (PTB [n = 12], LTBI [n = 17], healthy volunteers [n = 3]) were included. Participants with active PTBs were phlebotomized before administering antituberculosis treatment, whereas participants with LTBI progressed to PTB at the time of household screening. In the present study, CyTOF analysis identified significantly higher percentages of mucosal-associated invariant natural killer T (MAIT NKT) cells in subjects with LTBI than in those with active PTB and healthy controls. Moreover, 6 of 17 (35%) subjects with LTBI progressed to active PTB (LTBI progression) and had higher proportions of MAIT NKT cells and early NKT cells than those without progression (LTBI non-progression). Subjects with LTBI progression also showed a tendency toward low B cell levels relative to other subject groups. In conclusion, MAIT NKT cells were substantially more prevalent in subjects with LTBI, particularly those with progression to active PTB.
Collapse
Affiliation(s)
- Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.K.); (J.D.); (P.W.)
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Wassawon Ariyanon
- Department of Medicine, Banphaeo General Hospital (BGH), Samutsakhon 74120, Thailand;
| | - Kanyarat Udompornpitak
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (T.B.); (A.L.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thansita Bhunyakarnjanarat
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (T.B.); (A.L.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (T.B.); (A.L.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jittima Dhitavat
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.K.); (J.D.); (P.W.)
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.K.); (J.D.); (P.W.)
| | - Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.K.); (J.D.); (P.W.)
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
3
|
Lee HJ, Zhao Y, Fleming I, Mehta S, Wang X, Wyk BV, Ronca SE, Kang H, Chou CH, Fatou B, Smolen KK, Levy O, Clish CB, Xavier RJ, Steen H, Hafler DA, Love JC, Shalek AK, Guan L, Murray KO, Kleinstein SH, Montgomery RR. Early cellular and molecular signatures correlate with severity of West Nile virus infection. iScience 2023; 26:108387. [PMID: 38047068 PMCID: PMC10692672 DOI: 10.1016/j.isci.2023.108387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Infection with West Nile virus (WNV) drives a wide range of responses, from asymptomatic to flu-like symptoms/fever or severe cases of encephalitis and death. To identify cellular and molecular signatures distinguishing WNV severity, we employed systems profiling of peripheral blood from asymptomatic and severely ill individuals infected with WNV. We interrogated immune responses longitudinally from acute infection through convalescence employing single-cell protein and transcriptional profiling complemented with matched serum proteomics and metabolomics as well as multi-omics analysis. At the acute time point, we detected both elevation of pro-inflammatory markers in innate immune cell types and reduction of regulatory T cell activity in participants with severe infection, whereas asymptomatic donors had higher expression of genes associated with anti-inflammatory CD16+ monocytes. Therefore, we demonstrated the potential of systems immunology using multiple cell-type and cell-state-specific analyses to identify correlates of infection severity and host cellular activity contributing to an effective anti-viral response.
Collapse
Affiliation(s)
- Ho-Joon Lee
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yujiao Zhao
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ira Fleming
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sameet Mehta
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiaomei Wang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shannon E. Ronca
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Heather Kang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chih-Hung Chou
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kinga K. Smolen
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Department of Infectious Disease, Precision Vaccines Program, Boston Children’s Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hanno Steen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - J. Christopher Love
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Alex K. Shalek
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Leying Guan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
| | - Kristy O. Murray
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
4
|
Jin J, Wang L, Liu Y, He W, Zheng D, Ni Y, He Q. Depiction of immune heterogeneity of peripheral blood from patients with type II diabetic nephropathy based on mass cytometry. Front Endocrinol (Lausanne) 2023; 13:1018608. [PMID: 36686486 PMCID: PMC9853014 DOI: 10.3389/fendo.2022.1018608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Diabetic nephropathy (DN) is the most prominent cause of chronic kidney disease and end-stage renal failure. However, the pathophysiology of DN, especially the risk factors for early onset remains elusive. Increasing evidence has revealed the role of the innate immune system in developing DN, but relatively little is known about early immunological change that proceeds from overt DN. Herein, this work aims to investigate the immune-driven pathogenesis of DN using mass cytometry (CyTOF). The peripheral blood mononuclear lymphocytes (PBMC) from 6 patients with early-stage nephropathy and 7 type II diabetes patients without nephropathy were employed in the CyTOF test. A panel that contains 38 lineage markers was designed to monitor immune protein levels in PBMC. The unsupervised clustering analysis was performed to profile the proportion of individual cells. t-Distributed Stochastic Neighbor Embedding (t-SNE) was used to visualize the differences in DN patients' immune phenotypes. Comprehensive immune profiling revealed substantial immune system alterations in the early onset of DN, including the significant decline of B cells and the marked increase of monocytes. The level of CXCR3 was dramatically reduced in the different immune cellular subsets. The CyTOF data classified the fine-grained differential immune cell subsets in the early stage of DN. Innovatively, we identified several significant changed T cells, B cell, and monocyte subgroups in the early-stage DN associated with several potential biomarkers for developing DN, such as CTLA-4, CXCR3, PD-1, CD39, CCR4, and HLA-DR. Correlation analysis further demonstrated the robust relationship between above immune cell biomarkers and clinical parameters in the DN patients. Therefore, we provided a convincible view of understanding the immune-driven early pathogenesis of DN. Our findings exhibited that patients with DN are more susceptible to immune system disorders. The classification of fine-grained immune cell subsets in this present research might provide novel targets for the immunotherapy of DN.
Collapse
Affiliation(s)
- Juan Jin
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Longqiang Wang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjun Liu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenfang He
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Danna Zheng
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Rose CL, McGuire H, Graham K, Siegler J, de St Groth BF, Caillaud C, Edwards KM. Partial body cryotherapy exposure drives acute redistribution of circulating lymphocytes: preliminary findings. Eur J Appl Physiol 2023; 123:407-415. [PMID: 36348102 PMCID: PMC9894947 DOI: 10.1007/s00421-022-05058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022]
Abstract
Partial body cryotherapy (PBC) is proposed to alleviate symptoms of exercise-induced muscle damage (EIMD) by reducing associated inflammation. No studies have assessed acute PBC exposure on peripheral blood mononuclear cell mobilisation or compared these with cold water immersion (CWI), which may inform how PBC impacts inflammatory processes. This trial examined the impact of a single PBC exposure on circulating peripheral blood mononuclear cells compared to CWI or a control. 26 males were randomised into either PBC (3 min at - 110 to - 140 °C), CWI (3 min at 9 °C), or control (3 min at 24 °C), with blood samples, heart rate, and blood pressure taken before and after exposure. Cytometric analysis determined that CD8+ T-cell populations were significantly elevated after treatments, with PBC increasing CD8+ T cells to a greater degree than either CWI or CON. Natural killer cell counts were also elevated after PBC, with the increase attributed specifically to the CD56loCD16+ cytotoxic subset. This provides the first evidence for the effect of PBC exposure on redistribution of immune cells. An increase in circulating leukocyte subsets such as CD8+ T cells and CD56loCD16+ natural killer cells suggests that PBC may induce a transient mobilisation of lymphocytes. PBC may thus enable a more efficient trafficking of these cells from the circulation to the site of initial cellular insult from exercise, potentially accelerating the process of cellular recovery. This provides novel evidence on the use of PBC as a recovery treatment and may also have applicability in other clinical settings involving the recovery of damaged skeletal muscle.
Collapse
Affiliation(s)
- Catriona L. Rose
- Faculty of Medicine and Health, Sydney and School of Health Sciences, Discipline of Exercise and Sport Science, The University of Sydney, Charles Perkins Centre, Camperdown, Sydney, NSW 2006 Australia
| | - Helen McGuire
- Faculty of Medicine and Health, Sydney and School of Medical Sciences, Discipline of Pathology and Ramaciotti Facility for Human Systems Biology, The University of Sydney, Sydney, NSW Australia
| | - Kenneth Graham
- Applied Research Programme, New South Wales Institute of Sport, Sydney, Australia ,Sport and Exercise Science, School of Science and Health, University of Western Sydney, Sydney, NSW Australia
| | - Jason Siegler
- Sport and Exercise Science, School of Science and Health, University of Western Sydney, Sydney, NSW Australia
| | - Barbara Fazekas de St Groth
- Faculty of Medicine and Health, Sydney and School of Medical Sciences, Discipline of Pathology and Ramaciotti Facility for Human Systems Biology, The University of Sydney, Sydney, NSW Australia
| | - Corinne Caillaud
- Faculty of Medicine and Health, Sydney and School of Health Sciences, Discipline of Exercise and Sport Science, The University of Sydney, Charles Perkins Centre, Camperdown, Sydney, NSW 2006 Australia
| | - Kate M. Edwards
- Faculty of Medicine and Health, Sydney and School of Health Sciences, Discipline of Exercise and Sport Science, The University of Sydney, Charles Perkins Centre, Camperdown, Sydney, NSW 2006 Australia
| |
Collapse
|
6
|
Gao M, Lee SH, Das RK, Kwon HY, Kim HS, Chang YT. A SLC35C2 Transporter-Targeting Fluorescent Probe for the Selective Detection of B Lymphocytes Identified by SLC-CRISPRi and Unbiased Fluorescence Library Screening. Angew Chem Int Ed Engl 2022; 61:e202202095. [PMID: 35789526 DOI: 10.1002/anie.202202095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 12/12/2022]
Abstract
T and B lymphocytes are two major adaptive immune cells in the human defense system. To real-time monitor their diverse functions, a live-cell-selective probe for only one cell type is need to investigate the complex interaction of the immune cells. Herein, a small-molecule probe CDyB for live B cells is developed by an unbiased fluorescence library screening. The cell selectivity was confirmed by multiparametric single-cell analysis using CyTOF. Through a systematic SLC-CRISPRi library screening, the molecular target of CDyB was identified as SLC35C2 transporter based on a gating-oriented live-cell distinction (GOLD) mechanism. The gene expression analysis and knock-out experiments validated that the SLC35C2 transporter was the target for CDyB distinction. Interestingly, when CDyB was applied to study B cell development, the CDyB fluorescence and SLC35C2 expression were positively correlated with the B cell maturation process, and not involved in the T cell development.
Collapse
Affiliation(s)
- Min Gao
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Sun Hyeok Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Raj Kumar Das
- Department of Chemistry, National University of Singapore (NUS), Singapore, 117543, Singapore
| | - Haw-Young Kwon
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Heon Seok Kim
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
7
|
Gao M, Lee SH, Das RK, Kwon HY, Kim HS, Chang YT. A SLC35C2 Transporter‐Targeting Fluorescent Probe for the Selective Detection of B Lymphocytes Identified by SLC‐CRISPRi and Unbiased Fluorescence Library Screening. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Min Gao
- Institute for Basic Science Center for Self Assembly and Complexity KOREA, REPUBLIC OF
| | - Sun Hyeok Lee
- POSTECH: Pohang University of Science and Technology School of Interdisciplinary Bioscience and Bioengineering KOREA, REPUBLIC OF
| | - Raj Kumar Das
- National University of Singapore Department of Chemistry SINGAPORE
| | - Haw-Young Kwon
- Institute for Basic Science Center for Self Assembly and Complexity KOREA, REPUBLIC OF
| | - Heon Seok Kim
- Stanford University School of Medicine Department of Medicine UNITED STATES
| | - Young-Tae Chang
- POSTECH Department of Chemistry 77 Cheongam-Ro, Nam-Gu 37673 Pohang KOREA, REPUBLIC OF
| |
Collapse
|
8
|
Ahmed AA, Strong MJ, Zhou X, Robinson T, Rocco S, Siegel GW, Clines GA, Moore BB, Keller ET, Szerlip NJ. Differential immune landscapes in appendicular versus axial skeleton. PLoS One 2022; 17:e0267642. [PMID: 35476843 PMCID: PMC9045623 DOI: 10.1371/journal.pone.0267642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Roughly 400,000 people in the U.S. are living with bone metastases, the vast majority occurring in the spine. Metastases to the spine result in fractures, pain, paralysis, and significant health care costs. This predilection for cancer to metastasize to the bone is seen across most cancer histologies, with the greatest incidence seen in prostate, breast, and lung cancer. The molecular process involved in this predilection for axial versus appendicular skeleton is not fully understood, although it is likely that a combination of tumor and local micro-environmental factors plays a role. Immune cells are an important constituent of the bone marrow microenvironment and many of these cells have been shown to play a significant role in tumor growth and progression in soft tissue and bone disease. With this in mind, we sought to examine the differences in immune landscape between axial and appendicular bones in the normal noncancerous setting in order to obtain an understanding of these landscapes. To accomplish this, we utilized mass cytometry by time-of-flight (CyTOF) to examine differences in the immune cell landscapes between the long bone and vertebral body bone marrow from patient clinical samples and C57BL/6J mice. We demonstrate significant differences between immune populations in both murine and human marrow with a predominance of myeloid progenitor cells in the spine. Additionally, cytokine analysis revealed differences in concentrations favoring a more myeloid enriched population of cells in the vertebral body bone marrow. These differences could have clinical implications with respect to the distribution and permissive growth of bone metastases.
