1
|
Cai Y, Liang J, Lu G, Zhan Y, Meng J, Liu Z, Shao Y. Diagnosis of invasive pulmonary aspergillosis by lateral flow assay of galactomannan in bronchoalveolar lavage fluid: a meta-analysis of diagnostic performance. Lett Appl Microbiol 2023; 76:ovad110. [PMID: 37771080 DOI: 10.1093/lambio/ovad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
The performance of lateral flow assay (LFA) in diagnosing invasive pulmonary aspergillosis (IPA) has not been well demonstrated. To address this, we conducted a meta-analysis assessing the overall accuracy of LFA in diagnosing IPA using bronchoalveolar lavage fluid (BALF). Over a systematical search and assessment of bias risk, we calculated the pooled specificity, sensitivity, and area under the receiver operating curve (AUC) to assess the diagnostic performance. Our meta-analysis included 11 studies. The combined total sensitivity and specificity for diagnosing IPA were 0.78 (95% confidence interval (CI): 0.71, 0.83) and 0.87 (95% CI: 0.81, 0.91), respectively. The AUC was 0.86 (95% CI: 0.82, 0.89). Our results demonstrate that LFA using galactomannan in BALF exhibits high sensitivity and specificity for diagnosing IPA.
Collapse
Affiliation(s)
- Yingli Cai
- Department of Emergency, The First People's Hospital of Zhaoqing, Zhaoqing 526000, China
- Jinan University, Guangzhou 510632, China
| | - Jun Liang
- Department of Emergency, The First People's Hospital of Zhaoqing, Zhaoqing 526000, China
- Jinan University, Guangzhou 510632, China
| | - Guangsheng Lu
- Department of Emergency, The First People's Hospital of Zhaoqing, Zhaoqing 526000, China
| | - Yankun Zhan
- Department of Emergency, The First People's Hospital of Zhaoqing, Zhaoqing 526000, China
| | - Jianwei Meng
- Department of Emergency, The First People's Hospital of Zhaoqing, Zhaoqing 526000, China
| | - Zhusheng Liu
- Department of Emergency, The First People's Hospital of Zhaoqing, Zhaoqing 526000, China
| | | |
Collapse
|
2
|
Happacher I, Aguiar M, Yap A, Decristoforo C, Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus: impact on biotic interactions and potential translational applications. Essays Biochem 2023; 67:829-842. [PMID: 37313590 PMCID: PMC10500206 DOI: 10.1042/ebc20220252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
Iron is an essential trace element that is limiting in most habitats including hosts for fungal pathogens. Siderophores are iron-chelators synthesized by most fungal species for high-affinity uptake and intracellular handling of iron. Moreover, virtually all fungal species including those lacking siderophore biosynthesis appear to be able to utilize siderophores produced by other species. Siderophore biosynthesis has been shown to be crucial for virulence of several fungal pathogens infecting animals and plants revealing induction of this iron acquisition system during virulence, which offers translational potential of this fungal-specific system. The present article summarizes the current knowledge on the fungal siderophore system with a focus on Aspergillus fumigatus and its potential translational application including noninvasive diagnosis of fungal infections via urine samples, imaging of fungal infections via labeling of siderophores with radionuclides such as Gallium-68 for detection with positron emission tomography, conjugation of siderophores with fluorescent probes, and development of novel antifungal strategies.
Collapse
Affiliation(s)
- Isidor Happacher
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Mario Aguiar
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Annie Yap
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Scharmann U, Verhasselt HL, Kirchhoff L, Furnica DT, Steinmann J, Rath PM. Microbiological Non-Culture-Based Methods for Diagnosing Invasive Pulmonary Aspergillosis in ICU Patients. Diagnostics (Basel) 2023; 13:2718. [PMID: 37627977 PMCID: PMC10453445 DOI: 10.3390/diagnostics13162718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The diagnosis of invasive pulmonary aspergillosis (IPA) in intensive care unit (ICU) patients is crucial since most clinical signs are not specific to invasive fungal infections. To detect an IPA, different criteria should be considered. Next to host factors and radiological signs, microbiological criteria should be fulfilled. For microbiological diagnostics, different methods are available. Next to the conventional culture-based approaches like staining and culture, non-culture-based methods can increase sensitivity and improve time-to-result. Besides fungal biomarkers, like galactomannan and (1→3)-β-D-glucan as nonspecific tools, molecular-based methods can also offer detection of resistance determinants. The detection of novel biomarkers or targets is promising. In this review, we evaluate and discuss the value of non-culture-based microbiological methods (galactomannan, (1→3)-β-D-glucan, Aspergillus PCR, new biomarker/targets) for diagnosing IPA in ICU patients.
Collapse
Affiliation(s)
- Ulrike Scharmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany (J.S.)
| | - Hedda Luise Verhasselt
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany (J.S.)
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany (J.S.)
| | - Dan-Tiberiu Furnica
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany (J.S.)
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany (J.S.)
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany (J.S.)
| |
Collapse
|
4
|
Current and Future Pathways in Aspergillus Diagnosis. Antibiotics (Basel) 2023; 12:antibiotics12020385. [PMID: 36830296 PMCID: PMC9952630 DOI: 10.3390/antibiotics12020385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Aspergillus fumigatus has been designated by the World Health Organization as a critical priority fungal pathogen. Some commercially available diagnostics for many forms of aspergillosis rely on fungal metabolites. These encompass intracellular molecules, cell wall components, and extracellular secretomes. This review summarizes the shortcomings of antibody tests compared to tests of fungal products in body fluids and highlights the application of β-d-glucan, galactomannan, and pentraxin 3 in bronchoalveolar lavage fluids. We also discuss the detection of nucleic acids and next-generation sequencing, along with newer studies on Aspergillus metallophores.
Collapse
|
5
|
Luptáková D, Patil RH, Dobiáš R, Stevens DA, Pluháček T, Palyzová A, Káňová M, Navrátil M, Vrba Z, Hubáček P, Havlíček V. Siderophore-Based Noninvasive Differentiation of Aspergillus fumigatus Colonization and Invasion in Pulmonary Aspergillosis. Microbiol Spectr 2023; 11:e0406822. [PMID: 36719229 PMCID: PMC10100950 DOI: 10.1128/spectrum.04068-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023] Open
Abstract
Germination from conidia to hyphae and hyphal propagation of Aspergillus fumigatus are the key pathogenic steps in the development of invasive pulmonary aspergillosis (IPA). By applying in vitro observations in a clinical study of 13 patients diagnosed with probable IPA, here, we show that the transition from colonization to the A. fumigatus invasive stage is accompanied by the secretion of triacetylfusarinine C (TafC), triacetylfusarinine B (TafB), and ferricrocin (Fc) siderophores into urine, with strikingly better sensitivity performance than serum sampling. The best-performing index, the TafC/creatinine index, with a median value of 17.2, provided 92.3% detection sensitivity (95% confidence interval [CI], 64.0 to 99.8%) and 100% specificity (95% CI, 84.6 to 100%), i.e., substantially better than the corresponding indications provided by galactomannan (GM) and β-d-glucan (BDG) serology. For the same patient cohort, the serum GM and BDG sensitivities were 46.2 and 76.9%, respectively, and their specificities were 86.4 and 63.6%, respectively. The time-dependent specific appearance of siderophores in the host's urine represents an impactful clinical diagnostic advantage in the early discrimination of invasive aspergillosis from colonization. A favorable concentration of TafC in a clinical specimen distant from a deep infection site enables the noninvasive sampling of patients suffering from IPA. IMPORTANCE The importance of this research lies in the demonstration that siderophore analysis can distinguish between asymptomatic colonization and invasive pulmonary aspergillosis. We found clear associations between phases of fungal development, from conidial germination to the proliferative stage of invasive aspergillosis, and changes in secondary metabolite secretion. The critical extracellular fungal metabolites triacetylfusarinines C and B are produced during the polarized germination or postpolarized growth phase and reflect the morphological status of the proliferating pathogen. False positivity in Aspergillus diagnostics is minimized as mammalian cells do not synthesize Aspergillus siderophore or mycotoxin molecules.
