1
|
Lee SM, Ryu HW, Kim HG, Jo YH, Park KJ, Lee SU, Oh ES, Lee SW, Choi S, Li WY, Hwang BY, Oh SR. Anti-Inflammatory Dimeric and Trimeric Flavonoids from the Roots of Pistacia weinmannifolia. JOURNAL OF NATURAL PRODUCTS 2025; 88:314-321. [PMID: 39931765 DOI: 10.1021/acs.jnatprod.4c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
As part of an ongoing search for new anti-inflammatory agents from medicinal plants, five new dimeric and trimeric flavonoids (1-5) were isolated from the roots of Pistacia weinmannifolia. The structures of pistachalcone A (1), pistachalcone B (2), pistaflavanone A (3), pistachalcone C (4), and pistachalcone D (5) were elucidated by the analysis of spectroscopic data. The known compounds rhuschalcone II (6), rhuschalcone VI (7), and pauferrol B (8) were also isolated and identified. Our in vitro analysis found that compounds isolated from P. weinmannifolia root extract exert anti-inflammatory effects in phorbol myristate acetate (PMA)-induced NCI-H292 airway epithelial cells by the suppression of expression levels such as interleukin-8 (IL-8) and mucin 5AC (MUC5AC), which are closely related to the pulmonary inflammatory response in the pathogenesis of COPD. Therefore, these dihydrochalcone derivatives may have value as new starting materials for the development of drug candidates against COPD.
Collapse
Affiliation(s)
- Seong Mi Lee
- Natural Product Research Center and Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheungbuk-do 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
- Herbal Medicine Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Korea
| | - Hyung Won Ryu
- Natural Product Research Center and Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheungbuk-do 28116, Republic of Korea
| | - Hyoung-Geun Kim
- Natural Product Research Center and Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheungbuk-do 28116, Republic of Korea
| | - Yang Hee Jo
- Natural Product Research Center and Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheungbuk-do 28116, Republic of Korea
| | - Kyoung Jin Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Su Ui Lee
- Natural Product Research Center and Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheungbuk-do 28116, Republic of Korea
| | - Eun Sol Oh
- Natural Product Research Center and Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheungbuk-do 28116, Republic of Korea
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Wan-Yi Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sei-Ryang Oh
- Natural Product Research Center and Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheungbuk-do 28116, Republic of Korea
| |
Collapse
|
2
|
Wan MLY, Co VA, Turner PC, Nagendra SP, El‐Nezami H. Deoxynivalenol modulated mucin expression and proinflammatory cytokine production, affecting susceptibility to enteroinvasive Escherichia coli infection in intestinal epithelial cells. J Food Sci 2025; 90:e70079. [PMID: 39980277 PMCID: PMC11842951 DOI: 10.1111/1750-3841.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/22/2025]
Abstract
Deoxynivalenol (DON) is a common mycotoxin in crops that could induce intestinal inflammation, affecting the susceptibility of intestinal epithelial cells (IECs) to pathogen infection. This study aimed to investigate DON's effects on mucin and cytokine production as part of the local immune system and how it affected intestinal susceptibility to pathogen infection. Caco-2 cells were exposed to DON followed by acute enteroinvasive Escherichia coli (EIEC) infection. An increase in EIEC attachment to DON-exposed cells was observed, probably in part, mediated by secretory MUC5AC mucins and membrane-bound MUC4 and MUC17 mucins. Additionally, DON with EIEC posttreatment led to significant changes in the gene expression of several proinflammatory cytokines (IL1α, IL1β, IL6, IL8, TNFα, and MCP-1), which may be in part, mediated by NK-κB and/or MAPK signaling pathways. These data suggested DON may exert immunomodulatory effects on IECs, altering the IEC susceptibility to bacterial infection. PRACTICAL APPLICATION: The results suggested that DON might modulate immune responses by affecting mucus and cytokine production, which may affect the susceptibility of intestinal epithelial cells to pathogen infection.
Collapse
Affiliation(s)
- Murphy Lam Yim Wan
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
- Department of Laboratory Medicine, Division of MicrobiologyImmunology and Glycobiology, Lund UniversityLundSweden
- School of Medicine, Pharmacy and Biomedical Sciences, Faculty of Science and HealthUniversity of PortsmouthPortsmouthUK
| | - Vanessa Anna Co
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
| | - Paul C Turner
- Maryland Institute for Applied Environmental Health, School of Public HealthUniversity of MarylandCollege ParkMarylandUSA
| | - Shah P Nagendra
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
| | - Hani El‐Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
3
|
Yan M, Tian Y, Fu M, Zhou H, Yu J, Su J, Chen Z, Tao Z, Zhu Y, Hu X, Zheng J, Chen S, Chen J, Lv G. Polysaccharides, the active component of Dendrobiumofficinale flower, ameliorates chronic pharyngitis in rats via TLR4/NF-κb pathway regulation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118620. [PMID: 39067830 DOI: 10.1016/j.jep.2024.118620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic pharyngitis persistently afflicts a large population and accounts for approximately one-third of otolaryngology patients. Currently, the treatment of CP remains controversial because of the poor outcomes. Dendrobium officinale is a well-used "Yin-nourishing" traditional Chinese medicinal and edible herb used for thousands of years in China. The flowers of D. officinale are often used in folk of China to make tea for voice protection on and throat clearing. AIM OF THE STUDY This study was to evaluate beneficial effects of polysaccharides from D. officinale flower (DOFP) on CP and its potential mechanisms. METHODS Chemical characterization of DOFP, including polysaccharide content and monosaccharide composition, structural characterization using Fourier transform infrared spectroscopy were performed. A CP model was established in rats by administering a mixture of Chinese Baijiu and chili pepper liquid, combined with low-concentration ammonia spraying. The general states, amount of oral secretion, and apparent state of the pharynx of CP rats were observed during the period of DOFP administration. Furthermore, hemorheological parameters were measured using an automatic hematology analyzer. The levels of tumor necrosis factor-α (TNF-α), interleukin 1β (1L-1β), lipopolysaccharide (LPS), and D-lactate (D-LA) in the serum were measured by enzyme-linked immunosorbent assay. Morphological changes in the pharynx and colon were observed by hematoxylin-eosin staining. The expression of nuclear factor-κB p65 (NF-κB p65), p-NF-κB p65, cyclooxygenase-2 (COX-2), interleukin 1β(IL-1β)and mucin 5AC (MUC5AC) in the pharynx,Claudin-1, Occludin, and interleukin 6 (IL-6) in the colon was detected by immunohistochemistry and Western Blot. The mRNA expression of TLR4, COX-2, and IL-1β in the pharynx were determined using reverse transcription quantitative real-time PCR. RESULTS In this study, DOFP with a total polysaccharide content of 71.44% and a composition of D-mannose, galacturonic acid, glucose, galactose, and arabinose in a molar ratio of 3.95:2.19:1.00:0.74:1.30, was isolated from the flowers of D. officinale. DOFP improved the general state and exhibited significant effects on reducing oral secretion, alleviating pharyngeal injury, suppressing inflammatory cell infiltration in the pharynx, decreasing the serum levels of TNF-α and IL-1β, and reducing the number of white blood cells and lymphocytes in the model rats. Moreover, the expressions of TLR4, p-NF-κB p65, COX-2, IL-1β and MUC5AC in the pharynx of model rats were obviously inhibited. In addition, the levels of LPS, D-LA in the serum and the protein expression of IL-6 in the colon were downregulated when the protein expression of Occludin and Claudin-1 in the colon were upregulated. CONCLUSIONS DOFP exerts significant ameliorating effects on CP and it likely acts by inhibiting LPS/TLR4-associated inflammatory mediator activation and reducing excessive secretion of mucus by repairing the intestinal barrier in CP rats.
Collapse
Affiliation(s)
- Meiqiu Yan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, China
| | - Yajuan Tian
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, China
| | - Meng Fu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, China
| | - Hengpu Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, China
| | - Jingjing Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, China
| | - Jie Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, China
| | - Ziyan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, China
| | - Zhengyan Tao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, China
| | - Yulong Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, China
| | - Xueling Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, China
| | - Jiayi Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, China
| | - Suhong Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, China.
| | - Jianzhen Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, China.
| | - Guiyuan Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, China.
| |
Collapse
|
4
|
Lee SG, Park CH, Kang H. Effect of E. cava and C. indicum Complex Extract on Phorbol 12-Myristate 13-Acetate (PMA)-Stimulated Inflammatory Response in Human Pulmonary Epithelial Cells and Particulate Matter (PM) 2.5-Induced Pulmonary Inflammation in Mice. Pharmaceutics 2023; 15:2621. [PMID: 38004599 PMCID: PMC10674792 DOI: 10.3390/pharmaceutics15112621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
This study explores the potential of a natural composite formulation known as ED, consisting of Ecklonia cava (E. cava, family: Lessoniaceae) and Chrysanthemum indicum Linne (C. indicum, family: Asteraceae), in alleviating lung inflammation induced by fine particulate matter (PM2.5). Initial assessments confirmed that neither ED nor one of its components, dieckol, exhibited cytotoxic effects on A549 cells. Subsequently, the impact of ED and dieckol on MUC5AC gene expression in A549 cells stimulated by phorbol 12-myristate 13-acetate (PMA) was investigated, revealing promising results that demonstrated a dose-dependent inhibition of MUC5AC gene expression. The study also delves into the underlying mechanisms, demonstrating that ED and dieckol effectively suppressed the phosphorylation of mitogen-activated protein kinases (MAPKs), including JNK, ERK, and p38, which are known to be involved in the regulation of MUC5AC gene expression. In in vivo experiments using a PM2.5-induced pulmonary inflammation mouse model, the research findings showed that ED mitigated cellular accumulation in the airways, leading to a significant reduction in the total cell count in bronchoalveolar lavage fluid (BALF). Moreover, ED exhibited protective effects against PM2.5-induced pulmonary damage, characterized by reduced inflammatory cell infiltration and decreased mucus secretion in pulmonary tissues. Additionally, ED's anti-inflammatory properties were evident in its ability to decrease the levels of key inflammatory cytokines, TNF-α and IL-6, both in the serum and lung tissue of the PM2.5-induced pulmonary inflammation mouse model. These findings suggest the potential of ED as a therapeutic agent for inflammatory respiratory diseases.
Collapse
Affiliation(s)
| | | | - Hyun Kang
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si 31116, Chungnam, Republic of Korea; (S.-G.L.); (C.-H.P.)
| |
Collapse
|
5
|
Jung J, Cho YJ, Jeong M, Lee S, Kim JH, Kim J, Kim N, Lee J, Park JHY, Lee KW, Lee S. Optimization of extraction condition for platycodin D from Platycodon grandiflorum root and verification of its biological activity. Food Sci Nutr 2023; 11:6425-6434. [PMID: 37823168 PMCID: PMC10563676 DOI: 10.1002/fsn3.3585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 10/13/2023] Open
Abstract
Platycosides, major components of Platycodon grandiflorum (PG) extract, have been implicated in a wide range of biological effects. In particular, platycodin D (PD) is a well-known main bioactive compound of Platycosides. Despite the biological significance of PD, optimization of extract condition for PD from PG root has not been well investigated. Here, we established the optimum extraction condition as ethanol concentration of 0%, temperature of 50°C, and extraction time of 11 h to obtain PD-rich P. grandiflorum extract (PGE) by using response surface methodology (RSM) with Box-Behnken design (BBD). The 5.63 mg/g of PD was extracted from the PG root in optimum condition, and this result was close to the predicted PD content. To analyze the biological activity of PGE related to mucin production, we demonstrated the inhibitory effect of PGE on PMA-induced hyperexpression of MUC5AC as well as ERK activation, a signal mediator of MUC5AC expression. Moreover, we showed that PGE had expectorant activity in mice. These results indicated that PGE had sufficient functions as a potential mucoregulator and expectorant for treating diverse airway diseases. Additionally, we confirmed that PGE had antioxidant activity and inhibited LPS-induced proinflammatory cytokines, TNF-α, and IL-6. Taken together, PGE derived from novel optimizing conditions showed various biological effects, suggesting that PGE could be directly applied to the food industry as food material having therapeutic and preventive potential for human airway diseases.