Collapse
Affiliation(s)
- Aqila A. Ahmed
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael J. Strong
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xiaofeng Zhou
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tyler Robinson
- Department of Urology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sabrina Rocco
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Geoffrey W. Siegel
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gregory A. Clines
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Veterans Affairs Medical Center, Ann Arbor, Michigan, United States of America
| | - Bethany B. Moore
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Evan T. Keller
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Urology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nicholas J. Szerlip
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Veterans Affairs Medical Center, Ann Arbor, Michigan, United States of America
| |
Collapse
|
9
|
Bae J, Kim JE, Perumalsamy H, Park S, Kim Y, Jun DW, Yoon TH. Mass Cytometry Study on Hepatic Fibrosis and Its Drug-Induced Recovery Using Mouse Peripheral Blood Mononuclear Cells. Front Immunol 2022; 13:814030. [PMID: 35222390 PMCID: PMC8863676 DOI: 10.3389/fimmu.2022.814030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/03/2022] [Indexed: 01/10/2023] Open
Abstract
The number of patients with liver diseases has increased significantly with the progress of global industrialization. Hepatic fibrosis, one of the most common liver diseases diagnosed in many developed countries, occurs in response to chronic liver injury and is primarily driven by the development of inflammation. Earlier immunological studies have been focused on the importance of the innate immune response in the pathophysiology of steatohepatitis and fibrosis, but recently, it has also been reported that adaptive immunity, particularly B cells, plays an essential role in hepatic inflammation and fibrosis. However, despite recent data showing the importance of adaptive immunity, relatively little is known about the role of B cells in the pathogenesis of steatohepatitis fibrosis. In this study, a single-cell-based, high-dimensional mass cytometric investigation of the peripheral blood mononuclear cells collected from mice belonging to three groups [normal chow (NC), thioacetamide (TAA), and 11beta-HSD inhibitor drug] was conducted to further understand the pathogenesis of liver fibrosis through reliable noninvasive biomarkers. Firstly, major immune cell types and their population changes were qualitatively analyzed using UMAP dimensionality reduction and two-dimensional visualization technique combined with a conventional manual gating strategy. The population of B cells displayed a twofold increase in the TAA group compared to that in the NC group, which was recovered slightly after treatment with the 11beta-HSD inhibitor drug. In contrast, the populations of NK cells, effector CD4+ T cells, and memory CD8+ T cells were significantly reduced in the TAA group compared with those in the NC group. Further identification and quantification of the major immune cell types and their subsets were conducted based on automated clustering approaches [PhenoGraph (PG) and FlowSOM]. The B-cell subset corresponding to PhenoGraph cluster PG#2 (CD62LhighCD44highLy6chigh B cells) and PG#3 (CD62LhighCD44highLy6clow B cell) appears to play a major role in both the development of hepatic fibrosis and recovery via treatment, whereas PG#1 (CD62LlowCD44highLy6clow B cell) seems to play a dominant role in the development of hepatic fibrosis. These findings provide insights into the roles of cellular subsets of B cells during the progression of, and recovery from, hepatic fibrosis.
Collapse
Affiliation(s)
- Jiwon Bae
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Ji Eun Kim
- Department of Internal Medicine, Hanyang University Hospital, Seoul, South Korea
| | - Haribalan Perumalsamy
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, South Korea
| | - Sehee Park
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Yun Kim
- Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul, South Korea.,Department of Clinical Pharmacology and Therapeutics, Hanyang University Hospital, Seoul, South Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University Hospital, Seoul, South Korea.,Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul, South Korea.,Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Convergence of Basic Science, Hanyang University, Seoul, South Korea.,Institute of Next Generation Material Design, Hanyang University, Seoul, South Korea.,Yoon Idea Lab. Co. Ltd, Seoul, South Korea
| |
Collapse
|
10
|
Abstract
Inflammation is intimately involved at all stages of atherosclerosis and remains a substantial residual cardiovascular risk factor in optimally treated patients. The proof of concept that targeting inflammation reduces cardiovascular events in patients with a history of myocardial infarction has highlighted the urgent need to identify new immunotherapies to treat patients with atherosclerotic cardiovascular disease. Importantly, emerging data from new clinical trials show that successful immunotherapies for atherosclerosis need to be tailored to the specific immune alterations in distinct groups of patients. In this Review, we discuss how single-cell technologies - such as single-cell mass cytometry, single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing - are ideal for mapping the cellular and molecular composition of human atherosclerotic plaques and how these data can aid in the discovery of new precise immunotherapies. We also argue that single-cell data from studies in humans need to be rigorously validated in relevant experimental models, including rapidly emerging single-cell CRISPR screening technologies and mouse models of atherosclerosis. Finally, we discuss the importance of implementing single-cell immune monitoring tools in early phases of drug development to aid in the precise selection of the target patient population for data-driven translation into randomized clinical trials and the successful translation of new immunotherapies into the clinic.
Collapse
Affiliation(s)
- Dawn M Fernandez
- Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chiara Giannarelli
- Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- New York University Cardiovascular Research Center, New York University Langone Health, New York, NY, USA.
- Department of Pathology, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
11
|
Galvin DA, C M. The role of T-lymphocytes in neuropathic pain initiation, development of chronicity and treatment. Brain Behav Immun Health 2021; 18:100371. [PMID: 34761242 PMCID: PMC8566770 DOI: 10.1016/j.bbih.2021.100371] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
Ongoing research has strongly suggested the role the immune system plays in the pathogenesis of neuropathic pain. T cells appear to be one of the main regulators of the immune system with many mediators appearing to promote or suppress pain resolution. Limited effective therapies are available for treatment of neuropathic pain. Treatments available appear to modulate specific T cell with altered ratios present 3 months post treatment and parallels clinical improvement. This further supports the neuro-immune basis for neuropathic pain chronicity. Identification of novel immune mediators involved in pain development may suggest new target areas in treatment. Neuroimmunity plays a significant role in neuropathic pain pathogenesis neuropathic pain. Immune mediators contribute to promotion, suppression or resolution of neuropathic pain. Clinical studies in humans are lacking, most research available is pre-clinical or animal-based. Evidence-based therapies for treatment of neuropathic pain demonstrate alteration in T cell phenotype and behavior post therapy.
Collapse
Affiliation(s)
- D A Galvin
- Department of Pain Medicine, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland.,Hermitage Medical Clinic, Old Lucan Road, Dublin 20, Ireland
| | - McCrory C
- Department of Pain Medicine, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland.,Hermitage Medical Clinic, Old Lucan Road, Dublin 20, Ireland
| |
Collapse
|
12
|
Zhang J, Song J, Sheng J, Bai X, Liang T. Multiplex imaging reveals the architecture of the tumor immune microenvironment. Cancer Biol Med 2021; 18:j.issn.2095-3941.2021.0494. [PMID: 34709000 PMCID: PMC8610164 DOI: 10.20892/j.issn.2095-3941.2021.0494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- Junlei Zhang
- Department of Hepatobiliary and Pancreatic Surgery; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang University Cancer Centre, Zhejiang University, Hangzhou 310002, China
| | - Jinyuan Song
- Department of Hepatobiliary and Pancreatic Surgery; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang University Cancer Centre, Zhejiang University, Hangzhou 310002, China
| | - Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic Surgery; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang University Cancer Centre, Zhejiang University, Hangzhou 310002, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang University Cancer Centre, Zhejiang University, Hangzhou 310002, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang University Cancer Centre, Zhejiang University, Hangzhou 310002, China
| |
Collapse
|
13
|
Single-Cell Multiomics Analysis for Drug Discovery. Metabolites 2021; 11:metabo11110729. [PMID: 34822387 PMCID: PMC8623556 DOI: 10.3390/metabo11110729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 02/02/2023] Open
Abstract
Given the heterogeneity seen in cell populations within biological systems, analysis of single cells is necessary for studying mechanisms that cannot be identified on a bulk population level. There are significant variations in the biological and physiological function of cell populations due to the functional differences within, as well as between, single species as a result of the specific proteome, transcriptome, and metabolome that are unique to each individual cell. Single-cell analysis proves crucial in providing a comprehensive understanding of the biological and physiological properties underlying human health and disease. Omics technologies can help to examine proteins (proteomics), RNA molecules (transcriptomics), and the chemical processes involving metabolites (metabolomics) in cells, in addition to genomes. In this review, we discuss the value of multiomics in drug discovery and the importance of single-cell multiomics measurements. We will provide examples of the benefits of applying single-cell omics technologies in drug discovery and development. Moreover, we intend to show how multiomics offers the opportunity to understand the detailed events which produce or prevent disease, and ways in which the separate omics disciplines complement each other to build a broader, deeper knowledge base.
Collapse
|
14
|
Kaminska B, Ochocka N, Segit P. Single-Cell Omics in Dissecting Immune Microenvironment of Malignant Gliomas-Challenges and Perspectives. Cells 2021; 10:2264. [PMID: 34571910 PMCID: PMC8470971 DOI: 10.3390/cells10092264] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 12/13/2022] Open
Abstract
Single-cell technologies allow precise identification of tumor composition at the single-cell level, providing high-resolution insights into the intratumoral heterogeneity and transcriptional activity of cells in the tumor microenvironment (TME) that previous approaches failed to capture. Malignant gliomas, the most common primary brain tumors in adults, are genetically heterogeneous and their TME consists of various stromal and immune cells playing an important role in tumor progression and responses to therapies. Previous gene expression or immunocytochemical studies of immune cells infiltrating TME of malignant gliomas failed to dissect their functional phenotypes. Single-cell RNA sequencing (scRNA-seq) and cytometry by time-of-flight (CyTOF) are powerful techniques allowing quantification of whole transcriptomes or >30 protein targets in individual cells. Both methods provide unprecedented resolution of TME. We summarize the findings from these studies and the current state of knowledge of a functional diversity of immune infiltrates in malignant gliomas with different genetic alterations. A precise definition of functional phenotypes of myeloid and lymphoid cells might be essential for designing effective immunotherapies. Single-cell omics studies have identified crucial cell subpopulations and signaling pathways that promote tumor progression, influence patient survival or make tumors vulnerable to immunotherapy. We anticipate that the widespread usage of single-cell omics would allow rational design of oncoimmunotherapeutics.