Collapse
Affiliation(s)
- Dominika Luptáková
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Rutuja H. Patil
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Analytical Chemistry, Palacký University, Olomouc, Czechia
| | - Radim Dobiáš
- Department of Bacteriology and Mycology, Public Health Institute in Ostrava, Ostrava, Czechia
- Institute of Laboratory Medicine, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - David A. Stevens
- California Institute for Medical Research, San Jose, California, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Tomáš Pluháček
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Analytical Chemistry, Palacký University, Olomouc, Czechia
| | - Andrea Palyzová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Marcela Káňová
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ostrava, Ostrava, Czechia
- Institute of Physiology and Pathophysiology, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
- Department of Intensive Medicine, Emergency Medicine and Forensic Studies, University of Ostrava, Ostrava, Czechia
| | - Milan Navrátil
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czechia
| | - Zbyněk Vrba
- Lung Department, Krnov Combined Medical Facility, Krnov, Czechia
| | - Petr Hubáček
- Department of Medical Microbiology, Charles University, Prague, Czechia
- Motol University Hospital, Prague, Czechia
| | - Vladimír Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
6
|
Li C, Sun L, Liu Y, Zhou H, Chen J, She M, Wang Y. Diagnostic value of bronchoalveolar lavage fluid galactomannan assay for invasive pulmonary aspergillosis in adults: A meta-analysis. J Clin Pharm Ther 2022; 47:1913-1922. [PMID: 36324286 DOI: 10.1111/jcpt.13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE To analyse the diagnostic accuracy of bronchoalveolar lavage fluid galactomannan (BALF-GM) assay for invasive pulmonary aspergillosis (IPA) in adults to determine the optimal diagnostic cut-off by meta-analysis. METHODS PubMed, Embase, Web of Science, Cochrane Library, China national knowledge infrastructure (CNKI), and China Wanfang databases were searched to collect relevant studies on the diagnostic value of BALF-GM for IPA from inception to March 2022. The summary receiver operating characteristic (SROC) curve was drawn to determine the optimal diagnostic cut-off. RESULTS AND DISCUSSION Nineteen articles (56 data sets) were included. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were 0.79 (95% CI: 0.72-0.84), 0.92 (95% CI: 0.88-0.94), 9.25 (95% CI: 6.84-12.52), 0.23 (95% CI: 0.18-0.30), 39.44 (95% CI: 29.55-52.65), and 0.92 (95% CI: 0.90-0.94), respectively. The area under the curves (AUCs) were 0.92, 0.86, 0.93, 0.89, 0.88, and 0.94 when the cut-off values were 0.5, 0.8, 1.0, 1.5, 2.0, and 3.0, respectively. Sixteen studies were included in the combined analysis when the cut-off value was 0.5. The results showed that the pooled sensitivity, specificity, PLR, NLR and DOR of BALF-GM (cut-off 0.5) for the diagnosis of IPA were 0.89 (95% CI: 0.83-0.93), 0.79 (95% CI: 0.71-0.86), 4.33 (95% CI: 3.04-6.16), 0.14 (95% CI: 0.09-0.22), and 31.51 (95% CI: 17.43-56.98). The AUC was 0.92 (95% CI: 0.89-0.94). WHAT IS NEW AND CONCLUSIONS BALF-GM has excellent diagnostic accuracy for adult IPA, which can be diagnosed early and treated early to reduce the mortality rate. Considering the sensitivity, specificity, PLR and NLR, the recommended diagnostic cut-off of BALF-GM for adult IPA is 0.5.
Collapse
Affiliation(s)
- Chang Li
- Department of Pulmonary and Critical Care Medicine, Chongzhou People's Hospital, Chengdu, Sichuan, China
| | - Lin Sun
- Department of Pulmonary and Critical Care Medicine, Chongzhou People's Hospital, Chengdu, Sichuan, China
| | - Yin Liu
- Department of Pulmonary and Critical Care Medicine, Chongzhou People's Hospital, Chengdu, Sichuan, China
| | - Hongbing Zhou
- Department of Pulmonary and Critical Care Medicine, Chongzhou People's Hospital, Chengdu, Sichuan, China
| | - Jianguo Chen
- Department of Pulmonary and Critical Care Medicine, Chongzhou People's Hospital, Chengdu, Sichuan, China
| | - Min She
- Department of Pulmonary and Critical Care Medicine, Chongzhou People's Hospital, Chengdu, Sichuan, China
| | - Yong Wang
- Department of Pulmonary and Critical Care Medicine, Chongzhou People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Invasive fungal diseases (IFDs) such as invasive aspergillosis continue to be associated with high morbidity and mortality while presenting significant diagnostic challenges. Siderophores are high-affinity Fe 3+ chelators produced by Aspergillus spp. and other fungi capable of causing IFD. Previously evaluated as a treatment target in mucormycosis, siderophores have recently emerged as new diagnostic targets for invasive aspergillosis and scedosporiosis. Here, we review the diagnostic potential of siderophores for diagnosing IFD, with a particular focus on invasive aspergillosis. RECENT FINDINGS The major secreted siderophore of A. fumigatus , triacetylfusarinine C (TAFC), has been successfully detected by mass spectrometry in serum, BALF and urine of patients with invasive aspergillosis, with promising sensitivities and specificities in single-centre studies. Intracellular uptake of siderophores has also been utilized for imaging, wherein fungal siderophores have been conjugated with the easy-to-produce radioactive isotope gallium-68 ( 68 Ga) to visualize infected body sites in PET. For the Scedosporium apiospermum complex, another siderophore N(α)-methyl coprogen B has been shown promising as a marker for airway colonization in early studies. SUMMARY Siderophores and particular TAFC have the potential to revolutionize diagnostic pathways for invasive aspergillosis and other mould infections. However, larger multicentre studies are needed to confirm these promising performances. Methods that allow rapid and cost-effective measurements in routine clinical practice need to be developed, particularly when TAFC is used as a biomarker in patient specimens.
Collapse
|
8
|
Aguiar M, Orasch T, Shadkchan Y, Caballero P, Pfister J, Sastré-Velásquez LE, Gsaller F, Decristoforo C, Osherov N, Haas H. Uptake of the Siderophore Triacetylfusarinine C, but Not Fusarinine C, Is Crucial for Virulence of Aspergillus fumigatus. mBio 2022; 13:e0219222. [PMID: 36125294 PMCID: PMC9600649 DOI: 10.1128/mbio.02192-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022] Open
Abstract
Siderophores play an important role in fungal virulence, serving as trackers for in vivo imaging and as biomarkers of fungal infections. However, siderophore uptake is only partially characterized. As the major cause of aspergillosis, Aspergillus fumigatus is one of the most common airborne fungal pathogens of humans. Here, we demonstrate that this mold species mediates the uptake of iron chelated by the secreted siderophores triacetylfusarinine C (TAFC) and fusarinine C by the major facilitator-type transporters MirB and MirD, respectively. In a murine aspergillosis model, MirB but not MirD was found to be crucial for virulence, indicating that TAFC-mediated uptake plays a dominant role during infection. In the absence of MirB, TAFC becomes inhibitory by decreasing iron availability because the mutant is not able to recognize iron that is chelated by TAFC. MirB-mediated transport was found to tolerate the conjugation of fluorescein isothiocyanate to triacetylfusarinine C, which might aid in the development of siderophore-based antifungals in a Trojan horse approach, particularly as the role of MirB in pathogenicity restrains its mutational inactivation. Taken together, this study identified the first eukaryotic siderophore transporter that is crucial for virulence and elucidated its translational potential as well as its evolutionary conservation. IMPORTANCE Aspergillus fumigatus is responsible for thousands of cases of invasive fungal disease annually. For iron uptake, A. fumigatus secretes so-called siderophores, which are taken up after the binding of environmental iron. Moreover, A. fumigatus can utilize siderophore types that are produced by other fungi or bacteria. Fungal siderophores raised considerable interest due to their role in virulence and their potential for the diagnosis and treatment of fungal infections. Here, we demonstrate that the siderophore transporter MirB is crucial for the virulence of A. fumigatus, which reveals that its substrate, triacetylfusarinine C, is the most important siderophore during infection. We found that in the absence of MirB, TAFC becomes inhibitory by decreasing the availability of environmental iron and that MirB-mediated transport tolerates the derivatization of its substrate, which might aid in the development of siderophore-based antifungals. This study significantly improved the understanding of fungal iron homeostasis and the role of siderophores in interactions with the host.
