1
|
Yildiz M. Computational Analysis of Interactions Between Drugs and Human Serum Albumin. J Mol Recognit 2024; 37:e3105. [PMID: 39305213 DOI: 10.1002/jmr.3105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/24/2024] [Accepted: 09/03/2024] [Indexed: 10/16/2024]
Abstract
Drug molecules exist as complexed with serum proteins such as human serum albumin (HSA) and/or unbound free form in the blood circulation. Drugs can be effective only when they are free. Thus, it is important to understand aspects that are important for interaction between drugs and interacting proteins. In this study, interactions among 2990 FDA approved drugs and HSA were computational analyzed to unravel principles that are critical for drug-HSA interactions. Docking results showed that drugs have higher affinity toward cavity-1 (C1) than cavity-2 (C2). A total of 1131 drug molecules have docking score greater than 60 while 768 molecules have docking score greater than 60 when they are docked in C2. In addition, three solvent channels have potential to direct solvent to C1 cavity while C2 does not have any effective channel. The post MD analyses demonstrated that drugs are making polar interactions with basic amino acids in the binding cavities. Verbscoside and ceftazidime both have stable low RMSD values throughout MD simulation with 2 Å on average in C1 cavity. The ligand RMSD shows less stability for verbscoside, which is around 4 Å when it is in complex with HSA in C1. The individual contribution of the residues K192, K196, R215, and R254 to ceftazidime are -1.92 ± 0.18, -3.09 ± 0.09, -2.17 ± 0.17, and - 2.32 ± 0.098, respectively. These residues contribute the binding energy of the verbscoside by -6.06 ± 0.08, -2.10 ± 0.06, and - 1.57 ± 0.03 kcal/mol individually in C1 cavity. C2 is making polar interactions with drug via R469, K472, and K488 residues and their contribution to the two drugs are -3.13 ± 0.21 kcal/mol for R469, -1.94 ± 0.18 kcal/mol for K472, and -1.96 ± 0.11 kcal/mol for K488 to total binding energy of ceftazidime. The binding energy of verbscoside is 57.17 ± 7.00 kcal/mol and Arg-407 has the highest contribution this bind energy individually with -4.29 ± 0.12 kcal/mol. Drugs with hydrogen bond donor/acceptor chemical adducts such as verbscoside involve higher hydrogen bond formation in C1 pocket. Ceftazidime makes interaction with HSA toward hydrophobic residues, L384, L404, L487, and L488 in the C2 cavity.
Collapse
Affiliation(s)
- Muslum Yildiz
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
2
|
Blum MM, Schmeißer W, Dentzel M, Thiermann H, John H. The blistering warfare agent O-mustard (agent T) generates protein-adducts with human serum albumin useful for biomedical verification of exposure and forms intramolecular cross-links. Anal Bioanal Chem 2024; 416:5791-5804. [PMID: 39215775 PMCID: PMC11493803 DOI: 10.1007/s00216-024-05501-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The highly blistering sulfur mustard analogue agent T (bis(2-chloroethylthioethyl) ether), also known as O-mustard or oxy-mustard, is a common impurity in military grade sulfur mustard (SM) and a component of mixtures such as "HT" that are still found in old munitions. Together with sesquimustard (Q), it is the most important SM analogue and tightly regulated as a Schedule 1 chemical under the Chemical Weapons Convention. We report the adducts of T with nucleophilic Cys34 and other residues in human serum albumin (HSA) formed in vitro. A micro liquid chromatography electrospray ionization high-resolution tandem-mass spectrometry method (µLC-ESI MS/HR MS) was developed for the detection and identification of biomarker peptides alkylated by a T-derived hydroxyethylthioethyloxyethylthioethyl (HETEOETE)-moiety (as indicated by an asterisk below). Following proteolysis of T-exposed human plasma with pronase, the dipeptide Cys34*Pro and the single amino acid residue His* were produced. The use of proteinase K yielded Cys34*ProPhe and the use of pepsin generated ValThrGlu48*Phe, AlaGlu230*ValSerLysLeu, and LeuGlyMet329*Phe. Corresponding peptide-adducts of SM and Q were detected in a common workflow that in principle allowed the estimation of the mustard or mustard composition encountered during exposure. Novel adducts of Q at the Glu230 and Met239 residues were detected and are reported accordingly. Based on molecular dynamics simulations, we identified regular interactions of the Cys34(-HETEOETE)-moiety with several glutamic acid residues in HSA including Glu86, which is not an obvious interaction partner by visual inspection of the HSA crystal structure. The existence of this and other intramolecular cross-links was experimentally proven for the first time.
Collapse
Affiliation(s)
- Marc-Michael Blum
- Blum - Scientific Services, Björnsonweg 70d, 22587, Hamburg, Germany
| | - Wolfgang Schmeißer
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Marina Dentzel
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.
| |
Collapse
|
3
|
Rodríguez-Espinosa D, Cuadrado-Payán E, Rico N, Torra M, Fernández RM, Gómez M, Morantes L, Casals G, Rodriguez-Garcia M, Maduell F, Broseta JJ. Comparative Effects of Acetate- and Citrate-Based Dialysates on Dialysis Dose and Protein-Bound Uremic Toxins in Hemodiafiltration Patients: Exploring the Impact of Calcium and Magnesium Concentrations. Toxins (Basel) 2024; 16:426. [PMID: 39453202 PMCID: PMC11511190 DOI: 10.3390/toxins16100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Modern hemodialysis employs weak acids as buffers to prevent bicarbonate precipitation with calcium or magnesium. Acetate, the most used acid, is linked to chronic inflammation and poor dialysis tolerance. Citrate has emerged as a potential alternative, though its effect on dialysis efficiency is not clear. This study aims to compare the efficacy of acetate- and citrate-based dialysates, focusing on protein-bound uremic toxins and dialysis doses. This single-center prospective crossover study includes prevalent patients participating in a thrice-weekly online hemodiafiltration program. Four dialysates were tested: two acetate-based (1.25 and 1.5 mmol/L calcium) and two citrate-based (1.5 mmol/L calcium with 0.5 and 0.75 mmol/L magnesium). Pre- and post-dialysis blood samples of eighteen patients were analyzed for urea, creatinine, p-cresyl sulfate, indoxyl sulfate, and albumin. Statistical significance was assessed using paired t-tests and repeated measures of ANOVA. There were no significant differences in dialysis dose (Kt), urea, creatinine, or indoxyl sulfate reduction ratios between acetate- and citrate-based dialysates. However, a significant decrease in the reduction ratio of p-cresyl sulfate was observed with the acetate dialysate containing 1.25 mmol/L calcium and the citrate dialysate with 0.5 mmol/L magnesium compared to the acetate dialysate containing 1.5 mmol/L calcium and the citrate dialysate with 0.75 mmol/L magnesium (51.56 ± 4.75 and 53.02 ± 4.52 vs. 65.25 ± 3.38 and 58.66 ± 4.16, p 0.007). No differences in dialysis dose were found between acetate- and citrate-based dialysates. However, citrate dialysates with lower calcium and magnesium concentrations may reduce the albumin displacement of p-cresyl sulfate. Further studies are needed to understand the observed differences and optimize the dialysate composition for the better clearance of protein-bound uremic toxins.
Collapse
Affiliation(s)
- Diana Rodríguez-Espinosa
- Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (D.R.-E.); (E.C.-P.); (M.G.); (L.M.); (F.M.)
| | - Elena Cuadrado-Payán
- Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (D.R.-E.); (E.C.-P.); (M.G.); (L.M.); (F.M.)
| | - Naira Rico
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (N.R.); (M.T.); (R.M.F.); (G.C.); (M.R.-G.)
| | - Mercè Torra
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (N.R.); (M.T.); (R.M.F.); (G.C.); (M.R.-G.)
| | - Rosa María Fernández
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (N.R.); (M.T.); (R.M.F.); (G.C.); (M.R.-G.)
| | - Miquel Gómez
- Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (D.R.-E.); (E.C.-P.); (M.G.); (L.M.); (F.M.)
| | - Laura Morantes
- Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (D.R.-E.); (E.C.-P.); (M.G.); (L.M.); (F.M.)
| | - Gregori Casals
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (N.R.); (M.T.); (R.M.F.); (G.C.); (M.R.-G.)
| | - Maria Rodriguez-Garcia
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (N.R.); (M.T.); (R.M.F.); (G.C.); (M.R.-G.)
| | - Francisco Maduell
- Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (D.R.-E.); (E.C.-P.); (M.G.); (L.M.); (F.M.)
| | - José Jesús Broseta
- Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (D.R.-E.); (E.C.-P.); (M.G.); (L.M.); (F.M.)
| |
Collapse
|
4
|
Mamindla A, Murugan D, Varadhan M, Ajaykamal T, Rangasamy L, Palaniandavar M, Rajendiran V. Mixed-ligand copper(ii)-diimine complexes of 3-formylchromone- N 4-phenyl thiosemicarbazone: 5,6-dmp co-ligand confers enhanced cytotoxicity. RSC Adv 2024; 14:31704-31722. [PMID: 39376525 PMCID: PMC11457010 DOI: 10.1039/d4ra04997g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024] Open
Abstract
The promising biological applications of thiosemicarbazone derivatives have inspired the design, synthesis, and study of their Cu(ii) complexes for anticancer therapeutic applications. Herein, we have evaluated the DNA/protein binding, DNA cleaving, and cytotoxic properties of four mixed-ligand Cu(ii) complexes of the type [Cu(L)(diimine)](NO3) 1-4, where HL is 4-oxo-4H-chromene-3-carbaldehyde-4(N)-phenylthiosemicarbazone and diimine is 2,2'-bipyridine (bpy, 1) 1,10-phenanthroline (phen, 2), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp, 3), or dipyrido-[3,2-f:2',3'-h]-quinoxaline (dpq, 4). Interestingly, complex 3 with higher lipophilicity shows stronger DNA binding and oxidative DNA cleavage, higher ROS production, and more reversible redox behaviour, resulting in its remarkable cytotoxicity (IC50, 1.26 μM) against HeLa cervical cancer cells, and rendering it 5 times more potent than the widely used drug cisplatin. The same complex induces enhanced apoptotic cell death on HeLa cells but lower toxicity towards the non-cancerous PBMC cells. Molecular docking studies suggest that all the complexes bind in the minor groove of DNA and subdomain II of HSA, which is in close agreement with the experimental results. Also, 3 shows cytotoxicity higher than the analogous mixed ligand Cu(ii) complexes, reported already, emphasizing the importance of co-ligand in tuning the anticancer activity.
