1
|
Shakibapour N, Asoodeh A, Saberi MR, Chamani J. Investigating the binding mechanism of temporin Rb with human serum albumin, holo transferrin, and hemoglobin using spectroscopic and molecular dynamics techniques. J Mol Liq 2023; 389:122833. [DOI: 10.1016/j.molliq.2023.122833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
|
2
|
Cui M, Nguyen D, Gaillez MP, Heiden S, Lin W, Thompson M, Reddavide FV, Chen Q, Zhang Y. Trio-pharmacophore DNA-encoded chemical library for simultaneous selection of fragments and linkers. Nat Commun 2023; 14:1481. [PMID: 36932079 PMCID: PMC10023787 DOI: 10.1038/s41467-023-37071-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
The split-and-pool method has been widely used to synthesize chemical libraries of a large size for early drug discovery, albeit without the possibility of meaningful quality control. In contrast, a self-assembled DNA-encoded chemical library (DEL) allows us to construct an m x n-member library by mixing an m-member and an n-member pre-purified sub-library. Herein, we report a trio-pharmacophore DEL (T-DEL) of m x l x n members through assembling three pre-purified and validated sub-libraries. The middle sub-library is synthesized using DNA-templated synthesis with different reaction mechanisms and designed as a linkage connecting the fragments displayed on the flanking two sub-libraries. Despite assembling three fragments, the resulting compounds do not exceed the up-to-date standard of molecular weight regarding drug-likeness. We demonstrate the utility of T-DEL in linker optimization for known binding fragments against trypsin and carbonic anhydrase II and by de novo selections against matrix metalloprotease-2 and -9.
Collapse
Affiliation(s)
- Meiying Cui
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | - Michelle Patino Gaillez
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | - Weilin Lin
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | | | - Qinchang Chen
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, China.
- School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Yixin Zhang
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
3
|
Wienen‐Schmidt B, Oebbeke M, Ngo K, Heine A, Klebe G. Two Methods, One Goal: Structural Differences between Cocrystallization and Crystal Soaking to Discover Ligand Binding Poses. ChemMedChem 2021; 16:292-300. [PMID: 33029876 PMCID: PMC7821316 DOI: 10.1002/cmdc.202000565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/02/2020] [Indexed: 11/10/2022]
Abstract
In lead optimization, protein crystallography is an indispensable tool to analyze drug binding. Binding modes and non-covalent interaction inventories are essential to design follow-up synthesis candidates. Two protocols are commonly applied to produce protein-ligand complexes: cocrystallization and soaking. Because of its time and cost effectiveness, soaking is the more popular method. Taking eight ligand hinge binders of protein kinase A, we demonstrate that cocrystallization is superior. Particularly for flexible proteins, such as kinases, and larger ligands cocrystallization captures more reliable the correct binding pose and induced protein adaptations. The geometrical discrepancies between soaking and cocrystallization appear smaller for fragment-sized ligands. For larger flexible ligands that trigger conformational changes of the protein, soaking can be misleading and underestimates the number of possible polar interactions due to inadequate, highly impaired positions of protein amino-acid side and main chain atoms. Thus, if applicable cocrystallization should be the gold standard to study protein-ligand complexes.
Collapse
Affiliation(s)
- Barbara Wienen‐Schmidt
- Institut für Pharmazeutische ChemiePhilipps-Universität MarburgMarbacher Weg 635032MarburgGermany
| | - Matthias Oebbeke
- Institut für Pharmazeutische ChemiePhilipps-Universität MarburgMarbacher Weg 635032MarburgGermany
| | - Khang Ngo
- Institut für Pharmazeutische ChemiePhilipps-Universität MarburgMarbacher Weg 635032MarburgGermany
| | - Andreas Heine
- Institut für Pharmazeutische ChemiePhilipps-Universität MarburgMarbacher Weg 635032MarburgGermany
| | - Gerhard Klebe
- Institut für Pharmazeutische ChemiePhilipps-Universität MarburgMarbacher Weg 635032MarburgGermany
| |
Collapse
|
4
|
He G, Gong B, Li J, Song Y, Li S, Lu X. An Improved Receptor-Based Pharmacophore Generation Algorithm Guided by Atomic Chemical Characteristics and Hybridization Types. Front Pharmacol 2018; 9:1463. [PMID: 30618755 PMCID: PMC6305075 DOI: 10.3389/fphar.2018.01463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/29/2018] [Indexed: 11/13/2022] Open
Abstract
Pharmacophore-based virtual screening is an important and leading compound discovery method. However, current pharmacophore generation algorithms suffer from difficulties, such as ligand-dependent computation and massive extractive chemical features. On the basis of the features extracted by the five probes in Pocket v.3, this paper presents an improved receptor-based pharmacophore generation algorithm guided by atomic chemical characteristics and hybridization types. The algorithm works under the constraint of receptor atom hybridization types and space distance. Four chemical characteristics (H-A, H-D, and positive and negative charges) were extracted using the hybridization type of receptor atoms, and the feature point sets were merged with 3 Å space constraints. Furthermore, on the basis of the original extraction of hydrophobic characteristics, extraction of aromatic ring chemical characteristics was achieved by counting the number of aromatics, searching for residual base aromatic ring, and determining the direction of aromatic rings. Accordingly, extraction of six kinds of chemical characteristics of the pharmacophore was achieved. In view of the pharmacophore characteristics, our algorithm was compared with the existing LigandScout algorithm. The results demonstrate that the pharmacophore possessing six chemical characteristics can be characterized using our algorithm, which features fewer pharmacophore characteristics and is ligand independent. The computation of many instances from the directory of useful decoy dataset show that the active molecules and decoy molecules can be effectively differentiated through the presented method in this paper.