Collapse
Affiliation(s)
- Mario Aguiar
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Orasch
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Yana Shadkchan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel Aviv, Israel
| | - Patricia Caballero
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Joachim Pfister
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | | | - Fabio Gsaller
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel Aviv, Israel
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Xiao W, Du L, Cai L, Miao T, Mao B, Wen F, Gibson PG, Gong D, Zeng Y, Kang M, Du X, Qu J, Wang Y, Liu X, Feng R, Fu J. Existing tests vs. novel non-invasive assays for detection of invasive aspergillosis in patients with respiratory diseases. Chin Med J (Engl) 2022; 135:00029330-990000000-00075. [PMID: 35861304 PMCID: PMC9532040 DOI: 10.1097/cm9.0000000000002050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Although existing mycological tests (bronchoalveolar lavage [BAL] galactomannan [GM], serum GM, serum (1,3)-β-D-glucan [BDG], and fungal culture) are widely used for diagnosing invasive pulmonary aspergillosis (IPA) in non-hematological patients with respiratory diseases, their clinical utility in this large population is actually unclear. We aimed to resolve this clinical uncertainty by evaluating the diagnostic accuracy and utility of existing tests and explore the efficacy of novel sputum-based Aspergillus assays. METHODS Existing tests were assessed in a prospective and consecutive cohort of patients with respiratory diseases in West China Hospital between 2016 and 2019 while novel sputum assays (especially sputum GM and Aspergillus-specific lateral-flow device [LFD]) in a case-controlled subcohort. IPA was defined according to the modified European Organization for Research and Treatment of Cancer/Mycoses Study Group criteria. Sensitivity and specificity were computed for each test and receiver operating characteristic (ROC) curve analysis was performed. RESULTS The entire cohort included 3530 admissions (proven/probable IPA = 66, no IPA = 3464) and the subcohort included 127 admissions (proven/probable IPA = 38, no IPA = 89). Sensitivity of BAL GM (≥1.0 optical density index [ODI]: 86% [24/28]) was substantially higher than that of serum GM (≥0.5 ODI: 38% [39/102]) ( χ2 = 19.83, P < 0.001), serum BDG (≥70 pg/mL: 33% [31/95]) ( χ2 = 24.65, P < 0.001), and fungal culture (33% [84/253]) ( χ2 = 29.38, P < 0.001). Specificity varied between BAL GM (≥1.0 ODI: 94% [377/402]), serum GM (≥0.5 ODI: 95% [2130/2248]), BDG (89% [1878/2106]), and culture (98% [4936/5055]). Sputum GM (≥2.0 ODI) had similar sensitivity (84% [32/38]) (Fisher's exact P = 1.000) to and slightly lower specificity (87% [77/89]) ( χ2 = 5.52, P = 0.019) than BAL GM (≥1.0 ODI). Area under the ROC curve values were comparable between sputum GM (0.883 [0.812-0.953]) and BAL GM (0.901 [0.824-0.977]) ( P = 0.734). Sputum LFD had similar specificity (91% [81/89]) ( χ2 = 0.89, P = 0.345) to and lower sensitivity (63% [24/38]) ( χ2 = 4.14, P = 0.042) than BAL GM (≥1.0 ODI), but significantly higher sensitivity than serum GM (≥0.5 ODI) ( χ2 = 6.95, P = 0.008), BDG ( χ2 = 10.43, P = 0.001), and fungal culture ( χ2 = 12.70, P < 0.001). CONCLUSIONS Serum GM, serum BDG, and fungal culture lack sufficient sensitivity for diagnosing IPA in respiratory patients. Sputum GM and LFD assays hold promise as rapid, sensitive, and non-invasive alternatives to the BAL GM test.
Collapse
Affiliation(s)
- Wei Xiao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Divison of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610093, China
| | - Longyi Du
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linli Cai
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Tiwei Miao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Bing Mao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Fuqiang Wen
- Divison of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610093, China
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Peter Gerard Gibson
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW 2305, Australia
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW 2305, Australia
| | - Deying Gong
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610093, China
| | - Yan Zeng
- Department of Pneumology, Pidu District of Traditional Chinese Medicine, The Third Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611730, China
| | - Mei Kang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinmiao Du
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Junyan Qu
- Center of Infectious Disease, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Wang
- Research Core Facility, West China Hospital of Sichuan University, Chengdu, Sichuan 610093, China
| | - Xuemei Liu
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruizhi Feng
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Juanjuan Fu
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Divison of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610093, China
| |
Collapse
|
10
|
Moloney NM, Larkin A, Xu L, Fitzpatrick DA, Crean HL, Walshe K, Haas H, Decristoforo C, Doyle S. Generation and characterisation of a semi-synthetic siderophore-immunogen conjugate and a derivative recombinant triacetylfusarinine C-specific monoclonal antibody with fungal diagnostic application. Anal Biochem 2021; 632:114384. [PMID: 34543643 DOI: 10.1016/j.ab.2021.114384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/16/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022]
Abstract
Invasive pulmonary aspergillosis (IPA) is a severe life-threatening condition. Diagnosis of fungal disease in general, and especially that caused by Aspergillus fumigatus is problematic. A. fumigatus secretes siderophores to acquire iron during infection, which are also essential for virulence. We describe the chemoacetylation of ferrated fusarinine C to diacetylated fusarinine C (DAFC), followed by protein conjugation, which facilitated triacetylfusarinine C (TAFC)-specific monoclonal antibody production with specific recognition of the ferrated form of TAFC. A single monoclonal antibody sequence was ultimately elucidated by a combinatorial strategy involving protein LC-MS/MS, cDNA sequencing and RNAseq. The resultant murine IgG2a monoclonal antibody was secreted in, and purified from, mammalian cell culture (5 mg) and demonstrated to be highly specific for TAFC detection by competitive ELISA (detection limit: 15 nM) and in a lateral flow test system (detection limit: 3 ng), using gold nanoparticle conjugated- DAFC-bovine serum albumin for competition. Overall, this work reveals for the first time a recombinant TAFC-specific monoclonal antibody with diagnostic potential for IPA diagnosis in traditional and emerging patient groups (e.g., COVID-19) and presents a useful strategy for murine Ig sequence determination, and expression in HEK293 cells, to overcome unexpected limitations associated with aberrant or deficient murine monoclonal antibody production.