Collapse
Affiliation(s)
- Anjaneyulu Mamindla
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu Thiruvarur 610005 India
| | - Dhanashree Murugan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT) Vellore 632014 Tamilnadu India
| | - Manikandan Varadhan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu Thiruvarur 610005 India
| | | | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT) Vellore 632014 Tamilnadu India
| | | | - Venugopal Rajendiran
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu Thiruvarur 610005 India
| |
Collapse
|
5
|
Harris G, Bradshaw ML, Halsall DJ, Scott DJ, Unwin RJ, Norden AGW. Is there reversible dimerization of albumin in blood plasma? And does it matter? Exp Physiol 2024; 109:1663-1671. [PMID: 39177455 PMCID: PMC11442857 DOI: 10.1113/ep092012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
Most albumin in blood plasma is thought to be monomeric with some 5% covalently dimerized. However, many reports in the recent biophysics literature find that albumin is reversibly dimerized or even oligomerized. We review data on this from X-ray crystallography and diverse biophysical techniques. The number-average molecular weight of albumin would be increased by dimerization, affecting size-dependent filtration processes of albumin such as at the glycocalyx of the capillary endothelium and the podocyte slit-diaphragm of the renal glomerulus. If correct, and depending on characteristics of the process, such as Kd, reversible dimerization of albumin in plasma would have major implications for normal physiology and medicine. We present quantitative models of the impact of dimerization on albumin molecular forms, on the number-average molecular weight of albumin, and estimate the effect on the colloid osmotic pressure of albumin. Dimerization reduces colloid osmotic pressure as total albumin concentration increases below that expected in the absence of dimerization. Current models of albumin filtration by the renal glomerulus would need revision to account for the dynamic size of albumin molecules filtered. More robust biophysical data are needed to give a definitive answer to the questions posed and we suggest possible approaches to this.
Collapse
Affiliation(s)
- Gemma Harris
- Research Complex at Harwell, Rutherford Appleton LaboratoryDidcotUK
| | | | - David J. Halsall
- Department of Clinical BiochemistryAddenbrooke's HospitalCambridgeUK
| | - David J. Scott
- School of BiosciencesUniversity of NottinghamSutton BoningtonUK
| | | | | |
Collapse
|
6
|
Catalano C, Lucier KW, To D, Senko S, Tran NL, Farwell AC, Silva SM, Dip PV, Poweleit N, Scapin G. The CryoEM structure of human serum albumin in complex with ligands. J Struct Biol 2024; 216:108105. [PMID: 38852682 DOI: 10.1016/j.jsb.2024.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Human serum albumin (HSA) is the most prevalent plasma protein in the human body, accounting for 60 % of the total plasma protein. HSA plays a major pharmacokinetic function, serving as a facilitator in the distribution of endobiotics and xenobiotics within the organism. In this paper we report the cryoEM structures of HSA in the apo form and in complex with two ligands (salicylic acid and teniposide) at a resolution of 3.5, 3.7 and 3.4 Å, respectively. We expand upon previously published work and further demonstrate that sub-4 Å maps of ∼60 kDa proteins can be routinely obtained using a 200 kV microscope, employing standard workflows. Most importantly, these maps allowed for the identification of small molecule ligands, emphasizing the practical applicability of this methodology and providing a starting point for subsequent computational modeling and in silico optimization.
Collapse
Affiliation(s)
- Claudio Catalano
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA.
| | - Kyle W Lucier
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Dennis To
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Skerdi Senko
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Nhi L Tran
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Ashlyn C Farwell
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Sabrina M Silva
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Phat V Dip
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Nicole Poweleit
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Giovanna Scapin
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| |
Collapse
|
7
|
Ahmad S, Novokhodko A, Liou IW, Smith NC, Carithers RL, Reyes J, Bakthavatsalam R, Martin C, Bhattacharya R, Du N, Hao S, Gao D. Development and First Clinical Use of an Extracorporeal Artificial Multiorgan System in Acute-on-Chronic Liver Failure Patients. ASAIO J 2024; 70:690-697. [PMID: 39079087 DOI: 10.1097/mat.0000000000002174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Multiple organ failure (MOF) is a common and deadly condition. Patients with liver cirrhosis with acute-on-chronic liver failure (AOCLF) are particularly susceptible. Excess fluid accumulation in tissues makes routine hemodialysis generally ineffective because of cardiovascular instability. Patients with three or more organ failures face a mortality rate of more than 90%. Many cannot survive liver transplantation. Extracorporeal support systems like MARS (Baxter, Deerfield, IL) and Prometheus (Bad Homburg, Germany) have shown promise but fall short in bridging patients to transplantation. A novel Artificial Multi-organ Replacement System (AMOR) was developed at the University of Washington Medical Center. AMOR removes protein-bound toxins through a combination of albumin dialysis, a charcoal sorbent column, and a novel rinsing method to prevent sorbent column saturation. It removes excess fluid through hemodialysis. Ten AOCLF patients with over three organ failures were treated by the AMOR system. All patients showed significant clinical improvement. Fifty percent of the cohort received liver transplants or recovered liver function. AMOR was successful in removing large amounts of excess body fluid, which regular hemodialysis could not. AMOR is cost-effective and user-friendly. It removes excess fluid, supporting the other vital organs such as liver, kidneys, lungs, and heart. This pilot study's results encourage further exploration of AMOR for treating MOF patients.
Collapse
Affiliation(s)
- Suhail Ahmad
- From the Department of Medicine, University of Washington, Seattle, Washington
| | - Alexander Novokhodko
- Department of Mechanical Engineering, University of Washington, Seattle, Washington
| | - Iris W Liou
- From the Department of Medicine, University of Washington, Seattle, Washington
| | | | - Robert L Carithers
- From the Department of Medicine, University of Washington, Seattle, Washington
| | - Jorge Reyes
- Department of Surgery, University of Washington, Seattle, Washington
| | | | - Carl Martin
- Department of Clinical Engineering, University of Washington, Seattle, Washington
| | - Renuka Bhattacharya
- From the Department of Medicine, University of Washington, Seattle, Washington
| | - Nanye Du
- Department of Mechanical Engineering, University of Washington, Seattle, Washington
| | - Shaohang Hao
- Department of Mechanical Engineering, University of Washington, Seattle, Washington
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Shastri D, Raj V, Lee S. Revolutionizing Alzheimer's treatment: Harnessing human serum albumin for targeted drug delivery and therapy advancements. Ageing Res Rev 2024; 99:102379. [PMID: 38901740 DOI: 10.1016/j.arr.2024.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder initiated by amyloid-beta (Aβ) accumulation, leading to impaired cognitive function. Several delivery approaches have been improved for AD management. Among them, human serum albumin (HSA) is broadly employed for drug delivery and targeting the Aβ in AD owing to its biocompatibility, Aβ inhibitory effect, and nanoform, which showed blood-brain barrier (BBB) crossing ability via glycoprotein 60 (gp60) receptor and secreted protein acidic and rich in cysteine (SPARC) protein to transfer the drug molecules in the brain. Thus far, there is no previous review focusing on HSA and its drug delivery system in AD. Hence, the reviewed article aimed to critically compile the HSA therapeutic as well as drug delivery role in AD management. It also delivers information on how HSA-incorporated nanoparticles with surfaced embedded ligands such as TAT, GM1, and so on, not only improve BBB permeability but also increase neuron cell targetability in AD brain. Additionally, Aβ and tau pathology, including various metabolic markers likely BACE1 and BACE2, etc., are discussed. Besides, the molecular interaction of HSA with Aβ and its distinctive forms are critically reviewed that HSA can segregate Zn(II) and Cu(II) metal ions from Aβ owing to high affinity. Furthermore, the BBB drug delivery challenges in AD are addressed. Finally, the clinical formulation of HSA for the management of AD is critically discussed on how the HSA inhibits Aβ oligomer and fibril, while glycated HSA participates in amyloid plaque formation, i.e., β-structure sheet formation. This review report provides theoretical background on HSA-based AD drug delivery and makes suggestions for future prospect-related work.
Collapse
Affiliation(s)
- Divya Shastri
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea; College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, the Republic of Korea
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea.
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea.
| |
Collapse
|
9
|
Caković A, Ćoćić D, Živanović M, Janković N, Milivojević N, Delibašić M, Kostić M, Radojević I, Grujović M, Marković KG, Klisurić OR, Vraneš M, Bogojeski J. Enhancing Bioactivity of N,N,N-Chelating Rhodium(III) Complexes with Ionic Liquids: Toward Targeted Cancer Therapy. J Med Chem 2024. [PMID: 39058952 DOI: 10.1021/acs.jmedchem.4c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
This study investigates the potential of using ionic liquids as cosolvents to enhance the solubility and activity of poorly soluble rhodium(III) complexes, particularly those with diene, pyridine derivatives, and camphor-derived bis-pyrazolylpyridine ligands, in relation to 5'-GMP, CT-DNA, and HSA as well as their biological activity. Findings indicate that ionic liquids significantly increase the substitution activity of these complexes toward 5'-GMP while only marginally affecting DNA/HSA binding affinities with molecular docking, further confirming the experimental results. Lipophilicity assessments indicated good lipophilicity. Notably, cytotoxicity studies show that Rh2 is selectively effective against HeLa cancer cells, with IL1 and IL10 modulating the cytotoxic effects. Redox evaluations indicate that rhodium complexes induce oxidative stress in cancerous cells while maintaining redox balance in noncancerous cells. By elucidating the role of ionic liquids in modulating these effects, the study proposes a promising avenue for augmenting the efficacy and selectivity of cancer treatments, thus opening new horizons in cancer therapeutics.
Collapse
Affiliation(s)
- Angelina Caković
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Dušan Ćoćić
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Marko Živanović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Nenad Janković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Nevena Milivojević
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Marija Delibašić
- University of Belgrade, Faculty of Biology, Center for Forensic and Applied Molecular Genetics, Studentski trg 16, 11000 Belgrade, Serbia
| | - Marina Kostić
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Ivana Radojević
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Mirjana Grujović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Katarina G Marković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Olivera R Klisurić
- University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| | - Milan Vraneš
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jovana Bogojeski
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
10
|
Gomez-Lopez S, Serrano R, Cohen B, Martinez-Argudo I, Lopez-Sanz L, Guadamillas MC, Calero R, Ruiz MJ. Novel Titanocene Y derivative with albumin affinity exhibits improved anticancer activity against platinum resistant cells. J Inorg Biochem 2024; 254:112520. [PMID: 38460481 DOI: 10.1016/j.jinorgbio.2024.112520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The antitumor activity of Ti(IV)-based compounds put them in the spotlight for cancer treatment in the past, but their lack of stability in vivo due to a high rate of hydrolysis has hindered their development as antitumor drugs. As a possible solution for this problem, we have reported a synthesis strategy through which we combined a titanocene fragment, a tridentate ligand, and a long aliphatic chain. This strategy allowed us to generate a titanium compound (Myr-Ti) capable of interacting with albumin, highly stable in water and with cytotoxic activity in tumor cells[1]. Following a similar strategy, now we report the synthesis of a new compound (Myr-TiY) derived from titanocene Y that shows antitumoral activity in a cisplatin resistant model with a 50% inhibitory concentration (IC50) of 41-76 μM. This new compound shows high stability and a strong interaction with human serum albumin. Myr-TiY has a significant antiproliferative and proapoptotic effect on the tested cancer cells and shows potential tumor selectivity when assayed in non-tumor human epithelial cells being more selective (1.3-3.8 times) for tumor cells than cisplatin. These results lead us to think that the described synthesis strategy could be useful to generate compounds for the treatment of both cisplatin-sensitive and cisplatin-resistant cancers.