Collapse
Affiliation(s)
- Gaoqi He
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, China.,School of Computer Science and Software Engineering, East China Normal University, Shanghai, China
| | - Bojie Gong
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Jianqiang Li
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiping Song
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, China
| | - Xingjian Lu
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Sekhar A, Velyvis A, Zoltsman G, Rosenzweig R, Bouvignies G, Kay LE. Conserved conformational selection mechanism of Hsp70 chaperone-substrate interactions. eLife 2018; 7:32764. [PMID: 29460778 PMCID: PMC5819949 DOI: 10.7554/elife.32764] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/27/2017] [Indexed: 12/17/2022] Open
Abstract
Molecular recognition is integral to biological function and frequently involves preferred binding of a molecule to one of several exchanging ligand conformations in solution. In such a process the bound structure can be selected from the ensemble of interconverting ligands a priori (conformational selection, CS) or may form once the ligand is bound (induced fit, IF). Here we focus on the ubiquitous and conserved Hsp70 chaperone which oversees the integrity of the cellular proteome through its ATP-dependent interaction with client proteins. We directly quantify the flux along CS and IF pathways using solution NMR spectroscopy that exploits a methyl TROSY effect and selective isotope-labeling methodologies. Our measurements establish that both bacterial and human Hsp70 chaperones interact with clients by selecting the unfolded state from a pre-existing array of interconverting structures, suggesting a conserved mode of client recognition among Hsp70s and highlighting the importance of molecular dynamics in this recognition event. Proteins are the workhorses of a cell and are involved in almost all biological processes. Newly made proteins need to ‘fold’ into precise three-dimensional shapes in order to carry out their roles. However, proteins sometimes fold incorrectly or unfold. These protein forms are not able to work effectively and in some cases may even cause diseases. Chaperone proteins help other proteins to fold correctly and are found in living organisms ranging in complexity from bacteria to humans. There are many different types of chaperones that play different roles inside cells. One, called Hsp70, binds to proteins that are incorrectly folded to help them to mature into their correct structures. However, it was not clear whether Hsp70 can also associate with the mature, correctly folded form of the proteins. A technique called Nuclear Magnetic Resonance (NMR) spectroscopy can distinguish between mature, unfolded and chaperone-bound forms of the same protein. Sekhar et al. therefore used NMR to investigate which forms of a protein Hsp70 binds to. This revealed that both the bacterial and human versions of the Hsp70 chaperone interact only with unfolded proteins. The results presented by Sekhar et al. also explain why Hsp70 does not disrupt the routine workings of the cell: because it does not bind to mature forms of proteins. These observations extend our understanding of how chaperones assist in folding proteins, and fit into a broader research theme exploring how proteins recognize one another. It will now be interesting to see whether the same mechanism holds for more complex forms of proteins, such as aggregates, or larger protein structures with regions of both folded and unfolded elements.
Collapse
Affiliation(s)
- Ashok Sekhar
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Algirdas Velyvis
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Guy Zoltsman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rina Rosenzweig
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada.,Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Guillaume Bouvignies
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, Paris, France.,Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules, Paris, France
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada.,Hospital for Sick Children, Program in Molecular Medicine, University Avenue, Toronto, Canada
| |
Collapse
|
6
|
Sager CP, Fiege B, Zihlmann P, Vannam R, Rabbani S, Jakob RP, Preston RC, Zalewski A, Maier T, Peczuh MW, Ernst B. The price of flexibility - a case study on septanoses as pyranose mimetics. Chem Sci 2017; 9:646-654. [PMID: 29629131 PMCID: PMC5868388 DOI: 10.1039/c7sc04289b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022] Open
Abstract
Seven-membered ring mimetics of mannose were studied as ligands for the mannose-specific bacterial lectin FimH, which plays an essential role in the first step of urinary tract infections (UTI). A competitive binding assay and isothermal titration calorimetry (ITC) experiments indicated an approximately ten-fold lower affinity for the seven-membered ring mannose mimetic 2-O-n-heptyl-1,6-anhydro-d-glycero-d-galactitol (7) compared to n-heptyl α-d-mannopyranoside (2), resulting exclusively from a loss of conformational entropy. Investigations by solution NMR, X-ray crystallography, and molecular modeling revealed that 7 establishes a superimposable H-bond network compared to mannoside 2, but at the price of a high entropic penalty due to the loss of its pronounced conformational flexibility. These results underscore the importance of having access to the complete thermodynamic profile of a molecular interaction to "rescue" ligands from entropic penalties with an otherwise perfect fit to the protein binding site.
Collapse
Affiliation(s)
- Christoph P Sager
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| | - Brigitte Fiege
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| | - Pascal Zihlmann
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| | - Raghu Vannam
- Department of Chemistry , University of Connecticut , 55 N. Eagleville Road U3060, Storrs , CT , 06279 USA .
| | - Said Rabbani
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| | - Roman P Jakob
- University of Basel , Biozentrum: Focal Area Structural Biology , Klingelbergstrasse 70 , 4056 Basel , Switzerland
| | - Roland C Preston
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| | - Adam Zalewski
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| | - Timm Maier
- University of Basel , Biozentrum: Focal Area Structural Biology , Klingelbergstrasse 70 , 4056 Basel , Switzerland
| | - Mark W Peczuh
- Department of Chemistry , University of Connecticut , 55 N. Eagleville Road U3060, Storrs , CT , 06279 USA .
| | - Beat Ernst
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| |
Collapse
|
7
|
Rožman K, Lešnik S, Brus B, Hrast M, Sova M, Patin D, Barreteau H, Konc J, Janežič D, Gobec S. Discovery of new MurA inhibitors using induced-fit simulation and docking. Bioorg Med Chem Lett 2017; 27:944-949. [DOI: 10.1016/j.bmcl.2016.12.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 12/26/2016] [Accepted: 12/29/2016] [Indexed: 11/15/2022]
|
8
|
Optimal strategies for virtual screening of induced-fit and flexible target in the 2015 D3R Grand Challenge. J Comput Aided Mol Des 2016; 30:695-706. [PMID: 27573981 DOI: 10.1007/s10822-016-9941-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/17/2016] [Indexed: 01/31/2023]
Abstract
Induced fit or protein flexibility can make a given structure less useful for docking and/or scoring. The 2015 Drug Design Data Resource (D3R) Grand Challenge provided a unique opportunity to prospectively test optimal strategies for virtual screening in these type of targets: heat shock protein 90 (HSP90), a protein with multiple ligand-induced binding modes; and mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), a kinase with a large flexible pocket. Using previously known co-crystal structures, we tested predictions from methods that keep the receptor structure fixed and used (a) multiple receptor/ligand co-crystals as binding templates for minimization or docking ("close"), (b) methods that align or dock to a single receptor ("cross"), and (c) a hybrid approach that chose from multiple bound ligands as initial templates for minimization to a single receptor ("min-cross"). Pose prediction using our "close" models resulted in average ligand RMSDs of 0.32 and 1.6 Å for HSP90 and MAP4K4, respectively, the most accurate models of the community-wide challenge. On the other hand, affinity ranking using our "cross" methods performed well overall despite the fact that a fixed receptor cannot model ligand-induced structural changes,. In addition, "close" methods that leverage the co-crystals of the different binding modes of HSP90 also predicted the best affinity ranking. Our studies suggest that analysis of changes on the receptor structure upon ligand binding can help select an optimal virtual screening strategy.