Collapse
Affiliation(s)
- Jihyeon Jung
- Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
| | - Yeon Jin Cho
- Bio‐MAX Institute, Seoul National UniversitySeoulSouth Korea
| | - Minju Jeong
- Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
| | - Seung‐Su Lee
- BOBSNU Co., Ltd. Seoul Techno Holdings, Inc. Subsidiary CompanySuwonSouth Korea
| | - Jong Hun Kim
- Department of Food Science and BiotechnologySungshin Women's UniversitySeoulSouth Korea
| | - Jong‐Eun Kim
- Department of Food Science & TechnologyKorea National University of TransportationJeungpyeongRepublic of Korea
| | - Nara Kim
- Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
| | - Jiyun Lee
- Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
| | | | - Ki Won Lee
- Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
- Bio‐MAX Institute, Seoul National UniversitySeoulSouth Korea
- Advanced Institute of Convergence TechnologySeoul National UniversitySeoulSouth Korea
- Research Institute of Agriculture and Life sciencesSeoul National University
| | - Sung‐Young Lee
- Bio‐MAX Institute, Seoul National UniversitySeoulSouth Korea
| |
Collapse
|
6
|
Jang D, Lee MJ, Kim KS, Kim CE, Jung JH, Cho M, Hong BH, Park SJ, Kang KS. Network Pharmacological Analysis on the Herbal Combinations for Mitigating Inflammation in Respiratory Tracts and Experimental Evaluation. Healthcare (Basel) 2023; 11:healthcare11010143. [PMID: 36611603 PMCID: PMC9819683 DOI: 10.3390/healthcare11010143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
The regulation of inflammatory mediators, such as TNF-α, IL-6, IL-1β, and leukotriene B4, could play a crucial role in suppressing inflammatory diseases such as COVID-19. In this study, we investigated the potential mechanisms of drug combinations comprising Ephedrae Herba, Schisandra Fructus, Platycodonis Radix, and Ginseng Radix; validated the anti-inflammatory effects of these drugs; and determined the optimal dose of the drug combinations. By constructing a herb-compound-target network, associations were identified between the herbs and tissues (such as bronchial epithelial cells and lung) and pathways (such as the TNF, NF-κB, and calcium signaling pathways). The drug combinations exerted anti-inflammatory effects in the RAW264.7 cell line treated with lipopolysaccharide by inhibiting the production of nitric oxide and inflammatory mediators, including TNF-α, IL-6, IL-1β, and leukotriene B4. Notably, the drug combinations inhibited PMA-induced MUC5AC mRNA expression in NCI-H292 cells. A design space analysis was carried out to determine the optimal herbal medicine combinations using the design of experiments and synergy score calculation. Consequently, a combination study of the herbal preparations confirmed their mitigating effect on inflammation in COVID-19.
Collapse
Affiliation(s)
- Dongyeop Jang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Myong Jin Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Kang Sub Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Chang-Eop Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Jong Ho Jung
- Chong Kun Dang (CKD) Pharm Research Institute, Yongin 16995, Republic of Korea
| | - Minkwan Cho
- Chong Kun Dang (CKD) Pharm Research Institute, Yongin 16995, Republic of Korea
| | - Bo-Hee Hong
- Chong Kun Dang (CKD) Pharm Research Institute, Yongin 16995, Republic of Korea
| | - Shin Jung Park
- Chong Kun Dang (CKD) Pharm Research Institute, Yongin 16995, Republic of Korea
- Correspondence: (S.J.P.); (K.S.K.); Tel.: +82-32-749-4514 (S.J.P.); +82-31-750-5402 (K.S.K.)
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
- Correspondence: (S.J.P.); (K.S.K.); Tel.: +82-32-749-4514 (S.J.P.); +82-31-750-5402 (K.S.K.)
| |
Collapse
|
7
|
Li S, Huang Q, Zhou D, He B. PRKCD as a potential therapeutic target for chronic obstructive pulmonary disease. Int Immunopharmacol 2022; 113:109374. [PMID: 36279664 DOI: 10.1016/j.intimp.2022.109374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
8
|
SARS-CoV-2 Induces Expression of Cytokine and MUC5AC/5B in Human Nasal Epithelial Cell through ACE 2 Receptor. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2743046. [PMID: 35692597 PMCID: PMC9184209 DOI: 10.1155/2022/2743046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/28/2022] [Accepted: 05/21/2022] [Indexed: 12/24/2022]
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a novel infectious respiratory disease called COVID-19, which is threatening public health worldwide. SARS-CoV-2 spike proteins connect to the angiotensin converting enzyme 2 (ACE2) receptor through the receptor binding domain and are then activated by the transmembrane protease serine subtype 2 (TMPRSS2). The ACE2 receptor is highly expressed in human nasal epithelial cells. Nasal ciliated cells are primary targets for SARS-CoV-2 replication. However, the effect of SARS-CoV-2 on the upper respiratory tract remains unknown, thus leading to the purpose of our study. We investigate the effects of SARS-CoV-2 on cytokines and mucin expression in human nasal epithelial cells. Methods We investigated the effects of the SARS-CoV-2 spike protein receptor binding domain (RBD) on cytokines (IL-1β, IL-6, and IL-8) and MUC5AC/5B expression via real-time PCR, ELISA, periodic acid-Schiff (PAS) staining, and immunofluorescence staining in cultured human nasal epithelial cells. Results The mRNA expression and protein production of cytokines (IL-1β, IL-6, and IL-8) and MUC5AC/5B were increased by SARS-CoV-2 spike protein RBD. ACE2 receptor inhibitor suppressed the expression of cytokines (IL-1β, IL-6, and IL-8) and MUC5AC/5B induced by SARS-CoV-2 spike protein RBD. Conclusions SARS-CoV-2 induced cytokines (IL-1β, IL-6, and IL-8) and MUC5AC/5B expression through the ACE 2 receptor in human nasal epithelial cells. Therefore, ACE2 receptor inhibitors can be an effective therapeutic option for SARS-CoV-2 infection.
Collapse
|
9
|
Lee GH, Jin SW, Choi JH, Han EH, Hwang YP, Choi CY, Jeong HG. Influence of o,p'-DDT on MUC5AC expression via regulation of NF-κB/AP-1 activation in human lung epithelial cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:836-845. [PMID: 34167450 DOI: 10.1080/15287394.2021.1944943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
o,p'-Dichlorodiphenyltrichloroethane (o,p'-DDT) is a representative endocrine disruptor, and exposure to o,p'-DDT may produce immune disorders and inflammation, leading to various diseases such as cancer. Chronic airway inflammation is characterized by excessive mucus secretion resulting in chronic obstructive pulmonary disease (COPD). Mucin 5AC (MUC5AC), one of the mucus genes, plays an important role in mucus secretion and inflammation in the airways. The aim of this study was to examine the effects of o,p'-DDT on the regulation of MUC5AC expression in human lung epithelial A549 cell line. o,p'-DDT increased mRNA levels and the promoter activity of MUC5AC. Transient transfection with mutation promoter constructs of MUC5AC demonstrated that nuclear factor kappa-b (NF-κB) and activator protein 1(AP-1) response elements were essential for the consequences of o,p'-DDT on MUC5AC expression. In addition, o,p'-DDT induced phosphorylation of ERK, JNK, p38, and Akt, which are involved in the regulation of MUC5AC expression. It is noteworthy that inhibitors of NF-κB, AP-1, Akt, and MAPKs blocked enhanced o,p'-DDT-induced MUC5AC mRNA expression. Data indicate that o,p'-DDT increase in NF-κB, and AP-1 transcriptional activation-dependent MUC5AC expression is associated with stimulation of Akt and MAPK signaling pathways in A549 cells.
Collapse
Affiliation(s)
- Gi Ho Lee
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sun Woo Jin
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Ho Choi
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, Republic of Korea
| | - Yong Pil Hwang
- Fisheries Promotion Division Team, Mokpo City, Mokpo, Republic of Korea
| | - Chul Yung Choi
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, Republic of Korea
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Li X, Jin F, Lee HJ, Lee CJ. Kaempferol Regulates the Expression of Airway MUC5AC Mucin Gene via IκBα-NF-κB p65 and p38-p44/42-Sp1 Signaling Pathways. Biomol Ther (Seoul) 2021; 29:303-310. [PMID: 33281120 PMCID: PMC8094069 DOI: 10.4062/biomolther.2020.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/21/2023] Open
Abstract
In the present study, kaempferol, a flavonoidal natural compound found in Polygonati Rhizoma, was investigated for its potential effect on the gene expression and production of airway MUC5AC mucin. A human respiratory epithelial NCI-H292 cells was pretreated with kaempferol for 30 min and stimulated with epidermal growth factor (EGF) or phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect on PMA-induced nuclear factor kappa B (NF-κB) signaling pathway or EGF-induced mitogen-activated protein kinase (MAPK) signaling pathway was investigated. Kaempferol suppressed the production and gene expression of MUC5AC mucins, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IκBα), and NF-κB p65 nuclear translocation. Also, kaempferol inhibited EGF-induced gene expression and production of MUC5AC mucin through regulating the phosphorylation of EGFR, phosphorylation of p38 MAPK and extracellular signal-regulated kinase (ERK) 1/2 (p44/42), and the nuclear expression of specificity protein-1 (Sp1). These results suggest kaempferol regulates the gene expression and production of mucin through regulation of NF-κB and MAPK signaling pathways, in human airway epithelial cells.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Fengri Jin
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
11
|
Lee SU, Kim MO, Kang MJ, Oh ES, Ro H, Lee RW, Song YN, Jung S, Lee JW, Lee SY, Bae T, Hong ST, Kim TD. Transforming Growth Factor β Inhibits MUC5AC Expression by Smad3/HDAC2 Complex Formation and NF-κB Deacetylation at K310 in NCI-H292 Cells. Mol Cells 2021; 44:38-49. [PMID: 33510050 PMCID: PMC7854180 DOI: 10.14348/molcells.2020.0188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/29/2020] [Accepted: 01/12/2021] [Indexed: 01/17/2023] Open
Abstract
Airway mucus secretion is an essential innate immune response for host protection. However, overproduction and hypersecretion of mucus, mainly composed of the gel- forming MUC5AC protein, are significant risk factors for patients with asthma and chronic obstructive pulmonary disease (COPD). The transforming growth factor β (TGFβ) signaling pathway negatively regulates MUC5AC expression; however, the underlying molecular mechanism is not fully understood. Here, we showed that TGFβ significantly reduces the expression of MUC5AC mRNA and its protein in NCI-H292 cells, a human mucoepidermoid carcinoma cell line. This reduced MUC5AC expression was restored by a TGFβ receptor inhibitor (SB431542), but not by the inhibition of NF-κB (BAY11-7082 or Triptolide) or PI3K (LY294002) activities. TGFβ-activated Smad3 dose-dependently bound to MUC5AC promoter. Notably, TGFβ-activated Smad3 recruited HDAC2 and facilitated nuclear translocation of HDAC2, thereby inducing the deacetylation of NF-κB at K310, which is essential for a reduction in NF-κB transcriptional activity. Both TGFβ-induced nuclear translocation of Smad3/HDAC2 and deacetylation of NF-κB at K310 were suppressed by a Smad3 inhibitor (SIS3). These results suggest that the TGFβ-activated Smad3/HDAC2 complex is an essential negative regulator for MUC5AC expression and an epigenetic regulator for NF-κB acetylation. Therefore, these results collectively suggest that modulation of the TGFβ1/Smad3/HDAC2/NF-κB pathway axis can be a promising way to improve lung function as a treatment strategy for asthma and COPD.