Collapse
Affiliation(s)
- Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (N.O.); (P.S.)
| | | | | |
Collapse
|
15
|
Bowman N, Liu D, Paczkowski P, Chen J, Rossi J, Mackay S, Bot A, Zhou J. Advanced Cell Mapping Visualizations for Single Cell Functional Proteomics Enabling Patient Stratification. Proteomics 2021; 20:e1900270. [PMID: 32108428 DOI: 10.1002/pmic.201900270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/24/2019] [Indexed: 11/11/2022]
Abstract
Highly multiplexed single-cell functional proteomics has emerged as one of the next-generation toolkits for a deeper understanding of functional heterogeneity in cell. Different from the conventional population-based bulk and single-cell RNA-Seq assays, the microchip-based proteomics at the single-cell resolution enables a unique identification of highly polyfunctional cell subsets that co-secrete many proteins from live single cells and most importantly correlate with patient response to a therapy. The 32-plex IsoCode chip technology has defined a polyfunctional strength index (PSI) of pre-infusion anti-CD19 chimeric antigen receptor (CAR)-T products, that is significantly associated with patient response to the CAR-T cell therapy. To complement the clinical relevance of the PSI, a comprehensive visualization toolkit of 3D uniform manifold approximation and projection (UMAP) and t-distributed stochastic neighbor embedding (t-SNE) in a proteomic analysis pipeline is developed, providing more advanced analytical algorithms for more intuitive data visualizations. The UMAP and t-SNE of anti-CD19 CAR-T products reveal distinct cytokine profiles between nonresponders and responders and demonstrate a marked upregulation of antitumor-associated cytokine signatures in CAR-T cells from responding patients. Using this powerful while user-friendly analytical tool, the multi-dimensional single-cell data can be dissected from complex immune responses and uncover underlying mechanisms, which can promote correlative biomarker discovery, improved bioprocessing, and personalized treatment development.
Collapse
Affiliation(s)
- Nick Bowman
- IsoPlexis Corporation, Branford, CT, 06405, USA
| | - Dong Liu
- IsoPlexis Corporation, Branford, CT, 06405, USA
| | | | - Jon Chen
- IsoPlexis Corporation, Branford, CT, 06405, USA
| | - John Rossi
- Kite Pharma, a Gilead Company, Santa Monica, CA, 90404, USA
| | - Sean Mackay
- IsoPlexis Corporation, Branford, CT, 06405, USA
| | - Adrian Bot
- Kite Pharma, a Gilead Company, Santa Monica, CA, 90404, USA
| | - Jing Zhou
- IsoPlexis Corporation, Branford, CT, 06405, USA
| |
Collapse
|
16
|
Kull T, Schroeder T. Analyzing signaling activity and function in hematopoietic cells. J Exp Med 2021; 218:e20201546. [PMID: 34129015 PMCID: PMC8210623 DOI: 10.1084/jem.20201546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/07/2021] [Indexed: 11/25/2022] Open
Abstract
Cells constantly sense their environment, allowing the adaption of cell behavior to changing needs. Fine-tuned responses to complex inputs are computed by signaling pathways, which are wired in complex connected networks. Their activity is highly context-dependent, dynamic, and heterogeneous even between closely related individual cells. Despite lots of progress, our understanding of the precise implementation, relevance, and possible manipulation of cellular signaling in health and disease therefore remains limited. Here, we discuss the requirements, potential, and limitations of the different current technologies for the analysis of hematopoietic stem and progenitor cell signaling and its effect on cell fates.
Collapse
Affiliation(s)
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| |
Collapse
|
17
|
Oliveria JP, Agayby R, Gauvreau GM. Regulatory and IgE + B Cells in Allergic Asthma. Methods Mol Biol 2021; 2270:375-418. [PMID: 33479910 DOI: 10.1007/978-1-0716-1237-8_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Allergic asthma is triggered by inhalation of environmental allergens resulting in bronchial constriction and inflammation, which leads to clinical symptoms such as wheezing, coughing, and difficulty breathing. Asthmatic airway inflammation is initiated by inflammatory mediators released by granulocytic cells. However, the immunoglobulin E (IgE) antibody is necessary for the initiation of the allergic cascade, and IgE is produced and released exclusively by memory B cells and plasma cells. Acute allergen exposure has also been shown to increase IgE levels in the airways of patients diagnosed with allergic asthma; however, more studies are needed to understand local airway inflammation. Additionally, regulatory B cells (Bregs) have been shown to modulate IgE-mediated inflammatory processes in allergic asthma pathogenesis, particularly in mouse models of allergic airway disease. However, the levels and function of these IgE+ B cells and Bregs remain to be elucidated in human models of asthma. The overall objective for this chapter is to provide detailed methodological, and insightful technological advances to study the biology of B cells in allergic asthma pathogenesis. Specifically, we will describe how to investigate the frequency and function of IgE+ B cells and Bregs in allergic asthma, and the kinetics of these cells after allergen exposure in a human asthma model.
Collapse
Affiliation(s)
- John Paul Oliveria
- School of Medicine, Department of Pathology, Stanford University, Stanford, CA, USA.,Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Rita Agayby
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Gail M Gauvreau
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
18
|
Li L, Lenahan C, Liao Z, Ke J, Li X, Xue F, Zhang JH. Novel Technologies in Studying Brain Immune Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6694566. [PMID: 33791073 PMCID: PMC7997736 DOI: 10.1155/2021/6694566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Over the past few decades, the immune system, including both the adaptive and innate immune systems, proved to be essential and critical to brain damage and recovery in the pathogenesis of several diseases, opening a new avenue for developing new immunomodulatory therapies and novel treatments for many neurological diseases. However, due to the specificity and structural complexity of the central nervous system (CNS), and the limit of the related technologies, the biology of the immune response in the brain is still poorly understood. Here, we discuss the application of novel technologies in studying the brain immune response, including single-cell RNA analysis, cytometry by time-of-flight, and whole-genome transcriptomic and proteomic analysis. We believe that advancements in technology related to immune research will provide an optimistic future for brain repair.
Collapse
Affiliation(s)
- Li Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM 88003, USA
- Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA 92324, USA
| | - Zhihui Liao
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Jingdong Ke
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Xiuliang Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Fushan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - John H. Zhang
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92324, USA
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92324, USA
| |
Collapse
|
19
|
Ochocka N, Kaminska B. Microglia Diversity in Healthy and Diseased Brain: Insights from Single-Cell Omics. Int J Mol Sci 2021; 22:3027. [PMID: 33809675 PMCID: PMC8002227 DOI: 10.3390/ijms22063027] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) that have distinct ontogeny from other tissue macrophages and play a pivotal role in health and disease. Microglia rapidly react to the changes in their microenvironment. This plasticity is attributed to the ability of microglia to adapt a context-specific phenotype. Numerous gene expression profiling studies of immunosorted CNS immune cells did not permit a clear dissection of their phenotypes, particularly in diseases when peripheral cells of the immune system come to play. Only recent advances in single-cell technologies allowed studying microglia at high resolution and revealed a spectrum of discrete states both under homeostatic and pathological conditions. Single-cell technologies such as single-cell RNA sequencing (scRNA-seq) and mass cytometry (Cytometry by Time-Of-Flight, CyTOF) enabled determining entire transcriptomes or the simultaneous quantification of >30 cellular parameters of thousands of individual cells. Single-cell omics studies demonstrated the unforeseen heterogeneity of microglia and immune infiltrates in brain pathologies: neurodegenerative disorders, stroke, depression, and brain tumors. We summarize the findings from those studies and the current state of knowledge of functional diversity of microglia under physiological and pathological conditions. A precise definition of microglia functions and phenotypes may be essential to design future immune-modulating therapies.
Collapse
Affiliation(s)
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland;
| |
Collapse
|
20
|
Biondi BE, Mohanty S, Wyk BV, Montgomery RR, Shaw AC, Springer SA. Design and implementation of a prospective cohort study of persons living with and without HIV infection who are initiating medication treatment for opioid use disorder. Contemp Clin Trials Commun 2021; 21:100704. [PMID: 33490708 PMCID: PMC7807244 DOI: 10.1016/j.conctc.2021.100704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/15/2020] [Accepted: 01/01/2021] [Indexed: 02/02/2023] Open
Abstract
Background Opioid use disorder (OUD) negatively impacts the HIV continuum of care for persons living with HIV. Medication treatment for OUD (MOUD) may have differential biological effects in individuals with HIV and OUD. To address the question of modulation of immune responses by MOUDs, we describe state of the art systems biology approaches to carry out the first prospective, longitudinal study of persons with and without HIV infection with OUD initiating MOUD. Methods A prospective cohort study of persons with DSM-5 diagnosed OUD who are living with and without HIV infection and initiating treatment with methadone or buprenorphine is underway to assess biological effects of these medications on immunobiological outcomes. Results We describe the recruitment, laboratory, and statistical methods of this study as well as the protocol details. Of those screened for enrollment into the study, 468 (36%) were eligible and 135 were enrolled thus far. Retention through month 6 has been high at 80%. Conclusions This study will use state of the art systems biology approaches to carry out the first prospective, longitudinal studies of persons living with and without HIV with DSM-5 OUD initiating treatment with MOUD.
Collapse
Affiliation(s)
- Breanne E Biondi
- Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, Yale School of Medicine, New Haven, CT, USA
| | - Subhasis Mohanty
- Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, Yale School of Medicine, New Haven, CT, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Section of Geriatrics, Yale School of Medicine, New Haven, CT, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Section of Rheumatology, Yale School of Medicine, New Haven, CT, USA
| | - Albert C Shaw
- Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, Yale School of Medicine, New Haven, CT, USA
| | - Sandra A Springer
- Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, Yale School of Medicine, New Haven, CT, USA.,Center for Interdisciplinary Research on AIDS, Yale University School of Public Health, New Haven, CT, USA
| |
Collapse
|
21
|
Ganesh S, Hu T, Woods E, Allam M, Cai S, Henderson W, Coskun AF. Spatially resolved 3D metabolomic profiling in tissues. SCIENCE ADVANCES 2021; 7:eabd0957. [PMID: 33571119 PMCID: PMC7840140 DOI: 10.1126/sciadv.abd0957] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/04/2020] [Indexed: 05/02/2023]
Abstract
Spatially resolved RNA and protein molecular analyses have revealed unexpected heterogeneity of cells. Metabolic analysis of individual cells complements these single-cell studies. Here, we present a three-dimensional spatially resolved metabolomic profiling framework (3D-SMF) to map out the spatial organization of metabolic fragments and protein signatures in immune cells of human tonsils. In this method, 3D metabolic profiles were acquired by time-of-flight secondary ion mass spectrometry to profile up to 189 compounds. Ion beams were used to measure sub-5-nanometer layers of tissue across 150 sections of a tonsil. To incorporate cell specificity, tonsil tissues were labeled by an isotope-tagged antibody library. To explore relations of metabolic and cellular features, we carried out data reduction, 3D spatial correlations and classifications, unsupervised K-means clustering, and network analyses. Immune cells exhibited spatially distinct lipidomic fragment distributions in lymphatic tissue. The 3D-SMF pipeline affects studying the immune cells in health and disease.