Collapse
Affiliation(s)
- Sergio Gomez-Lopez
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Rosario Serrano
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; Departamento de Química Orgánica, Inorgánica y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Boiko Cohen
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; Departamento de Química Física, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; INAMOL, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Isabel Martinez-Argudo
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Laura Lopez-Sanz
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Marta Carmen Guadamillas
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Raul Calero
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; Departamento de Química Orgánica, Inorgánica y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Maria Jose Ruiz
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; Departamento de Química Orgánica, Inorgánica y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; INAMOL, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| |
Collapse
|
11
|
Kaffash M, Tolou-Shikhzadeh-Yazdi S, Soleimani S, Hoseinpoor S, Saberi MR, Chamani J. Spectroscopy and molecular simulation on the interaction of Nano-Kaempferol prepared by oil-in-water with two carrier proteins: An investigation of protein-protein interaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123815. [PMID: 38154302 DOI: 10.1016/j.saa.2023.123815] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
In this work, the interaction of human serum albumin (HSA) and human holo-transferrin (HTF) with the prepared Nano-Kaempferol (Nano-KMP) through oil-in-water procedure was investigated in the form of binary and ternary systems by the utilization of different spectroscopy techniques along with molecular simulation and cancer cell experiments. According to fluorescence spectroscopy outcomes, Nano-KMP is capable of quenching both proteins as binary systems by a static mechanism, while in the form of (HSA-HTF) Nano-KMP as the ternary system, an unlinear Stern-Volmer plot was elucidated with the occurrence of both dynamic and static fluorescence quenching mechanisms in the binding interaction. In addition, the two acquired Ksv values in the ternary system signified the existence of two sets of binding sites with two different interaction behaviors. The binding constant values of HSA-Nano KMP, HTF-Nano-KMP, and (HSA-HTF) Nano-KMP complexes formation were (2.54 ± 0.03) × 104, (2.15 ± 0.02) × 104 and (1.43 ± 0.04) × 104M-1at the first set of binding sites and (4.68 ± 0.05) × 104 M-1 at the second set of binding sites, respectively. The data of thermodynamic parameters confirmed the major roles of hydrogen binding and van der Waals forces in the formation of HSA-Nano KMP and HTF-Nano KMP complexes. The thermodynamic parameter values of (HSA-HTF) Nano KMP revealed the dominance of hydrogen binding and van der Waals forces in the first set of binding sites and hydrophobic forces for the second set of binding sites. Resonance light scattering (RLS) analysis displayed the existence of a different interaction behavior for HSA-HTF complex in the presence of Nano-KMP as the ternary system. Moreover, circular dichroism (CD) technique affirmed the conformational changes of the secondary structure of proteins as binary and ternary systems. Molecular docking and molecular dynamics simulations (for 100 ns) were performed to investigate the mechanism of KMP binding to HSA, HTF, and HSA-HTF. Next to observing a concentration and time-dependent cytotoxicity, the down regulation of PI3K/AkT/mTOR pathway resulted in cell cycle arrest in SW480 cells.
Collapse
Affiliation(s)
- Maryam Kaffash
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Samane Soleimani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Saeideh Hoseinpoor
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
12
|
Wu T, Zhang H, Zhang P, James TD, Sun X. A Rationally Designed Prodrug for the Fluorogenic Labeling of Albumin and Theranostic Effects on Drug-Induced Liver Injury. Anal Chem 2024; 96:3498-3507. [PMID: 38363806 DOI: 10.1021/acs.analchem.3c05272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The development of small-molecular fluorogenic tools for the chemo-selective labeling of proteins in live cells is important for the evaluation of intracellular redox homeostasis. Dynamic imaging of human serum albumin (HSA), an antioxidant protein under oxidative stress with concomitant release of antioxidant drugs to maintain redox homeostasis, affords potential opportunities for disease diagnosis and treatment. In this work, we developed a nonfluorogenic prodrug named TPA-NAC, by introducing N-acetyl-l-cysteine (NAC) into a conjugated acceptor skeleton. Through combined thiol and amino addition, coupling with HSA results in fluorescence turn-on and drug release. It was reasoned that the restricted intramolecular motion of the probe under an HSA microenvironment after covalent bonding inhibited the nonradiative transitions. Furthermore, the biocompatibility and photochemical properties of TPA-NAC enabled it to image exogenous and endogenous HSA in living cells in a wash-free manner. Additionally, the released drug evoked upregulation of superoxide dismutase (SOD), which synergistically eliminated reactive oxygen species in a drug-induced liver injury model. This study provides insights into the design of new theranostic fluorescent prodrugs for chemo-selective protein labeling and disease treatments.
Collapse
Affiliation(s)
- Tianhong Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Peng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
13
|
Karami E, Mesbahi Moghaddam M, Kazemi-Lomedasht F. Use of Albumin for Drug Delivery as a Diagnostic and Therapeutic Tool. Curr Pharm Biotechnol 2024; 25:676-693. [PMID: 37550918 DOI: 10.2174/1389201024666230807161200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023]
Abstract
Drug delivery is an important topic that has attracted the attention of researchers in recent years. Albumin nanoparticles play a significant role in drug delivery as a carrier due to their unique characteristics. Albumin is non-toxic, biocompatible, and biodegradable. Its structure is such that it can interact with different drugs, which makes the treatment of the disease faster and also reduces the side effects of the drug. Albumin nanoparticles can be used in the diagnosis and treatment of many diseases, including cancer, diabetes, Alzheimer's, etc. These nanoparticles can connect to some compounds, such as metal nanoparticles, antibodies, folate, etc. and create a powerful nanostructure for drug delivery. In this paper, we aim to investigate albumin nanoparticles in carrier format for drug delivery application. In the beginning, different types of albumin and their preparation methods were discussed, and then albumin nanoparticles were discussed in detail in diagnosing and treating various diseases.
Collapse
Affiliation(s)
- Elmira Karami
- Venom and Biotherapeutics Molecules Laboratory, Department of Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Department of Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Akawa OB, Okunlola FO, Alahmdi MI, Abo-Dya NE, Sidhom PA, Ibrahim MAA, Shibl MF, Khan S, Soliman MES. Multi-cavity molecular descriptor interconnections: Enhanced protocol for prediction of serum albumin drug binding. Eur J Pharm Biopharm 2024; 194:9-19. [PMID: 37984594 DOI: 10.1016/j.ejpb.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
The role of human serum albumin (HSA) in the transport of molecules predicates its involvement in the determination of drug distribution and metabolism. Optimization of ADME properties are analogous to HSA binding thus this is imperative to the drug discovery process. Currently, various in silico predictive tools exist to complement the drug discovery process, however, the prediction of possible ligand-binding sites on HSA has posed several challenges. Herein, we present a strong and deeper-than-surface case for the prediction of HSA-ligand binding sites using multi-cavity molecular descriptors by exploiting all experimentally available and crystallized HSA-bound drugs. Unlike previously proposed models found in literature, we established an in-depth correlation between the physicochemical properties of available crystallized HSA-bound drugs and different HSA binding site characteristics to precisely predict the binding sites of investigational molecules. Molecular descriptors such as the number of hydrogen bond donors (nHD), number of heteroatoms (nHet), topological polar surface area (TPSA), molecular weight (MW), and distribution coefficient (LogD) were correlated against HSA binding site characteristics, including hydrophobicity, hydrophilicity, enclosure, exposure, contact, site volume, and donor/acceptor ratio. Molecular descriptors nHD, TPSA, LogD, nHet, and MW were found to possess the most inherent capacities providing baseline information for the prediction of serum albumin binding site. We believe that these associations may form the bedrock for establishing a solid correlation between the physicochemical properties and Albumin binding site architecture. Information presented in this report would serve as critical in provisions of rational drug designing as well as drug delivery, bioavailability, and pharmacokinetics.
Collapse
Affiliation(s)
- Oluwole B Akawa
- Molecular Bio-computational and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban 4001, South Africa
| | - Felix O Okunlola
- Molecular Bio-computational and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban 4001, South Africa
| | - Mohammed Issa Alahmdi
- Faculty of Science, Department of Chemistry, University of Tabuk, Tabuk 7149, Saudi Arabia
| | - Nader E Abo-Dya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabuk University, Tabuk 71491, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Peter A Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mahmoud A A Ibrahim
- Molecular Bio-computational and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban 4001, South Africa; Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519
| | - Mohamed F Shibl
- Renewable Energy Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Shahzeb Khan
- Centre for Pharmaceutical Engineering Science, Faculty of life Science, School of Pharmacy and Medical Sciences, University of Bradford UK, West Yorkshire, BD7 1DP, UK
| | - Mahmoud E S Soliman
- Molecular Bio-computational and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban 4001, South Africa.
| |
Collapse
|
15
|
Yao L, Liu Q, Lei Z, Sun T. Development and challenges of antimicrobial peptide delivery strategies in bacterial therapy: A review. Int J Biol Macromol 2023; 253:126819. [PMID: 37709236 DOI: 10.1016/j.ijbiomac.2023.126819] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The escalating global prevalence of antimicrobial resistance poses a critical threat, prompting concerns about its impact on public health. This predicament is exacerbated by the acute shortage of novel antimicrobial agents, a scarcity attributed to the rapid surge in bacterial resistance. This review delves into the realm of antimicrobial peptides, a diverse class of compounds ubiquitously present in plants and animals across various natural organisms. Renowned for their intrinsic antibacterial activity, these peptides provide a promising avenue to tackle the intricate challenge of bacterial resistance. However, the clinical utility of peptide-based drugs is hindered by limited bioavailability and susceptibility to rapid degradation, constraining efforts to enhance the efficacy of bacterial infection treatments. The emergence of nanocarriers marks a transformative approach poised to revolutionize peptide delivery strategies. This review elucidates a promising framework involving nanocarriers within the realm of antimicrobial peptides. This paradigm enables meticulous and controlled peptide release at infection sites by detecting dynamic shifts in microenvironmental factors, including pH, ROS, GSH, and reactive enzymes. Furthermore, a glimpse into the future reveals the potential of targeted delivery mechanisms, harnessing inflammatory responses and intricate signaling pathways, including adenosine triphosphate, macrophage receptors, and pathogenic nucleic acid entities. This approach holds promise in fortifying immunity, thereby amplifying the potency of peptide-based treatments. In summary, this review spotlights peptide nanosystems as prospective solutions for combating bacterial infections. By bridging antimicrobial peptides with advanced nanomedicine, a new therapeutic era emerges, poised to confront the formidable challenge of antimicrobial resistance head-on.