Collapse
Affiliation(s)
- Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Myung-Ji Kang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Eun Sol Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Ro Woon Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Yu Na Song
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Sunin Jung
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Soo Yun Lee
- Immunotherapy Research Center, KRIBB, Daejeon 34141, Korea
| | - Taeyeol Bae
- Immunotherapy Research Center, KRIBB, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Chungnam National University Hospital, Daejeon 35015, Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, KRIBB, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
12
|
Wu X, Yao C, Kong J, Tian Y, Fan Y, Zhang Z, Han J, Wu S. Molecular mechanism underlying miR‑130b‑Sp1 transcriptional regulation in LPS‑induced upregulation of MUC5AC in the bile duct epithelium. Mol Med Rep 2020; 23:106. [PMID: 33300069 PMCID: PMC7723072 DOI: 10.3892/mmr.2020.11745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatolithiasis is a common disease that represents a serious health threat to the Chinese population. The pathological mechanism underlying hepatolithiasis is closely related to bacterial infections of the intrahepatic bile duct, followed by chronic inflammation and the overexpression of mucin 5AC (MUC5AC). However, the exact mechanism responsible for the lipopolysaccharide (LPS)-induced upregulation of MUC5AC has yet to be elucidated. Specificity protein 1 (Sp1) is a ubiquitous transcription factor that plays a vital role in the regulation of a number of genes that are responsible for normal cellular function. microRNA (miR/miRNA)-130b is a member of the miRNA family. miRNAs can bind to the 3′-untralsated region (3′-UTR) of a target gene and influence its expression levels. The present study found that LPS increases the expression of MUC5AC by influencing Sp1 secretion. Chromatin immunoprecipitation-quantitative PCR experiments further verified three Sp1 binding sites in the MUC5AC promoter sequence that can regulate the expression of MUC5AC. Further analysis demonstrated that Sp1 expression was regulated by miR-130b. Luciferase experiments identified one miR-130b binding site in the Sp1 3′-UTR region. In vivo experiments also confirmed the role of the miR-130b-Sp1-MUC5AC signaling pathway in the formation of biliary stones and indicated that this pathway may provide targeted therapeutic strategies for the treatment of intrahepatic bile duct stones.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Secondary General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Chenhui Yao
- Department of Secondary General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jing Kong
- Department of Secondary General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yu Tian
- Department of Secondary General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ying Fan
- Department of Secondary General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhen Zhang
- Department of Secondary General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jinyan Han
- Department of Secondary General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuodong Wu
- Department of Secondary General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
13
|
Li H, Lin L, Chong L, Gu S, Wen S, Yu G, Hu X, Dong L, Zhang H, Li C. Time-resolved mRNA and miRNA expression profiling reveals crucial coregulation of molecular pathways involved in epithelial-pneumococcal interactions. Immunol Cell Biol 2020; 98:726-742. [PMID: 32592597 PMCID: PMC7586809 DOI: 10.1111/imcb.12371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/29/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
Abstract
Streptococcus pneumoniae is a major causative agent of pneumonia worldwide and its complex interaction with the lung epithelium has not been thoroughly characterized. In this study, we exploited both RNA‐sequencing and microRNA (miRNA)‐sequencing approaches to monitor the transcriptional changes in human lung alveolar epithelial cells infected by S. pneumoniae in a time‐resolved manner. A total of 1330 differentially expressed (DE) genes and 45 DE miRNAs were identified in all comparisons during the infection process. Clustering analysis showed that all DE genes were grouped into six clusters, several of which were primarily involved in inflammatory or immune responses. In addition, target gene enrichment analyses identified 11 transcription factors that were predicted to link at least one of four clusters, revealing transcriptional coregulation of multiple processes or pathways by common transcription factors. Notably, pharmacological treatment suggested that phosphorylation of p65 is important for optimal transcriptional regulation of target genes in epithelial cells exposed to pathogens. Furthermore, network‐based clustering analysis separated the DE genes negatively regulated by DE miRNAs into two functional modules (M1 and M2), with an enrichment in immune responses and apoptotic signaling pathways for M1. Integrated network analyses of potential regulatory interactions in M1 revealed that multiple DE genes related to immunity and apoptosis were regulated by multiple miRNAs, indicating the coordinated regulation of multiple genes by multiple miRNAs. In conclusion, time‐series expression profiling of messenger RNA and miRNA provides a wealth of information for global transcriptional changes, and offers comprehensive insight into the molecular mechanisms underlying host–pathogen interactions.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Chong
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuge Gu
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shunhang Wen
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Yu
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoguang Hu
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin Dong
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changchong Li
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Cheon YH, Kim MS, Kim JY, Kim DH, Han SY, Lee JH. Eupatilin downregulates phorbol 12-myristate 13-acetate-induced MUC5AC expression via inhibition of p38/ERK/JNK MAPKs signal pathway in human airway epithelial cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:157-163. [PMID: 32140039 PMCID: PMC7043994 DOI: 10.4196/kjpp.2020.24.2.157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 11/15/2022]
Abstract
Chronic inflammatory airway diseases, such as chronic rhinosinusitis, chronic obstructive pulmonary disease, and asthma, are associated with excessive mucus production. Hence, the regulation of mucus production is important for the treatment of upper and lower airway diseases. Eupatilin is a pharmacologically active ingredient obtained from Artemisia asiatica Nakai (Asteraceae) and exerts potent anti-inflammatory, anti-allergic, and anti-tumor activities. In the present study, we investigated the effect of eupatilin on phorbol 12-myristate 13-acetate (PMA)-induced MUC5AC and MUC5B expression in human airway epithelial cells. We found that eupatilin treatment significantly inhibited PMA-induced mucus secretion in PAS staining. In addition, qRT-PCR results showed that eupatilin dose-dependently decreased the mRNA expression of MUC5AC in human airway epithelial cells. Western blot and immunofluorescence assay also showed that PMA-induced protein expression of MUC5AC was inhibited by eupatilin treatment. Finally, we investigated MAPKs activity after stimulation with PMA using western blot analysis in human airway epithelial cells. The results showed that eupatilin downregulated the levels of phosphorylated p38, ERK, and JNK. In summary, the anti-inflammatory activities of eupatilin, characterized as the suppression of MUC5AC expression and secretion in human airway epithelial cells, were found to be associated with the inhibition of p38/ERK/JNK MAPKs signaling pathway of MUC5AC secretion.
Collapse
Affiliation(s)
- Yoon-Hee Cheon
- Center for Core Research Facilities, Wonkwang University School of Medicine, Iksan 54538, Korea
| | - Min Seob Kim
- Department of Physiology, Wonkwang University School of Medicine, Iksan 54538, Korea
| | - Ju-Young Kim
- Medical Convergence Research Center, Wonkwang University Hospital, Iksan 54538, Korea
| | - Dong Hyun Kim
- Department of Otolaryngology, Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan 54538, Korea
| | - Seung Yoon Han
- Department of Otolaryngology, Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan 54538, Korea
| | - Jae-Hoon Lee
- Department of Otolaryngology, Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan 54538, Korea
| |
Collapse
|
15
|
Li L, Chen SN, Laghari ZA, Huang B, Huo HJ, Li N, Nie P. Receptor complex and signalling pathway of the two type II IFNs, IFN-γ and IFN-γrel in mandarin fish or the so-called Chinese perch Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 97:98-112. [PMID: 30922782 DOI: 10.1016/j.dci.2019.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/23/2019] [Accepted: 03/23/2019] [Indexed: 06/09/2023]
Abstract
IFN-γ, as the sole member of mammalian type II IFN, is a multifunctional cytokine which exerts its effects through two distinct IFN-γ receptors, IFNGR1 and IFNGR2. However, in teleost fish, another IFN-γ homologous gene, namely IFN-γ related gene (IFN-γrel), has been identified. Although IFN-γ and IFN-γrel genes have been described in some fish species, many important aspects remain poorly understood in relation with their signalling and function. In the present study, IFN-γ and IFN-γrel, as well as their receptors, cytokine receptor family B (CRFB) 17, CRFB13, two of which are homologous to IFNGR1 in mammals, and CRFB6, homolomous to IFNGR2, have been characterized in mandarin fish, Siniperca chuatsi. It was revealed that the two type IFN members exhibit antiviral activity, and IFN-γ transduces downstream signalling through CRFB13 and CRFB6, while IFN-γrel interacts with CRFB17 to activate downstream signalling. Moreover, IFN-γ and IFN-γrel have been shown to exert antiviral biological activity in a STAT1-dependent manner. Intracellular domain analysis of CRFB17 and CRFB13 demonstrated that the Y386 tyrosine residue of CRFB13 is required for the activation of the IFN-γ-mediated biologic response, and the Y324 and Y370 residues in CRFB17 are required to activate IFN-γrel signalling.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Zubair Ahmed Laghari
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Bei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Hui Jun Huo
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - P Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
16
|
Lai X, Li X, Chang L, Chen X, Huang Z, Bao H, Huang J, Yang L, Wu X, Wang Z, Bellanti JA, Zheng SG, Zhang G. IL-19 Up-Regulates Mucin 5AC Production in Patients With Chronic Rhinosinusitis via STAT3 Pathway. Front Immunol 2019; 10:1682. [PMID: 31379870 PMCID: PMC6660249 DOI: 10.3389/fimmu.2019.01682] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
The mucin gene, MUC5AC, is highly expressed both in chronic respiratory inflammatory diseases and inflammatory bowel disease where mucin secretion is regulated by members of the interleukin IL-20 subfamily. This study was conducted to determine the roles and mechanisms of IL-19, a member of the IL-20 subfamily, in regulating MUC5AC production in chronic rhinosinusitis (CRS). We analyzed the expression of mucin and MUC5AC in the nasal mucosa of patients with CRS through periodic acid Schiff (PAS) staining and immunohistochemical examination. Real-time quantitative PCR, ELISA, confocal microscopy and western blotting were used to measure MUC5AC expression in primary human nasal epithelium cells (PHNECs) stimulated with recombinant human IL-19 (rhIL-19), IL-19 receptor siRNA transfection or a control. The involvement of the STAT3 signaling pathway was examined using cryptotanshinone (CRY, an inhibitor of STAT3). Mucin and MUC5AC were significantly increased in mucosa of CRS patients with/without nasal polyps compared to mucosa isolated from controls who had no CRS, but there were no significant differences between these two groups. Pretreatment with rhIL-19 up-regulated the expression of MUC5AC levels in PHNECs. Knockdown of IL-20R2 and pretreatment with CRY attenuated MUC5AC production induced by rhIL-19. We propose that IL-19 up-regulates MUC5AC-induced mucin production via the STAT3 pathway in CRS, highlighting the important role IL-19 may play in mucin production in chronic respiratory diseases.