Collapse
Affiliation(s)
- Shambavi Ganesh
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Electrical and Computer Engineering Department, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Thomas Hu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Electrical and Computer Engineering Department, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Eric Woods
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mayar Allam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Walter Henderson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
22
|
Grazioli S, Tavaglione F, Torriani G, Wagner N, Rohr M, L’Huillier AG, Leclercq C, Perrin A, Bordessoule A, Beghetti M, Pachlopnik J, Vavassori S, Perreau M, Eberhardt C, Didierlaurent A, Kaiser L, Eckerle I, Roux-Lombard P, Blanchard-Rohner G. Immunological Assessment of Pediatric Multisystem Inflammatory Syndrome Related to Coronavirus Disease 2019. J Pediatric Infect Dis Soc 2020; 10:706-713. [PMID: 33180935 PMCID: PMC7717282 DOI: 10.1093/jpids/piaa142] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/10/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Recently, cases of multisystem inflammatory syndrome in children (MIS-C) associated with coronavirus disease 2019 (COVID-19) have been reported worldwide. Negative polymerase chain reaction (RT-PCR) testing associated with positive serology in most of the cases suggests a postinfectious syndrome. Because the pathophysiology of this syndrome is still poorly understood, extensive virological and immunological investigations are needed. METHODS We report a series of 4 pediatric patients admitted to Geneva University Hospitals with persistent fever and laboratory evidence of inflammation meeting the published definition of MIS-C related to COVID-19, to whom an extensive virological and immunological workup was performed. RESULTS RT-PCRs on multiple anatomical compartments were negative, whereas anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin A (IgA) and immunoglobulin G (IgG) were strongly positive by enzyme-linked immunosorbent assay and immunofluorescence. Both pseudoneutralization and full virus neutralization assays showed the presence of neutralizing antibodies in all children, confirming a recent infection with SARS-CoV-2. The analyses of cytokine profiles revealed an elevation in all cytokines, as reported in adults with severe COVID-19. Although differing in clinical presentation, some features of MIS-C show phenotypic overlap with hemophagocytic lymphohistiocytosis (HLH). In contrast to patients with primary HLH, our patients showed normal perforin expression and natural killer (NK) cell degranulation. The levels of soluble interleukin (IL)-2 receptor (sIL-2R) correlated with the severity of disease, reflecting recent T-cell activation. CONCLUSION Our findings suggest that MIS-C related to COVID-19 is caused by a postinfectious inflammatory syndrome associated with an elevation in all cytokines, and markers of recent T-cell activation (sIL-2R) occurring despite a strong and specific humoral response to SARS-CoV-2. Further functional and genetic analyses are essential to better understand the mechanisms of host-pathogen interactions.
Collapse
Affiliation(s)
- Serge Grazioli
- Division of Neonatal and Pediatric Intensive Care, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Fedora Tavaglione
- Division of Neonatal and Pediatric Intensive Care, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Giulia Torriani
- Geneva Centre for Emerging Viral Diseases, Geneva Switzerland
| | - Noemie Wagner
- Pediatric infectious diseases unit, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Marie Rohr
- Pediatric infectious diseases unit, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Arnaud G L’Huillier
- Geneva Centre for Emerging Viral Diseases, Geneva Switzerland,Pediatric infectious diseases unit, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Charlotte Leclercq
- Children’s Hospital of Geneva, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Anne Perrin
- Children’s Hospital of Geneva, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Alice Bordessoule
- Division of Neonatal and Pediatric Intensive Care, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Maurice Beghetti
- Pediatric Cardiology Unit, Children’s Hospital of Geneva, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | | | | | - Matthieu Perreau
- Division of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Switzerland
| | | | | | - Laurent Kaiser
- Geneva Centre for Emerging Viral Diseases, Geneva Switzerland
| | | | - Pascale Roux-Lombard
- Laboratory of Immunology and Allergology, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Geraldine Blanchard-Rohner
- Children’s Hospital of Geneva, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland,Center of Vaccinology, Geneva University Hospitals, Switzerland,Corresponding Author: Geraldine Blanchard Rohner, Children’s Hospital of Geneva, 6, rue Willy-Donzé, 1211 Genève 14, Switzerland,
| |
Collapse
|
23
|
Stewart E, Wang X, Chupp GL, Montgomery RR. Profiling cellular heterogeneity in asthma with single cell multiparameter CyTOF. J Leukoc Biol 2020; 108:1555-1564. [PMID: 32911570 DOI: 10.1002/jlb.5ma0720-770rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the airways that afflicts over 30 million individuals in the United States and over 300 million individuals worldwide. The inflammatory response in the airways is often characterized by the analysis of sputum, which contains multiple types of cells including neutrophils, macrophages, lymphocytes, and rare bronchial epithelial cells. Subtyping patients using microscopy of the sputum has identified both neutrophilic and eosinophilic infiltrates in airway inflammation. However, with the extensive heterogeneity among these cell types, a higher resolution understanding of the inflammatory cell types present in the sputum is needed to dissect the heterogeneity of disease. Improved recognition of the distinct phenotypes and sources of inflammation in asthmatic granulocytes may identify relevant pathways for clinical management or investigation of novel therapeutic mediators. Here, we employed mass cytometry or cytometry by time-of-flight to quantify frequency and define functional status of sputum derived airway cells in asthmatic patients and healthy controls. This in-depth single cell analysis method identified multiple distinct subtypes of airway immune cells, especially in neutrophils. Significance was discovered by statistical analysis as well as a data-driven unbiased clustering approach. Our multidimensional assessment method identifies differences in cellular function and supports identification of cellular status that may contribute to diverse clinical responses. This technical advance is relevant for studies of pathogenesis and may provide meaningful insights to advance our knowledge of asthmatic inflammation.
Collapse
Affiliation(s)
- Emma Stewart
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xiaomei Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Geoffrey L Chupp
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
24
|
Yao Y, Liu Q, Adrianto I, Wu X, Glassbrook J, Khalasawi N, Yin C, Yi Q, Dong Z, Geissmann F, Zhou L, Mi QS. Histone deacetylase 3 controls lung alveolar macrophage development and homeostasis. Nat Commun 2020; 11:3822. [PMID: 32732898 PMCID: PMC7393351 DOI: 10.1038/s41467-020-17630-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/03/2020] [Indexed: 12/21/2022] Open
Abstract
Alveolar macrophages (AMs) derived from embryonic precursors seed the lung before birth and self-maintain locally throughout adulthood, but are regenerated by bone marrow (BM) under stress conditions. However, the regulation of AM development and maintenance remains poorly understood. Here, we show that histone deacetylase 3 (HDAC3) is a key epigenetic factor required for AM embryonic development, postnatal homeostasis, maturation, and regeneration from BM. Loss of HDAC3 in early embryonic development affects AM development starting at E14.5, while loss of HDAC3 after birth affects AM homeostasis and maturation. Single-cell RNA sequencing analyses reveal four distinct AM sub-clusters and a dysregulated cluster-specific pathway in the HDAC3-deficient AMs. Moreover, HDAC3-deficient AMs exhibit severe mitochondrial oxidative dysfunction and deteriorative cell death. Mechanistically, HDAC3 directly binds to Pparg enhancers, and HDAC3 deficiency impairs Pparg expression and its signaling pathway. Our findings identify HDAC3 as a key epigenetic regulator of lung AM development and homeostasis. Alveolar macrophages are known to derive from embryonic precursors although the regulation of this process is poorly understood. Here the authors propose a key role for histone deacetylase 3 as an epigenetic regulator of lung alveolar macrophage development.
Collapse
Affiliation(s)
- Yi Yao
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Queping Liu
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, 48202, USA.,Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Indra Adrianto
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, 48202, USA.,Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, 48202, USA.,Center for Bioinformatics, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Xiaojun Wu
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, 48202, USA
| | - James Glassbrook
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, 48202, USA.,Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Namir Khalasawi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Congcong Yin
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Qijun Yi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, 30912, USA
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA. .,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, 48202, USA. .,Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA. .,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, 48202, USA.
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA. .,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, 48202, USA. .,Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA. .,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, 48202, USA.
| |
Collapse
|
25
|
Single-cell mass cytometry on peripheral blood identifies immune cell subsets associated with primary biliary cholangitis. Sci Rep 2020; 10:12584. [PMID: 32724082 PMCID: PMC7387528 DOI: 10.1038/s41598-020-69358-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023] Open
Abstract
The relationship between primary biliary cholangitis (PBC), a chronic cholestatic autoimmune liver disease, and the peripheral immune system remains to be fully understood. Herein, we performed the first mass cytometry (CyTOF)-based, immunophenotyping analysis of the peripheral immune system in PBC at single-cell resolution. CyTOF was performed on peripheral blood mononuclear cells (PBMCs) from PBC patients (n = 33) and age-/sex-matched healthy controls (n = 33) to obtain immune cell abundance and marker expression profiles. Hierarchical clustering methods were applied to identify immune cell types and subsets significantly associated with PBC. Subsets of gamma-delta T cells (CD3+TCRgd+), CD8+ T cells (CD3+CD8+CD161+PD1+), and memory B cells (CD3−CD19+CD20+CD24+CD27+) were found to have lower abundance in PBC than in control. In contrast, higher abundance of subsets of monocytes and naïve B cells were observed in PBC compared to control. Furthermore, several naïve B cell (CD3−CD19+CD20+CD24−CD27−) subsets were significantly higher in PBC patients with cirrhosis (indicative of late-stage disease) than in those without cirrhosis. Alternatively, subsets of memory B cells were lower in abundance in cirrhotic relative to non-cirrhotic PBC patients. Future immunophenotyping investigations could lead to better understanding of PBC pathogenesis and progression, and also to the discovery of novel biomarkers and treatment strategies.
Collapse
|
26
|
Alexander MJ, Budinger GRS, Reyfman PA. Breathing fresh air into respiratory research with single-cell RNA sequencing. Eur Respir Rev 2020; 29:29/156/200060. [PMID: 32620586 PMCID: PMC7719403 DOI: 10.1183/16000617.0060-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/21/2020] [Indexed: 01/06/2023] Open
Abstract
The complex cellular heterogeneity of the lung poses a unique challenge to researchers in the field. While the use of bulk RNA sequencing has become a ubiquitous technology in systems biology, the technique necessarily averages out individual contributions to the overall transcriptional landscape of a tissue. Single-cell RNA sequencing (scRNA-seq) provides a robust, unbiased survey of the transcriptome comparable to bulk RNA sequencing while preserving information on cellular heterogeneity. In just a few years since this technology was developed, scRNA-seq has already been adopted widely in respiratory research and has contributed to impressive advancements such as the discoveries of the pulmonary ionocyte and of a profibrotic macrophage population in pulmonary fibrosis. In this review, we discuss general technical considerations when considering the use of scRNA-seq and examine how leading investigators have applied the technology to gain novel insights into respiratory biology, from development to disease. In addition, we discuss the evolution of single-cell technologies with a focus on spatial and multi-omics approaches that promise to drive continued innovation in respiratory research.
Collapse
Affiliation(s)
- Michael J Alexander
- Northwestern University, Feinberg School of Medicine, Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Chicago, IL, USA
| | - G R Scott Budinger
- Northwestern University, Feinberg School of Medicine, Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Chicago, IL, USA
| | - Paul A Reyfman
- Northwestern University, Feinberg School of Medicine, Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Chicago, IL, USA
| |
Collapse
|
27
|
Konieczny P, Naik S. Warp Speed Ahead! Technology-Driven Breakthroughs in Skin Immunity and Inflammatory Disease. J Invest Dermatol 2020; 141:15-18. [PMID: 32533963 DOI: 10.1016/j.jid.2020.05.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 10/24/2022]
Abstract
The skin's physical barrier is reinforced by an arsenal of immune cells that actively patrol the tissue and respond swiftly to penetrating microbes, noxious agents, and injurious stimuli. When unchecked, these same immune cells drive diseases such as psoriasis, atopic dermatitis, and alopecia. Rapidly advancing microscopy, animal modeling, and genomic and computational technologies have illuminated the complexity of the cutaneous immune cells and their functions in maintaining skin health and driving diseases. Here, we discuss the recent technology-driven breakthroughs that have transformed our understanding of skin immunity and highlight burgeoning areas that hold great promise for future discoveries.