Collapse
Affiliation(s)
- Longfukang Yao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Qianying Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
16
|
Ma X, Kuang L, Wang X, Zhang Z, Chen C, Ding P, Chi B, Xu J, Tuo X. Investigation on the interaction of aromatic organophosphate flame retardants with human serum albumin via computer simulations, multispectroscopic techniques and cytotoxicity assay. Int J Biol Macromol 2023; 247:125741. [PMID: 37423437 DOI: 10.1016/j.ijbiomac.2023.125741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Organophosphate flame retardants (OPFRs) are newly emerging estrogenic environmental pollutants, which attracted widespread public interest owing to their potential threats to human. Here, the interaction between two typical aromatic OPFRs, TPHP/EHDPP and HSA was researched by different experiments. Experimental results indicated that TPHP/EHDPP can insert the site I of HSA and be encircled by several amino acid residues, Asp451, Glu292, Lys195, Trp214 and Arg218 played vital roles in this binding process. At 298 K, the Ka value of TPHP-HSA complex was 5.098 × 104 M-1, and the Ka value of EHDPP-HSA was 1.912 × 104 M-1. Except H-bonds and van der Waals forces, the π-electrons on the phenyl ring of aromatic-based OPFRs played a pivotal role in maintaining the stability of the complexes. The content alterations of HSA were observed in the present of TPHP/EHDPP. The IC50 values of TPHP and EHDPP were 157.9 μM and 31.14 μM to GC-2spd cells, respectively. And the existence of HSA has a regulatory effect on the reproductive toxicity of TPHP/EHDPP. In addition, the results of present work implied Ka values of OPFRs and HSA are possible to be a useful parameter for evaluating their relative toxicity.
Collapse
Affiliation(s)
- Xiulan Ma
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Lin Kuang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xiaowei Wang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Zihang Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Chaolan Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Pei Ding
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Baozhu Chi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Junying Xu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xun Tuo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
17
|
Wang L, Wang X, Wu Y, Wang J, Zhou W, Wang J, Guo H, Zhang N, Zhang L, Hu X, Zhao Y, Miao J, Zhang Z, Chard Dunmall LS, Zhang D, Lemoine NR, Cheng Z, Wang Y. A novel microenvironment regulated system CAR-T (MRS.CAR-T) for immunotherapeutic treatment of esophageal squamous carcinoma. Cancer Lett 2023; 568:216303. [PMID: 37422126 DOI: 10.1016/j.canlet.2023.216303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Chimeric antigen receptor T cell immunotherapy has achieved promising therapeutic effects in the treatment of hematological malignancies. However, there are still many obstacles, including on-target off-tumor antigen expression, that prevent successful application to solid tumors. We designed a tumor microenvironment (TME) regulated system chimeric antigen receptor T (MRS.CAR-T) which can only be auto-activated in the solid TME. B7-H3 was selected as the target antigen for esophageal carcinoma. An element comprising a human serum albumin (HSA) binding peptide and a matrix metalloproteases (MMPs) cleavage site was inserted between the 5' terminal signal peptide and single chain fragment variable (scFv) of the CAR skeleton. Upon administration, HSA bound the binding peptide in MRS.B7-H3.CAR-T effectively and promoted proliferation and differentiation into memory cells. MRS.B7-H3.CAR-T was not cytotoxic in normal tissues expressing B7-H3 as the antigen recognition site in the scFv was cloaked by HSA. The anti-tumor function of MRS.B7-H3.CAR-T was recovered once the cleavage site was cleaved by MMPs in the TME. The anti-tumor efficacy associated with MRS.B7-H3.CAR-T cells was improved compared to classic B7-H3.CAR-T cells in vitro and less IFN-γ was released, suggesting a treatment that may induce less extent of cytokine release syndrome-mediated toxicity. In vivo, MRS.B7-H3.CAR-T cells had strong anti-tumor activity and were safe. MRS.CAR-T represents a novel strategy to improve the efficacy and safety of CAR-T therapy in solid tumors.
Collapse
Affiliation(s)
- Lihong Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaosa Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yangyang Wu
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingjing Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenping Zhou
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianyao Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haoran Guo
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Na Zhang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lufang Zhang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuanyu Hu
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Zhao
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zifang Zhang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Danhua Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Nicholas R Lemoine
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China; Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Zhenguo Cheng
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China; Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
18
|
Baruah K, Konthoujam I, Lyndem S, Aguan K, Singha Roy A. Complexation of turmeric and curcumin mediated silver nanoparticles with human serum albumin: Further investigation into the protein-corona formation, anti-bacterial effects and cell cytotoxicity studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122540. [PMID: 36848856 DOI: 10.1016/j.saa.2023.122540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Biosynthesized noble metal nanoparticles have been of recent interest due to their broad implications in the future biomedicinal field. We have synthesized silver nanoparticle using turmeric-extract and its major component curcumin as reducing and stabilizing agents. Further, we have investigated the protein-NPs interaction focusing the inspection of the role of biosynthesized AgNPs on any conformational changes of the protein, binding and thermodynamic parameters using spectroscopic techniques. Fluorescence quenching studies revealed that both CUR-AgNPs and TUR-AgNPs have moderate binding affinities (∼104 M-1) towards human serum albumin (HSA) and static quenching mechanism was involved in the binding. Estimated thermodynamic parameters indicate the involvement of hydrophobic forces in the binding processes. The surface charge potential of the biosynthesized AgNPs became more negative upon complexation with HSA as observed from Zeta potential measurements. Antibacterial efficacies of the biosynthesized AgNPs were evaluated against Escherichia coli (gram-negative) and Enterococcus faecalis (gram-positive) bacterial strains. The AgNPs were found to destroy the cancer (HeLa) cell lines in vitro. The overall findings of our study successfully outline the detailed insight of the protein corona formation by biocompatible AgNPs and their biological applications concerning the future scope in the biomedicinal field.
Collapse
Affiliation(s)
- Kakali Baruah
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Ibemhanbi Konthoujam
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Sona Lyndem
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India.
| |
Collapse
|
19
|
Iqbal Y, Akhtar T, Haroon M, Mehmood H, Nizami T, Tahir E, Ehsan M. 4-Adamantyl-(2-(arylidene)hydrazinyl)thiazoles as potential antidiabetic agents: experimental and docking studies. Future Med Chem 2023; 15:599-613. [PMID: 37140092 DOI: 10.4155/fmc-2023-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Aim: To develop an efficient and cost-effective antidiabetic agent. Methods: A simple and convenient Hantzsch synthetic strategy was used to prepare 4-adamantyl-(2-(arylidene)hydrazinyl)thiazoles. Results: Fifteen newly established structures of 4-adamantyl-(2-(arylidene)hydrazinyl)thiazoles were tested for their α-amylase, antiglycation and antioxidant activities. Almost all tested compounds showed excellent α-amylase inhibition. Compounds 3a and 3j exhibited the highest potency, with IC50 values of 16.34 ± 2.67 and 16.64 ± 1.12 μM, respectively. Compounds 3c and 3i exhibited comparable antiglycation potential with the standard, aminoguanidine. The antioxidant potential of compound 3g was found to be excellent, with an IC50 value of 28.19 ± 0.2563 μM. The binding interactions of compound 3a (binding energy = -8.833 kcal/mol) with human pancreatic α-amylase identified 3a as a potent α-amylase inhibitor. Conclusion: Enrichment of established structures with more electron-donating functionalities may assist/lead to the development of more potent antidiabetic drugs.
Collapse
Affiliation(s)
- Yasir Iqbal
- Department of Chemistry, Mirpur University of Science & Technology (MUST), 10250-Mirpur (AJK), Pakistan
| | - Tashfeen Akhtar
- Department of Chemistry, Mirpur University of Science & Technology (MUST), 10250-Mirpur (AJK), Pakistan
| | - Muhammad Haroon
- Department of Chemistry, Mirpur University of Science & Technology (MUST), 10250-Mirpur (AJK), Pakistan
- Department of Chemistry, Government Major Muhammad Afzal Khan (Shaheed), Boys Degree College Afzalpur (Affiliated with Mirpur University of Science & Technology (MUST), 10250-Mirpur (AJK), Pakistan
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, USA
| | - Hasnain Mehmood
- Department of Chemistry, Mirpur University of Science & Technology (MUST), 10250-Mirpur (AJK), Pakistan
| | - Tauqir Nizami
- Deputy Director ORIC, University of Chakwal, Punjab, Pakistan
| | - Ehsaan Tahir
- Department of Chemistry, Mirpur University of Science & Technology (MUST), 10250-Mirpur (AJK), Pakistan
| | - Muhammad Ehsan
- Bionano-Chemistry Lab, Department of Bionano Engineering, Hanyang University, Ansan, 155-88, Korea
| |
Collapse
|
20
|
Wang W, Sun G, Nan X, Huang Y, Li Z, He T, Luo Y, Chen S. On-line screening and verification of haptens in Xiangdan injection combining chemical analysis with activity detection. J Pharm Biomed Anal 2023; 231:115413. [PMID: 37119721 DOI: 10.1016/j.jpba.2023.115413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
Xiangdan injection (XDI), as a well-known traditional Chinese medicine injection, is of great significance to treat cardiovascular and cerebrovascular diseases. The haptens causing allergic reactions are urged to be detected due to the adverse reaction. In this study, an efficient approach was established to rapidly identify and screen potential haptens in XDI for the first time by combining high performance liquid chromatography-diode array detector-electrospray ionization-ion trap-time of flight-mass spectrometry with human serum albumin-fluorescence detector (HPLC-DAD-ESI-IT-TOF-MS-HSA-FLD). 21 compounds were identified according to their mass spectrum or comparison with reference substances and 8 salvianolic acids in XDI showed interactions with HSA in varying degrees. After that, surface plasmon resonance (SPR) was applied to screen the compounds showing specific affinity with human serum albumin (HSA). Subsequently, active systemic anaphylaxis (ASA) in guinea pigs was carried out to verify the sensitization of active compounds, In the meantime the serum IgE level before and after challenge was measured by the enzyme-linked immunosorbent assay (ELISA). Ultimately, it was tested that salvianolic acid C had a strong sensitization, in addition, lithospermic acid, rosmarinic acid and salvianolic acid B had potential sensitization. This study suggest that the on-line method provides rapid preliminary searching for haptens in XDI, combined with SPR and ASA, offering an efficient, rapid and comprehensive approach to screen haptens.