Collapse
Affiliation(s)
- Xiaoping Lai
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xia Li
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lihong Chang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Chen
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zizhen Huang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongwei Bao
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiancong Huang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Luoying Yang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xifu Wu
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiyuan Wang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Joseph A. Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH, United States
| | - Gehua Zhang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Samsuzzaman M, Uddin MS, Shah MA, Mathew B. Natural inhibitors on airway mucin: Molecular insight into the therapeutic potential targeting MUC5AC expression and production. Life Sci 2019; 231:116485. [PMID: 31116959 DOI: 10.1016/j.lfs.2019.05.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 11/19/2022]
Abstract
Airway mucin overproduction is the hallmark risk factor of asthma, which is associated with the reduction of lung function. An aberrant mucin expression is responsible for airway obstruction due to its high viscous characteristics. Among the mucins discovered, MUC5AC is the prime mucin of airway epithelia. Nowadays, mucins induced asthma and chronic obstructive pulmonary disease (COPD) are a great concern all over the world. This review focuses on the effects of natural compounds that can be beneficial to explore new drugs to halt MUC5AC secretion and production in airway epithelial, and also their underlying molecular mechanisms based on recent studies. Several researchers are seeking natural sources to identify a new potent MUC5AC inhibitory agent for clinical applications, because of countable limitations of existing synthetic drugs. Currently, flavonoids, glycoside and steroids like natural compounds have acquired great attention due to their anti-inflammatory and mucoregulatory effects. Most importantly, many natural compounds have shown their potential effects as the modulator of mucin expression, secretion, and production. Therefore, targeting airway MUC5AC expression and production represents an auspicious area of research for the development of drugs against various respiratory diseases.
Collapse
Affiliation(s)
- Md Samsuzzaman
- Department of Molecular Medicine, School of Medicine, Keimyung University, Daegu 42601, South Korea; Department of Food and Life Science, Pukyong National University, Busan 48513, South Korea
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| |
Collapse
|
18
|
Yepiskoposyan H, Talikka M, Vavassori S, Martin F, Sewer A, Gubian S, Luettich K, Peitsch MC, Hoeng J. Construction of a Suite of Computable Biological Network Models Focused on Mucociliary Clearance in the Respiratory Tract. Front Genet 2019; 10:87. [PMID: 30828347 PMCID: PMC6384416 DOI: 10.3389/fgene.2019.00087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/29/2019] [Indexed: 11/13/2022] Open
Abstract
Mucociliary clearance (MCC), considered as a collaboration of mucus secreted from goblet cells, the airway surface liquid layer, and the beating of cilia of ciliated cells, is the airways’ defense system against airborne contaminants. Because the process is well described at the molecular level, we gathered the available information into a suite of comprehensive causal biological network (CBN) models. The suite consists of three independent models that represent (1) cilium assembly, (2) ciliary beating, and (3) goblet cell hyperplasia/metaplasia and that were built in the Biological Expression Language, which is both human-readable and computable. The network analysis of highly connected nodes and pathways demonstrated that the relevant biology was captured in the MCC models. We also show the scoring of transcriptomic data onto these network models and demonstrate that the models capture the perturbation in each dataset accurately. This work is a continuation of our approach to use computational biological network models and mathematical algorithms that allow for the interpretation of high-throughput molecular datasets in the context of known biology. The MCC network model suite can be a valuable tool in personalized medicine to further understand heterogeneity and individual drug responses in complex respiratory diseases.
Collapse
Affiliation(s)
| | - Marja Talikka
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Alain Sewer
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Sylvain Gubian
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Karsta Luettich
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| |
Collapse
|
19
|
Choi BS, Kim YJ, Choi JS, Lee HJ, Lee CJ. Obtusifolin isolated from the seeds of Cassia obtusifolia regulates the gene expression and production of MUC5AC mucin in airway epithelial cells via affecting NF-κB pathway. Phytother Res 2019; 33:919-928. [PMID: 30632219 DOI: 10.1002/ptr.6284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/08/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022]
Abstract
We investigated whether obtusin, obtusifolin, and cassiaside isolated from the seeds of Cassia obtusifolia inhibit the gene expression and production of airway mucin 5AC (MUC5AC). Confluent NCI-H292 cells were pretreated with obtusin, obtusifolin, or cassiaside for 30 min and then stimulated with epidermal growth factor (EGF), phorbol 12-myristate 13-acetate (PMA), or tumor necrosis factor-α (TNF-α) for 24 hr. The MUC5AC mucin gene expression was measured by reverse transcription-polymerase chain reaction. Production of MUC5AC mucin protein was measured by enzyme-linked immunosorbent assay. To elucidate the action mechanism of obtusifolin, effect of obtusifolin on PMA-induced nuclear factor kappa B (NF-κB) signaling pathway was investigated by western blot analysis. Obtusin, obtusifolin, or cassiaside inhibited the expression of MUC5AC mucin gene and the production of MUC5AC mucin protein, induced by EGF, PMA, or TNF-α. Obtusifolin inhibited PMA-induced activation (phosphorylation) of inhibitory kappa B kinase, and thus phosphorylation and degradation of inhibitory kappa B alpha. Obtusifolin inhibited PMA-induced nuclear translocation of NF-κB p65. These results suggest that obtusifolin can regulate the production and gene expression of mucin by acting on airway epithelial cells through regulation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Byung-Soo Choi
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Yu-Jin Kim
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Jae Sue Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul, Korea
| | - Choong Jae Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| |
Collapse
|
20
|
Xu S, Hui Y, Shu J, Qian J, Li L. Characterization of the human mucin 5AC promoter and its regulation by the histone acetyltransferase P300. Int J Mol Med 2019; 43:1263-1270. [PMID: 30628655 PMCID: PMC6365035 DOI: 10.3892/ijmm.2019.4054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 12/31/2018] [Indexed: 12/14/2022] Open
Abstract
Histone acetylation is important in the modification of gene transcription in asthma and is regulated by histone acetyltransferases (HATs). P300 (P300 HAT) is an enzyme that is able to acetylate a wide variety of proteins. The modification of core histones can further regulate gene transcription, cell proliferation and other cell processes. Airway mucus hypersecretion is one of the most serious pathophysiological symptoms of chronic airway inflammatory diseases, and the human mucin 5AC (MUC5AC) gene has been reported to be a major component of respiratory secretions related to asthma and chronic obstructive pulmonary disease. In the present study, the 5′ sequence of the human MUC5AC gene with a 1,348-bp DNA sequence was amplified from human A549 cells genomic DNA by polymerase chain reaction (PCR), and the product of the PCR was sequenced. By promoter deletion analysis, five promoter segments with different lengths were amplified by PCR. The products were identified by DNA sequencing and the six promoter segments were inserted into pGL3-enhancer vectors. The core promoter area was identified with a series of 5′ deletion promoter plasmids using luciferase reporter assays. MUC5AC promoter activity, and the mRNA and protein expression levels of MUC5AC were observed in P300 wild-type, P300 mutant, P300 small interfering RNA and P300 control groups. The results showed that the core promoter area of MUC5AC was located within the −935/+48 region and that P300 reduced the expression of MUC5AC in A549 cells.
Collapse
Affiliation(s)
- Shiyao Xu
- Division of Pediatric Pulmonology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Yu Hui
- Division of Pediatric Pulmonology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Jin Shu
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Jun Qian
- Division of Pediatric Pulmonology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Ling Li
- Division of Pediatric Pulmonology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|
21
|
Chang HC, Huang DY, Wu NL, Kannagi R, Wang LF, Lin WW. BLIMP1 transcriptionally induced by EGFR activation and post-translationally regulated by proteasome and lysosome is involved in keratinocyte differentiation, migration and inflammation. J Dermatol Sci 2018; 92:151-161. [DOI: 10.1016/j.jdermsci.2018.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/30/2022]
|
22
|
Choi BS, Kim YJ, Yoon YP, Lee HJ, Lee CJ. Tussilagone suppressed the production and gene expression of MUC5AC mucin via regulating nuclear factor-kappa B signaling pathway in airway epithelial cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:671-677. [PMID: 30402027 PMCID: PMC6205938 DOI: 10.4196/kjpp.2018.22.6.671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 08/28/2018] [Indexed: 11/21/2022]
Abstract
In the present study, we investigated whether tussilagone, a natural product derived from Tussilago farfara, significantly affects the production and gene expression of airway MUC5AC mucin. Confluent NCI-H292 cells were pretreated with tussilagone for 30 min and then stimulated with EGF (epidermal growth factor) or PMA (phorbol 12-myristate 13-acetate) for 24 h or the indicated periods. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA. To elucidate the action mechanism of tussilagone, effect of tussilagone on PMA-induced NF-κB signaling pathway was investigated by western blot analysis. Tussilagone significantly inhibited the production of MUC5AC mucin protein and down-regulated the expression of MUC5AC mucin gene, induced by EGF or PMA. Tussilagone inhibited PMA-induced activation (phosphorylation) of inhibitory kappa B kinase (IKK), and thus phosphorylation and degradation of inhibitory kappa Ba (IκBα). Tussilagone inhibited PMA-induced phosphorylation and nuclear translocation of nuclear factor kappa B (NF-κB) p65. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. These results suggest that tussilagone can regulate the production and gene expression of mucin by acting on airway epithelial cells through regulation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Byung-Soo Choi
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Yu-Jin Kim
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Yong Pill Yoon
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
23
|
Role of mucins in lung homeostasis: regulated expression and biosynthesis in health and disease. Biochem Soc Trans 2018; 46:707-719. [PMID: 29802217 DOI: 10.1042/bst20170455] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 01/02/2023]
Abstract
In humans and mice, the first line of innate defense against inhaled pathogens and particles in the respiratory tract is airway mucus. The primary solid components of the mucus layer are the mucins MUC5AC and MUC5B, polymeric glycoproteins whose changes in abundance and structure can dramatically affect airway defense. Accordingly, MUC5AC/Muc5ac and MUC5B/Muc5b are tightly regulated at a transcriptional level by tissue-specific transcription factors in homeostasis and in response to injurious and inflammatory triggers. In addition to modulated levels of mucin gene transcription, translational and post-translational biosynthetic processes also exert significant influence upon mucin function. Mucins are massive macromolecules with numerous functional domains that contribute to their structural composition and biophysical properties. Single MUC5AC and MUC5B apoproteins have molecular masses of >400 kDa, and von Willebrand factor D-like as well as other cysteine-rich domain segments contribute to mucin polymerization and flexibility, thus increasing apoprotein length and complexity. Additional domains serve as sites for O-glycosylation, which increase further mucin mass several-fold. Glycosylation is a defining process for mucins that is specific with respect to additions of glycans to mucin apoprotein backbones, and glycan additions influence the physical properties of the mucins via structural modifications as well as charge interactions. Ultimately, through their tight regulation and complex assembly, airway mucins follow the biological rule of 'form fits function' in that their structural organization influences their role in lung homeostatic mechanisms.