Collapse
Affiliation(s)
- Piotr Konieczny
- Department of Pathology, Department of Medicine, and Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Shruti Naik
- Department of Pathology, Department of Medicine, and Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
28
|
Berlinberg A, Kuhn KA. Molecular Biology Approaches to Understanding Spondyloarthritis. Rheum Dis Clin North Am 2020; 46:203-211. [PMID: 32340696 DOI: 10.1016/j.rdc.2020.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New and emerging molecular techniques are expanding understanding of the pathophysiology of spondyloarthritis (SpA). Genome-wide association studies identified novel pathways in antigen processing and presentation as well as helper T cell type 17 (TH17) immunity associated with SpA. Immune cell profiling techniques have supported TH17 immune responses and increasingly are revealing intestinal mucosal immune cells as associated with disease. Emerging technologies in epigenetics, transcriptomics, microbiome, and proteomics/metabolomics are adding to these, refining disease pathways and potentially identifying biomarkers for diagnosis and treatment responses. This review describes many of the new molecular techniques that are being utilized to investigate SpA.
Collapse
Affiliation(s)
- Adam Berlinberg
- Division of Rheumatology, University of Colorado School of Medicine, 1775 Aurora Court Mail Stop B115, Aurora, CO 80045, USA
| | - Kristine A Kuhn
- Division of Rheumatology, University of Colorado School of Medicine, 1775 Aurora Court Mail Stop B115, Aurora, CO 80045, USA.
| |
Collapse
|
29
|
Zhao Y, Amodio M, Vander Wyk B, Gerritsen B, Kumar MM, van Dijk D, Moon K, Wang X, Malawista A, Richards MM, Cahill ME, Desai A, Sivadasan J, Venkataswamy MM, Ravi V, Fikrig E, Kumar P, Kleinstein SH, Krishnaswamy S, Montgomery RR. Single cell immune profiling of dengue virus patients reveals intact immune responses to Zika virus with enrichment of innate immune signatures. PLoS Negl Trop Dis 2020; 14:e0008112. [PMID: 32150565 PMCID: PMC7082063 DOI: 10.1371/journal.pntd.0008112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/19/2020] [Accepted: 02/03/2020] [Indexed: 01/04/2023] Open
Abstract
The genus Flavivirus contains many mosquito-borne human pathogens of global epidemiological importance such as dengue virus, West Nile virus, and Zika virus, which has recently emerged at epidemic levels. Infections with these viruses result in divergent clinical outcomes ranging from asymptomatic to fatal. Myriad factors influence infection severity including exposure, immune status and pathogen/host genetics. Furthermore, pre-existing infection may skew immune pathways or divert immune resources. We profiled immune cells from dengue virus-infected individuals by multiparameter mass cytometry (CyTOF) to define functional status. Elevations in IFNβ were noted in acute patients across the majority of cell types and were statistically elevated in 31 of 36 cell subsets. We quantified response to in vitro (re)infection with dengue or Zika viruses and detected a striking pattern of upregulation of responses to Zika infection by innate cell types which was not noted in response to dengue virus. Significance was discovered by statistical analysis as well as a neural network-based clustering approach which identified unusual cell subsets overlooked by conventional manual gating. Of public health importance, patient cells showed significant enrichment of innate cell responses to Zika virus indicating an intact and robust anti-Zika response despite the concurrent dengue infection.
Collapse
Affiliation(s)
- Yujiao Zhao
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, Untied States of America
| | - Matthew Amodio
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Brent Vander Wyk
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, Untied States of America
| | - Bram Gerritsen
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Mahesh M. Kumar
- Program in Human Translational Immunology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - David van Dijk
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Kevin Moon
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Xiaomei Wang
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, Untied States of America
| | - Anna Malawista
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, Untied States of America
| | - Monique M. Richards
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, Untied States of America
| | - Megan E. Cahill
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, Untied States of America
| | - Anita Desai
- Department of Neurovirology, The National Institute of Mental Health and NeuroSciences (NIMHANS), Bangalore, India
| | | | - Manjunatha M. Venkataswamy
- Department of Neurovirology, The National Institute of Mental Health and NeuroSciences (NIMHANS), Bangalore, India
| | - Vasanthapuram Ravi
- Department of Neurovirology, The National Institute of Mental Health and NeuroSciences (NIMHANS), Bangalore, India
| | - Erol Fikrig
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, Untied States of America
| | - Priti Kumar
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, Untied States of America
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Program in Computational Biology and Bioinformatics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Smita Krishnaswamy
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, Untied States of America
- Program in Human Translational Immunology, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
30
|
Amodio D, Santilli V, Zangari P, Cotugno N, Manno EC, Rocca S, Rossi P, Cancrini C, Finocchi A, Chassiakos A, Petrovas C, Palma P. How to dissect the plasticity of antigen-specific immune response: a tissue perspective. Clin Exp Immunol 2020; 199:119-130. [PMID: 31626717 PMCID: PMC6954674 DOI: 10.1111/cei.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/01/2022] Open
Abstract
Generation of antigen-specific humoral responses following vaccination or infection requires the maturation and function of highly specialized immune cells in secondary lymphoid organs (SLO), such as lymph nodes or tonsils. Factors that orchestrate the dynamics of these cells are still poorly understood. Currently, experimental approaches that enable a detailed description of the function of the immune system in SLO have been mainly developed and optimized in animal models. Conversely, methodological approaches in humans are mainly based on the use of blood-associated material because of the challenging access to tissues. Indeed, only few studies in humans were able to provide a discrete description of the complex network of cytokines, chemokines and lymphocytes acting in tissues after antigenic challenge. Furthermore, even fewer data are currently available on the interaction occurring within the complex micro-architecture of the SLO. This information is crucial in order to design particular vaccination strategies, especially for patients affected by chronic and immune compromising medical conditions who are under-vaccinated or who respond poorly to immunizations. Analysis of immune cells in different human tissues by high-throughput technologies, able to obtain data ranging from gene signature to protein expression and cell phenotypes, is needed to dissect the peculiarity of each immune cell in a definite human tissue. The main aim of this review is to provide an in-depth description of the current available methodologies, proven evidence and future perspectives in the analysis of immune mechanisms following immunization or infections in SLO.
Collapse
Affiliation(s)
- D. Amodio
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
| | - V. Santilli
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - P. Zangari
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - N. Cotugno
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - E. C. Manno
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - S. Rocca
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - P. Rossi
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
| | - C. Cancrini
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
| | - A. Finocchi
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
| | - A. Chassiakos
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - C. Petrovas
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - P. Palma
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| |
Collapse
|
31
|
Detection of E. coli labeled with metal-conjugated antibodies using lateral-flow assay and laser-induced breakdown spectroscopy. Anal Bioanal Chem 2020; 412:1291-1301. [PMID: 31989196 DOI: 10.1007/s00216-019-02347-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/10/2019] [Indexed: 01/28/2023]
Abstract
This study explores the adoption of laser-induced breakdown spectroscopy (LIBS) for the analysis of lateral-flow immunoassays (LFIAs). Gold (Au) nanoparticles are standard biomolecular labels among LFIAs, typically detected via colorimetric means. A wide diversity of lanthanide-complexed polymers (LCPs) are also used as immunoassay labels but are inapt for LFIAs due to lab-bound detection instrumentation. This is the first study to show the capability of LIBS to transition LCPs into the realm of LFIAs, and one of the few to apply LIBS to biomolecular label detection in complete immunoassays. Initially, an in-house LIBS system was optimized to detect an Au standard through a process of line selection across acquisition delay times, followed by determining limit of detection (LOD). The optimized LIBS system was applied to Au-labeled Escherichia coli detection on a commercial LFIA; comparison with colorimetric detection yielded similar LODs (1.03E4 and 8.890E3 CFU/mL respectively). Optimization was repeated with lanthanide standards to determine if they were viable alternatives to Au labels. It was found that europium (Eu) and ytterbium (Yb) may be more favorable biomolecular labels than Au. To test whether Eu-complexed polymers conjugated to antibodies could be used as labels in LFIAs, the conjugates were successfully applied to E. coli detection in a modified commercial LFIA. The results suggest interesting opportunities for creating highly multiplexed LFIAs. Multiplexed, sensitive, portable, and rapid LIBS detection of biomolecules concentrated and labeled on LFIAs is highly relevant for applications like food safety, where in-field food contaminant detection is critical. Graphical abstract.
Collapse
|
32
|
Guo M, Bafligil C, Tapmeier T, Hubbard C, Manek S, Shang C, Martinez FO, Schmidt N, Obendorf M, Hess-Stumpp H, Zollner TM, Kennedy S, Becker CM, Zondervan KT, Cribbs AP, Oppermann U. Mass cytometry analysis reveals a distinct immune environment in peritoneal fluid in endometriosis: a characterisation study. BMC Med 2020; 18:3. [PMID: 31907005 PMCID: PMC6945609 DOI: 10.1186/s12916-019-1470-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Endometriosis is a gynaecological condition characterised by immune cell infiltration and distinct inflammatory signatures found in the peritoneal cavity. In this study, we aim to characterise the immune microenvironment in samples isolated from the peritoneal cavity in patients with endometriosis. METHODS We applied mass cytometry (CyTOF), a recently developed multiparameter single-cell technique, in order to characterise and quantify the immune cells found in peritoneal fluid and peripheral blood from endometriosis and control patients. RESULTS Our results demonstrate the presence of more than 40 different distinct immune cell types within the peritoneal cavity. This suggests that there is a complex and highly heterogeneous inflammatory microenvironment underpinning the pathology of endometriosis. Stratification by clinical disease stages reveals a dynamic spectrum of cell signatures suggesting that adaptations in the inflammatory system occur due to the severity of the disease. Notably, among the inflammatory microenvironment in peritoneal fluid (PF), the presence of CD69+ T cell subsets is increased in endometriosis when compared to control patient samples. On these CD69+ cells, the expression of markers associated with T cell function are reduced in PF samples compared to blood. Comparisons between CD69+ and CD69- populations reveal distinct phenotypes across peritoneal T cell lineages. Taken together, our results suggest that both the innate and the adaptive immune system play roles in endometriosis. CONCLUSIONS This study provides a systematic characterisation of the specific immune environment in the peritoneal cavity and identifies cell immune signatures associated with endometriosis. Overall, our results provide novel insights into the specific cell phenotypes governing inflammation in patients with endometriosis. This prospective study offers a useful resource for understanding disease pathology and opportunities for identifying therapeutic targets.