Collapse
Affiliation(s)
- Nicola M Moloney
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - Annemarie Larkin
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Linan Xu
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - David A Fitzpatrick
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - Holly L Crean
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - Kieran Walshe
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - Hubertus Haas
- Institute of Molecular Biology, Medical University Innsbruck, A-6020, Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 5, A-6020, Innsbruck, Austria
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland.
| |
Collapse
|
11
|
Aguiar M, Orasch T, Misslinger M, Dietl AM, Gsaller F, Haas H. The Siderophore Transporters Sit1 and Sit2 Are Essential for Utilization of Ferrichrome-, Ferrioxamine- and Coprogen-Type Siderophores in Aspergillus fumigatus. J Fungi (Basel) 2021; 7:768. [PMID: 34575806 PMCID: PMC8470733 DOI: 10.3390/jof7090768] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
Siderophore-mediated acquisition of iron has been shown to be indispensable for the virulence of several fungal pathogens, the siderophore transporter Sit1 was found to mediate uptake of the novel antifungal drug VL-2397, and siderophores were shown to be useful as biomarkers as well as for imaging of fungal infections. However, siderophore uptake in filamentous fungi is poorly characterized. The opportunistic human pathogen Aspergillus fumigatus possesses five putative siderophore transporters. Here, we demonstrate that the siderophore transporters Sit1 and Sit2 have overlapping, as well as unique, substrate specificities. With respect to ferrichrome-type siderophores, the utilization of ferrirhodin and ferrirubin depended exclusively on Sit2, use of ferrichrome A depended mainly on Sit1, and utilization of ferrichrome, ferricrocin, and ferrichrysin was mediated by both transporters. Moreover, both Sit1 and Sit2 mediated use of the coprogen-type siderophores coprogen and coprogen B, while only Sit1 transported the bacterial ferrioxamine-type xenosiderophores ferrioxamines B, G, and E. Neither Sit1 nor Sit2 were important for the utilization of the endogenous siderophores fusarinine C and triacetylfusarinine C. Furthermore, A. fumigatus was found to lack utilization of the xenosiderophores schizokinen, basidiochrome, rhizoferrin, ornibactin, rhodotorulic acid, and enterobactin. Taken together, this study characterized siderophore use by A. fumigatus and substrate characteristics of Sit1 and Sit2.
Collapse
Affiliation(s)
| | | | | | | | | | - Hubertus Haas
- Institute of Molecular Biology/Biocenter, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (M.A.); (T.O.); (M.M.); (A.-M.D.); (F.G.)
| |
Collapse
|
12
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
13
|
Diagnosis of Breakthrough Fungal Infections in the Clinical Mycology Laboratory: An ECMM Consensus Statement. J Fungi (Basel) 2020; 6:jof6040216. [PMID: 33050598 PMCID: PMC7712958 DOI: 10.3390/jof6040216] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Breakthrough invasive fungal infections (bIFI) cause significant morbidity and mortality. Their diagnosis can be challenging due to reduced sensitivity to conventional culture techniques, serologic tests, and PCR-based assays in patients undergoing antifungal therapy, and their diagnosis can be delayed contributing to poor patient outcomes. In this review, we provide consensus recommendations on behalf of the European Confederation for Medical Mycology (ECMM) for the diagnosis of bIFI caused by invasive yeasts, molds, and endemic mycoses, to guide diagnostic efforts in patients receiving antifungals and support the design of future clinical trials in the field of clinical mycology. The cornerstone of lab-based diagnosis of breakthrough infections for yeast and endemic mycoses remain conventional culture, to accurately identify the causative pathogen and allow for antifungal susceptibility testing. The impact of non-culture-based methods are not well-studied for the definite diagnosis of breakthrough invasive yeast infections. Non-culture-based methods have an important role for the diagnosis of breakthrough invasive mold infections, in particular invasive aspergillosis, and a combination of testing involving conventional culture, antigen-based assays, and PCR-based assays should be considered. Multiple diagnostic modalities, including histopathology, culture, antibody, and/or antigen tests and occasionally PCR-based assays may be required to diagnose breakthrough endemic mycoses. A need exists for diagnostic tests that are effective, simple, cheap, and rapid to enable the diagnosis of bIFI in patients taking antifungals.
Collapse
|
14
|
Jenks JD, Hoenigl M. Point-of-care diagnostics for invasive aspergillosis: nearing the finish line. Expert Rev Mol Diagn 2020; 20:1009-1017. [PMID: 32902359 DOI: 10.1080/14737159.2020.1820864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The spectrum of disease caused by Aspergillus spp. is dependent on the immune system of the host, with invasive aspergillosis (IA) its most severe manifestation. Early and reliable diagnosis of Aspergillus disease is important to decrease associated morbidity and mortality from IA. AREAS COVERED The following review searched Pub Med for literature published since 2007 and will give an update on the current point-of-care diagnostic strategies for the diagnosis of IA, discuss needed areas of improvement for these tests, and future directions. EXPERT OPINION Several new diagnostic tests for IA - including point-of-care tests - are now available to complement conventional galactomannan (GM) testing. In particular, the Aspergillus-specific Lateral Flow Device (LFD) test and the sōna Aspergillus GM Lateral Flow Assay (LFA) are promising for the diagnosis of IA in patients with hematologic malignancy, although further evaluation in the non-hematology setting is needed. In addition, a true point-of-care test, particularly for easily obtained specimens like serum or urine that can be done at the bedside or in the Clinic in a matter of minutes is needed, such as the lateral flow dipstick test, which is under current evaluation. Lastly, improved diagnostic algorithms to diagnose IA in non-neutropenic patients is needed.
Collapse
Affiliation(s)
- Jeffrey D Jenks
- Division of General Internal Medicine, Department of Medicine, University of California San Diego , La Jolla, CA, USA.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego , La Jolla, CA, USA.,Clinical and Translational Fungal - Working Group, University of California San Diego , La Jolla, CA, USA
| | - Martin Hoenigl
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego , La Jolla, CA, USA.,Clinical and Translational Fungal - Working Group, University of California San Diego , La Jolla, CA, USA.,Division of Pulmonology and Section of Infectious Diseases, Medical University of Graz , Graz, Austria
| |
Collapse
|
15
|
Rapid detection of the aspergillosis biomarker triacetylfusarinine C using interference-enhanced Raman spectroscopy. Anal Bioanal Chem 2020; 412:6351-6360. [PMID: 32170382 PMCID: PMC7442771 DOI: 10.1007/s00216-020-02571-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 11/02/2022]
Abstract
Triacetylfusarinine C (TAFC) is a siderophore produced by certain fungal species and might serve as a highly useful biomarker for the fast diagnosis of invasive aspergillosis. Due to its renal elimination, the biomarker is found in urine samples of patients suffering from Aspergillus infections. Accordingly, non-invasive diagnosis from this easily obtainable body fluid is possible. Within our contribution, we demonstrate how Raman microspectroscopy enables a sensitive and specific detection of TAFC. We characterized the TAFC iron complex and its iron-free form using conventional and interference-enhanced Raman spectroscopy (IERS) and compared the spectra with the related compound ferrioxamine B, which is produced by bacterial species. Even though IERS only offers a moderate enhancement of the Raman signal, the employment of respective substrates allowed lowering the detection limit to reach the clinically relevant range. The achieved limit of detection using IERS was 0.5 ng of TAFC, which is already well within the clinically relevant range. By using an extraction protocol, we were able to detect 1.4 μg/mL TAFC via IERS from urine within less than 3 h including sample preparation and data analysis. We could further show that TAFC and ferrioxamine B can be clearly distinguished by means of their Raman spectra even in very low concentrations.
Collapse
|
16
|
Thornton CR. Detection of the 'Big Five' mold killers of humans: Aspergillus, Fusarium, Lomentospora, Scedosporium and Mucormycetes. ADVANCES IN APPLIED MICROBIOLOGY 2019; 110:1-61. [PMID: 32386603 DOI: 10.1016/bs.aambs.2019.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fungi are an important but frequently overlooked cause of morbidity and mortality in humans. Life-threatening fungal infections mainly occur in immunocompromised patients, and are typically caused by environmental opportunists that take advantage of a weakened immune system. The filamentous fungus Aspergillus fumigatus is the most important and well-documented mold pathogen of humans, causing a number of complex respiratory diseases, including invasive pulmonary aspergillosis, an often fatal disease in patients with acute leukemia or in immunosuppressed bone marrow or solid organ transplant recipients. However, non-Aspergillus molds are increasingly reported as agents of disseminated diseases, with Fusarium, Scedosporium, Lomentospora and mucormycete species now firmly established as pathogens of immunosuppressed and immunocompetent individuals. Despite well-documented risk factors for invasive fungal diseases, and increased awareness of the risk factors for life-threatening infections, the number of deaths attributable to molds is likely to be severely underestimated driven, to a large extent, by the lack of readily accessible, cheap, and accurate tests that allow detection and differentiation of infecting species. Early diagnosis is critical to patient survival but, unlike Aspergillus diseases, where a number of CE-marked or FDA-approved biomarker tests are now available for clinical diagnosis, similar tests for fusariosis, scedosporiosis and mucormycosis remain experimental, with detection reliant on insensitive and slow culture of pathogens from invasive bronchoalveolar lavage fluid, tissue biopsy, or from blood. This review examines the ecology, epidemiology, and contemporary methods of detection of these mold pathogens, and the obstacles to diagnostic test development and translation of novel biomarkers to the clinical setting.