Collapse
|
24
|
Tian Y, Li M, Wu S, Wang D, Sun B, Xie J, Wang H. Neutrophil elastase stimulates MUC5AC expression in human biliary epithelial cells: a possible pathway of PKC/Nox/ROS. Arch Med Sci 2017; 13:677-685. [PMID: 28507586 PMCID: PMC5420639 DOI: 10.5114/aoms.2017.67286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/19/2015] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Bacterial infection and bile flow retardation form a vicious cycle which promotes stone formation and recurrence, and it seems that mucin overexpression plays an important role in this process. However, the mechanism of increased mucus secretion in the biliary tract by bacterial infection and its treatment remain unclear. MATERIAL AND METHODS Human biliary epithelial cells were induced by neutrophil elastase (NE), and H2O2 production in the cell supernatants was detected by a specific kit, and then cells were pretreated with a H2O2 inhibitor, and expression of MUC5AC was detected by real-time polymerase chain reaction (PCR), Western blot, and immunohistochemistry. Moreover, selective PKC and Nox inhibitors, apocynin and bisindolylmaleimide I, were used to pretreat cells and detect H2O2, MUC5AC mRNA and protein expression. Then, we pretreated cells with selective inhibitors or NE, and detected transforming growth factor α (TGF-α) using an ELISA kit. RESULTS H2O2 production increased in an NE dose-dependent manner (p < 0.001), and NE upregulated MUC5AC expression at both mRNA and protein levels, while DMTU, could reduce this high expression (p < 0.01 at mRNA level, p < 0.001 at grey analysis for western blot and p < 0.01 at mean density for immunohistochemical staining at protein level). Moreover, apocynin and bisindolylmaleimide I could reduce the H2O2 production stimulated by NE (p < 0.05), and reduce MUC5AC high expression (p < 0.01 at mRNA level, p < 0.001 at both grey analysis for western blot and mean density for immunohistochemical staining at protein level). In addition, NE induced TGF-α production, and any of the three selective inhibitors could reduce it (p < 0.05). CONCLUSIONS NE-induced reactive oxygen species participated in the upregulation of MUC5AC production. Moreover, protein kinase C and NADPH oxidase (Nox) regulate MUC5AC production in NE-challenged human biliary epithelial cells.
Collapse
Affiliation(s)
- Yu Tian
- Department of Biliary Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Li
- Department of Biliary Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuodong Wu
- Department of Biliary Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Duoliang Wang
- Department of Biliary Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ben Sun
- Department of Biliary Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junqing Xie
- Department of Biliary Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong Wang
- Department of Biliary Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Abstract
Proteases play an important role in health and disease of the lung. In the normal lungs, proteases maintain their homeostatic functions that regulate processes like its regeneration and repair. Dysregulation of proteases–antiproteases balance is crucial in the manifestation of different types of lung diseases. Chronic inflammatory lung pathologies are associated with a marked increase in protease activities. Thus, in addition to protease activities, inhibition of anti-proteolytic control mechanisms are also important for effective microbial infection and inflammation in the lung. Herein, we briefly summarize the role of different proteases and to some extent antiproteases in regulating a variety of lung diseases.
Collapse
|
26
|
Luettich K, Talikka M, Lowe FJ, Haswell LE, Park J, Gaca MD, Hoeng J. The Adverse Outcome Pathway for Oxidative Stress-Mediated EGFR Activation Leading to Decreased Lung Function. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2016.0032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Karsta Luettich
- Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Neuchâtel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Neuchâtel, Switzerland
| | - Frazer J. Lowe
- British American Tobacco (Investments) Ltd., Southampton, United Kingdom
| | - Linsey E. Haswell
- British American Tobacco (Investments) Ltd., Southampton, United Kingdom
| | | | - Marianna D. Gaca
- British American Tobacco (Investments) Ltd., Southampton, United Kingdom
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Neuchâtel, Switzerland
| |
Collapse
|
27
|
Lee HJ, Lee CJ. Effects of Homogentisic Acid and Natural Products Derived from Pinellia ternata on Secretion, Production and Gene Expression of MUC5AC Mucin from Cultured Airway Epithelial Cells. ACTA ACUST UNITED AC 2017. [DOI: 10.20307/nps.2017.23.1.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hyun Jae Lee
- Department of Health Management and Smith Liberal Arts College, Sahmyook University, Seoul, Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
28
|
Poachanukoon O, Koontongkaew S, Monthanapisut P, Pattanacharoenchai N. Mometasone Furoate Suppresses PMA-Induced MUC-5AC and MUC-2 Production in Human Airway Epithelial Cells. Tuberc Respir Dis (Seoul) 2016; 80:60-68. [PMID: 28119748 PMCID: PMC5256341 DOI: 10.4046/trd.2017.80.1.60] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/24/2015] [Accepted: 06/15/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mucus hypersecretion from airway epithelium is a characteristic feature of airway inflammatory diseases. Tumor necrosis factor α (TNF-α) regulates mucin synthesis. Glucocorticoids including mometasone fuorate (MF) have been used to attenuate airway inflammation. However, effects of MF on mucin production have not been reported. METHODS Effects of MF and budesonide (BUD) on the phorbol-12-myristate-13-acetate (PMA)-induction of mucin and TNF-α in human airway epithelial cells (NCI-H292) were investigated in the present study. Confluent NCI-H292 cells were pretreated with PMA (200 nM) for 2 hours. Subsequently, the cells were stimulated with MF (1-500 ng/mL) or BUD (21.5 ng/mL) for 8 hours. Dexamethasone (1 µg/mL) was used as the positive control. Real-time polymerase chain reaction was used to determine MUC2 and MUC5AC mRNA levels. The level of total mucin, MUC2, MUC5AC, and TNF-α in culture supernatants were measured using enzyme-linked immunosorbent assay. RESULTS MF and BUD significantly suppressed MUC2 and MUC5AC gene expression in PMA-stimulated NCI-H292 cells. The inhibitory effects of the two steroid drugs were also observed in the production of total mucin, MUC2 and MUC5AC proteins, and TNF-α. CONCLUSION Our findings demonstrated that MF and BUD attenuated mucin and TNF-α production in PMA-induced human airway epithelial cells.
Collapse
Affiliation(s)
- Orapan Poachanukoon
- Department of Pediatrics, Faculty of Medicine, Thammasat University (Rangsit Center), Pathum Thani, Thailand
| | - Sittichai Koontongkaew
- Oral Biology Laboratory, Faculty of Dentistry, Thammasat University (Rangsit Center), Pathum Thani, Thailand
| | - Paopanga Monthanapisut
- Oral Biology Laboratory, Faculty of Dentistry, Thammasat University (Rangsit Center), Pathum Thani, Thailand
| | - Napaporn Pattanacharoenchai
- Oral Biology Laboratory, Faculty of Dentistry, Thammasat University (Rangsit Center), Pathum Thani, Thailand
| |
Collapse
|
29
|
Shin NR, Ryu HW, Ko JW, Park JW, Kwon OK, Oh SR, Kim JC, Shin IS, Ahn KS. A standardized bark extract of Pinus pinaster Aiton (Pycnogenol ®) attenuated chronic obstructive pulmonary disease via Erk-sp1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:412-420. [PMID: 27725237 DOI: 10.1016/j.jep.2016.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 09/26/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A standardized bark extract of Pinus pinaster Aiton (Pycnogenol®; PYC) used as an herbal medicine to treat various diseases in Europe and North America. AIM OF THE STUDY This study evaluates the ability of PYC to inhibit chronic obstructive pulmonary disease (COPD) in the cigarette smoke extract (CSE)-stimulated human airway epithelial cell line NCI-H292 and in a cigarette smoke (CS) and lipopolysaccharide (LPS)-induced mouse model. METHODS To induce COPD, the mice intranasally received LPS on day 4 and were exposed to CS for 1h per day (total eight cigarettes per day) from days 1-7. The mice were administered PYC at a dose of 15mg/kg and 30mg/kg 1h before CS exposure. RESULTS In the CSE-stimulated NCI-H292 cells, PYC significantly inhibited Erk phosphorylation, sp1 expression, MUC5AC, and pro-inflammatory cytokines in a concentration-dependent manner, as evidenced by a reduction in their mRNA levels. Co-treatment with PYC and Erk inhibitors markedly reduced the levels inflammatory mediators compared to only PYC-treatment. In the COPD mice model, PYC decreased the inflammatory cell count and the levels of pro-inflammatory cytokines in the broncho-alveolar lavage fluid compared with COPD mice. PYC attenuated the recruitment of inflammatory cells in the airways and decreased the expression levels of Erk phosphorylation and sp1. PYC also inhibited the expression of myeloperoxidase and matrix metalloproteinases-9 in lung tissue. CONCLUSION Our results indicate that PYC inhibited the reduction in the inflammatory response in CSE-stimulated NCI-H292 cells and the COPD mouse model via the Erk-sp1 pathway. Therefore, we suggest that PYC has the potential to treat COPD.
Collapse
Affiliation(s)
- Na-Rae Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea.
| | - Hyung-Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea.
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea.
| | - Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea.
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea.
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea.
| | - Jong-Choon Kim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea.
| | - In-Sik Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea.
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea.
| |
Collapse
|
30
|
Wang H, Hu L, Zang M, Zhang B, Duan Y, Fan Z, Li J, Su L, Yan M, Zhu Z, Liu B, Yang Q. REG4 promotes peritoneal metastasis of gastric cancer through GPR37. Oncotarget 2016; 7:27874-88. [PMID: 27036049 PMCID: PMC5053694 DOI: 10.18632/oncotarget.8442] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Being the major reason of recurrence and death after surgery, peritoneal metastasis of gastric cancer dooms the prognosis of advanced gastric cancer patients. Regenerating islet-derived family, member 4 (REG4) is believed to promote peritoneal metastasis, however, its mechanism is still a moot point at present. In the present study, we show that high expression of REG4 correlates with advanced stage and poor survival prognosis for gastric cancer patients. REG4 overexpression significantly enhances peritoneal metastasis by increasing adhesion ability. Moreover, SP1 is proved to be a transcription factor of REG4 and induce REG4 expression upon TGF-alpha stimulation. Also, G protein-coupled receptor 37 (GPR37) is identified to be in the same complex of REG4, which mediates REG4's signal transduction and promotes peritoneal metastasis of gastric cancer cell. Interestingly, we also discover a positive feedback loop triggered by REG4, amplifying itself through EGFR transactivation, consisting of GPR37, ADAM17, TGF-alpha, EGFR, SP1 and REG4. In conclusion, REG4 promotes peritoneal metastasis of gastric cancer through GPR37 and triggers a positive feedback loop.