Collapse
Affiliation(s)
- Wanwan Wang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Ge Sun
- China Institute of Radiation Protection, Taiyuan 030006, PR China
| | - Xiaoke Nan
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yazhuo Huang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Zhehao Li
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Tian He
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yukun Luo
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Shizhong Chen
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| |
Collapse
|
21
|
Merlino A. Metallodrug binding to serum albumin: Lessons from biophysical and structural studies. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Povinelli APR, de Carvalho Bertozo L, Zazeri G, Ximenes VF. A flaw in applying the FRET technique to evaluate the distance between ligands and tryptophan residues in human serum albumin: Proposal of correction. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 242:112693. [PMID: 36947916 DOI: 10.1016/j.jphotobiol.2023.112693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
Due to its primordial function as a drug carrier, human serum albumin (HSA) is extensively studied regarding its binding affinity with developing drugs. Förster resonance energy transfer (FRET) is frequently applied as a spectroscopic molecular ruler to measure the distance between the binding site and the ligand. In this work, we have shown that most of the published results that use the FRET technique to estimate the distance from ligands to the binding sites do not corroborate the crystallography data. By comparing the binding affinity of dansyl-proline with HSA and ovotransferrin, we demonstrated that FRET explains the quenching provoked by the interaction of ligands in albumin. So, why does the distance calculation via FRET not corroborate the crystallography data? We have shown that this inconsistency is related to the fact that a one-to-one relationship between donor and acceptor is not present in most experiments. Hence, the quenching efficiency used for calculating energy transfer depends on distance and binding constant, which is inconsistent with the correct application of FRET as a molecular ruler. We have also shown that the indiscriminate attribution of 2/3 to the relative orientation of transition dipoles of the acceptor and donor (κ2) generates inconsistencies. We proposed corrections based on the experimental equilibrium constant and theoretical orientation of transition dipoles to correct the FRET results.
Collapse
Affiliation(s)
- Ana Paula Ribeiro Povinelli
- Federal Institute of Education, Science and Technology of Mato Grosso, Campo Novo do Parecis, 78360-000, MT, Brazil
| | - Luiza de Carvalho Bertozo
- Department of Chemistry, Faculty of Sciences, UNESP - São Paulo State University, 17033-360 Bauru, SP, Brazil
| | - Gabriel Zazeri
- Federal Institute of Education, Science and Technology of Mato Grosso, Campo Novo do Parecis, 78360-000, MT, Brazil
| | - Valdecir Farias Ximenes
- Department of Chemistry, Faculty of Sciences, UNESP - São Paulo State University, 17033-360 Bauru, SP, Brazil.
| |
Collapse
|
23
|
Interactions of fentanyl with blood platelets and plasma proteins: platelet sensitivity to prasugrel metabolite is not affected by fentanyl under in vitro conditions. Pharmacol Rep 2023; 75:423-441. [PMID: 36646965 DOI: 10.1007/s43440-023-00447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Clinical trials indicate that fentanyl, like morphine, may impair intestinal absorption and thus decrease the efficacy of oral P2Y12 inhibitors, such as clopidogrel, ticagrelor, and prasugrel. However, the ability of fentanyl to directly negate or reduce the inhibitory effect of P2Y12 receptor antagonists on platelet function has not been established. A series of in vitro experiments was performed to investigate the ability of fentanyl to activate platelets, potentiate platelet response to ADP, and/or diminish platelet sensitivity to prasugrel metabolite (R-138727) in agonist-stimulated platelets. The selectivity and specificity of fentanyl toward major carrier proteins has been also studied. METHODS Blood was obtained from healthy volunteers (19 women and 12 men; mean age 40 ± 13 years). Platelet function was measured in whole blood, platelet-rich plasma and in suspensions of isolated platelets by flow cytometry, impedance and optical aggregometry. Surface plasmon resonance and molecular docking were employed to determine the binding kinetics of fentanyl to human albumin, α1-acid glycoprotein, apolipoprotein A-1 and apolipoprotein B-100. RESULTS When applied at therapeutic and supratherapeutic concentrations under various experimental conditions, fentanyl had no potential to stimulate platelet activation and aggregation, or potentiate platelet response to ADP, nor did it affect platelet susceptibility to prasugrel metabolite in ADP-stimulated platelets. In addition, fentanyl was found to interact with all the examined carrier proteins with dissociation constants in the order of 10-4 to 10-9 M. CONCLUSIONS It does not seem that the delayed platelet responsiveness to oral P2Y12 inhibitors, such as prasugrel, in patients undergoing percutaneous coronary intervention, results from direct interactions between fentanyl and blood platelets. Apolipoproteins, similarly to albumin and α1-acid glycoprotein, appear to be important carriers of fentanyl in blood.
Collapse
|
24
|
RDW-to-ALB Ratio Is an Independent Predictor for 30-Day All-Cause Mortality in Patients with Acute Ischemic Stroke: A Retrospective Analysis from the MIMIC-IV Database. Behav Neurol 2022; 2022:3979213. [PMID: 36567762 PMCID: PMC9780005 DOI: 10.1155/2022/3979213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/21/2022] [Accepted: 09/10/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose Previous studies have shown that the peripheral red blood cell distribution width (RDW) and human serum albumin (ALB) were both predictors of the risk and mortality of cerebrovascular diseases, and the ratio of RDW to ALB (RAR) was a combined new index that can predict the prognosis of the cardiovascular and respiration systemic diseases, but its role in cerebrovascular diseases had not been effectively evaluated. This study is aimed at exploring whether RAR can effectively predict the 30-day all-cause mortality of acute ischemic stroke (AIS) patients. Methods This retrospective cohort study was conducted on AIS patients (age > 18 years) in the intensive care database MIMIC-IV. The RAR was measured based on the red blood cell distribution width and albumin. The main result was 30-day all-cause mortality, and the secondary results were ICU mortality and hospital mortality. Obtain the odds ratio (OR) estimate from the logistic regression model of log-transformed RAR values and mortality. We had used another database for external validation. Results A total of 1412 patients were enrolled, with an average age of 68.8 ± 15.9, including 708 (50.1%) males. When log-transformed RAR values were used as a continuous variable, as the values increases, the risk of death increases (30-day all-cause mortality OR = 4.02 (2.21, 7.32) P < 0.0001, ICU mortality OR = 3.81 (1.92, 7.54) P = 0.0001, and hospital mortality OR = 3.31 (1.83, 6.00) P < 0.0001), when the values were used as three-category variables and as a trend variable was also positively correlated with each mortality rate. Especially as the categorical variables, a dose-response relationship was clearly observed, that was, as the category of RAR increased (Q1 to Q3), the HR value of the risk of death gradually steadily increased. Such a relationship can also be observed in the external validation database. In the subgroup analysis, we observed an increased risk of death in the patient with hyperlipidemia and low HAS-BLED scores; however, no significant interaction was found in other subgroup analyses (including the diagnostic sequence of AIS). Conclusion RAR was a predictor of mortality in AIS patients. However, more in-depth research is needed to further analyze and confirm the role of RAR in AIS patients.
Collapse
|
25
|
Sharfalddin AA, Inas Muta'eb Alyounis E, Emwas AH, Jaremko M. Biological efficacy of novel metal complexes of Nitazoxanide: Synthesis, characterization, anti-COVID-19, antioxidant, antibacterial and anticancer activity studies. J Mol Liq 2022; 368:120808. [PMID: 36411838 PMCID: PMC9670593 DOI: 10.1016/j.molliq.2022.120808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/24/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
It has been repeatedly reported that nitazoxanide (NTZ) exhibits a wide range of antiviral activities against various viral infections and has shown antimicrobial properties against anaerobic bacteria, helminths and protozoa. To improve these properties, three novel metal complexes were synthesized. The bidentate characteristic of the NTZ ligand was characterized by different spectroscopic techniques, including Fourier transform infrared (FT-IR), thermogravimetric, nuclear magnetic resonance (NMR) and UV - visible spectroscopy. The geometries of the formed compounds were evaluated by density functional theory, and the results revealed that NTZ-Ru(III) has an octahedral geometry, while NTZ-Au(III) and NTZ-Ag(I) complexes have distorted square planar structures. Binding between the metal complexes and calf thymus DNA (Ct-DNA) has been studied via absorption spectra. Moreover, human albumen serum (HAS) titration has been carried out to test their susceptibility to interact with a major target molecule via absorption and fluorescence spectroscopic techniques. Several in vitro bioassays were performed to evaluate the biological activity, antibacterial potency against E. coli, antioxidant activity and cytotoxicity of the ligand and the obtained complexes. The results showed that complexes Ru(III) and Au(III) have the highest radical scavenging percentage while the Ag(I) demonstrated the greatest antibacterial activity. Moreover, the metal complexes presented potentially effective against E. coli. Furthermore, compared with NTZ-Ag and the free ligand, the in vitro cytotoxicity assay showed that both NTZ-Ru(III) and NTZ-Au(III) exhibited significant anticancer activity against HeLa cells. The efficiency of the novel compounds as antivirals was tested by molecular docking with two COVID-19 receptors to obtain all interaction details.
Collapse
Affiliation(s)
- Abeer A Sharfalddin
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | | | - Abdul-Hamid Emwas
- King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Fluorene-based polymers of intrinsic microporosity as fluorescent probes for metal ions. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
27
|
Interaction with bioligands and in vitro cytotoxicity of a new dinuclear dioxido vanadium(V) complex. J Inorg Biochem 2022; 237:111980. [PMID: 36109193 DOI: 10.1016/j.jinorgbio.2022.111980] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
One centrosymmetric bis(μ-oxido)-bridged vanadium(V) dimer with molecular formula [(VVO2)2(pedf)2] (1) has been synthesized from the reaction of VOSO4·5H2O with a Schiff base ligand (abbreviated with pedf-) obtained from 2-acetylpyridine and 2-furoic hydrazide in methanol. Complex 1 was characterized by elemental analysis, UV-visible (UV-Vis), Fourier-transform infrared spectra (FT-IR), cyclic voltammetry (CV), electron paramagnetic resonance spectroscopy (EPR) and electrospray ionization-mass spectrometry (ESI-MS) techniques along with single crystal X-ray diffraction (SCXRD). The FT-IR spectral data of 1 indicated the involvement of oxygen and azomethine nitrogen in coordination to the central metal ion. The crystallographic studies revealed a dinuclear oxovanadium(V) complex with the Schiff base coordinated via the ONN donor set with formation of two five-membered chelate rings resulting in a distorted octahedral geometry. The interaction of 1 with calf thymus DNA (CT-DNA) was investigated by spectroscopic measurements and results suggested that the complex binds to CT-DNA via moderate intercalative mode with a binding constant (Kb) around 103 M-1. In addition, the in vitro protein binding behavior was studied by fluorescence spectrophotometric method using both bovine serum albumin (BSA) and human serum albumin (HSA) and a static quenching mechanism was observed for the interaction of the complex with both albumins that occurs with a Kb in the range (5-6) × 103 M-1. In vitro cytotoxicity of complex 1 on lung cancer cells (A549) and human skin carcinoma cell line (A431) demonstrated that the complex had a broad-spectrum of anti-proliferative activity with IC50 value of 64.2 μM and 56.2 μM.