Collapse
|
9
|
De Vivo M, Masetti M, Bottegoni G, Cavalli A. Role of Molecular Dynamics and Related Methods in Drug Discovery. J Med Chem 2016; 59:4035-61. [DOI: 10.1021/acs.jmedchem.5b01684] [Citation(s) in RCA: 538] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marco De Vivo
- Laboratory
of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- IAS-5/INM-9 Computational
Biomedicine Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Matteo Masetti
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
6, I-40126 Bologna, Italy
| | - Giovanni Bottegoni
- CompuNet, Istituto
Italiano di Tecnologia, Via Morego
30, 16163 Genova, Italy
- BiKi Technologies
srl, Via XX Settembre 33/10, 16121 Genova, Italy
| | - Andrea Cavalli
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
6, I-40126 Bologna, Italy
- CompuNet, Istituto
Italiano di Tecnologia, Via Morego
30, 16163 Genova, Italy
| |
Collapse
|
10
|
Wartha F, Horn AHC, Meiselbach H, Sticht H. Molecular Dynamics Simulations of HIV-1 Protease Suggest Different Mechanisms Contributing to Drug Resistance. J Chem Theory Comput 2015; 1:315-24. [PMID: 26641303 DOI: 10.1021/ct049869o] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A major problem in the antiretroviral treatment of HIV-infections with protease-inhibitors is the emergence of resistance, resulting from the occurrence of distinct mutations within the protease molecule. In the present work molecular dynamics simulations of an active-site mutation (D30N) and a nonactive-site mutation (N88S) of HIV-1 protease that both directly confer resistance to the protease inhibitor Nelfinavir but not to Amprenavir were performed and compared to wild-type HIV-protease. A decreased interaction energy between protease and Nelfinavir was observed for the D30N mutant giving a plausible explanation for resistance, while the N88S mutation did not significantly affect the interaction energies in the bound form. Structural analysis including both ligand-bound and unliganded HIV-1 proteases revealed that the free N88S mutant protease shows significant differences in its hydrogen bonding pattern compared to free or Nelfinavir-bound wild-type protease. In particular, Asp30 forms more frequently a hydrogen bond with Ser88 in the unbound N88S mutant thus interfering with the Asp30-Nelfinavir interaction. These findings suggest that different molecular mechanisms contribute to resistance in active-site and nonactive-site mutants and propose a mechanism for the N88S mutant that is based on a shift of the conformational equilibrium of the unbound protease.
Collapse
Affiliation(s)
- Florian Wartha
- Abteilung Bioinformatik, Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | - Anselm H C Horn
- Abteilung Bioinformatik, Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | - Heike Meiselbach
- Abteilung Bioinformatik, Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | - Heinrich Sticht
- Abteilung Bioinformatik, Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| |
Collapse
|
11
|
Observed bromodomain flexibility reveals histone peptide- and small molecule ligand-compatible forms of ATAD2. Biochem J 2015; 466:337-46. [PMID: 25486442 DOI: 10.1042/bj20140933] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Preventing histone recognition by bromodomains emerges as an attractive therapeutic approach in cancer. Overexpression of ATAD2 (ATPase family AAA domain-containing 2 isoform A) in cancer cells is associated with poor prognosis making the bromodomain of ATAD2 a promising epigenetic therapeutic target. In the development of an in vitro assay and identification of small molecule ligands, we conducted structure-guided studies which revealed a conformationally flexible ATAD2 bromodomain. Structural studies on apo-, peptide-and small molecule-ATAD2 complexes (by co-crystallization) revealed that the bromodomain adopts a 'closed', histone-compatible conformation and a more 'open' ligand-compatible conformation of the binding site respectively. An unexpected conformational change of the conserved asparagine residue plays an important role in driving the peptide-binding conformation remodelling. We also identified dimethylisoxazole-containing ligands as ATAD2 binders which aided in the validation of the in vitro screen and in the analysis of these conformational studies.
Collapse
|
12
|
Homologous ligands accommodated by discrete conformations of a buried cavity. Proc Natl Acad Sci U S A 2015; 112:5039-44. [PMID: 25847998 DOI: 10.1073/pnas.1500806112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Conformational change in protein-ligand complexes is widely modeled, but the protein accommodation expected on binding a congeneric series of ligands has received less attention. Given their use in medicinal chemistry, there are surprisingly few substantial series of congeneric ligand complexes in the Protein Data Bank (PDB). Here we determine the structures of eight alkyl benzenes, in single-methylene increases from benzene to n-hexylbenzene, bound to an enclosed cavity in T4 lysozyme. The volume of the apo cavity suffices to accommodate benzene but, even with toluene, larger cavity conformations become observable in the electron density, and over the series two other major conformations are observed. These involve discrete changes in main-chain conformation, expanding the site; few continuous changes in the site are observed. In most structures, two discrete protein conformations are observed simultaneously, and energetic considerations suggest that these conformations are low in energy relative to the ground state. An analysis of 121 lysozyme cavity structures in the PDB finds that these three conformations dominate the previously determined structures, largely modeled in a single conformation. An investigation of the few congeneric series in the PDB suggests that discrete changes are common adaptations to a series of growing ligands. The discrete, but relatively few, conformational states observed here, and their energetic accessibility, may have implications for anticipating protein conformational change in ligand design.