Collapse
Affiliation(s)
- Manman Guo
- Botnar Research Centre, NIHR Biomedical Research Unit Oxford, Nuffield Department of Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Cemsel Bafligil
- Botnar Research Centre, NIHR Biomedical Research Unit Oxford, Nuffield Department of Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Thomas Tapmeier
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Carol Hubbard
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Sanjiv Manek
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Catherine Shang
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Fernando O Martinez
- Botnar Research Centre, NIHR Biomedical Research Unit Oxford, Nuffield Department of Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Nicole Schmidt
- Bayer AG, Drug Discovery Pharmaceuticals, Gynecological Therapies, Müllerstr. 178, Berlin, Germany
| | - Maik Obendorf
- Bayer AG, Drug Discovery Pharmaceuticals, Gynecological Therapies, Müllerstr. 178, Berlin, Germany
| | - Holger Hess-Stumpp
- Bayer AG, Drug Discovery Pharmaceuticals, Gynecological Therapies, Müllerstr. 178, Berlin, Germany
| | - Thomas M Zollner
- Bayer AG, Drug Discovery Pharmaceuticals, Gynecological Therapies, Müllerstr. 178, Berlin, Germany
| | - Stephen Kennedy
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Christian M Becker
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Krina T Zondervan
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Adam P Cribbs
- Botnar Research Centre, NIHR Biomedical Research Unit Oxford, Nuffield Department of Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Udo Oppermann
- Botnar Research Centre, NIHR Biomedical Research Unit Oxford, Nuffield Department of Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
33
|
Jia X, Zhou X, Zheng H, Jiang S, Weng J, Huang L, Du Z, Xiao C, Zhang L, Chen XL, Fu G. A Carrier Strategy for Mass Cytometry Analysis of Small Numbers of Cells. Methods Mol Biol 2020; 2111:21-33. [PMID: 31933195 DOI: 10.1007/978-1-0716-0266-9_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The recent launch of mass cytometry or cytometry by time of flight (CyTOF) has revolutionized flow cytometry. Similar to fluorescence flow cytometry, a key challenge for CyTOF is to analyze samples of limited amount or very rare cell populations under various experimental settings. Here we describe a carrier strategy that significantly reduces the required sample amount without losing analytical resolution. We were able to detect as few as 5 × 104 human peripheral blood mononuclear cells (PBMCs) using this method. This simple method thus enables the maximal usage of valuable clinical samples.
Collapse
Affiliation(s)
- Xian Jia
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaojuan Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Haiping Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shan Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiannan Weng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Lei Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhiqiang Du
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, Shanghai, China
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China
| | - Lei Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Xiao Lei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China. .,Cancer Research Center of Xiamen University, Xiamen, China.
| |
Collapse
|
34
|
Liu D, Paczkowski P, Mackay S, Ng C, Zhou J. Single-Cell Multiplexed Proteomics on the IsoLight Resolves Cellular Functional Heterogeneity to Reveal Clinical Responses of Cancer Patients to Immunotherapies. Methods Mol Biol 2020; 2055:413-431. [PMID: 31502163 DOI: 10.1007/978-1-4939-9773-2_19] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cancer immunotherapies, in particular adoptive T cell therapy and immune-checkpoint blockade therapy have demonstrated a remarkable success in the treatment of cancer. However, due to heterogeneous functionality and complex immune response of immune cells, it remains challenging to identify predictive biomarkers which have the potential to correlate with efficacy and adverse effects of immunotherapies and help selecting patients who might benefit from the therapy, developing more personalized therapeutics as well as reducing clinical trial cost. The single-cell IsoCode chip in conjunction with fluorescent ELISA-based assay enables a simultaneous detection up to 40+ proteins secreted from live single immune cells, providing a large portion of the assayable functions for each immune cell type, and thus precise assessment of multifunctional, or polyfunctional, heterogeneity of each immune cell type.This unique functional detection capability provides a powerful solution to unmet needs in immunotherapy patient profiling today. Recently, the single-cell metric termed polyfunctional strength index (PSI™) by IsoCode chip computed from preinfusion anti-CD19 chimeric antigen receptor (CAR)-T cell products has demonstrated a significant association with clinical response and cytokine release syndrome (CRS) of cancer patient to the therapy after cell product infusion. This chapter elucidates IsoPlexis single-cell highly multiplexed proteomic platform and provides technical details for characterizing cell products and various cell subsets from peripheral blood, bone marrow, or tumor tissues using this assay.
Collapse
|
35
|
Abstract
Single-cell level metabolomics gives a snapshot of small molecules, intermediates, and products of cellular metabolism within a biological system. These small molecules, typically less than 1 kDa in molecular weight, often provide the basis of biochemical heterogeneity within cells. The molecular differences between cells with a cell type are often attributed to random stochastic biochemical processes, cell cycle stages, environmental stress, and diseased states. In this chapter, current limitations and challenges in single-cell analysis by mass spectrometry will be discussed alongside the prospects of single-cell metabolomics in systems biology. A few selected example of the recent development in mass spectrometry tools to unravel single-cell metabolomics will be described as well.
Collapse
|
36
|
Minoura K, Abe K, Maeda Y, Nishikawa H, Shimamura T. Model-based cell clustering and population tracking for time-series flow cytometry data. BMC Bioinformatics 2019; 20:633. [PMID: 31881827 PMCID: PMC6933651 DOI: 10.1186/s12859-019-3294-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background Modern flow cytometry technology has enabled the simultaneous analysis of multiple cell markers at the single-cell level, and it is widely used in a broad field of research. The detection of cell populations in flow cytometry data has long been dependent on “manual gating” by visual inspection. Recently, numerous software have been developed for automatic, computationally guided detection of cell populations; however, they are not designed for time-series flow cytometry data. Time-series flow cytometry data are indispensable for investigating the dynamics of cell populations that could not be elucidated by static time-point analysis. Therefore, there is a great need for tools to systematically analyze time-series flow cytometry data. Results We propose a simple and efficient statistical framework, named CYBERTRACK (CYtometry-Based Estimation and Reasoning for TRACKing cell populations), to perform clustering and cell population tracking for time-series flow cytometry data. CYBERTRACK assumes that flow cytometry data are generated from a multivariate Gaussian mixture distribution with its mixture proportion at the current time dependent on that at a previous timepoint. Using simulation data, we evaluate the performance of CYBERTRACK when estimating parameters for a multivariate Gaussian mixture distribution, tracking time-dependent transitions of mixture proportions, and detecting change-points in the overall mixture proportion. The CYBERTRACK performance is validated using two real flow cytometry datasets, which demonstrate that the population dynamics detected by CYBERTRACK are consistent with our prior knowledge of lymphocyte behavior. Conclusions Our results indicate that CYBERTRACK offers better understandings of time-dependent cell population dynamics to cytometry users by systematically analyzing time-series flow cytometry data.
Collapse
Affiliation(s)
- Kodai Minoura
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, 65 Trumumai-cho, Showa-ku, Nagoya, 4668550, Japan.,Division of Immunology, Graduate School of Medicine, Nagoya University, 65 Trumumai-cho, Showa-ku, Nagoya, 4668550, Japan
| | - Ko Abe
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, 65 Trumumai-cho, Showa-ku, Nagoya, 4668550, Japan
| | - Yuka Maeda
- Division of Cancer Immunology, Research Institute/EPOC, National Cancer Center, Tokyo/Chiba, 1040045/2778577, Japan
| | - Hiroyoshi Nishikawa
- Division of Immunology, Graduate School of Medicine, Nagoya University, 65 Trumumai-cho, Showa-ku, Nagoya, 4668550, Japan.,Division of Cancer Immunology, Research Institute/EPOC, National Cancer Center, Tokyo/Chiba, 1040045/2778577, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, 65 Trumumai-cho, Showa-ku, Nagoya, 4668550, Japan.
| |
Collapse
|
37
|
Ghobrial IM, Liu C, Zavidij O, Azab AK, Baz R, Laubach JP, Mishima Y, Armand P, Munshi NC, Basile F, Constantine M, Vredenburgh J, Boruchov A, Crilley P, Henrick PM, Hornburg KTV, Leblebjian H, Chuma S, Reyes K, Noonan K, Warren D, Schlossman R, Paba‐Prada C, Anderson KC, Weller E, Trippa L, Shain K, Richardson PG. Phase I/II trial of the CXCR4 inhibitor plerixafor in combination with bortezomib as a chemosensitization strategy in relapsed/refractory multiple myeloma. Am J Hematol 2019; 94:1244-1253. [PMID: 31456261 DOI: 10.1002/ajh.25627] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 11/11/2022]
Abstract
We tested the hypothesis that using CXCR4 inhibition to target the interaction between the tumor cells and the microenvironment leads to sensitization of the tumor cells to apoptosis. Eligibility criteria included multiple myeloma (MM) patients with 1-5 prior lines of therapy. The purposes of the phase I study were to evaluate the safety and maximal-tolerated dose (MTD) of the combination. The treatment-related adverse events and response rate of the combination were assessed in the phase II study. A total of 58 patients were enrolled in the study. The median age of the patients was 63 years (range, 43-85), and 78% of them received prior bortezomib. In the phase I study, the MTD was plerixafor 0.32 mg/kg, and bortezomib 1.3 mg/m2 . The overall response rate for the phase II study was 48.5%, and the clinical benefit rate 60.6%. The median disease-free survival was 12.6 months. The CyTOF analysis demonstrated significant mobilization of plasma cells, CD34+ stem cells, and immune T cells in response to plerixafor. This is an unprecedented study that examines therapeutic targeting of the bone marrow microenvironment and its interaction with the tumor clone to overcome resistance to therapy. Our results indicate that this novel combination is safe and that the objective response rate is high even in patients with relapsed/refractory MM. ClinicalTrials.gov, NCT00903968.
Collapse
Affiliation(s)
- Irene M. Ghobrial
- Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
| | - Chia‐Jen Liu
- Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
| | - Oksana Zavidij
- Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
| | - Abdel K. Azab
- Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
- Department of Radiation OncologyCancer Biology Division, Washington University School of Medicine St. Louis, Missouri
| | - Rachid Baz
- Department of Malignant HaematologyH. Lee Moffitt Cancer Center and Research Institute Tampa, Florida
| | - Jacob P. Laubach
- Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
| | - Yuji Mishima
- Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
| | - Philippe Armand
- Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
| | - Nikhil C. Munshi
- Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
| | - Frank Basile
- Department of Medical OncologyDavenport‐Mugar Cancer Center, Cape Cod Hospital Hyannis Massachusetts
| | - Michael Constantine
- Department of Medical OncologyDana‐Farber/Brigham and Women's Cancer Center, Milford Regional Medical Center Milford Massachusetts
| | - James Vredenburgh
- Department of Medical OncologySaint Francis Hospital and Medical Center Hartford Connecticut
| | - Adam Boruchov
- Department of Medical OncologySaint Francis Hospital and Medical Center Hartford Connecticut
| | - Pamela Crilley
- Department of Medical OncologyCancer Treatment Centers of America, Eastern Regional Medical Center Philadelphia Pennsylvania
| | - Patrick M. Henrick
- Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
| | - Kalvis T. V. Hornburg
- Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
| | - Houry Leblebjian
- Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
| | - Stacey Chuma
- Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
| | - Kaitlen Reyes
- Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
| | - Kimberly Noonan
- Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
| | - Diane Warren
- Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
| | - Robert Schlossman
- Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
| | - Claudia Paba‐Prada
- Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
| | - Kenneth C. Anderson
- Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
| | - Edie Weller
- Department of Biostatistics and Computational BiologyDana‐Farber Cancer Institute Boston Massachusetts
| | - Lorenzo Trippa
- Department of Biostatistics and Computational BiologyDana‐Farber Cancer Institute Boston Massachusetts
| | - Kenneth Shain
- Department of Malignant HaematologyH. Lee Moffitt Cancer Center and Research Institute Tampa, Florida
| | - Paul G. Richardson
- Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
| |
Collapse
|
38
|
Exploring single-cell data with deep multitasking neural networks. Nat Methods 2019; 16:1139-1145. [PMID: 31591579 PMCID: PMC10164410 DOI: 10.1038/s41592-019-0576-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 08/19/2019] [Indexed: 01/22/2023]
Abstract
It is currently challenging to analyze single-cell data consisting of many cells and samples, and to address variations arising from batch effects and different sample preparations. For this purpose, we present SAUCIE, a deep neural network that combines parallelization and scalability offered by neural networks, with the deep representation of data that can be learned by them to perform many single-cell data analysis tasks. Our regularizations (penalties) render features learned in hidden layers of the neural network interpretable. On large, multi-patient datasets, SAUCIE's various hidden layers contain denoised and batch-corrected data, a low-dimensional visualization and unsupervised clustering, as well as other information that can be used to explore the data. We analyze a 180-sample dataset consisting of 11 million T cells from dengue patients in India, measured with mass cytometry. SAUCIE can batch correct and identify cluster-based signatures of acute dengue infection and create a patient manifold, stratifying immune response to dengue.