Collapse
|
28
|
He M, Lu B, Opoku M, Zhang L, Xie W, Jin H, Chen S, Li Y, Deng Z. Metformin Prevents or Delays the Development and Progression of Osteoarthritis: New Insight and Mechanism of Action. Cells 2022; 11:3012. [PMID: 36230974 PMCID: PMC9563728 DOI: 10.3390/cells11193012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
For over 60 years, metformin has been widely prescribed by physicians to treat type 2 diabetes. Along with more in-depth research on metformin and its molecular mechanism in recent decades, metformin has also been proposed as an effective drug to prevent or delay musculoskeletal disorders, including osteoarthritis (OA). The occurrence and development of OA are deemed to be associated with the impaired mitochondrial functions of articular chondrocytes. Metformin can activate the pathways and expressions of both AMPK and SIRT1 so as to protect the mitochondrial function of chondrocytes, thereby promoting osteoblast production. Moreover, the clinical significance of the metformin combination therapy in preventing OA has also been demonstrated. This review aimed to comprehensively summarize the current research progress on metformin as a proposed drug for OA prevention or treatment.
Collapse
Affiliation(s)
- Miao He
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bangbao Lu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Michael Opoku
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Liang Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenqing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hongfu Jin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Siyu Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| |
Collapse
|
29
|
Spectroscopic Analysis of an Antimalarial Drug’s (Quinine) Influence on Human Serum Albumin Reduction and Antioxidant Potential. Molecules 2022; 27:molecules27186027. [PMID: 36144764 PMCID: PMC9505252 DOI: 10.3390/molecules27186027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Quinine (Qi) is a well-known drug used in malaria therapy; it is also a potential anti-arrhythmic drug used in the treatment of calf cramps, rheumatoid arthritis, colds, and photodermatitis. Moreover, it is used in the food industry for the production of tonics. This study aimed to analyze the interaction between quinine and a transporting protein—human serum albumin (HSA)—as well as the influence of Qi on both protein reduction and antioxidant potential. It was found that Qi (via spectrofluorometric measurements and circular dichroism spectroscopy) binds to HSA with a low affinity and slightly affects the secondary structure of albumin. As demonstrated by the use of ABTS and FRAP assays, HSA has a higher antioxidant and reduction potential than Qi, while their mutual interaction results in a synergistic effect in antioxidant activity and reduction potential.
Collapse
|
30
|
Al-Harthi S, Chandra K, Jaremko Ł. Lipoic Acid Restores Binding of Zinc Ions to Human Serum Albumin. Front Chem 2022; 10:942585. [PMID: 35898971 PMCID: PMC9309503 DOI: 10.3389/fchem.2022.942585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Human serum albumin (HSA) is the main zinc(II) carrier in blood plasma. The HSA site with the strongest affinity for zinc(II), multi-metal binding site A, is disrupted by the presence of fatty acids (FAs). Therefore, the FA concentration in the blood influences zinc distribution, which may affect both normal physiological processes and a range of diseases. Based on the current knowledge of HSA’s structure and its coordination chemistry with zinc(II), we investigated zinc interactions and the effect of various FAs, including lipoic acid (LA), on the protein structure, stability, and zinc(II) binding. We combined NMR experiments and isothermal titration calorimetry to examine zinc(II) binding to HSA at a sub-atomic level in a quantitative manner as well as the effect of FAs. Free HSA results indicate the existence of one high-affinity zinc(II) binding site and multiple low-affinity sites. Upon the binding of FAs to HSA, we observed a range of behaviors in terms of zinc(II) affinity, depending on the type of FA. With FAs that disrupt zinc binding, the addition of LA restores HSA’s affinity for zinc ions to the levels seen with free defatted HSA, indicating the possible mechanism of LA, which is effective in the treatment of diabetes and cardiovascular diseases.
Collapse
|
31
|
Shahmansoorian E, Atyabi SM, Yaghmaei P, Mehrnejad F. A Survey of Gasoline Ameliorator, Methyl-Tert-Butyl Ether (MTBE) on Bovine Serum Albumin: A Spectroscopy and Molecular Dynamic Simulation Study. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e3111. [PMID: 36381278 PMCID: PMC9618015 DOI: 10.30498/ijb.2022.297646.3111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Methyl-Tert-Butyl Ether (MTBE) as a gasoline modifier is frequently added to fuels and used in plenty of worldwide applications. MTBE biodegradation in groundwater occurs slowly and produces water miscibility; therefore, it causes diverse environmental and human health concerns. Objectives The interaction of MTBE with bovine serum albumin (BSA) as a model protein at physiological conditions is investigated to illustrate the possible interactions of MTBE with the body's proteins. Materials and Methods Uv-visible, fluorescence, circular dichroism (CD) spectroscopy methods, and molecular modeling were used to analyze the MTBE's effect on BSA structure and dynamics. The constant protein concentration and various MTBE contents were used for possible interactions. Results The protein structural analysis shows that MTBE binds to BSA via positive enthalpy and entropy via hydrophobic interactions. Molecular docking shows the participation of several amino acids in the MTBE-BSA interaction. The CD spectroscopy results show that the BSA structure was not changed in the MTBE concentrations utilized in the study. Molecular dynamics (MD) simulation results suggest that MTBE can slightly change protein structure in the last 50ns. Conclusion Comparing experimental and MD simulation results demonstrated that the BSA secondary structure was maintained in the low concentration of the MTBE. The entropy and enthalpy parameters asserted the hydrophobic interaction was the major force in the interaction between the BSA and MTBE.
Collapse
Affiliation(s)
- Ebrahim Shahmansoorian
- Department of biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Parichehreh Yaghmaei
- Department of biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Faramarz Mehrnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
32
|
Babgi BA, Alzaidi NA, Alsayari JH, Emwas AHM, Jaremko M, Abdellattif MH, Aljahdali M, Hussien MA. Synthesis, HSA-Binding and Anticancer Properties of [Cu2($$\mu$$-dppm)2(N^N)2]2+. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Gao Y, Wang H, Shen L, Xu H, Deng M, Cheng M, Wang J. Discovery of benzo[d]isothiazole derivatives as novel scaffold inhibitors targeting the programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) interaction through “ring fusion” strategy. Bioorg Chem 2022; 123:105769. [DOI: 10.1016/j.bioorg.2022.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 03/27/2022] [Indexed: 11/30/2022]
|
34
|
New mixed ligand oxidovanadium(IV) complexes: Solution behavior, protein interaction and cytotoxicity. J Inorg Biochem 2022; 233:111853. [DOI: 10.1016/j.jinorgbio.2022.111853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022]
|
35
|
Lima DRDS, Silva FSQD, borges RM, Marques RC, Moreira MDFR. Tin speciation in the blood plasma of workers occupationally exposed in a cassiterite ore processing industry. SAÚDE EM DEBATE 2022. [DOI: 10.1590/0103-1104202213315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Mining is a high-risk activity due to its dangerous processes. Tin (Sn) is obtained from cassiterite ore and mining activities expose workers to the metal. Chronic exposure to Sn may cause pneumoconiosis, gastrointestinal and hematological effects, among others. This work aimed to assess the exposure of workers to tin in a cassiterite ore processing industry, using the speciation analysis in blood plasma. Twelve subjects donated the blood samples; six were occupationally exposed to Sn. Size exclusion chromatography separated proteins in blood plasma; a graphite furnace atomic absorption spectrometer determined total tin in the plasma and eluted fractions, while SDS-PAGE determined molecular masses of proteins. Tin levels in the workers’ plasma were four times higher than in the reference individuals. After fractionation, the metal only appeared in the total inclusion volume, not being possible to confirm the binding of tin to proteins, which certainly modifies their functions and impair workers’ health. Despite that, the work process needs to change since Sn levels in the workers’ plasma pointed to metal exposure. Further works are necessary to clarify whether the metal is free or bound to small proteins in blood plasma and understand the true impact of tin on workers’ health.
Collapse
|
36
|
Dömötör O, Keppler BK, Enyedy ÉA. Solution speciation and human serum protein binding of indium(III) complexes of 8-hydroxyquinoline, deferiprone and maltol. J Biol Inorg Chem 2022; 27:315-328. [PMID: 35243522 PMCID: PMC8960621 DOI: 10.1007/s00775-022-01935-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/18/2022] [Indexed: 11/03/2022]
Abstract
Solution speciation and serum protein binding of selected In(III) complexes bearing O,O and O,N donor sets were studied to provide comparative data for In(III) and analogous Ga(III) complexes. Aqueous stability of the In(III) complexes of maltol, deferiprone, 8-hydroxyquinoline (HQ) and 8-hydroxyquinoline-5-sulfonate (HQS) was characterized by a combined pH-potentiometric and UV-visible spectrophotometric approach. Formation of mono, bis and tris-ligand complexes was observed. The tris-ligand complexes of HQ (InQ3) and deferiprone (InD3) are present in solution in ca. 90% at 10 µM concentration at pH = 7.4, while the tris-maltolato complex (InM3) displays insufficient stability under these conditions. Binding towards human serum albumin (HSA) and (apo)transferrin ((apo)Tf) of InQ3, InD3 and InM3 complexes and Ga(III) analogue of InQ3 (GaQ3) together with InCl3 was investigated by a panel of methods: steady-state and time-resolved spectrofluorometry, UV-visible spectrophotometry and membrane ultrafiltration. Moderate binding of InQ3 to HSA was found (log K' = 5.0-5.1). InD3 binds to HSA to a much lower extent in comparison to InQ3. ApoTf is able to displace HQ, deferiprone and maltol effectively from their In(III) complexes. Protein binding of non-dissociated InQ3 was also observed at high complex-to-apoTf ratios. Studies conducted with the InQ3/GaQ3 - HSA - Tf ternary systems revealed the more pronounced Tf binding of In(III) via ligand release, while the original GaQ3 scaffold is preferably retained upon protein interactions and significant albumin binding occurs. Significant dissociation of InQ3 was detected in human blood serum as well.
Collapse
Affiliation(s)
- Orsolya Dömötör
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, 6720, Szeged, Hungary.
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, 6720, Szeged, Hungary.
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry and Research Cluster 'Translational Cancer Therapy Research', University of Vienna, Währinger Straße, 42, Vienna, Austria
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, 6720, Szeged, Hungary
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, 6720, Szeged, Hungary
| |
Collapse
|
37
|
The (Bio)Chemistry of Non-Transferrin-Bound Iron. Molecules 2022; 27:molecules27061784. [PMID: 35335148 PMCID: PMC8951307 DOI: 10.3390/molecules27061784] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
In healthy individuals, virtually all blood plasma iron is bound by transferrin. However, in several diseases and clinical conditions, hazardous non-transferrin-bound iron (NTBI) species occur. NTBI represents a potentially toxic iron form, being a direct cause of oxidative stress in the circulating compartment and tissue iron loading. The accumulation of these species can cause cellular damage in several organs, namely, the liver, spleen, and heart. Despite its pathophysiological relevance, the chemical nature of NTBI remains elusive. This has precluded its use as a clinical biochemical marker and the development of targeted therapies. Herein, we make a critical assessment of the current knowledge of NTBI speciation. The currently accepted hypotheses suggest that NTBI is mostly iron bound to citric acid and iron bound to serum albumin, but the chemistry of this system remains fuzzy. We explore the complex chemistry of iron complexation by citric acid and its implications towards NTBI reactivity. Further, the ability of albumin to bind iron is revised and the role of protein post-translational modifications on iron binding is discussed. The characterization of the NTBI species structure may be the starting point for the development of a standardized analytical assay, the better understanding of these species’ reactivity or the identification of NTBI uptake mechanisms by different cell types, and finally, to the development of new therapies.