Collapse
|
13
|
Grüner S, Neeb M, Barandun LJ, Sielaff F, Hohn C, Kojima S, Steinmetzer T, Diederich F, Klebe G. Impact of protein and ligand impurities on ITC-derived protein–ligand thermodynamics. Biochim Biophys Acta Gen Subj 2014; 1840:2843-50. [DOI: 10.1016/j.bbagen.2014.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 11/28/2022]
|
14
|
Fischer M, Coleman RG, Fraser JS, Shoichet BK. Incorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery. Nat Chem 2014; 6:575-83. [PMID: 24950326 PMCID: PMC4144196 DOI: 10.1038/nchem.1954] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/11/2014] [Indexed: 12/04/2022]
Abstract
Proteins fluctuate between alternative conformations, which presents a challenge for ligand discovery because such flexibility is difficult to treat computationally owing to problems with conformational sampling and energy weighting. Here we describe a flexible docking method that samples and weights protein conformations using experimentally derived conformations as a guide. The crystallographically refined occupancies of these conformations, which are observable in an apo receptor structure, define energy penalties for docking. In a large prospective library screen, we identified new ligands that target specific receptor conformations of a cavity in cytochrome c peroxidase, and we confirm both ligand pose and associated receptor conformation predictions by crystallography. The inclusion of receptor flexibility led to ligands with new chemotypes and physical properties. By exploiting experimental measures of loop and side-chain flexibility, this method can be extended to the discovery of new ligands for hundreds of targets in the Protein Data Bank for which similar experimental information is available.
Collapse
Affiliation(s)
- Marcus Fischer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158
- Faculty of Pharmacy, Donnelly Center, University of Toronto, 160 College St. Toronto Ontario M5S 3E1
| | - Ryan G. Coleman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158
- Faculty of Pharmacy, Donnelly Center, University of Toronto, 160 College St. Toronto Ontario M5S 3E1
| |
Collapse
|
15
|
Ruggiero A, Marchant J, Squeglia F, Makarov V, De Simone A, Berisio R. Molecular determinants of inactivation of the resuscitation promoting factor B fromMycobacterium tuberculosis. J Biomol Struct Dyn 2013; 31:195-205. [DOI: 10.1080/07391102.2012.698243] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Kabiri M, Amiri-Tehranizadeh Z, Baratian A, Saberi MR, Chamani J. Use of spectroscopic, zeta potential and molecular dynamic techniques to study the interaction between human holo-transferrin and two antagonist drugs: comparison of binary and ternary systems. Molecules 2012; 17:3114-47. [PMID: 22410420 PMCID: PMC6268275 DOI: 10.3390/molecules17033114] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/24/2012] [Accepted: 02/28/2012] [Indexed: 12/03/2022] Open
Abstract
For the first time, the binding of ropinirole hydrochloride (ROP) and aspirin (ASA) to human holo-transferrin (hTf) has been investigated by spectroscopic approaches (fluorescence quenching, synchronous fluorescence, time-resolved fluorescence, three-dimensional fluorescence, UV-vis absorption, circular dichroism, resonance light scattering), as well as zeta potential and molecular modeling techniques, under simulated physiological conditions. Fluorescence analysis was used to estimate the effect of the ROP and ASA drugs on the fluorescence of hTf as well as to define the binding and quenching properties of binary and ternary complexes. The synchronized fluorescence and three-dimensional fluorescence spectra demonstrated some micro-environmental and conformational changes around the Trp and Tyr residues with a faint red shift. Thermodynamic analysis displayed the van der Waals forces and hydrogen bonds interactions are the major acting forces in stabilizing the complexes. Steady-state and time-resolved fluorescence data revealed that the fluorescence quenching of complexes are static mechanism. The effect of the drugs aggregating on the hTf resulted in an enhancement of the resonance light scattering (RLS) intensity. The average binding distance between were computed according to the forster non-radiation energy transfer theory. The circular dichroism (CD) spectral examinations indicated that the binding of the drugs induced a conformational change of hTf. Measurements of the zeta potential indicated that the combination of electrostatic and hydrophobic interactions between ROP, ASA and hTf formed micelle-like clusters. The molecular modeling confirmed the experimental results. This study is expected to provide important insight into the interaction of hTf with ROP and ASA to use in various toxicological and therapeutic processes.
Collapse
Affiliation(s)
- Mona Kabiri
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad 9175687119, Iran;
| | - Zeinab Amiri-Tehranizadeh
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Science, Mashhad 9175687119, Iran; (Z.A.-T.); (A.B.); (M.R.S.)
| | - Ali Baratian
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Science, Mashhad 9175687119, Iran; (Z.A.-T.); (A.B.); (M.R.S.)
| | - Mohammad Reza Saberi
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Science, Mashhad 9175687119, Iran; (Z.A.-T.); (A.B.); (M.R.S.)