Collapse
|
17
|
Luo X, Guo R, Xu X, Li X, Yao L, Wang X, Lu H. Mass spectrometry and associated technologies delineate the advantageously biomedical capacity of siderophores in different pathogenic contexts. MASS SPECTROMETRY REVIEWS 2019; 38:239-252. [PMID: 30035815 DOI: 10.1002/mas.21577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Siderophores are chemically diverse small molecules produced by microorganisms for chelation of irons to maintain their survival and govern some important biological functions, especially those cause that infections in hosts. Still, siderophores can offer new insight into a better understanding of the diagnosis and treatments of infectious diseases from the siderophore biosynthesis and regulation perspective. Thus, this review aims to summarize the biomedical value and applicability of siderophores in pathogenic contexts by briefly reviewing mass spectrometry (MS)-based chemical biology and translational applications that involve diagnosis, pathogenesis, and therapeutic discovery for a variety of infectious conditions caused by different pathogens. We highlight the advantages and disadvantages of siderophore discovery and applications in pathogenic contexts. Finally, we propose a panel of new and promising strategy as precision-modification metabolomics method, to rapidly advance the discovery of and translational innovations pertaining to these value compounds in broad biomedical niches. © 2018 Wiley Periodicals, Inc. Mass Spec Rev XX:XX-XX, 2018.
Collapse
Affiliation(s)
- Xialin Luo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Pharmacognosy, Center of Excellence for Chinmedomics, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xian Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Yao
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xijun Wang
- Department of Pharmacognosy, Center of Excellence for Chinmedomics, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Haitao Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
18
|
|
19
|
Jenks JD, Mehta SR, Hoenigl M. Broad spectrum triazoles for invasive mould infections in adults: Which drug and when? Med Mycol 2019; 57:S168-S178. [PMID: 30816967 DOI: 10.1093/mmy/myy052] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/24/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
Invasive mould infections are an increasing cause of morbidity and mortality globally, mainly due to increasing numbers of immunocompromised individuals at risk for fungal infections. The introduction of broad spectrum triazoles, which are much better tolerated compared to conventional amphotericin B formulations, has increased survival, particularly in invasive mould infection. However, early initiation of appropriate antifungal treatment remains a major predictor of outcome in invasive mould infection, but despite significant advances in diagnosis of these diseases, early diagnosis remains a challenge. As a result, prophylaxis with mould-active triazoles is widely used for those patients at highest risk for invasive mould infection, including patients with prolonged neutropenia after induction chemotherapy for acute myeloid leukemia and patients with graft-versus-host-disease. Posaconazole is the recommended drug of choice for antimould prophylaxis in these high-risk patients. Voriconazole has its primary role in treatment of invasive aspergillosis but not in prophylaxis. Recently, isavuconazole has been introduced as an excellent alternative to voriconazole for primary treatment of invasive aspergillosis in patients with hematological malignancies. Compared to voriconazole, isavuconazole and posaconazole have broader activity against moulds and are therefore also an option for treatment of mucormycosis in the presence of intolerance or contraindications against liposomal amphotericin B.
Collapse
Affiliation(s)
- Jeffrey D Jenks
- Department of Medicine, University of California-San Diego, San Diego, California, USA
| | - Sanjay R Mehta
- Division of Infectious Diseases, Department of Medicine, University of California-San Diego, San Diego, California, USA
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Medicine, University of California-San Diego, San Diego, California, USA.,Section of Infectious Diseases and Tropical Medicine AND Division of Pulmonology, Medical University of Graz, Graz, Austria
| |
Collapse
|
20
|
Jenks JD, Mehta SR, Taplitz R, Law N, Reed SL, Hoenigl M. Bronchoalveolar lavage Aspergillus Galactomannan lateral flow assay versus Aspergillus-specific lateral flow device test for diagnosis of invasive pulmonary Aspergillosis in patients with hematological malignancies. J Infect 2019; 78:249-259. [DOI: 10.1016/j.jinf.2018.10.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 11/29/2022]
|
21
|
Hoenigl M, Orasch T, Faserl K, Prattes J, Loeffler J, Springer J, Gsaller F, Reischies F, Duettmann W, Raggam RB, Lindner H, Haas H. Triacetylfusarinine C: A urine biomarker for diagnosis of invasive aspergillosis. J Infect 2019; 78:150-157. [PMID: 30267801 PMCID: PMC6361682 DOI: 10.1016/j.jinf.2018.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/20/2018] [Accepted: 09/11/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Early diagnosis of invasive aspergillosis (IA) remains challenging, with available diagnostics being limited by inadequate sensitivities and specificities. Triacetylfusarinine C, a fungal siderophore that has been shown to accumulate in urine in animal models, is a potential new biomarker for diagnosis of IA. METHODS We developed a method allowing absolute and matrix-independent mass spectrometric quantification of TAFC. Urine TAFC, normalized to creatinine, was determined in 44 samples from 24 patients with underlying hematologic malignancies and probable, possible or no IA according to current EORTC/MSG criteria and compared to other established biomarkers measured in urine and same-day blood samples. RESULTS TAFC/creatinine sensitivity, specificity, positive and negative likelihood ratio for probable versus no IA (cut-off ≥ 3) were 0.86, 0.88, 6.86, 0.16 per patient. CONCLUSION For the first time, we provide proof for the occurrence of TAFC in human urine. TAFC/creatinine index determination in urine showed promising results for diagnosis of IA offering the advantages of non-invasive sampling. Sensitivity and specificity were similar as reported for GM determination in serum and bronchoalveolar lavage, the gold standard mycological criterion for IA diagnosis.
Collapse
Affiliation(s)
- Martin Hoenigl
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria; CBmed Center for Biomarker Research in Medicine, Graz, Austria; Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Thomas Orasch
- Division of Molecular Biology, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Klaus Faserl
- Division of Clinical Biochemistry, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Juergen Prattes
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria; CBmed Center for Biomarker Research in Medicine, Graz, Austria
| | - Juergen Loeffler
- Department for Internal Medicine II, University of Wuerzburg Medical Centre, Wuerzburg, Germany
| | - Jan Springer
- Department for Internal Medicine II, University of Wuerzburg Medical Centre, Wuerzburg, Germany
| | - Fabio Gsaller
- Division of Molecular Biology, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Frederike Reischies
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria
| | - Wiebke Duettmann
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria
| | - Reinhard B Raggam
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria; Division of Angiology, Medical University of Graz, Graz, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Hubertus Haas
- Division of Molecular Biology, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
22
|
Herrera S, Husain S. Current State of the Diagnosis of Invasive Pulmonary Aspergillosis in Lung Transplantation. Front Microbiol 2019; 9:3273. [PMID: 30687264 PMCID: PMC6333628 DOI: 10.3389/fmicb.2018.03273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/17/2018] [Indexed: 01/06/2023] Open
Abstract
As the number of lung transplants performed worldwide each year continues to grow, the success of this procedure is threatened by the incidence of non-CMV infections such as invasive aspergillosis. Despite tremendous efforts and the availability of numerous diagnostic tests (especially in hematological malignancies) the diagnosis of invasive aspergillosis continues to be a challenge. Lung transplantation remains a unique clinical scenario, where additional host defenses are immunocompromized, making many of the available tests unsuitable. In this review we will navigate through the myriad of diagnostic tests currently available and how they apply to this unique patient population, as well as have a look into what the future holds.