Collapse
Affiliation(s)
- Hexiao Wang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Lei Hu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Mingde Zang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Baogui Zhang
- Affiliated Hospital of Jining Medical University, Department of Surgery, Jining 272000, People's Republic of China
| | - Yantao Duan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhiyuan Fan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Liping Su
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Min Yan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Qiumeng Yang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| |
Collapse
|
31
|
Currier MG, Lee S, Stobart CC, Hotard AL, Villenave R, Meng J, Pretto CD, Shields MD, Nguyen MT, Todd SO, Chi MH, Hammonds J, Krumm SA, Spearman P, Plemper RK, Sakamoto K, Peebles RS, Power UF, Moore ML. EGFR Interacts with the Fusion Protein of Respiratory Syncytial Virus Strain 2-20 and Mediates Infection and Mucin Expression. PLoS Pathog 2016; 12:e1005622. [PMID: 27152417 PMCID: PMC4859522 DOI: 10.1371/journal.ppat.1005622] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/19/2016] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the major cause of viral lower respiratory tract illness in children. In contrast to the RSV prototypic strain A2, clinical isolate RSV 2–20 induces airway mucin expression in mice, a clinically relevant phenotype dependent on the fusion (F) protein of the RSV strain. Epidermal growth factor receptor (EGFR) plays a role in airway mucin expression in other systems; therefore, we hypothesized that the RSV 2–20 F protein stimulates EGFR signaling. Infection of cells with chimeric strains RSV A2-2-20F and A2-2-20GF or over-expression of 2–20 F protein resulted in greater phosphorylation of EGFR than infection with RSV A2 or over-expression of A2 F, respectively. Chemical inhibition of EGFR signaling or knockdown of EGFR resulted in diminished infectivity of RSV A2-2-20F but not RSV A2. Over-expression of EGFR enhanced the fusion activity of 2–20 F protein in trans. EGFR co-immunoprecipitated most efficiently with RSV F proteins derived from “mucogenic” strains. RSV 2–20 F and EGFR co-localized in H292 cells, and A2-2-20GF-induced MUC5AC expression was ablated by EGFR inhibitors in these cells. Treatment of BALB/c mice with the EGFR inhibitor erlotinib significantly reduced the amount of RSV A2-2-20F-induced airway mucin expression. Our results demonstrate that RSV F interacts with EGFR in a strain-specific manner, EGFR is a co-factor for infection, and EGFR plays a role in RSV-induced mucin expression, suggesting EGFR is a potential target for RSV disease. Respiratory syncytial virus (RSV) is responsible for severe lower respiratory disease in infants and young children. Overabundant airway mucus contributes to airway obstruction in RSV bronchiolitis, and a better understanding of RSV pathogenesis may contribute to needed therapies and vaccines. We reported previously that RSV clinical isolate strain 2–20 induces more airway mucin expression in mice than prototypic RSV strains and that the 2–20 fusion (F) protein mediates mucin induction. Epidermal growth factor receptor (EGFR) has been shown to play a role in lung mucin expression. We identified a functional interaction between 2–20 F and EGFR, in that 2–20 F expression activated EGFR and, reciprocally, EGFR expression increased 2–20 F fusion activity. RSV F and EGFR co-localized in infected cells. EGFR co-immunoprecipitated with RSV F protein from various RSV strains, and the strength of this in vitro interaction correlated with strain-specific airway pathogenicity in mice. EGFR inhibition abrogated 2–20 F-mediated infection in vitro and mucin expression induction in vivo. These data identify EGFR as a novel strain-specific co-factor of RSV infection and suggest EGFR may be a target for ameliorating RSV disease.
Collapse
Affiliation(s)
- Michael G. Currier
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Sujin Lee
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Christopher C. Stobart
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Anne L. Hotard
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Remi Villenave
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland
| | - Jia Meng
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Carla D. Pretto
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Michael D. Shields
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland
- The Royal Belfast Hospital for Sick Children, Belfast, Northern Ireland
| | - Minh Trang Nguyen
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Sean O. Todd
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Michael H. Chi
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jason Hammonds
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Stefanie A. Krumm
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Paul Spearman
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Ultan F. Power
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland
| | - Martin L. Moore
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Garvin LM, Chen Y, Damsker JM, Rose MC. A novel dissociative steroid VBP15 reduces MUC5AC gene expression in airway epithelial cells but lacks the GRE mediated transcriptional properties of dexamethasone. Pulm Pharmacol Ther 2016; 38:17-26. [PMID: 27133900 DOI: 10.1016/j.pupt.2016.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 03/09/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Overproduction of secretory mucins contributes to morbidity/mortality in inflammatory lung diseases. Inflammatory mediators directly increase expression of mucin genes, but few drugs have been shown to directly repress mucin gene expression. IL-1β upregulates the MUC5AC mucin gene in part via the transcription factors NFκB while the glucocorticoid Dexamethasone (Dex) transcriptionally represses MUC5AC expression by Dex-activated GR binding to two GRE cis-sites in the MUC5AC promoter in lung epithelial cells. VBP compounds (ReveraGen BioPharma) maintain anti-inflammatory activity through inhibition of NFκB but exhibit reduced GRE-mediated transcriptional properties associated with adverse side-effects and thus have potential to minimize harmful side effects of long-term steroid therapy in inflammatory lung diseases. We investigated VBP15 efficacy as an anti-mucin agent in two types of airway epithelial cells and analyzed the transcription factor activity and promoter binding associated with VBP15-induced MUC5AC repression. VBP15 reduced MUC5AC mRNA abundance in a dose- and time-dependent manner similar to Dex in the presence or absence of IL-1β in A549 and differentiated human bronchial epithelial cells. Repression was abrogated in the presence of RU486, demonstrating a requirement for GR in the VBP15-induced repression of MUC5AC. Inhibition of NFκB activity resulted in reduced baseline expression of MUC5AC indicating that constitutive activity maintains MUC5AC production. Chromatin immunoprecipitation analysis demonstrated lack of GR and of p65 (NFκB) binding to composite GRE domains in the MUC5AC promoter following VBP15 exposure of cells, in contrast to Dex. These data demonstrate that VBP15 is a novel anti-mucin agent that mediates the reduction of MUC5AC gene expression differently than the classical glucocorticoid, Dex.
Collapse
Affiliation(s)
- Lindsay M Garvin
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Center for Genetic Medicine Research, Children's National Health System, Washington, DC, USA
| | - Yajun Chen
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC, USA
| | | | - Mary C Rose
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Center for Genetic Medicine Research, Children's National Health System, Washington, DC, USA.
| |
Collapse
|
33
|
Kim EJ, Yoon YP, Woo KW, Kim JH, Min SY, Lee HJ, Lee SK, Hong JH, Lee KR, Lee CJ. Verticine, ebeiedine and suchengbeisine isolated from the bulbs of Fritillaria thunbergii Miq. inhibited the gene expression and production of MUC5AC mucin from human airway epithelial cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:95-104. [PMID: 26926170 DOI: 10.1016/j.phymed.2015.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 11/03/2015] [Accepted: 12/25/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND The bulb of Fritillaria thunbergii has been utilised as mucoregulators and expectorants for controlling the airway inflammatory diseases in folk medicine. HYPOTHESIS/PURPOSE We investigated whether verticine, ebeiedine and suchengbeisine isolated from the bulbs of Fritillaria thunbergii inhibit the gene expression and production of MUC5AC mucin from human airway epithelial cells. STUDY DESIGN Confluent NCI-H292 cells were pretreated with verticine, ebeiedine or suchengbeisine for 30 min and then stimulated with EGF, PMA or TNF-α for 24h. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA. RESULTS (1) Verticine, ebeiedine or suchengbeisine inhibited the expression of MUC5AC mucin gene induced by EGF, PMA or TNF-α; (2) The production of MUC5AC mucin protein induced by EGF, PMA or TNF-α were also inhibited by treatment of verticine, ebeiedine or suchengbeisine. CONCLUSION These results suggest that verticine, ebeiedine and suchengbeisine isolated from the bulbs of Fritillaria thunbergii inhibit the gene expression and production of MUC5AC mucin, by directly acting on airway epithelial cells, and the results are consistent with the traditional use of Fritillaria thunbergii as remedy for diverse inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Eun Jin Kim
- Department of Pediatrics, College of Korean Medicine, Dongguk University, Gyeongju, South Korea
| | - Yong Pill Yoon
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Kyeong Wan Woo
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Jang-Hyun Kim
- Department of Pediatrics, College of Korean Medicine, Dongguk University, Gyeongju, South Korea
| | - Sang Yeon Min
- Department of Pediatrics, College of Korean Medicine, Dongguk University, Gyeongju, South Korea
| | - Hyun Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Sang Kook Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jang-Hee Hong
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Kang Ro Lee
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea .
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, South Korea .
| |
Collapse
|
34
|
Shimada M, Umehara T, Hoshino Y. Roles of epidermal growth factor (EGF)-like factor in the ovulation process. Reprod Med Biol 2016; 15:201-216. [PMID: 29259438 DOI: 10.1007/s12522-016-0236-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/01/2016] [Indexed: 12/22/2022] Open
Abstract
Luteinizing hormone (LH) surge stimulates preovulatory follicles to induce the ovulation process, including oocyte maturation, cumulus expansion, and granulosa cell luteinization. The matured oocytes surrounded by an expanded cumulus cell layer are released from follicles to the oviduct. However, LH receptors are dominantly expressed in granulosa cells, but less in cumulus cells and are not expressed in oocytes, indicating that the secondary factors expressed and secreted from LH-stimulated granulosa cells are required for the induction of the ovulation process. Prostaglandin and progesterone are well-known factors that are produced in granulosa cells and then stimulate in both granulosa and cumulus cells. The mutant mice of prostaglandin synthase (Ptgs2KO mice) or progesterone receptor (PRKO mice) revealed that the functions were essential to accomplish the ovulation process, but not to induce the ovulation process. To identify the factors initiating the transfer of the stimuli of LH surge from granulosa cells to cumulus cells, M. Conti's lab and our group performed microarray analysis of granulosa cells and identified the epidermal growth factor (EGF)-like factor, amphiregulin (AREG), epiregulin (EREG), and β-cellulin (BTC) that act on EGF receptor (EGFR) and then induce the ERK1/2 and Ca2+-PLC pathways in cumulus cells. When each of the pathways was down-regulated using a pharmacological approach or gene targeting study, the induction of cumulus expansion and oocyte maturation were dramatically suppressed, indicating that both pathways are inducers of the ovulation process. However, an in vitro culture study also revealed that the EGFR-induced unphysiological activation of PKC in cumulus cells accelerated oocyte maturation with low cytostatic activity. Thus, the matured oocytes are not arrested at the metaphase II (MII) stage and then spontaneously form pronuclei. The expression of another type of EGF-like factor, neuregulin 1 (NRG1), that does not act on EGFR, but selectively binds to ErbB3 is observed in granulosa cells after the LH surge. NRG1 supports EGFR-induced ERK1/2 phosphorylation, but reduces PKC activity to physiological level in the cumulus cells, which delays the timing of meiotic maturation of oocytes to adjust the timing of ovulation. Thus, both types of EGF-like factor are rapidly induced by LH surge and then stimulate cumulus cells to control ERK1/2 and PKC pathways, which results in the release of matured oocytes with a fertilization competence.