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad 9175687119, Iran;
| |
Collapse
|
17
|
Surpateanu G, Iorga BI. Evaluation of docking performance in a blinded virtual screening of fragment-like trypsin inhibitors. J Comput Aided Mol Des 2011; 26:595-601. [DOI: 10.1007/s10822-011-9526-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
|
18
|
Ruiz-Carrillo D, Koch B, Parthier C, Wermann M, Dambe T, Buchholz M, Ludwig HH, Heiser U, Rahfeld JU, Stubbs MT, Schilling S, Demuth HU. Structures of Glycosylated Mammalian Glutaminyl Cyclases Reveal Conformational Variability near the Active Center. Biochemistry 2011; 50:6280-8. [DOI: 10.1021/bi200249h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David Ruiz-Carrillo
- Probiodrug AG, Weinbergweg 22, D-06120 Halle (Saale), Germany
- Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Birgit Koch
- Probiodrug AG, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Christoph Parthier
- Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Michael Wermann
- Probiodrug AG, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Tresfore Dambe
- PSF AG, Robert-Roessle-Strasse 10, D-13092 Berlin, Germany
| | - Mirko Buchholz
- Probiodrug AG, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | | | - Ulrich Heiser
- Probiodrug AG, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | | | - Milton T. Stubbs
- Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
- Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | | | | |
Collapse
|
19
|
Yamane J, Yao M, Zhou Y, Hiramatsu Y, Fujiwara K, Yamaguchi T, Yamaguchi H, Togame H, Tsujishita H, Takemoto H, Tanaka I. In-crystal affinity ranking of fragment hit compounds reveals a relationship with their inhibitory activities. J Appl Crystallogr 2011. [DOI: 10.1107/s0021889811017717] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Fragment-based drug discovery (FBDD), which is a molecular build-up strategy from small scaffolds, has recently become a promising approach for lead-compound generation. Although high-throughput protein crystallography is usually used to determine the protein–ligand complex structure and identify potential hit compounds, the relationship between the quality of theFo–Fcmaps of hit compounds and their inhibitory activities has rarely been examined. To address this issue, crystallographic competition experiments were carried out to determine the relative order of the in-crystal binding affinities using five hit compounds of bovine pancreatic trypsin inhibitors. Soaking experiments of all combinations of the five hit compounds were used to define the in-crystal affinity ranking. Based on characterization by a high-concentration bioassay, a clear correlation was observed between in-crystal binding affinities and the inhibitory activities in solution. Moreover, the correlation analysis revealed that X-ray-based screening can detect a weak hit compound with inhibitory activity below the limit of detection, even in a high-concentration assay. The proposed crystallographic competition method could function as a valuable tool, not only to select a plausible starting scaffold for subsequent synthetic efforts but also to access structure–activity relationships using fragment compounds with a wider detection limit than a biological assay. The crystallographic validation methodology described here will greatly accelerate the hit-to-lead process during fragment-based and structure-based drug design.
Collapse
|
20
|
Schöpfel M, Tziridis A, Arnold U, Stubbs MT. Towards a Restriction Proteinase: Construction of a Self-Activating Enzyme. Chembiochem 2011; 12:1523-7. [DOI: 10.1002/cbic.201000787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Indexed: 11/10/2022]
|
21
|
Oliveira TM, Ahmad R, Engh RA. VX680 Binding in Aurora A: π−π Interactions Involving the Conserved Aromatic Amino Acid of the Flexible Glycine-Rich Loop. J Phys Chem A 2011; 115:3895-904. [DOI: 10.1021/jp108286r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Taianá M. Oliveira
- NORSTRUCT, Department of Chemistry, University of Tromsø, 9037 Tromsø, Norway
| | - Rafi Ahmad
- NORSTRUCT, Department of Chemistry, University of Tromsø, 9037 Tromsø, Norway
| | - Richard A. Engh
- NORSTRUCT, Department of Chemistry, University of Tromsø, 9037 Tromsø, Norway
| |
Collapse
|
22
|
Yamane J, Ohyabu N, Yao M, Takemoto H, Tanaka I. In-crystal chemical ligation for lead compound generation. J Appl Crystallogr 2010. [DOI: 10.1107/s0021889810037222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A new fragment-based growth strategy for lead compound generation is proposed, which is based onin situchemical ligation and is operable in X-ray-based fragment screening format. The method involves two classes of bifunctional molecules, referred to as anchor molecules and tuning molecules. The anchor molecules are designed to form stable complexes with target proteins and to connect with the tuning molecules. The procedure begins with the introduction of the anchor molecule into the target protein, to which the tuning molecule is linked in the crystal. Proof-of-concept experiments using trypsin crystals charged withpara-aldehyde benzamidine showed that the crystals acted as a platform to select self-assembled ligation products. Furthermore, time-resolved crystallography allowed identification of the reaction field and direct visualization of the reaction pathway. The ability to rapidly gain an understanding of the relations between a set of chemical modifications and their interactions with target proteins would accelerate the hit-to-lead process. A potential crystallographic growth strategyviathe self-assembly technique and its biological implications are discussed.
Collapse
|
23
|
Page MJ, Di Cera E. Combinatorial enzyme design probes allostery and cooperativity in the trypsin fold. J Mol Biol 2010; 399:306-19. [PMID: 20399789 DOI: 10.1016/j.jmb.2010.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 01/05/2023]
Abstract
Converting one enzyme into another is challenging due to the uneven distribution of important amino acids for function in both protein sequence and structure. We report a strategy for protein engineering allowing an organized mixing and matching of genetic material that leverages lower throughput with increased quality of screens. Our approach successfully tested the contribution of each surface-exposed loop in the trypsin fold alone and the cooperativity of their combinations towards building the substrate selectivity and Na(+)-dependent allosteric activation of the protease domain of human coagulation factor Xa into a bacterial trypsin. As the created proteases lack additional protein domains and protein co-factor activation mechanism requisite for the complexity of blood coagulation, they are stepping-stones towards further understanding and engineering of artificial clotting factors.
Collapse
Affiliation(s)
- Michael J Page
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
24
|
Zhang HM, Wang YQ, Zhou QH. Investigation of the interactions of quercetin and morin with trypsin. LUMINESCENCE 2010; 24:355-62. [PMID: 19449305 DOI: 10.1002/bio.1121] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The interactions of quercetin and morin with trypsin were investigated by UV-vis absorption, fluorescence, synchronous fluorescence and three-dimensional fluorescence spectra techniques under physiological pH 7.40. Quercetin and morin effectively quenched the intrinsic fluorescence of trypsin via static quenching. The process of binding quercetin and morin on trypsin was a spontaneous molecular interaction procedure. The binding constants and thermodynamic parameters at two different temperatures, the binding locality and the binding power were obtained. The conformation of trypsin was discussed by synchronous and three-dimensional fluorescence techniques.