Collapse
Affiliation(s)
- Sabina Herrera
- Transplant Infectious Diseases, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Shahid Husain
- Transplant Infectious Diseases, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Jenks JD, Salzer HJF, Hoenigl M. Improving the rates of Aspergillus detection: an update on current diagnostic strategies. Expert Rev Anti Infect Ther 2018; 17:39-50. [PMID: 30556438 DOI: 10.1080/14787210.2018.1558054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The spectrum of disease caused by Aspergillus spp. is dependent on the immune system of the host, and ranges from invasive aspergillosis (IA) to chronic pulmonary aspergillosis (CPA). Early and reliable diagnosis of Aspergillus disease is important to decrease associated morbidity and mortality. Areas covered: The following review will give an update on current diagnostic strategies for the diagnosis of IA and CPA. Expert commentary: Several new diagnostics for IA (including point-of-care tests) are now available to complement galactomannan testing. In particular, immunoPET/MRI imaging may be a promising approach for diagnosing IA in the near future. Notably, nearly all new biomarkers and tests for IA have been evaluated in the hematology setting only. Validation of biomarkers and tests is therefore needed for the increasing proportion of patients who develop IA outside the hematology setting. As an important first step, reliable definitions of IA are needed for non-hematology settings as clinical presentation and radiologic findings differ in these settings. CPA diagnosis is based on a combination of radiological findings in chest CT, mycological evidence (e.g. by the Aspergillus-specific IgG assay), exclusion of alternative diagnosis and chronicity. ([18F]FDG) PET/CT and immuno PET/MRI imaging are promising new imaging approaches.
Collapse
Affiliation(s)
- Jeffrey D Jenks
- a Department of Medicine , University of California-San Diego , San Diego , CA , USA
| | - Helmut J F Salzer
- b Department of Pulmonary Medicine , Kepler University Hospital , Linz , Austria.,c Institute of Nuclear Medicine and Endocrinology , Kepler University Hospital , Linz , Austria
| | - Martin Hoenigl
- d Division of Infectious Diseases, Department of Medicine , University of California-San Diego , San Diego , CA , USA.,e Section of Infectious Diseases and Tropical Medicine and Division of Pulmonology , Medical University of Graz , Graz , Austria
| |
Collapse
|
24
|
Abstract
Fungi of the genus Aspergillus are ubiquitously present. Even though humans inhale Aspergillus spores daily under natural conditions, Aspergillus-associated pulmonary diseases only occur under special circumstances. Whether an Aspergillus-associated disease develops and which type of Aspergillus-associated disease develops depends on the constitution of the host. The spectrum of Aspergillus-associated pulmonary diseases ranges from allergic diseases, such as hypersensitivity pneumonitis to allergic infectious diseases, such as allergic bronchopulmonary aspergillosis (ABPA) and bronchocentric granulomatosis (BG) to infectious diseases, such as invasive (IA) or semi-invasive aspergillosis (SIA) and chronic pulmonary aspergillosis (CPA). Identification of Aspergillus spp. from sputum or bronchopulmonary secretions is not sufficient for a definitive diagnosis of Aspergillus-associated infections. The gold standard is the identification of Aspergillus spp. from lung tissue by culture or by histopathological methods; however, in clinical practice the decision to initiate antifungal therapy is more often based on immunological methods, such as the detection of Aspergillus-specific IgG antibodies from peripheral blood or galactomannan antigens from bronchoalveolar lavages. Acute IA or SIA infections have a high mortality and require immediate antifungal therapy. With rare exceptions CPA cannot be cured by medicinal therapy alone; however, active CPA can be brought into remission with antifungal therapy. Eradication of Aspergillus in CPA can as a rule only be successful using a combined antimycotic and surgical intervention.
Collapse
Affiliation(s)
- H J F Salzer
- Klinische Infektiologie, Medizinische Klinik, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Parkallee 35, 23845, Borstel, Deutschland.
- Hamburg - Borstel - Lübeck - Riems DZIF-Standort, Deutsches Zentrum für Infektionsforschung (DZIF), Borstel, Deutschland.
| | - C Lange
- Klinische Infektiologie, Medizinische Klinik, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Parkallee 35, 23845, Borstel, Deutschland
- Hamburg - Borstel - Lübeck - Riems DZIF-Standort, Deutsches Zentrum für Infektionsforschung (DZIF), Borstel, Deutschland
- International Health and Infectious Diseases, Universität zu Lübeck, Lübeck, Deutschland
- Department of Medicine, Karolinska Institute, Stockholm, Schweden
| | - M Hönigl
- Klinische Abteilung für Pulmonologie, Medizinische Universität Graz, Graz, Österreich
- Sektion für Infektionserkrankungen und Tropenmedizin, Medizinische Universität Graz, Graz, Österreich
- Division of Infectious Diseases, Department of Medicine, University of California - San Diego, San Diego, USA
- CBmed - Center for Biomarker Research in Medicine, Graz, Österreich
| |
Collapse
|
25
|
Jenks JD, Hoenigl M. Treatment of Aspergillosis. J Fungi (Basel) 2018; 4:jof4030098. [PMID: 30126229 PMCID: PMC6162797 DOI: 10.3390/jof4030098] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023] Open
Abstract
Infections caused by Aspergillus spp. remain associated with high morbidity and mortality. While mold-active antifungal prophylaxis has led to a decrease of occurrence of invasive aspergillosis (IA) in those patients most at risk for infection, breakthrough IA does occur and remains difficult to diagnose due to low sensitivities of mycological tests for IA. IA is also increasingly observed in other non-neutropenic patient groups, where clinical presentation is atypical and diagnosis remains challenging. Early and targeted systemic antifungal treatment remains the most important predictive factor for a successful outcome in immunocompromised individuals. Recent guidelines recommend voriconazole and/or isavuconazole for the primary treatment of IA, with liposomal amphotericin B being the first alternative, and posaconazole, as well as echinocandins, primarily recommended for salvage treatment. Few studies have evaluated treatment options for chronic pulmonary aspergillosis (CPA), where long-term oral itraconazole or voriconazole remain the treatment of choice.
Collapse
Affiliation(s)
- Jeffrey D Jenks
- Department of Medicine, University of California⁻San Diego, San Diego, CA 92103, USA.
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Medicine, University of California⁻San Diego, San Diego, CA 92103, USA.
- Section of Infectious Diseases and Tropical Medicine and Division of Pulmonology, Medical University of Graz, Graz 8036, Austria.
| |
Collapse
|
26
|
Heldt S, Prattes J, Eigl S, Spiess B, Flick H, Rabensteiner J, Johnson G, Prüller F, Wölfler A, Niedrist T, Boch T, Neumeister P, Strohmaier H, Krause R, Buchheidt D, Hoenigl M. Diagnosis of invasive aspergillosis in hematological malignancy patients: Performance of cytokines, Asp LFD, and Aspergillus PCR in same day blood and bronchoalveolar lavage samples. J Infect 2018; 77:235-241. [PMID: 29972764 DOI: 10.1016/j.jinf.2018.05.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Aspergillus spp. induce elevated levels of several cytokines. It remains unknown whether these cytokines hold value for clinical routine and enhance diagnostic performances of established and novel biomarkers/tests for invasive aspergillosis (IA). METHODS This cohort study included 106 prospectively enrolled (2014-2017) adult cases with underlying hematological malignancies and suspected pulmonary infection undergoing bronchoscopy. Serum samples were collected within 24 hours of bronchoalveolar lavage fluid (BALF) sampling. Both, serum and BALF samples were used to evaluate diagnostic performances of the Aspergillus-specific lateral-flow device test (LFD), Aspergillus PCR, β-D-glucan, and cytokines that have shown significant associations with IA before. RESULTS Among 106 cases, 11 had probable IA, and 32 possible IA; 80% received mold-active antifungals at the time of sampling. Diagnostic tests and biomarkers showed better performance in BALF versus blood, with the exception of serum interleukin (IL)-8 which was the most reliable blood biomarker. Combinations of serum IL-8 with either BALF LFD (sensitivity 100%, specificity 94%) or BALF PCR (sensitivity 91%, specificity 97%) showed promise for differentiating probable IA from no IA. CONCLUSIONS High serum IL-8 levels were highly specific, and when combined with either the BALF Aspergillus-specific LFD, or BALF Aspergillus PCR also highly sensitive for diagnosis of IA.