Collapse
|
38
|
Aureliano M, Gumerova NI, Sciortino G, Garribba E, McLauchlan CC, Rompel A, Crans DC. Polyoxidovanadates' interactions with proteins: An overview. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214344] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Mohanty M, Sahu G, Banerjee A, Lima S, Patra SA, Crochet A, Sciortino G, Sanna D, Ugone V, Garribba E, Dinda R. Mo(VI) Potential Metallodrugs: Explaining the Transport and Cytotoxicity by Chemical Transformations. Inorg Chem 2022; 61:4513-4532. [PMID: 35213131 DOI: 10.1021/acs.inorgchem.2c00113] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transport and cytotoxicity of molybdenum-based drugs have been explained with the concept of chemical transformation, a very important idea in inorganic medicinal chemistry that is often overlooked in the interpretation of the biological activity of metal-containing systems. Two monomeric, [MoO2(L1)(MeOH)] (1) and [MoO2(L2)(EtOH)] (2), and two mixed-ligand dimeric MoVIO2 species, [{MoO2(L1-2)}2(μ-4,4'-bipy)] (3-4), were synthesized and characterized. The structures of the solid complexes were solved through SC-XRD, while their transformation in water was clarified by UV-vis, ESI-MS, and DFT. In aqueous solution, 1-4 lead to the penta-coordinated [MoO2(L1-2)] active species after the release of the solvent molecule (1 and 2) or removal of the 4,4'-bipy bridge (3 and 4). [MoO2(L1-2)] are stable in solution and react with neither serum bioligand nor cellular reductants. The binding affinity of 1-4 toward HSA and DNA were evaluated through analytical and computational methods and in both cases a non-covalent interaction is expected. Furthermore, the in vitro cytotoxicity of the complexes was also determined and flow cytometry analysis showed the apoptotic death of the cancer cells. Interestingly, μ-4,4'-bipy bridged complexes 3 and 4 were found to be more active than monomeric 1 and 2, due to the mixture of species generated, that is [MoO2(L1-2)] and the cytotoxic 4,4'-bipy released after their dissociation. Since in the cytosol neither the reduction of MoVI to MoV/IV takes place nor the production of reactive oxygen species (ROS) through Fenton-like reactions of 1-4 with H2O2 occurs, the mechanism of cytotoxicity should be attributable to the direct interaction with DNA that happens with a minor-groove binding which results in cell death through an apoptotic mechanism.
Collapse
Affiliation(s)
- Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Aurélien Crochet
- Department of Chemistry, Fribourg Center for Nanomaterials, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Valeria Ugone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
40
|
Lima E, Barroso AG, Sousa MA, Ferreira O, Boto RE, Fernandes JR, Almeida P, Silvestre SM, Santos AO, Reis LV. Picolylamine-functionalized benz[e]indole squaraine dyes: Synthetic approach, characterization and in vitro efficacy as potential anticancer phototherapeutic agents. Eur J Med Chem 2022; 229:114071. [PMID: 34979302 DOI: 10.1016/j.ejmech.2021.114071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022]
Abstract
Squaraine dyes are a family of compounds known for their relevant photophysical and photochemical properties potentially useful as photosensitizing agents. Since pyridines have been introduced into the skeleton of several families of compounds to enhance their pharmacological activity, and this approach had not yet been performed on squaraines, novel dyes derived from benz[e]indole functionalized with picolyl- and dipicolylamine and N-ethyl and -hexyl chains were designed and synthesized. After being fully characterized, their interaction with human albumin was in vitro and in silico evaluated. Dyes were further assessed for their phototoxicity activity, and the most interesting ones were studied regarding cell localization and induction of morphological cell changes, genotoxicity, apoptosis and cell cycle arrest. The molecules with N-ethyl chains showed the greatest in vitro light-dependent cytotoxic effects, particularly the zwitterionic squaraine dye and the one bearing a single pyridine unit, which also exhibited a more significant interaction with human albumin. Phenotypically, the cells incubated with these squaraines became smaller and rounded after irradiation, the effects varying with the tested concentration. Genotoxic effects were observed even without irradiation, being more evident for the N-ethyl picolylamine-derived dye. The fluorescence emitted by Rhodamine 123 largely coincided with that emitted by the dyes, suggesting that they are found preferentially in mitochondria. After irradiation, an increase in the subG1 population was verified by propidium iodide-staining analysis by flow cytometry, indicative of cell death by apoptosis.
Collapse
Affiliation(s)
- Eurico Lima
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal; Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - Andreia G Barroso
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Margarida A Sousa
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Octávio Ferreira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - Renato E Boto
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - José R Fernandes
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Paulo Almeida
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - Samuel M Silvestre
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-506, Covilhã, Portugal; Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, 3000-517, Coimbra, Portugal.
| | - Adriana O Santos
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-506, Covilhã, Portugal.
| | - Lucinda V Reis
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal.
| |
Collapse
|
41
|
Sastre-Oliva T, Corbacho-Alonso N, Albo-Escalona D, Lopez JA, Lopez-Almodovar LF, Vázquez J, Padial LR, Mourino-Alvarez L, Barderas MG. The Influence of Coronary Artery Disease in the Development of Aortic Stenosis and the Importance of the Albumin Redox State. Antioxidants (Basel) 2022; 11:antiox11020317. [PMID: 35204200 PMCID: PMC8868205 DOI: 10.3390/antiox11020317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Calcific aortic valve and coronary artery diseases are related cardiovascular pathologies in which common processes lead to the calcification of the corresponding affected tissue. Among the mechanisms involved in calcification, the oxidative stress that drives the oxidation of sulfur-containing amino acids such ascysteines is of particular interest. However, there are important differences between calcific aortic valve disease and coronary artery disease, particularly in terms of the reactive oxygen substances and enzymes involved. To evaluate what effect coronary artery disease has on aortic valves, we analyzed valve tissue from patients with severe calcific aortic stenosis with and without coronary artery disease. Proteins and peptides with oxidized cysteines sites were quantified, leading to the identification of 16 proteins with different levels of expression between the two conditions studied, as well as differences in the redox state of the tissue. We also identified two specific sites of cysteine oxidation in albumin that have not been described previously. These results provide evidence that coronary artery disease affects valve calcification, modifying the molecular profile of aortic valve tissue. In addition, the redox proteome is also altered when these conditions coincide, notably affecting human serum albumin.
Collapse
Affiliation(s)
- Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
| | - Diego Albo-Escalona
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
| | - Juan A. Lopez
- Cardiovascular Proteomics Laboratory and Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBER-CV), Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (J.A.L.); (J.V.)
| | - Luis F. Lopez-Almodovar
- Cardiac Surgery, Hospital Virgen de la Salud, Servicio de Salud de Castilla-La Mancha (SESCAM), 45004 Toledo, Spain;
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory and Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBER-CV), Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (J.A.L.); (J.V.)
| | - Luis R. Padial
- Department of cardiology, Hospital Virgen de la Salud, Servicio de Salud de Castilla-La Mancha (SESCAM), 45004 Toledo, Spain;
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
- Correspondence: or (L.M.-A.); or (M.G.B.); Tel.: +34-9253-96826 (L.M.A. & M.G.B.)
| | - Maria G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
- Correspondence: or (L.M.-A.); or (M.G.B.); Tel.: +34-9253-96826 (L.M.A. & M.G.B.)
| |
Collapse
|
42
|
Parsekar S, Paliwal K, Haldar P, Antharjanam PKS, Kumar M. Synthesis, Characterization, Crystal Structure, DNA and HSA Interactions, and Anticancer Activity of a Mononuclear Cu(II) Complex with a Schiff Base Ligand Containing a Thiadiazoline Moiety. ACS OMEGA 2022; 7:2881-2896. [PMID: 35097283 PMCID: PMC8792924 DOI: 10.1021/acsomega.1c05750] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/30/2021] [Indexed: 05/07/2023]
Abstract
A mononuclear Cu(II) complex [Cu(HL)(o-phen)]·H2O (1) [H3L =, o-phen = 1,10-phenanthroline] was isolated from methanol, and its X-ray single-crystal structure was determined. Frozen glass X-band EPR of 1 in dimethylformamide (DMF) at LNT showed a spectrum that is characteristic of a monomeric tetragonal character with g ∥ = 2.164, g ⊥ = 2.087, A ∥ = 19.08 mT, and A ⊥ ≤ 4 mT. Electronic spectroscopic studies using calf thymus DNA (CT-DNA) showed strong binding affinity of 1 as reflected from its intrinsic binding constant (K b) value of 2.85 × 105 M-1. Competitive behavior of 1 with ethidium bromide (EB) displayed intercalative binding of DNA (K app = 1.3 × 106 M-1). The compound displayed significant oxidative cleavage of pUC19 DNA. The interaction between HSA and complex 1 was examined by employing fluorescence and electronic absorption spectroscopic experiments. The secondary and tertiary structures of HSA were found to be altered as suggested by three-dimensional (3D) fluorescence experiments. The affinity of 1 to bind to HSA was found to be strong as indicated from its value of the binding constant (K a = 2.89 × 105 M-1). Intrinsic fluorescence of the protein was found to be reduced through a mechanism of static quenching as suggested from the k q (2.01 × 1013 M-1 s-1) value, the bimolecular quenching constant. The Förster resonance energy transfer (FRET) process may also be accounted for such a high k q value. The r value (2.85 nm) calculated from FRET theory suggested that the distance between complex 1 (acceptor) and HSA (donor) is quite close. Complex 1 primarily bound to HSA in subdomain IIA as suggested by molecular docking studies. IC50 values (0.80 and 0.43 μM, respectively) obtained from the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with HeLa and MCF7 cells suggested remarkable in vitro anticancer activity of 1. Nuclear dual staining assays revealed that cell death occurred via apoptosis in HeLa cells and reactive oxygen species (ROS) accumulation caused apoptosis induction. On treatment with a 5 μM dose of 1 in HeLa cells, the cell population significantly increased in the G2/M phase, while it was decreased in G0/G1 and S phases as compared to the control, clearly indicating G2/M phase arrest.