Collapse
Affiliation(s)
- Hong-Mei Zhang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | | | | |
Collapse
|
25
|
Saranya N, Selvaraj S. Variation of protein binding cavity volume and ligand volume in protein-ligand complexes. Bioorg Med Chem Lett 2009; 19:5769-72. [PMID: 19706358 DOI: 10.1016/j.bmcl.2009.07.140] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/17/2009] [Accepted: 07/30/2009] [Indexed: 11/18/2022]
Abstract
We have systematically analyzed the variation of protein binding cavity volume of 200 protein-ligand complexes belonging to eight protein families. Wide variation in protein binding cavity volume for the same protein is observed on binding different ligands. Analysis of individual protein families shows high correlation between atom-atom interactions in binding site and ligand volume. This study implies the significance of protein flexibility in docking small molecule inhibitors on the basis of protein binding cavity volume with respect to ligand volume.
Collapse
Affiliation(s)
- N Saranya
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | | |
Collapse
|
26
|
Li X, He X, Wang B, Merz K. Conformational variability of benzamidinium-based inhibitors. J Am Chem Soc 2009; 131:7742-54. [PMID: 19435349 DOI: 10.1021/ja9010833] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Determining the structure of a small molecule bound to a biological receptor (e.g., a protein implicated in a disease state) is a necessary step in structure-based drug design. The preferred conformation of a small molecule can change when bound to a protein, and a detailed knowledge of the preferred conformation(s) of a bound ligand can help in optimizing the affinity of a molecule for its receptor. However, the quality of a protein/ligand complex determined using X-ray crystallography is dependent on the size of the protein, the crystal quality, and the realized resolution. The energy restraints used in traditional X-ray refinement procedures typically use "reduced" (i.e., neglect of electrostatics and dispersion interactions) Engh and Huber force field models that, while quite suitable for modeling proteins, often are less suitable for small molecule structures due to a lack of validated parameters. Through the use of ab initio QM/MM-based X-ray refinement procedures, this shortcoming can be overcome especially in the active site or binding site of a small-molecule inhibitor. Herein, we demonstrate that ab initio QM/MM refinement of an inhibitor/protein complex provides insights into the binding of small molecules beyond what is available using more traditional refinement protocols. In particular, QM/MM refinement studies of benzamidinium derivatives show variable conformational preferences depending on the refinement protocol used and the nature of the active-site region.
Collapse
Affiliation(s)
- Xue Li
- Department of Chemistry, Quantum Theory Project, 2328 New Physics Building, P.O. Box 118435, University of Florida, Gainesville, Florida 32611-8435, USA
| | | | | | | |
Collapse
|
27
|
Singh N, Briggs JM. Molecular dynamics simulations of Factor Xa: insight into conformational transition of its binding subsites. Biopolymers 2008; 89:1104-13. [PMID: 18680100 DOI: 10.1002/bip.21062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein flexibility and conformational diversity is well known to be a key characteristic of the function of many proteins. Human blood coagulation proteins have multiple substrates, and various protein-protein interactions are required for the smooth functioning of the coagulation cascade to maintain blood hemostasis. To address how a protein may cope with multiple interactions with its structurally diverse substrates and the accompanied structural changes that may drive these changes, we studied human Factor X. We employed 20 ns of molecular dynamics (MD) and steered molecular dynamics (SMD) simulations on two different conformational forms of Factor X, open and closed, and observed an interchangeable conformational transition from one to another. This work also demonstrates the roles of various aromatic residues involved in aromatic-aromatic interactions, which make this dynamic transition possible.
Collapse
Affiliation(s)
- Narender Singh
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | |
Collapse
|
28
|
Kulharia M, Goody RS, Jackson RM. Information Theory-Based Scoring Function for the Structure-Based Prediction of Protein−Ligand Binding Affinity. J Chem Inf Model 2008; 48:1990-8. [DOI: 10.1021/ci800125k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mahesh Kulharia
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto Hahn Strasse 11, Dortmund, Germany 44227, and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, U.K. LS2 9JT
| | - Roger S. Goody
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto Hahn Strasse 11, Dortmund, Germany 44227, and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, U.K. LS2 9JT
| | - Richard M. Jackson
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto Hahn Strasse 11, Dortmund, Germany 44227, and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, U.K. LS2 9JT
| |
Collapse
|
29
|
Di Fenza A, Heine A, Koert U, Klebe G. Understanding binding selectivity toward trypsin and factor Xa: the role of aromatic interactions. ChemMedChem 2008; 2:297-308. [PMID: 17191291 DOI: 10.1002/cmdc.200600185] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A congeneric series of four bis-benzamidine inhibitors sharing a dianhydrosugar isosorbide scaffold in common has been studied by crystal structure analysis and enzyme kinetics with respect to their binding to trypsin and factor Xa. Within the series, aromatic interactions are an important determinant for selectivity discrimination among both serine proteases. To study the selectivity-determining features in detail, we used trypsin mutants in which the original binding site is gradually substituted to finally resemble the factor Xa binding pocket. The influence of these mutations has been analyzed on the binding of the closely related inhibitors. We present the crystal structures of the inhibitor complexes obtained by co-crystallizing an "intermediate" trypsin mutant. They could be determined to a resolution of up to 1.2 A, and we measured the inhibitory activity (K(i)) of each ligand against factor Xa, trypsin, and the various mutants. From these data we were able to derive a detailed structure-activity relationship which demonstrates the importance of aromatic interactions in protein-ligand recognition and their role in modulating enzyme selectivity. Pronounced preference is experienced to accommodate the benzamidine anchor with meta topology in the S(1) specificity pocket. One ligand possessing only para topology deviates strongly from the other members of the series and adopts a distinct binding mode addressing the S(1)' site instead of the distal S(3)/S(4) binding pocket.