Collapse
|
39
|
Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence and human vaccine immune responses. IMMUNITY & AGEING 2019; 16:25. [PMID: 31528180 PMCID: PMC6743147 DOI: 10.1186/s12979-019-0164-9] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
The age-related dysregulation and decline of the immune system-collectively termed "immunosenescence"-has been generally associated with an increased susceptibility to infectious pathogens and poor vaccine responses in older adults. While numerous studies have reported on the clinical outcomes of infected or vaccinated individuals, our understanding of the mechanisms governing the onset of immunosenescence and its effects on adaptive immunity remains incomplete. Age-dependent differences in T and B lymphocyte populations and functions have been well-defined, yet studies that demonstrate direct associations between immune cell function and clinical outcomes in older individuals are lacking. Despite these knowledge gaps, research has progressed in the development of vaccine and adjuvant formulations tailored for older adults in order to boost protective immunity and overcome immunosenescence. In this review, we will discuss the development of vaccines for older adults in light of our current understanding-or lack thereof-of the aging immune system. We highlight the functional changes that are known to occur in the adaptive immune system with age, followed by a discussion of current, clinically relevant pathogens that disproportionately affect older adults and are the central focus of vaccine research efforts for the aging population. We conclude with an outlook on personalized vaccine development for older adults and areas in need of further study in order to improve our fundamental understanding of adaptive immunosenescence.
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| |
Collapse
|
40
|
Fox JJ, Navarro HI, Hashimoto T, Garcia AJ, Goldstein AS. Mass cytometry reveals species-specific differences and a new level of complexity for immune cells in the prostate. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2019; 7:281-296. [PMID: 31511834 PMCID: PMC6734036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Chronic inflammation in the benign prostate has been associated with a higher risk of developing prostate cancer. While a range of immune lineages is found in the prostate including T cells, B cells and myeloid cells, the specific subsets of immune cells with each major lineage have not been well described. In this study, we use mass cytometry (CyTOF) to comprehensively and reproducibly profile immune cells in mouse and human prostate. Using 4 myeloid markers (CD11b, CD11c, F4/80, Ly6C) in the mouse, we identified 8 phenotypically-distinct myeloid populations, demonstrating considerable heterogeneity within the immune compartment of the mouse prostate. We then profiled the prostate immune microenvironment from 9 human patients. Unlike the mouse prostate which is myeloid-dominant, the immune compartment in the benign human prostate is consistently T-lymphocyte-dominant. Using the X-shift algorithm to identify individual immune subsets based on marker expression, we found 57 phenotypically-distinct immune cell types in the human prostate. Despite similar proportions of T, B and myeloid lineage cells in the benign human prostate of all patients evaluated, we observed considerable interpatient heterogeneity in the abundance of more specific immune subsets. These findings highlight the importance of studying the immune compartment in the prostate at a granular level and will lead to future studies addressing the functional role of specific immune subsets in prostate epithelial transformation.
Collapse
Affiliation(s)
- Jonathan J Fox
- Department of Molecular, Cell and Developmental Biology, University of CaliforniaLos Angeles, Los Angeles, CA, USA
| | - Héctor I Navarro
- Molecular Biology Interdepartmental Program, University of CaliforniaLos Angeles, Los Angeles, CA, USA
| | - Takao Hashimoto
- Department of Molecular, Cell and Developmental Biology, University of CaliforniaLos Angeles, Los Angeles, CA, USA
| | - Alejandro J Garcia
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of CaliforniaLos Angeles, Los Angeles, CA, USA
| | - Andrew S Goldstein
- Department of Molecular, Cell and Developmental Biology, University of CaliforniaLos Angeles, Los Angeles, CA, USA
- Department of Urology, David Geffen School of Medicine, University of CaliforniaLos Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of CaliforniaLos Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of CaliforniaLos Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of CaliforniaLos Angeles, Los Angeles, CA, USA
| |
Collapse
|
41
|
Gadalla R, Noamani B, MacLeod BL, Dickson RJ, Guo M, Xu W, Lukhele S, Elsaesser HJ, Razak ARA, Hirano N, McGaha TL, Wang B, Butler M, Guidos CJ, Ohashi PS, Siu LL, Brooks DG. Validation of CyTOF Against Flow Cytometry for Immunological Studies and Monitoring of Human Cancer Clinical Trials. Front Oncol 2019; 9:415. [PMID: 31165047 PMCID: PMC6534060 DOI: 10.3389/fonc.2019.00415] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/02/2019] [Indexed: 12/30/2022] Open
Abstract
Flow cytometry is a widely applied approach for exploratory immune profiling and biomarker discovery in cancer and other diseases. However, flow cytometry is limited by the number of parameters that can be simultaneously analyzed, severely restricting its utility. Recently, the advent of mass cytometry (CyTOF) has enabled high dimensional and unbiased examination of the immune system, allowing simultaneous interrogation of a large number of parameters. This is important for deep interrogation of immune responses and particularly when sample sizes are limited (such as in tumors). Our goal was to compare the accuracy and reproducibility of CyTOF against flow cytometry as a reliable analytic tool for human PBMC and tumor tissues for cancer clinical trials. We developed a 40+ parameter CyTOF panel and demonstrate that compared to flow cytometry, CyTOF yields analogous quantification of cell lineages in conjunction with markers of cell differentiation, function, activation, and exhaustion for use with fresh and viably frozen PBMC or tumor tissues. Further, we provide a protocol that enables reliable quantification by CyTOF down to low numbers of input human cells, an approach that is particularly important when cell numbers are limiting. Thus, we validate CyTOF as an accurate approach to perform high dimensional analysis in human tumor tissue and to utilize low cell numbers for subsequent immunologic studies and cancer clinical trials.
Collapse
Affiliation(s)
- Ramy Gadalla
- Tumor Immunology Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Babak Noamani
- Tumor Immunology Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Bethany L MacLeod
- Tumor Immunology Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Russell J Dickson
- Tumor Immunology Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Mengdi Guo
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Wenxi Xu
- Tumor Immunology Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Sabelo Lukhele
- Tumor Immunology Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Heidi J Elsaesser
- Tumor Immunology Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Albiruni R Abdul Razak
- Tumor Immunology Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Naoto Hirano
- Tumor Immunology Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Tracy L McGaha
- Tumor Immunology Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Ben Wang
- Tumor Immunology Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Marcus Butler
- Tumor Immunology Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Cynthia J Guidos
- Department of Immunology, University of Toronto, Toronto, ON, Canada.,Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Pam S Ohashi
- Tumor Immunology Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lillian L Siu
- Tumor Immunology Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - David G Brooks
- Tumor Immunology Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Van Acker T, Buckle T, Van Malderen SJM, van Willigen DM, van Unen V, van Leeuwen FWB, Vanhaecke F. High-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry for the determination of membranous receptor expression levels in breast cancer cell lines using receptor-specific hybrid tracers. Anal Chim Acta 2019; 1074:43-53. [PMID: 31159938 DOI: 10.1016/j.aca.2019.04.064] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
This work evaluates the possibility of placement of high-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) within precision medicine by assessing the suitability of LA-ICP-MS as a micro-analytical technique for the localization and quantification of membranous receptors in heterogeneous cell samples that express both the membrane-bound receptors C-X-C chemokine receptor type 4 (CXCR4) and epidermal growth factor receptor (EGFR). Staining of the breast cancer cell lines MDA-MB-231 X4 and MDA-MB-468 was achieved using receptor-specific hybrid tracers, containing both a fluorophore and a DTPA single-lanthanide chelate. Prior to LA-ICP-MS imaging, fluorescence confocal microscopy (FCM) imaging was performed to localize the receptors, hereby enabling direct comparison. Based on the different expression levels of CXCR4 and EGFR, a distinction could be made between the cell lines using both imaging modalities. Furthermore, FCM and LA-ICP-MS demonstrated complementary characteristics, as a more distinct discrimination could be made between both cell lines based on the EGFR-targeting hybrid tracer via LA-ICP-MS, due to the intrinsic CXCR4-related green fluorescent protein (GFP) signal present in the MDA-MB-231 X4 cells. Employing state-of-the-art LA-ICP-MS instrumentation in bidirectional area scanning mode for sub-cellular imaging of MDA-MB-231 X4 cells enabled the specific binding of the CXCR4-targeting hybrid tracer to the cell membrane to be clearly demonstrated. The stretching of cells over the glass substrate led to a considerably higher signal response for pixels at the cell edges, relative to the more central pixels. The determination of the expression levels of CXCR4 and EGFR for the MDA-MB-468 cell line was performed using LA-ICP-MS single-cell analysis (sc-LA-ICP-MS) and external calibration, based on the quantitative ablation of Ho-spiked dried gelatin droplet standards. Additionally, a second calibration approach was applied based on spot ablation of highly homogeneous dried gelatin gels in combination with the determination of the ablated volume using atomic force microscopy (AFM) and yielded results which were in good agreement with the expression levels determined via flow cytometry (FC) and mass cytometry (MC). Hybrid tracers enable a direct comparison between (i) FCM and LA-ICP-MS imaging for the evaluation of the microscopic binding pattern and between (ii) FC, MC and sc-LA-ICP-MS for the quantification of receptor expression levels in single cells.
Collapse
Affiliation(s)
- Thibaut Van Acker
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Stijn J M Van Malderen
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium; Ghent University, Department of Chemistry, X-ray Microspectroscopy and Imaging Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| | - Danny M van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Vincent van Unen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Frank Vanhaecke
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| |
Collapse
|
43
|
Ngamcherdtrakul W, Sangvanich T, Goodyear S, Reda M, Gu S, Castro DJ, Punnakitikashem P, Yantasee W. Lanthanide-Loaded Nanoparticles as Potential Fluorescent and Mass Probes for High-Content Protein Analysis. Bioengineering (Basel) 2019; 6:E23. [PMID: 30875927 PMCID: PMC6466365 DOI: 10.3390/bioengineering6010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 01/22/2023] Open
Abstract
Multiparametric and high-content protein analysis of single cells or tissues cannot be accomplished with the currently available flow cytometry or imaging techniques utilizing fluorophore-labelled antibodies, because the number of spectrally resolvable fluorochromes is limited. In contrast, mass cytometry can resolve more signals by exploiting lanthanide-tagged antibodies; however, only about 100 metal reporters can be attached to an antibody molecule. This makes the sensitivity of lanthanide-tagged antibodies substantially lower than fluorescent reporters. A new probe that can carry more lanthanide molecules per antibody is a desirable way to enhance the sensitivity needed for the detection of protein with low cellular abundance. Herein, we report on the development of new probes utilizing mesoporous silica nanoparticles (MSNPs) with hydroxyl, amine, or phosphonate functional groups. The phosphonated MSNPs proved to be best at loading lanthanides for up to 1.4 × 10⁶ molecules per particle, and could be loaded with various lanthanide elements (Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu) at relatively similar molar extents. The modified MSNPs can also load a fluorescent dye, allowing bimodal mass and fluorescence-based detection. We achieved specificity of antibody-conjugated nanoparticles (at 1.4 × 10³ antibodies per nanoparticle) for targeting proteins on the cell surface. The new materials can potentially be used as mass cytometry probes and provide a method for simultaneous monitoring of a large host of factors comprising the tumor microenvironment (e.g., extracellular matrix, cancer cells, and immune cells). These novel probes may also benefit personalized medicine by allowing for high-throughput analysis of multiple proteins in the same specimen.