Collapse
Affiliation(s)
- Masayuki Shimada
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science Hiroshima University Higashi-Hiroshima 739-8528 Hiroshima Japan
| | - Takashi Umehara
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science Hiroshima University Higashi-Hiroshima 739-8528 Hiroshima Japan
| | - Yumi Hoshino
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science Hiroshima University Higashi-Hiroshima 739-8528 Hiroshima Japan
| |
Collapse
|
35
|
Arthur GK, Duffy SM, Roach KM, Hirst RA, Shikotra A, Gaillard EA, Bradding P. KCa3.1 K+ Channel Expression and Function in Human Bronchial Epithelial Cells. PLoS One 2015; 10:e0145259. [PMID: 26689552 PMCID: PMC4687003 DOI: 10.1371/journal.pone.0145259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022] Open
Abstract
The KCa3.1 K+ channel has been proposed as a novel target for pulmonary diseases such as asthma and pulmonary fibrosis. It is expressed in epithelia but its expression and function in primary human bronchial epithelial cells (HBECs) has not been described. Due to its proposed roles in the regulation of cell proliferation, migration, and epithelial fluid secretion, inhibiting this channel might have either beneficial or adverse effects on HBEC function. The aim of this study was to assess whether primary HBECs express the KCa3.1 channel and its role in HBEC function. Primary HBECs from the airways of healthy and asthmatic subjects, SV-transformed BEAS-2B cells and the neoplastic H292 epithelial cell line were studied. Primary HBECs, BEAS-2B and H292 cells expressed KCa3.1 mRNA and protein, and robust KCa3.1 ion currents. KCa3.1 protein expression was increased in asthmatic compared to healthy airway epithelium in situ, and KCa3.1 currents were larger in asthmatic compared to healthy HBECs cultured in vitro. Selective KCa3.1 blockers (TRAM-34, ICA-17043) had no effect on epithelial cell proliferation, wound closure, ciliary beat frequency, or mucus secretion. However, several features of TGFβ1-dependent epithelial-mesenchymal transition (EMT) were inhibited by KCa3.1 blockade. Treatment with KCa3.1 blockers is likely to be safe with respect to airway epithelial biology, and may potentially inhibit airway remodelling through the inhibition of EMT.
Collapse
Affiliation(s)
- Greer K. Arthur
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
- * E-mail:
| | - S. Mark Duffy
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - Katy M. Roach
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - Rob A. Hirst
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - Aarti Shikotra
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - Erol A. Gaillard
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
36
|
Seriani R, Junqueira MDS, de Toledo AC, Martins MA, Seckler M, Alencar AM, Negri EM, Silva LFF, Mauad T, Saldiva PHN, Macchione M. Diesel exhaust particulates affect cell signaling, mucin profiles, and apoptosis in trachea explants of Balb/C mice. ENVIRONMENTAL TOXICOLOGY 2015; 30:1297-1308. [PMID: 24777914 DOI: 10.1002/tox.22000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 01/10/2014] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
Particulate matter from diesel exhaust (DEP) has toxic properties and can activate intracellular signaling pathways and induce metabolic changes. This study was conducted to evaluate the activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) and to analyze the mucin profile (acid (AB(+) ), neutral (PAS(+) ), or mixed (AB/PAS(+) ) mucus) and vacuolization (V) of tracheal explants after treatment with 50 or 100 μg/mL DEP for 30 or 60 min. Western blot analyses showed small increases in ERK1/2 and JNK phosphorylation after 30 min of 100 μg/mL DEP treatment compared with the control. An increase in JNK phosphorylation was observed after 60 min of treatment with 50 μg/mL DEP compared with the control. We did not observe any change in the level of ERK1/2 phosphorylation after treatment with 50 μg/mL DEP. Other groups of tracheas were subjected to histological sectioning and stained with periodic acid-Schiff (PAS) reagent and Alcian Blue (AB). The stained tissue sections were then subjected to morphometric analysis. The results obtained were compared using ANOVA. Treatment with 50 μg/mL DEP for 30 min or 60 min showed a significant increase (p < 0.001) in the amount of acid mucus, a reduction in neutral mucus, a significant reduction in mixed mucus, and greater vacuolization. Our results suggest that compounds found in DEPs are able to activate acid mucus production and enhance vacuolization and cell signaling pathways, which can lead to airway diseases.
Collapse
Affiliation(s)
- Robson Seriani
- Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Mara de Souza Junqueira
- Central Biotery Laboratory, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Alessandra Choqueta de Toledo
- Experimental Therapeutics Laboratory, Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Milton Arruda Martins
- Experimental Therapeutics Laboratory, Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Marcelo Seckler
- Department of Chemistry Engineering, Polytechnic School, University of São Paulo, São Paulo, SP, Brazil
| | - Adriano Mesquita Alencar
- Department of General Physics - Institute of Physics, University of São Paulo, São Paulo, SP, Brazil
| | - Elnara Marcia Negri
- Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Luiz Fernando Ferraz Silva
- Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Thaís Mauad
- Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Mariangela Macchione
- Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
37
|
Park JW, Lee IC, Shin NR, Jeon CM, Kwon OK, Ko JW, Kim JC, Oh SR, Shin IS, Ahn KS. Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signaling. Nanotoxicology 2015; 10:445-52. [PMID: 26472121 DOI: 10.3109/17435390.2015.1078851] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Copper oxide nanoparticles (CuONPs), metal oxide nanoparticles were used in multiple applications including wood preservation, antimicrobial textiles, catalysts for carbon monoxide oxidation and heat transfer fluid in machines. We investigated the effects of CuONPs on the respiratory system in Balb/c mice. In addition, to investigate the effects of CuONPs on asthma development, we used a murine model of ovalbumin (OVA)-induced asthma. CuONPs markedly increased airway hyper-responsiveness (AHR), inflammatory cell counts, proinflammatory cytokines and reactive oxygen species (ROS). CuONPs induced airway inflammation and mucus secretion with increases in phosphorylation of the MAPKs (Erk, JNK and p38). In the OVA-induced asthma model, CuONPs aggravated the increased AHR, inflammatory cell count, proinflammatory cytokines, ROS and immunoglobulin E induced by OVA exposure. In addition, CuONPs markedly increased inflammatory cell infiltration into the lung and mucus secretions, and MAPK phosphorylation was elevated compared to OVA-induced asthmatic mice. Taken together, CuONPs exhibited toxicity on the respiratory system, which was associated with the MAPK phosphorylation. In addition, CuONPs exposure aggravated the development of asthma. We conclude that CuONPs exposure has a potential toxicity in humans with respiratory disease.
Collapse
Affiliation(s)
- Ji-Won Park
- a Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology , Ochang-eup, Cheongwon-gu , Chungju-si, Chungbuk , Republic of Korea .,b College of Life Science and Biotechnology, Korea University , Seoul , Republic of Korea , and
| | - In-Chul Lee
- c College of Veterinary Medicine, Chonnam National University , Gwangju , Republic of Korea
| | - Na-Rae Shin
- a Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology , Ochang-eup, Cheongwon-gu , Chungju-si, Chungbuk , Republic of Korea
| | - Chan-Mi Jeon
- a Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology , Ochang-eup, Cheongwon-gu , Chungju-si, Chungbuk , Republic of Korea
| | - Ok-Kyoung Kwon
- a Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology , Ochang-eup, Cheongwon-gu , Chungju-si, Chungbuk , Republic of Korea
| | - Je-Won Ko
- c College of Veterinary Medicine, Chonnam National University , Gwangju , Republic of Korea
| | - Jong-Choon Kim
- c College of Veterinary Medicine, Chonnam National University , Gwangju , Republic of Korea
| | - Sei-Ryang Oh
- a Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology , Ochang-eup, Cheongwon-gu , Chungju-si, Chungbuk , Republic of Korea
| | - In-Sik Shin
- c College of Veterinary Medicine, Chonnam National University , Gwangju , Republic of Korea
| | - Kyung-Seop Ahn
- a Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology , Ochang-eup, Cheongwon-gu , Chungju-si, Chungbuk , Republic of Korea
| |
Collapse
|
38
|
Yoon YP, Lee HJ, Lee DU, Lee SK, Hong JH, Lee CJ. Effects of Lupenone, Lupeol, and Taraxerol Derived from Adenophora triphylla on the Gene Expression and Production of Airway MUC5AC Mucin. Tuberc Respir Dis (Seoul) 2015; 78:210-7. [PMID: 26175774 PMCID: PMC4499588 DOI: 10.4046/trd.2015.78.3.210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/09/2014] [Accepted: 01/26/2015] [Indexed: 11/24/2022] Open
Abstract
Background Adenophora triphylla var. japonica is empirically used for controlling airway inflammatory diseases in folk medicine. We evaluated the gene expression and production of mucin from airway epithelial cells in response to lupenone, lupeol and taraxerol derived from Adenophora triphylla var. japonica. Methods Confluent NCI-H292 cells were pretreated with lupenone, lupeol or taraxerol for 30 minutes and then stimulated with tumor necrosis factor α (TNF-α) for 24 hours. The MUC5AC mucin gene expression and production were measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Additionally, we examined whether lupenone, lupeol or taraxerol affects MUC5AC mucin production induced by epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA), the other 2 stimulators of airway mucin production. Results Lupenone, lupeol, and taraxerol inhibited the gene expression and production of MUC5AC mucin induced by TNF-α from NCI-H292 cells, respectively. The 3 compounds inhibited the EGF or PMA-induced production of MUC5AC mucin in NCI-H292 cells. Conclusion These results indicated that lupenone, lupeol and taraxerol derived from Adenophora triphylla var. japonica regulates the production and gene expression of mucin, by directly acting on airway epithelial cells. In addition, the results partly explain the mechanism of of Adenophora triphylla var. japonica as a traditional remedy for diverse inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Yong Pill Yoon
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Jae Lee
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Dong-Ung Lee
- Division of Bioscience, Dongguk University, Gyeongju, Korea
| | - Sang Kook Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jang-Hee Hong
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Choong Jae Lee
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
39
|
Kurakula K, Hamers AA, van Loenen P, de Vries CJM. 6-Mercaptopurine reduces cytokine and Muc5ac expression involving inhibition of NFκB activation in airway epithelial cells. Respir Res 2015; 16:73. [PMID: 26084512 PMCID: PMC4489194 DOI: 10.1186/s12931-015-0236-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/10/2015] [Indexed: 01/17/2023] Open
Abstract
Background Mucus hypersecretion and excessive cytokine synthesis is associated with many of the pathologic features of chronic airway diseases such as asthma. 6-Mercaptopurine (6-MP) is an immunosuppressive drug that is widely used in several inflammatory disorders. Although 6-MP has been used to treat asthma, its function and mechanism of action in airway epithelial cells is unknown. Methods Confluent NCI-H292 and MLE-12 epithelial cells were pretreated with 6-MP followed by stimulation with TNFα or PMA. mRNA levels of cytokines and mucins were measured by RT-PCR. Western blot analysis was performed to assess the phosphorylation of IκBα and luciferase assays were performed using an NFκB reporter plasmid to determine NFκB activity. Periodic Acid Schiff staining was used to assess the production of mucus. Results 6-MP displayed no effect on cell viability up to a concentration of 15 μM. RT-PCR analysis showed that 6-MP significantly reduces TNFα- and PMA-induced expression of several proinflammatory cytokines in NCI-H292 and MLE-12 cells. Consistent with this, we demonstrated that 6-MP strongly inhibits TNFα-induced phosphorylation of IκBα and thus attenuates NFκB luciferase reporter activity. In addition, 6-MP decreases Rac1 activity in MLE-12 cells. 6-MP down-regulates gene expression of the mucin Muc5ac, but not Muc2, through inhibition of activation of the NFκB pathway. Furthermore, PMA- and TNFα-induced mucus production, as visualized by Periodic Acid Schiff (PAS) staining, is decreased by 6-MP. Conclusions Our data demonstrate that 6-MP inhibits Muc5ac gene expression and mucus production in airway epithelial cells through inhibition of the NFκB pathway, and 6-MP may represent a novel therapeutic target for mucus hypersecretion in airway diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0236-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kondababu Kurakula
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands. .,Present address: Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Anouk A Hamers
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | - Pieter van Loenen
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | - Carlie J M de Vries
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Peng XD, Zhao GQ, Lin J, Jiang N, Xu Q, Zhu CC, Qu JQ, Cong L, Li H. Fungus induces the release of IL-8 in human corneal epithelial cells, via Dectin-1-mediated protein kinase C pathways. Int J Ophthalmol 2015; 8:441-7. [PMID: 26085988 DOI: 10.3980/j.issn.2222-3959.2015.03.02] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022] Open
Abstract
AIM To identify whether Aspergillus fumigatus (A. fumigatus) hyphae antigens induced the release of interleukin-8 (IL-8) in anti-fungal innate immunity of cultured human corneal epithelial cells (HCECs) and determine the involvement of intracellular signalling pathways. METHODS HCECs were treated with A. fumigatus hyphae antigens with different concentrations and time. The cytoplasmic calcium of HCECs were assessed by fluorescence imaging. Western blot was used to detect the expression of Ca(2+)-dependent protein kinase C (PKC). The IL-8 levels were determined by specific human IL-8 enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase polymerase chain reaction (RT-PCR). Using a series of pharmacological inhibitors, we examined the upstream signalling pathway responsible for IL-8 expression in response to A. fumigatus hyphae antigens. RESULTS Cells exposed to A. fumigatus hyphae antigens showed higher level of IL-8 mRNA expression and protein production. We demonstrated here that stimulation of HCECs with A. fumigatus hyphae triggers an intracellular Ca(2+) flux and results in the activation of Ca(2+)-dependent PKC (α, βI and βII) which can be attenuated by pre-treatment of cells with laminarin, suggesting that Dectin-1 signals pathway induced cytoplasmic calcium and influence the activation of PKC in HCECs. Inhibitors of Ca(2+)-dependent PKC (Ro-31-8220 and Go6976) significantly abolished hyphae-induced expression of IL-8. CONCLUSION Our findings suggest that A. fumigatus hyphae-induced IL-8 expression was regulated by the activation of Dectin-1-mediated Ca(2+)-dependent PKC in HCECs.