Collapse
Affiliation(s)
- Armida Di Fenza
- Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | | | | | | |
Collapse
|
30
|
Steuber H, Heine A, Podjarny A, Klebe G. Merging the binding sites of aldose and aldehyde reductase for detection of inhibitor selectivity-determining features. J Mol Biol 2008; 379:991-1016. [PMID: 18495158 DOI: 10.1016/j.jmb.2008.03.063] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 03/01/2008] [Accepted: 03/25/2008] [Indexed: 11/18/2022]
Abstract
Inhibition of human aldose reductase (ALR2) evolved as a promising therapeutic concept to prevent late complications of diabetes. As well as appropriate affinity and bioavailability, putative inhibitors should possess a high level of selectivity for ALR2 over the related aldehyde reductase (ALR1). We investigated the selectivity-determining features by gradually mapping the residues deviating between the binding pockets of ALR1 and ALR2 into the ALR2 binding pocket. The resulting mutational constructs of ALR2 (eight point mutations and one double mutant) were probed for their influence towards ligand selectivity by X-ray structure analysis of the corresponding complexes and isothermal titration calorimetry (ITC). The binding properties of these mutants were evaluated using a ligand set of zopolrestat, a related uracil derivative, IDD388, IDD393, sorbinil, fidarestat and tolrestat. Our study revealed induced-fit adaptations within the mutated binding site as an essential prerequisite for ligand accommodation related to the selectivity discrimination of the ligands. However, our study also highlights the limits of the present understanding of protein-ligand interactions. Interestingly, binding site mutations not involved in any direct interaction to the ligands in various cases show significant effects towards their binding thermodynamics. Furthermore, our results suggest the binding site residues deviating between ALR1 and ALR2 influence ligand affinity in a complex interplay, presumably involving changes of dynamic properties and differences of the solvation/desolvation balance upon ligand binding.
Collapse
Affiliation(s)
- Holger Steuber
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | | | | | | |
Collapse
|
31
|
Page MJ, Carrell CJ, Di Cera E. Engineering protein allostery: 1.05 A resolution structure and enzymatic properties of a Na+-activated trypsin. J Mol Biol 2008; 378:666-72. [PMID: 18377928 DOI: 10.1016/j.jmb.2008.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 02/29/2008] [Accepted: 03/04/2008] [Indexed: 11/28/2022]
Abstract
Some trypsin-like proteases are endowed with Na(+)-dependent allosteric enhancement of catalytic activity, but this important mechanism has been difficult to engineer in other members of the family. Replacement of 19 amino acids in Streptomyces griseus trypsin targeting the active site and the Na(+)-binding site were found necessary to generate efficient Na(+) activation. Remarkably, this property was linked to the acquisition of a new substrate selectivity profile similar to that of factor Xa, a Na(+)-activated protease involved in blood coagulation. The X-ray crystal structure of the mutant trypsin solved to 1.05 A resolution defines the engineered Na(+) site and active site loops in unprecedented detail. The results demonstrate that trypsin can be engineered into an efficient allosteric protease, and that Na(+) activation is interwoven with substrate selectivity in the trypsin scaffold.
Collapse
Affiliation(s)
- Michael J Page
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Box 8231, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
32
|
Kopycki JG, Rauh D, Chumanevich AA, Neumann P, Vogt T, Stubbs MT. Biochemical and structural analysis of substrate promiscuity in plant Mg2+-dependent O-methyltransferases. J Mol Biol 2008; 378:154-64. [PMID: 18342334 DOI: 10.1016/j.jmb.2008.02.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 02/05/2008] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
Abstract
Plant S-adenosyl-l-methionine-dependent class I natural product O-methyltransferases (OMTs), related to animal catechol OMTs, are dependent on bivalent cations and strictly specific for the meta position of aromatic vicinal dihydroxy groups. While the primary activity of these class I enzymes is methylation of caffeoyl coenzyme A OMTs, a distinct subset is able to methylate a wider range of substrates, characterized by the promiscuous phenylpropanoid and flavonoid OMT. The observed broad substrate specificity resides in two regions: the N-terminus and a variable insertion loop near the C-terminus, which displays the lowest degree of sequence conservation between the two subfamilies. Structural and biochemical data, based on site-directed mutagenesis and domain exchange between the two enzyme types, present evidence that only small topological changes among otherwise highly conserved 3-D structures are sufficient to differentiate between an enzymatic generalist and an enzymatic specialist in plant natural product methylation.
Collapse
Affiliation(s)
- Jakub G Kopycki
- Institut für Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
33
|
Xie Y, Zhang D, Ben-Amotz D. Protein–ligand binding detected using ultrafiltration Raman difference spectroscopy. Anal Biochem 2008; 373:154-60. [DOI: 10.1016/j.ab.2007.10.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 10/29/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
|
34
|
Klebe G. Virtual ligand screening: strategies, perspectives and limitations. Drug Discov Today 2007; 11:580-94. [PMID: 16793526 PMCID: PMC7108249 DOI: 10.1016/j.drudis.2006.05.012] [Citation(s) in RCA: 459] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 02/13/2006] [Accepted: 05/16/2006] [Indexed: 11/28/2022]
Abstract
In contrast to high-throughput screening, in virtual ligand screening (VS), compounds are selected using computer programs to predict their binding to a target receptor. A key prerequisite is knowledge about the spatial and energetic criteria responsible for protein–ligand binding. The concepts and prerequisites to perform VS are summarized here, and explanations are sought for the enduring limitations of the technology. Target selection, analysis and preparation are discussed, as well as considerations about the compilation of candidate ligand libraries. The tools and strategies of a VS campaign, and the accuracy of scoring and ranking of the results, are also considered.
Collapse
Affiliation(s)
- Gerhard Klebe
- Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, D-35032 Marburg, Germany.
| |
Collapse
|
35
|
Ishihara T, Seki N, Hirayama F, Orita M, Koshio H, Taniuchi Y, Sakai-Moritani Y, Iwatsuki Y, Kaku S, Kawasaki T, Matsumoto Y, Tsukamoto SI. Prodrug-based design, synthesis, and biological evaluation of N-benzenesulfonylpiperidine derivatives as novel, orally active factor Xa inhibitors. Bioorg Med Chem 2007; 15:4175-92. [PMID: 17416533 DOI: 10.1016/j.bmc.2007.03.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/20/2007] [Accepted: 03/21/2007] [Indexed: 10/23/2022]
Abstract
We describe here our investigation of a new series of orally active fXa inhibitors based on a prodrug strategy. Solid-phase parallel synthesis identified a unique series of fXa inhibitors with a substituted benzenesulfonyl group as a novel S4 binding element. This series resulted in compound 39, which exhibited potent inhibitory activity against fXa (IC50 = 13 nM) and excellent selectivity over thrombin (>7000-fold). The masking of its highly hydrophilic groups led to the creation of related prodrug 28, which demonstrated an anticoagulant effect after oral dosing.