Collapse
Affiliation(s)
- Worapol Ngamcherdtrakul
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
- PDX Pharmaceuticals, LLC, Portland, OR 97239, USA.
| | - Thanapon Sangvanich
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Shaun Goodyear
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Moataz Reda
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Shenda Gu
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| | - David J Castro
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
- PDX Pharmaceuticals, LLC, Portland, OR 97239, USA.
| |
Collapse
|
44
|
Mistry AM, Greenplate AR, Ihrie RA, Irish JM. Beyond the message: advantages of snapshot proteomics with single-cell mass cytometry in solid tumors. FEBS J 2019; 286:1523-1539. [PMID: 30549207 DOI: 10.1111/febs.14730] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/17/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022]
Abstract
Single-cell technologies that can quantify features of individual cells within a tumor are critical for treatment strategies aiming to target cancer cells while sparing or activating beneficial cells. Given that key players in protein networks are often the primary targets of precision oncology strategies, it is imperative to transcend the nucleic acid message and read cellular actions in human solid tumors. Here, we review the advantages of multiplex, single-cell mass cytometry in tissue and solid tumor investigations. Mass cytometry can quantitatively probe nearly any cellular feature or target. In discussing the ability of mass cytometry to reveal and characterize a broad spectrum of cell types, identify rare cells, and study functional behavior through protein signaling networks in millions of individual cells from a tumor, this review surveys publications of scientific advances in solid tumor biology made with the aid of mass cytometry. Advances discussed include functional identification of rare tumor and tumor-infiltrating immune cells and dissection of cellular mechanisms of immunotherapy in solid tumors and the periphery. The review concludes by highlighting ways to incorporate single-cell mass cytometry in solid tumor precision oncology efforts and rapidly developing cytometry techniques for quantifying cell location and sequenced nucleic acids.
Collapse
Affiliation(s)
- Akshitkumar M Mistry
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Allison R Greenplate
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
45
|
Baird Z, Cao Z, Barron MR, Vorsilak A, Deiss F, Pugia M. Enumeration of Rare Cells in Whole Blood by Signal Ion Emission Reactive Release Amplification with Same-Sample RNA Analysis. Anal Chem 2019; 91:2028-2034. [DOI: 10.1021/acs.analchem.8b04446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zane Baird
- Single Cell Analytics Center, Indiana Biosciences Research Institute, Indianapolis, Indiana 46202, United States
| | - Zehui Cao
- Single Cell Analytics Center, Indiana Biosciences Research Institute, Indianapolis, Indiana 46202, United States
| | - M. Regina Barron
- Single Cell Analytics Center, Indiana Biosciences Research Institute, Indianapolis, Indiana 46202, United States
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Anna Vorsilak
- Single Cell Analytics Center, Indiana Biosciences Research Institute, Indianapolis, Indiana 46202, United States
| | - Frédérique Deiss
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Michael Pugia
- Single Cell Analytics Center, Indiana Biosciences Research Institute, Indianapolis, Indiana 46202, United States
| |
Collapse
|
46
|
Abstract
In mass cytometry, sample loss is of considerable concern due to the relative inefficiency of cell event collection compared to similar techniques such as flow cytometry. Cell stimulation and the harsh conditions required in the later stages of certain sample preparations also contribute to cell loss. Low starting cell numbers are especially susceptible to these effects, potentially limiting the ability to use mass cytometry. Here is presented a live cell barcoding scheme and additional efficiency methods to improve recovery and achieve consistent staining for small samples.
Collapse
Affiliation(s)
- Lisa E Wagar
- Stanford University School of Medicine, Department of Microbiology and Immunology, Stanford, CA, USA.
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW The medical management of inflammatory bowel disease (IBD) remains problematic with a pressing need for innovation in drug development as well as delivery of personalized therapies. Both the disease's inherent pathophysiologic complexity and heterogeneity in its etiology conspire in making it difficult to accurately model for either the purposes of basic research or drug development. Multiple attempts at creating meaningful experimental models have fallen short of adequately recapitulating the disease and most do not capture any aspect of the cause or the effects of patient heterogeneity that underlays most of the difficulties faced by physicians and their patients. In vivo animal models, tissue culture systems, and more recent synthetic biology approaches are all too simplistically reductionist for the task. However, ex vivo culture platforms utilizing patient biopsies offer a system that more closely mimics end-stage disease processes that can be studied in detail and subjected to experimental manipulations. RECENT FINDINGS Recent studies describe further optimization of mucosal explant cultures in order to increase tissue viability and maintain a polarized epithelial layer. Current applications of the platform include studies of the interplay between the epithelial, immune and stromal compartment of the intestinal tissue, investigation of host-microbial interactions, preclinical evaluation of candidate drugs and uncovering mechanisms of action of established or emerging treatments for IBD. SUMMARY Patient explant-based assays offer an advanced biological system in IBD that recapitulates disease complexity and reflects the heterogeneity of the patient population. In its current stage of development, the system can be utilized for drug testing prior to the costlier and time-consuming evaluation by clinical trials. Further refinement of the technology and establishment of assay readouts that correlate with therapeutic outcomes will yield a powerful tool for personalized medicine approaches in which individual patient responses to available treatments are assessed a priori, thus reducing the need for trial and error within the clinical setting.
Collapse
|
48
|
Williams JW, Giannarelli C, Rahman A, Randolph GJ, Kovacic JC. Macrophage Biology, Classification, and Phenotype in Cardiovascular Disease: JACC Macrophage in CVD Series (Part 1). J Am Coll Cardiol 2018; 72:2166-2180. [PMID: 30360826 PMCID: PMC6209330 DOI: 10.1016/j.jacc.2018.08.2148] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/12/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
Macrophages represent one of the most numerous and diverse leukocyte types in the body. Furthermore, they are important regulators and promoters of many cardiovascular disease programs. Their functions range from sensing pathogens to digesting cell debris, modulating inflammation, and producing key cytokines and other regulatory factors throughout the body. Macrophage research has undergone a renaissance in recent years, which has propelled a newfound interest in their heterogeneity as well as a new understanding of ontological differences in their development. In addition, recent technological advances such as single-cell mass-cytometry by time-of-flight have enabled phenotype and functional analyses of individual immune myeloid cells, including macrophages, at unprecedented resolution. In this Part 1 of a 4-part review series covering the macrophage in cardiovascular disease, we focus on the basic principles of macrophage development, heterogeneity, phenotype, tissue-specific differentiation, and functionality as a basis to understand their role in cardiovascular disease.
Collapse
Affiliation(s)
- Jesse W Williams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Chiara Giannarelli
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Adeeb Rahman
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
49
|
Tyler CJ, Pérez-Jeldres T, Ehinger E, Capaldo B, Karuppuchamy T, Boyer JD, Patel D, Dulai P, Boland BS, Lannigan J, Eckmann L, Ernst PB, Sandborn WJ, Ho SB, Rivera-Nieves J. Implementation of Mass Cytometry as a Tool for Mechanism of Action Studies in Inflammatory Bowel Disease. Inflamm Bowel Dis 2018; 24:2366-2376. [PMID: 29889233 PMCID: PMC6185553 DOI: 10.1093/ibd/izy214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022]
Abstract
Background Novel therapeutics for inflammatory bowel disease (IBD) are under development, yet mechanistic readouts at the tissue level are lacking. Techniques to assess intestinal immune composition could represent a valuable tool for mechanism of action (MOA) studies of novel drugs. Mass cytometry enables analysis of intestinal inflammatory cell infiltrate and corresponding molecular fingerprints with unprecedented resolution. Here, we aimed to optimize the methodology for isolation and cryopreservation of cells from intestinal tissue to allow for the potential implementation of mass cytometry in MOA studies. Methods We investigated key technical issues, including minimal tissue requirements, cell isolation protocols, and cell storage, using intestinal biopsies and peripheral blood from healthy individuals. High-dimensional mass cytometry was employed for the analyses of biopsy-derived intestinal cellular subsets. Results Dithiothreitol and mechanical dissociation decreased epithelial cell contamination and allowed for isolation of adequate cell numbers from 2 to 4 colonic or ileal biopsies (6 × 104±2 × 104) after a 20-minute collagenase digestion, allowing for reliable detection of most major immune cell subsets. Biopsies and antibody-labeled mononuclear cells could be cryopreserved for later processing and acquisition (viability > 70%; P < 0.05). Conclusions Mass cytometry represents a unique tool for deep immunophenotyping intestinal cell composition. This technique has the potential to facilitate analysis of drug actions at the target tissue by identifying specific cellular subsets and their molecular signatures. Its widespread implementation may impact not only IBD research but also other gastrointestinal conditions where inflammatory cells play a role in pathogenesis.
Collapse
Affiliation(s)
- Christopher J Tyler
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
| | - Tamara Pérez-Jeldres
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
- Universidad Catolica de Chile, Santiago, Chile
| | - Erik Ehinger
- Flow Cytometry Core Facility, La Jolla Institute of Allergy and Immunology, La Jolla, California
| | - Brian Capaldo
- Flow Cytometry Core Facility, University of Virginia, Charlottesville, Virginia
| | - Thangaraj Karuppuchamy
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
| | - Joshua D Boyer
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
| | - Derek Patel
- VA San Diego Healthcare System, San Diego, California
| | - Parambir Dulai
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
| | - Brigid S Boland
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Joanne Lannigan
- Flow Cytometry Core Facility, University of Virginia, Charlottesville, Virginia
| | - Lars Eckmann
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Peter B Ernst
- Division of Comparative Pathology, Department of Pathology, University of California San Diego, La Jolla, California
- Chiba University–UC San Diego Program in Mucosal Immunology, Allergy and Vaccines, San Diego, California
| | | | - Samuel B Ho
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
| | - Jesús Rivera-Nieves
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
| |
Collapse
|
50
|
Cook D, Achanta S, Hoek JB, Ogunnaike BA, Vadigepalli R. Cellular network modeling and single cell gene expression analysis reveals novel hepatic stellate cell phenotypes controlling liver regeneration dynamics. BMC SYSTEMS BIOLOGY 2018; 12:86. [PMID: 30285726 PMCID: PMC6171157 DOI: 10.1186/s12918-018-0605-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022]
Abstract
Background Recent results from single cell gene and protein regulation studies are starting to uncover the previously underappreciated fact that individual cells within a population exhibit high variability in the expression of mRNA and proteins (i.e., molecular variability). By combining cellular network modeling, and high-throughput gene expression measurements in single cells, we seek to reconcile the high molecular variability in single cells with the relatively low variability in tissue-scale gene and protein expression and the highly coordinated functional responses of tissues to physiological challenges. In this study, we focus on relating the dynamic changes in distributions of hepatic stellate cell (HSC) functional phenotypes to the tightly regulated physiological response of liver regeneration. Results We develop a mathematical model describing contributions of HSC functional phenotype populations to liver regeneration and test model predictions through isolation and transcriptional characterization of single HSCs. We identify and characterize four HSC transcriptional states contributing to liver regeneration, two of which are described for the first time in this work. We show that HSC state populations change in vivo in response to acute challenges (in this case, 70% partial hepatectomy) and chronic challenges (chronic ethanol consumption). Our results indicate that HSCs influence the dynamics of liver regeneration through steady-state tissue preconditioning prior to an acute insult and through dynamic control of cell state balances. Furthermore, our modeling approach provides a framework to understand how balances among cell states influence tissue dynamics. Conclusions Taken together, our combined modeling and experimental studies reveal novel HSC transcriptional states and indicate that baseline differences in HSC phenotypes as well as a dynamic balance of transitions between these phenotypes control liver regeneration responses. Electronic supplementary material The online version of this article (10.1186/s12918-018-0605-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Cook
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.,Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sirisha Achanta
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jan B Hoek
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Babatunde A Ogunnaike
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Rajanikanth Vadigepalli
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA. .,Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|