Collapse
Affiliation(s)
- Sven Heldt
- Division of Pulmonology, Medical University of Graz, Graz, Austria; Section of Infectious Diseases and Tropical Medicine, Department of Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Juergen Prattes
- Section of Infectious Diseases and Tropical Medicine, Department of Medicine, Medical University of Graz, 8036 Graz, Austria; CBmed - Center for Biomarker Research in Medicine, Graz, Austria
| | - Susanne Eigl
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Birgit Spiess
- Department of Hematology and Oncology, Mannheim University Hospital, Heidelberg University, Mannheim, Germany
| | - Holger Flick
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Jasmin Rabensteiner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Gemma Johnson
- OLM Diagnostics, Newcastle-upon-Tyne, United Kingdom
| | - Florian Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Albert Wölfler
- CBmed - Center for Biomarker Research in Medicine, Graz, Austria; Division of Hematology, Medical University of Graz, Graz, Austria
| | - Tobias Niedrist
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Tobias Boch
- Department of Hematology and Oncology, Mannheim University Hospital, Heidelberg University, Mannheim, Germany
| | - Peter Neumeister
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Heimo Strohmaier
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Robert Krause
- Section of Infectious Diseases and Tropical Medicine, Department of Medicine, Medical University of Graz, 8036 Graz, Austria; CBmed - Center for Biomarker Research in Medicine, Graz, Austria
| | - Dieter Buchheidt
- Department of Hematology and Oncology, Mannheim University Hospital, Heidelberg University, Mannheim, Germany
| | - Martin Hoenigl
- Division of Pulmonology, Medical University of Graz, Graz, Austria; Section of Infectious Diseases and Tropical Medicine, Department of Medicine, Medical University of Graz, 8036 Graz, Austria; CBmed - Center for Biomarker Research in Medicine, Graz, Austria; Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, CA 92103, USA.
| |
Collapse
|
27
|
Jenks JD, Salzer HJ, Prattes J, Krause R, Buchheidt D, Hoenigl M. Spotlight on isavuconazole in the treatment of invasive aspergillosis and mucormycosis: design, development, and place in therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1033-1044. [PMID: 29750016 PMCID: PMC5933337 DOI: 10.2147/dddt.s145545] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent decades, important advances have been made in the diagnosis and treatment of invasive aspergillosis (IA) and mucormycosis. One of these advances has been the introduction of isavuconazole, a second-generation broad spectrum triazole with a favorable pharmacokinetic and safety profile and few drug–drug interactions. Phase III trials in patients with IA and mucormycosis demonstrated that isavuconazole has similar efficacy to voriconazole for the treatment of IA (SECURE trial) and liposomal amphotericin B for the treatment of mucormycosis (VITAL trial with subsequent case–control analysis) and a favorable safety profile with significantly fewer ocular, hepatobiliary, and skin and soft tissue adverse events compared to voriconazole. As a result, recent IA guidelines recommend isavuconazole (together with voriconazole) as gold standard treatment for IA in patients with underlying hematological malignancies. In contrast to liposomal amphotericin B, isavuconazole can be safely administered in patients with reduced renal function and is frequently used for the treatment of mucormycosis in patients with reduced renal function. Updated guidelines on mucormycosis are needed to reflect the current evidence and give guidance on the use of isavuconazole for mucormycosis. Studies are needed to evaluate the role of isavuconazole for 1) anti-mold prophylaxis in high-risk patients, 2) salvage treatment for IA and mucormycosis, and 3) treatment for other mold infections such as Scedosporium apiospermum.
Collapse
Affiliation(s)
- Jeffrey D Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Helmut Jf Salzer
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Clinical Tuberculosis Center, Leibniz Lung Center, Borstel, Germany
| | - Juergen Prattes
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria.,CBmed - Center for Biomarker Research in Medicine, Graz, Austria
| | - Robert Krause
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria.,CBmed - Center for Biomarker Research in Medicine, Graz, Austria
| | - Dieter Buchheidt
- Department of Hematology and Oncology, Mannheim University Hospital, Heidelberg University, Mannheim, Germany
| | - Martin Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, USA.,German Center for Infection Research, Clinical Tuberculosis Center, Leibniz Lung Center, Borstel, Germany.,Division of Pulmonology, Medical University of Graz, Graz, Austria.,Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
28
|
|
29
|
Prattes J, Hoenigl M, Zinke SEM, Heldt S, Eigl S, Johnson GL, Bustin S, Stelzl E, Kessler HH. Evaluation of the new AspID polymerase chain reaction assay for detection of Aspergillus species: A pilot study. Mycoses 2018; 61:355-359. [PMID: 29460450 DOI: 10.1111/myc.12757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 01/30/2023]
Abstract
The newly developed AspID PCR assay for detection of Aspergillus spp. was evaluated with an interlaboratory quality control programme panel and human bronchoalveolar lavage fluid (BALF) samples. With the quality control programme, 8 out of 9 panel members were correctly identified. With the clinical study, 36 BALF samples that had been obtained from 18 patients with invasive pulmonary aspergillosis (IPA) and 18 without IPA were investigated. Sensitivity, specificity, positive and negative likelihood ratio for the AspID assay were 94.1% (95% CI 73.3-99.9), 76.5% (95% CI 50.1-93.2), 4 (95% CI 1.7-9.5) and 0.1 (95% CI 0.01-0.5) respectively.
Collapse
Affiliation(s)
- Juergen Prattes
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria.,CBmed - Center for Biomarker Research in Medicine, Graz, Austria
| | - Martin Hoenigl
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria.,CBmed - Center for Biomarker Research in Medicine, Graz, Austria.,Division of Pulmonology, Medical University of Graz, Graz, Austria.,Division of Infectious Diseases, University of California San Diego (UCSD), San Diego, CA, USA
| | - Stefanie E-M Zinke
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria.,Molecular Diagnostics Laboratory & Research Unit Molecular Diagnostics, IHMEM, Medical University of Graz, Graz, Austria
| | - Sven Heldt
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria.,Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Susanne Eigl
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | | | - Stephen Bustin
- Molecular Biology Laboratory, Michael Salmon Building, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, UK
| | - Evelyn Stelzl
- Molecular Diagnostics Laboratory & Research Unit Molecular Diagnostics, IHMEM, Medical University of Graz, Graz, Austria
| | - Harald H Kessler
- Molecular Diagnostics Laboratory & Research Unit Molecular Diagnostics, IHMEM, Medical University of Graz, Graz, Austria
| |
Collapse
|
30
|
Clinical characteristics and treatment outcomes of pulmonary invasive fungal infection among adult patients with hematological malignancy in a medical centre in Taiwan, 2008-2013. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 53:106-114. [PMID: 29449166 DOI: 10.1016/j.jmii.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND/PURPOSE This study was aimed to investigate clinical characteristics and treatment outcomes of pulmonary invasive fungal infection (IFI) among patients with hematological malignancy. METHODS All patients with hematological malignancy who were treated at a medical centre from 2008 to 2013 were evaluated. Pulmonary IFI was classified according to the European Organization for Research and Treatment of Cancer 2008 consensus. RESULTS During the study period, 236 (11.3%) of 2083 patients with hematological malignancy were diagnosed as pulmonary IFI, including 41 (17.4%) proven, 75 (31.8%) probable, and 120 (50.8%) possible cases. Among the 116 patients of proven and probable cases of pulmonary IFI, aspergillosis alone (n = 90, 77.6%) was predominant, followed by cryptococcosis alone (n = 9, 7.8%), and mucormycosis (n = 4, 3.4%). The overall incidence of patients with pulmonary IFI was 5.9 per 100 patient-years. The highest incidence (per 100 patient-year) was found in patients with acute myeloid leukaemia (13.7) followed by acute lymphoblastic leukaemia (11.3), and myelodysplastic syndrome/severe aplastic anaemia (6.7). Fourteen (5.9%) of the 236 patients with pulmonary IFI died within 12 weeks after diagnosis of pulmonary IFI. Univariate analysis revealed that elderly age (>65 years) (P = 0.034), lack of response to anti-fungal treatment (P < 0.001), and admission to the intensive care unit (ICU) (P < 0.001) were predictors of poor prognosis. However, only admission to the ICU was an independent predictor of poor prognosis for 12-week mortality (P = 0.022) based on multivariate analysis. CONCLUSION Patients with acute leukaemia and myelodysplastic syndrome/severe aplastic anaemia were at high risk of pulmonary IFI.