Collapse
Affiliation(s)
- Sidhali
U. Parsekar
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| | - Kumudini Paliwal
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| | - Paramita Haldar
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| | | | - Manjuri Kumar
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| |
Collapse
|
43
|
Progress of albumin-polymer conjugates as efficient drug carriers. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2021-2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Albumin is a protein that has garnered wide attention in nanoparticle-based drug delivery of cancer therapeutics due to its natural abundance and unique cancer-targeting ability. The propensity of albumin to naturally accumulate in tumours, further augmented by the incorporation of targeting ligands, has made the field of albumin-polymer conjugate development a much pursued one. Polymerization techniques such as RAFT and ATRP have paved the path to incorporate various polymers in the design of albumin-polymer hybrids, indicating the advancement of the field since the first instance of PEGylated albumin in 1977. The synergistic combination of albumin and polymer endows manifold features to these macromolecular hybrids to evolve as next generation therapeutics. The current review is successive to our previously published review on drug delivery vehicles based on albumin-polymer conjugates and aims to provide an update on the progress of albumin-polymer conjugates. This review also highlights the alternative of exploring albumin-polymer conjugates formed via supramolecular, non-covalent interactions. Albumin-based supramolecular polymer systems provide a versatile platform for functionalization, thereby, holding great potential in enhancing cytotoxicity and controlled delivery of therapeutic agents.
Collapse
|
44
|
Szkudlarek A, Pożycka J, Kulig K, Owczarzy A, Rogóż W, Maciążek-Jurczyk M. Changes in Glycated Human Serum Albumin Binding Affinity for Losartan in the Presence of Fatty Acids In Vitro Spectroscopic Analysis. Molecules 2022; 27:401. [PMID: 35056715 PMCID: PMC8778988 DOI: 10.3390/molecules27020401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/11/2023] Open
Abstract
Conformational changes in human serum albumin due to numerous modifications that affect its stability and biological activity should be constantly monitored, especially in elderly patients and those suffering from chronic diseases (which include diabetes, obesity, and hypertension). The main goal of this study was to evaluate the effect of a mixture of fatty acids (FA) on the affinity of losartan (LOS, an angiotensin II receptor (AT1) blocker used in hypertension, a first-line treatment with coexisting diabetes) for glycated albumin-simulating the state of diabetes in the body. Individual fatty acid mixtures corresponded to the FA content in the physiological state and in various clinical states proceeding with increased concentrations of saturated (FAS) and unsaturated (FAUS) acids. Based on fluorescence studies, we conclude that LOS interacts with glycated human serum albumin (af)gHSA in the absence and in the presence of fatty acids ((af)gHSAphys, (af)gHSA4S, (af)gHSA8S, (af)gHSA4US, and (af)gHSA8US) and quenches the albumin fluorescence intensity via a static quenching mechanism. LOS not only binds to its specific binding sites in albumins but also non-specifically interacts with the hydrophobic fragments of its surface. Incorrect contents of fatty acids in the body affect the drug pharmacokinetics. A higher concentration of both FAS and FAUS acids in glycated albumin reduces the stability of the complex formed with losartan. The systematic study of FA and albumin interactions using an experimental model mimicking pathological conditions in the body may result in new tools for personalized pharmacotherapy.
Collapse
Affiliation(s)
- Agnieszka Szkudlarek
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (J.P.); (K.K.); (A.O.); (W.R.); (M.M.-J.)
| | | | | | | | | | | |
Collapse
|
45
|
Lachowicz JI, Pichiri G, Piludu M, Fais S, Orrù G, Congiu T, Piras M, Faa G, Fanni D, Dalla Torre G, Lopez X, Chandra K, Szczepski K, Jaremko L, Ghosh M, Emwas AH, Castagnola M, Jaremko M, Hannappel E, Coni P. Thymosin β4 Is an Endogenous Iron Chelator and Molecular Switcher of Ferroptosis. Int J Mol Sci 2022; 23:551. [PMID: 35008976 PMCID: PMC8745404 DOI: 10.3390/ijms23010551] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Thymosin β4 (Tβ4) was extracted forty years agofrom calf thymus. Since then, it has been identified as a G-actin binding protein involved in blood clotting, tissue regeneration, angiogenesis, and anti-inflammatory processes. Tβ4 has also been implicated in tumor metastasis and neurodegeneration. However, the precise roles and mechanism(s) of action of Tβ4 in these processes remain largely unknown, with the binding of the G-actin protein being insufficient to explain these multi-actions. Here we identify for the first time the important role of Tβ4 mechanism in ferroptosis, an iron-dependent form of cell death, which leads to neurodegeneration and somehow protects cancer cells against cell death. Specifically, we demonstrate four iron2+ and iron3+ binding regions along the peptide and show that the presence of Tβ4 in cell growing medium inhibits erastin and glutamate-induced ferroptosis in the macrophage cell line. Moreover, Tβ4 increases the expression of oxidative stress-related genes, namely BAX, hem oxygenase-1, heat shock protein 70 and thioredoxin reductase 1, which are downregulated during ferroptosis. We state the hypothesis that Tβ4 is an endogenous iron chelator and take part in iron homeostasis in the ferroptosis process. We discuss the literature data of parallel involvement of Tβ4 and ferroptosis in different human pathologies, mainly cancer and neurodegeneration. Our findings confronted with literature data show that controlled Tβ4 release could command on/off switching of ferroptosis and may provide novel therapeutic opportunities in cancer and tissue degeneration pathologies.
Collapse
Affiliation(s)
- Joanna I. Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (J.I.L.); (T.C.); (M.P.); (G.F.); (D.F.); (P.C.)
| | - Giusi Pichiri
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (J.I.L.); (T.C.); (M.P.); (G.F.); (D.F.); (P.C.)
| | - Marco Piludu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Sara Fais
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (S.F.); (G.O.)
| | - Germano Orrù
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (S.F.); (G.O.)
| | - Terenzio Congiu
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (J.I.L.); (T.C.); (M.P.); (G.F.); (D.F.); (P.C.)
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (J.I.L.); (T.C.); (M.P.); (G.F.); (D.F.); (P.C.)
| | - Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (J.I.L.); (T.C.); (M.P.); (G.F.); (D.F.); (P.C.)
| | - Daniela Fanni
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (J.I.L.); (T.C.); (M.P.); (G.F.); (D.F.); (P.C.)
| | - Gabriele Dalla Torre
- Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Donostia International Physics Center (DIPC), P.K. 1072 Donostia Euskadi, 20080 San Sebastian, Spain; (G.D.T.); (X.L.)
| | - Xabier Lopez
- Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Donostia International Physics Center (DIPC), P.K. 1072 Donostia Euskadi, 20080 San Sebastian, Spain; (G.D.T.); (X.L.)
| | - Kousik Chandra
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.C.); (K.S.); (L.J.); (M.G.)
| | - Kacper Szczepski
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.C.); (K.S.); (L.J.); (M.G.)
| | - Lukasz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.C.); (K.S.); (L.J.); (M.G.)
| | - Mitra Ghosh
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.C.); (K.S.); (L.J.); (M.G.)
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Massimo Castagnola
- Institute of Chemistry of Molecular Recognition, National Research Council (Consiglio Nazionale delle Ricerche), 00185 Rome, Italy;
- Laboratory of Proteomics and Metabolomics, IRCCS, Santa Lucia Foundation, 00143 Rome, Italy
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.C.); (K.S.); (L.J.); (M.G.)
| | - Ewald Hannappel
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany;
| | - Pierpaolo Coni
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (J.I.L.); (T.C.); (M.P.); (G.F.); (D.F.); (P.C.)
| |
Collapse
|
46
|
Alshuwaier GO, Ghazzawi HA, Alaqil AI, Alsharif YR, Bursais AK, Amawi AT. Different training sessions impact on serum protein profile of Saudi professional soccer players. Niger J Clin Pract 2022; 25:1287-1294. [DOI: 10.4103/njcp.njcp_72_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
47
|
Alanazi RL, Zaki M, Bawazir WA. Synthesis and characterization of new metal complexes containing Triazino[5,6–b]indole moiety: In vitro DNA and HSA binding studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
48
|
Pessoa JC, Santos MF, Correia I, Sanna D, Sciortino G, Garribba E. Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214192] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Coni P, Pichiri G, Lachowicz JI, Ravarino A, Ledda F, Fanni D, Gerosa C, Piras M, Coghe F, Gibo Y, Cau F, Castagnola M, Van Eyken P, Saba L, Piludu M, Faa G. Zinc as a Drug for Wilson's Disease, Non-Alcoholic Liver Disease and COVID-19-Related Liver Injury. Molecules 2021; 26:6614. [PMID: 34771023 PMCID: PMC8587580 DOI: 10.3390/molecules26216614] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Zinc is the second most abundant trace element in the human body, and it plays a fundamental role in human physiology, being an integral component of hundreds of enzymes and transcription factors. The discovery that zinc atoms may compete with copper for their absorption in the gastrointestinal tract let to introduce zinc in the therapy of Wilson's disease, a congenital disorder of copper metabolism characterized by a systemic copper storage. Nowadays, zinc salts are considered one of the best therapeutic approach in patients affected by Wilson's disease. On the basis of the similarities, at histological level, between Wilson's disease and non-alcoholic liver disease, zinc has been successfully introduced in the therapy of non-alcoholic liver disease, with positive effects both on insulin resistance and oxidative stress. Recently, zinc deficiency has been indicated as a possible factor responsible for the susceptibility of elderly patients to undergo infection by SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic. Here, we present the data correlating zinc deficiency with the insurgence and progression of Covid-19 with low zinc levels associated with severe disease states. Finally, the relevance of zinc supplementation in aged people at risk for SARS-CoV-2 is underlined, with the aim that the zinc-based drug, classically used in the treatment of copper overload, might be recorded as one of the tools reducing the mortality of COVID-19, particularly in elderly people.
Collapse
Affiliation(s)
- Pierpaolo Coni
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Giuseppina Pichiri
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Alberto Ravarino
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Francesca Ledda
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Daniela Fanni
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Clara Gerosa
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Ferdinando Coghe
- Dipartimento Servizi di Diagnosi e Cura, Azienda Ospedaliero-Universitaria di Cagliari (A.O.U.), University of Cagliari, 09024 Cagliari, Italy;
| | - Yukio Gibo
- Hepatology Clinic, 1-34-20 Muraimachiminami, Matsumoto, Nagano 399-0036, Japan;
| | - Flaviana Cau
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Massimo Castagnola
- Laboratorio di Proteomica e Metabonomica-Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00013 Rome, Italy;
| | - Peter Van Eyken
- Department of Pathology, Genk Regional Ziekenhuis, 3600 Genk, Belgium;
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari—Polo di Monserrato s.s. 554, 09045 Monserrato, Italy;
| | - Marco Piludu
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy;
| | - Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
50
|
Binding of α-lipoic acid to human serum albumin: spectroscopic and molecular modeling studies. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02858-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|