Collapse
Affiliation(s)
- Tsukasa Ishihara
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bauer F, Sticht H. A proline to glycine mutation in the Lck SH3-domain affects conformational sampling and increases ligand binding affinity. FEBS Lett 2007; 581:1555-60. [PMID: 17382937 DOI: 10.1016/j.febslet.2007.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/01/2007] [Accepted: 03/06/2007] [Indexed: 11/23/2022]
Abstract
Loop flexibility is discussed as a factor that affects ligand binding affinity of SH3 domains. To test this hypothesis, we designed a mutant in which a proline in the RT-loop of the human Lck SH3-domain is replaced by glycine. The dynamics and ligand binding properties of wild-type and mutant LckSH3 were studied by fluorescence and NMR spectroscopy as well as molecular dynamics simulations. Although the mutated residue does not form direct contacts with the ligand, the mutation increases ligand affinity by a factor of eight. The mutant exhibits increased loop flexibility and enhanced sampling of binding-competent conformations. This effect is expected to facilitate ligand binding itself and might also allow formation of tighter contacts in the complex thus resulting in an increased binding affinity.
Collapse
Affiliation(s)
- Finn Bauer
- Abteilung Bioinformatik, Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
| | | |
Collapse
|
37
|
Chen J, Lai L. Pocket v.2: further developments on receptor-based pharmacophore modeling. J Chem Inf Model 2007; 46:2684-91. [PMID: 17125208 DOI: 10.1021/ci600246s] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A deriving pharmacophore model from the three-dimensional structure of a target protein provides helpful information for analyzing protein-ligand interactions and further improvement of ligand binding affinity. A standalone program, Pocket v.2, has been developed based on the original Pocket module in the de novo drug design program LigBuilder. Pocket v.2 is able to derive a pharmacophore model directly from a given protein-ligand complex structure without human intervention. Key features in the pharmacophore model are automatically reduced to a reasonable number. Pocket v.2 has been applied to several case studies, including cyclin dependent kinase 2, HIV-1 protease, estrogen receptor, and 17beta-hydroxysteroid dehydrogenase. It well reproduced previously published pharmacophore models in all of these cases. One notable feature of Pocket v.2 is that it can tolerate minor conformational changes on the protein side upon binding of different ligands to give a consistent pharmacophore model. For different proteins accommodating the same ligand, Pocket v.2 gives similar pharmacophore models, which opens the possibility to classify proteins with their binding features.
Collapse
Affiliation(s)
- Jing Chen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry, and Center for Theoretical Biology, Peking University, Beijing 100871, P.R. China
| | | |
Collapse
|
38
|
Page MJ, Bleackley MR, Wong S, MacGillivray RTA, Di Cera E. Conversion of trypsin into a Na(+)-activated enzyme. Biochemistry 2006; 45:2987-93. [PMID: 16503653 DOI: 10.1021/bi052481a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serine proteases of the chymotrypsin family show a dichotomous amino acid distribution for residue 225. Enzymes carrying Tyr at position 225 are activated by Na(+), whereas those carrying Pro are devoid of Na(+) binding and activation. Previous studies have demonstrated that the Y225P conversion is sufficient to abrogate Na(+) activation in several enzymes. However, the reverse substitution P225Y is necessary but not sufficient to introduce Na(+) binding and activation. Here we report that Streptomyces griseus trypsin, carrying Pro-225, can be engineered into a Na(+)-activated enzyme by replacing residues in the 170, 186, and 220 loops to those of coagulation factor Xa. The findings represent the first instance of an engineered Na(+)-activated enzyme and a proof of principle that should enable the design of other proteases with enhanced catalytic activity and allosteric regulation mediated by monovalent cation binding.
Collapse
Affiliation(s)
- Michael J Page
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Box 8231, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
39
|
Hoppe C, Steinbeck C, Wohlfahrt G. Classification and comparison of ligand-binding sites derived from grid-mapped knowledge-based potentials. J Mol Graph Model 2006; 24:328-40. [PMID: 16260161 DOI: 10.1016/j.jmgm.2005.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 08/29/2005] [Accepted: 09/29/2005] [Indexed: 11/23/2022]
Abstract
We describe the application of knowledge-based potentials implemented in the MOE program to compare the ligand-binding sites of several proteins. The binding probabilities for a polar and a hydrophobic probe are calculated on a grid to allow easy comparison of binding sites of superimposed related proteins. The method is fast and simple enough to simultaneously use structural information of multiple proteins of a target family. The method can be used to rapidly cluster proteins into subfamilies according to the similarity of hydrophobic and polar fields of their ligand-binding sites. Regions of the binding site which are common within a protein family can be identified and analysed for the design of family-targeted libraries or those which differ for improvement of ligand selectivity. The field-based hierarchical clustering is demonstrated for three protein families: the ligand-binding domains of nuclear receptors, the ATP-binding sites of protein kinases and the substrate binding sites of proteases. More detailed comparisons are presented for serine proteases of the chymotrypsin family, for the peroxisome proliferator-activated receptor subfamily of nuclear receptors and for progesterone and androgen receptor. The results are in good accordance with structure-based analysis and highlight important differences of the binding sites, which have been also described in the literature.
Collapse
Affiliation(s)
- Christian Hoppe
- Orion Pharma, Medicinal Chemistry, P.O. Box 65, FIN-02101 Espoo, Finland
| | | | | |
Collapse
|
40
|
Abstract
Proteases play diverse roles in a variety of essential biological processes, both as non-specific catalysts of protein degradation and as highly specific agents that control physiologic events. Here, we review the mechanisms of substrate specificity employed by serine proteases and focus our discussion on coagulation proteases. We dissect the interplay between active site and exosite specificity and how substrate recognition is regulated allosterically by Na+ binding. We also draw attention to a functional polarity that exists in the serine protease fold, which sheds light on the structural linkages between the active site and exosites.
Collapse
Affiliation(s)
- M J Page
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|