Collapse
|
31
|
Hoenigl M, Prattes J, Neumeister P, Wölfler A, Krause R. Real-world challenges and unmet needs in the diagnosis and treatment of suspected invasive pulmonary aspergillosis in patients with haematological diseases: An illustrative case study. Mycoses 2017; 61:201-205. [PMID: 29112326 DOI: 10.1111/myc.12727] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 12/25/2022]
Abstract
Recent years have seen important advances in the diagnosis of invasive pulmonary aspergillosis (IPA), complemented by the introduction of new therapies. Despite this, IPA remains a major cause of infection-related mortality in patients with haematological diseases. There are two main reasons for this. First, diagnosis of IPA remains a challenge, since risk factors and the clinical, radiological and mycological presentations vary not only by fungal disease stage, but also by patient group (eg neutropenic vs non-neutropenic patients). Diagnosis is particularly challenging in patients receiving mould-active prophylactic or empirical treatment, which reduces the sensitivity of all diagnostic tests for IPA. Second, treatment of IPA is complex due to unpredictable pharmacokinetic profiles of antifungal agents, small therapeutic window in terms of exposure and adverse events, and multiple drug-drug interactions through the CYP450 system. Here we report a case of a 23-year-old male with severe aplastic anaemia and subpleural nodules. Diagnostic tests for IPA obtained during ongoing mould-active empirical treatment were negative. Intravenous voriconazole was stopped after visual disturbances and hallucinations. The patient then had an anaphylactic reaction to liposomal amphotericin B and was switched to intravenous posaconazole, which had to be discontinued due to a significant increase in transaminase levels. He was treated with oral isavuconazole with reduced dosage, triggered by increasing transaminases under the standard dosage. Even under reduced dosage, blood concentrations of isavuconazole were high and treatment was successful. The case illustrates real-world challenges and unmet needs in the diagnosis and treatment of IPA in patients with haematological diseases.
Collapse
Affiliation(s)
- Martin Hoenigl
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University Graz, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,CBmed - Center for Biomarker Research in Medicine, Graz, Austria.,Division of Infectious Diseases, Department of Medicine, University of California-San Diego, San Diego, CA, USA
| | - Juergen Prattes
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University Graz, Graz, Austria.,CBmed - Center for Biomarker Research in Medicine, Graz, Austria
| | - Peter Neumeister
- Division of Haematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Albert Wölfler
- Division of Haematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Robert Krause
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University Graz, Graz, Austria.,CBmed - Center for Biomarker Research in Medicine, Graz, Austria
| |
Collapse
|
32
|
Hoenigl M, Eigl S, Heldt S, Duettmann W, Thornton C, Prattes J. Clinical evaluation of the newly formatted lateral-flow device for invasive pulmonary aspergillosis. Mycoses 2017; 61:40-43. [PMID: 28922489 DOI: 10.1111/myc.12704] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/03/2017] [Accepted: 09/03/2017] [Indexed: 01/07/2023]
Abstract
The study evaluated the newly formatted Aspergillus-specific lateral-flow-device (LFD), and compared its performance to the original prototype "old" LFD test using BALF samples from 28 patients (14 patients with probable/proven invasive pulmonary aspergillosis [IPA] and 14 patients with no evidence for IPA). A total of 10/14 (71%) of BALF samples from patients with probable/proven IPA resulted positive with the new LFD, including 8/9 with true-positive and 2/5 with false-negative results with the old LFD. All 14 samples from patients without IPA resulted negative with the new LFD; specificity of the new LFD was significantly improved compared to the old LFD.
Collapse
Affiliation(s)
- Martin Hoenigl
- Division of Pulmonology, Medical University of Graz, Graz, Austria.,Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria.,Division of Infectious Diseases, Department of Medicine, University of California-San Diego, San Diego, USA.,CBmed - Center for Biomarker Research in Medicine, Graz, Austria
| | - Susanne Eigl
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Sven Heldt
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Wiebke Duettmann
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria
| | | | - Juergen Prattes
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria.,CBmed - Center for Biomarker Research in Medicine, Graz, Austria
| |
Collapse
|
33
|
Heldt S, Eigl S, Prattes J, Flick H, Rabensteiner J, Prüller F, Niedrist T, Neumeister P, Wölfler A, Strohmaier H, Krause R, Hoenigl M. Levels of interleukin (IL)-6 and IL-8 are elevated in serum and bronchoalveolar lavage fluid of haematological patients with invasive pulmonary aspergillosis. Mycoses 2017; 60:818-825. [PMID: 28877383 DOI: 10.1111/myc.12679] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022]
Abstract
Aspergillus spp. have been shown to induce T-helper cell (Th) 1 and Th17 subsets resulting in elevated levels of several cytokines. The objective of this study was to analyse a bundle of cytokines in serum and bronchoalveolar lavage fluid (BALF) in patients with and without invasive pulmonary aspergillosis (IPA). This nested case-control analysis included 10 patients with probable/proven IPA and 20 matched controls without evidence of IPA, out of a pool of prospectively enrolled (2014-2017) adult cases with underlying haematological malignancies and suspected pulmonary infection. Serum samples were collected within 24 hours of BALF sampling. All samples were stored at -70°C for retrospective determination of cytokines. IL-6 and IL-8 were significantly associated with IPA in both serum (P = .011 and P = .028) and BALF (P = .006 and P = .012, respectively), and a trend was observed for serum IL-10 (P = .059). In multivariate conditional logistic regression analysis, IL-10 remained a significant predictor of IPA in serum and IL-8 among BALF cytokines. In conclusion, levels of IL-6 and IL-8 were significantly associated with probable/proven IPA, and a similar trend was observed for serum IL-10. Future cohort studies should determine the diagnostic potential of these cytokines for IPA, and evaluate combinations with other IPA biomarkers/diagnostic tests.
Collapse
Affiliation(s)
- Sven Heldt
- Division of Pulmonology, Medical University of Graz, Graz, Austria.,Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria
| | - Susanne Eigl
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Juergen Prattes
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria.,CBmed - Center for Biomarker Research in Medicine, Graz, Austria
| | - Holger Flick
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Jasmin Rabensteiner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Florian Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Tobias Niedrist
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Peter Neumeister
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Albert Wölfler
- CBmed - Center for Biomarker Research in Medicine, Graz, Austria.,Division of Hematology, Medical University of Graz, Graz, Austria
| | - Heimo Strohmaier
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Robert Krause
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria.,CBmed - Center for Biomarker Research in Medicine, Graz, Austria
| | - Martin Hoenigl
- Division of Pulmonology, Medical University of Graz, Graz, Austria.,Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria.,CBmed - Center for Biomarker Research in Medicine, Graz, Austria.,Division of Infectious Diseases, Department of Medicine, University of California-San Diego, San Diego, USA
| |
Collapse
|