Collapse
Affiliation(s)
- Xu-Dong Peng
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Gui-Qiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Nan Jiang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Qiang Xu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Cheng-Cheng Zhu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jian-Qiu Qu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Lin Cong
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Hui Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
41
|
Lee HJ, Park JS, Yoon YP, Shin YJ, Lee SK, Kim YS, Hong JH, Son KH, Lee CJ. Dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis suppressed the gene expression and production of airway MUC5AC mucin induced by phorbol ester and growth factor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:568-572. [PMID: 25981923 DOI: 10.1016/j.phymed.2015.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/03/2014] [Accepted: 03/19/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The root of Asparagus cochinchinensis (Lour.) Merr. has been utilized as mucoregulators and expectorants for controlling the airway inflammatory diseases in folk medicine. HYPOTHESIS/PURPOSE We investigated whether dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis (Lour.) Merr. suppress the gene expression and production of airway MUC5AC mucin induced by phorbol ester and growth factor. STUDY DESIGN Confluent NCI-H292 cells were pretreated with dioscin or methylprotodioscin for 30 min and then stimulated with EGF or PMA for 24 h. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA. RESULTS (1) Dioscin and methylprotodioscin suppressed the expression of MUC5AC mucin gene induced by EGF or PMA; (2) dioscin suppressed the production of MUC5AC mucin induced by either EGF at 10(-5) M (p < 0.05) and 10(-6) M (p < 0.05) or PMA at 10(-4) M (p < 0.05), 10(-5) M (p < 0.05) and 10(-6) M (p < 0.05); (3) methylprotodioscin also suppressed the production of MUC5AC mucin induced by either EGF at 10(-4) M (p < 0.05) or PMA at 10(-4) M (p < 0.05). CONCLUSION These results suggest that dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis suppress the gene expression and production of MUC5AC mucin, by directly acting on airway epithelial cells, and the results are consistent with the traditional use of Asparagus cochinchinensis as remedy for diverse inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, 6 Munhwa-Dong, Joong-Gu, Daejeon 303-131, Republic of Korea
| | - Jin Sung Park
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 660-702, Republic of Korea
| | - Yong Pill Yoon
- Department of Pharmacology, School of Medicine, Chungnam National University, 6 Munhwa-Dong, Joong-Gu, Daejeon 303-131, Republic of Korea
| | - Ye Jin Shin
- Department of Food Science and Nutrition, Andong National University, Andong 760-749, Republic of Korea
| | - Sang Kook Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yeong Shik Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jang-Hee Hong
- Department of Pharmacology, School of Medicine, Chungnam National University, 6 Munhwa-Dong, Joong-Gu, Daejeon 303-131, Republic of Korea
| | - Kun Ho Son
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 660-702, Republic of Korea.
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, 6 Munhwa-Dong, Joong-Gu, Daejeon 303-131, Republic of Korea.
| |
Collapse
|
42
|
Song M, Matkovich SJ, Zhang Y, Hammer DJ, Dorn GW. Combined cardiomyocyte PKCδ and PKCε gene deletion uncovers their central role in restraining developmental and reactive heart growth. Sci Signal 2015; 8:ra39. [PMID: 25900833 DOI: 10.1126/scisignal.aaa1855] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell growth is orchestrated by changes in gene expression that respond to developmental and environmental cues. Among the signaling pathways that direct growth are enzymes of the protein kinase C (PKC) family, which are ubiquitous proteins belonging to three distinct subclasses: conventional PKCs, novel PKCs, and atypical PKCs. Functional overlap makes determining the physiological actions of different PKC isoforms difficult. We showed that two novel PKC isoforms, PKCδ and PKCε, redundantly govern stress-reactive and developmental heart growth by modulating the expression of cardiac genes central to stress-activated protein kinase and periostin signaling. Mice with combined postnatal cardiomyocyte-specific genetic ablation of PKCδ and germline deletion of PKCε (DCKO) had normally sized hearts, but their hearts had transcriptional changes typical of pathological hypertrophy. Cardiac hypertrophy and dysfunction induced by hemodynamic overloading were greater in DCKO mice than in mice with a single deletion of either PKCδ or PKCε. Furthermore, gene expression analysis of the hearts of DCKO mice revealed transcriptional derepression of the genes encoding the kinase ERK (extracellular signal-regulated kinase) and periostin. Mice with combined embryonic ablation of PKCδ and PKCε showed enhanced growth and cardiomyocyte hyperplasia that induced pathological ventricular stiffening and early lethality, phenotypes absent in mice with a single deletion of PKCδ or PKCε. Our results indicate that novel PKCs provide retrograde feedback inhibition of growth signaling pathways central to cardiac development and stress adaptation. These growth-suppressing effects of novel PKCs have implications for therapeutic inhibition of PKCs in cancer, heart, and other diseases.
Collapse
Affiliation(s)
- Moshi Song
- Center for Pharmacogenomics and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scot J Matkovich
- Center for Pharmacogenomics and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yan Zhang
- Center for Pharmacogenomics and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel J Hammer
- Center for Pharmacogenomics and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gerald W Dorn
- Center for Pharmacogenomics and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
43
|
Luteolin inhibited the gene expression, production and secretion of MUC5AC mucin via regulation of nuclear factor kappa B signaling pathway in human airway epithelial cells. Pulm Pharmacol Ther 2015; 31:117-22. [DOI: 10.1016/j.pupt.2014.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 08/12/2014] [Accepted: 09/25/2014] [Indexed: 11/20/2022]
|
44
|
Liu C, Weir D, Busse P, Yang N, Zhou Z, Emala C, Li XM. The Flavonoid 7,4'-Dihydroxyflavone Inhibits MUC5AC Gene Expression, Production, and Secretion via Regulation of NF-κB, STAT6, and HDAC2. Phytother Res 2015; 29:925-32. [PMID: 25809288 DOI: 10.1002/ptr.5334] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 12/22/2022]
Abstract
Mucus overproduction is a significant component of the pathophysiology of obstructive lung diseases. Currently, there are only a few medications available that inhibit mucus production. Previous studies showed that glycyrrhizin, a triterpenoid in Glycyrrhiza uralensis inhibits mucin 5AC (MUC5AC) mRNA and protein expression. Other potential mucus production inhibitory compounds contained within in G. uralensis have not been fully investigated. The aim of the present study was to determine if the G. uralensis flavonoid 7,4'-dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production, and secretion, and if so, to elucidate the mechanism of this inhibition. 7,4'-Dihydroxyflavone significantly decreased phorbol 12-myristate 13-acetate-stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production, at a 28-fold lower concentration than glycyrrhizin (The half maximal inhibitory concentration IC50 value of 1.4 μM vs 38 μM, respectively); 7,4'-DHF also inhibited MUC5AC mucus secretion. Inhibition was associated with the suppression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), signal transducer and activator of transcription 6 (STAT6) activation, and enhanced histone deacetylase 2 (HDAC2) expression. In a murine model of asthma, 7,4'-DHF-treated mice exhibited a marked reduction in MUC5AC secretion in the bronchoalveolar lavage fluid compared with control mice. These findings, together with previous findings linking NF-κB, STAT6, and HDAC2 modulation to the control of MUC5AC expression, demonstrate that 7,4'-DHF is a newly identified component of G. uralensis that regulates MUC5AC expression and secretion via regulation of NF-κB, STAT6, and HDAC2.
Collapse
Affiliation(s)
- Changda Liu
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Weir
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Busse
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nan Yang
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhenwen Zhou
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Charles Emala
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Xiu-Min Li
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
45
|
Kang JH, Hwang SM, Chung IY. S100A8, S100A9 and S100A12 activate airway epithelial cells to produce MUC5AC via extracellular signal-regulated kinase and nuclear factor-κB pathways. Immunology 2015; 144:79-90. [PMID: 24975020 DOI: 10.1111/imm.12352] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/29/2014] [Accepted: 06/25/2014] [Indexed: 01/15/2023] Open
Abstract
Airway mucus hyperproduction is a common feature of chronic airway diseases such as severe asthma, chronic obstructive pulmonary disease and cystic fibrosis, which are closely associated with neutrophilic airway inflammation. S100A8, S100A9 and S100A12 are highly abundant proteins released by neutrophils and have been identified as important biomarkers in many inflammatory diseases. Herein, we report a new role for S100A8, S100A9 and S100A12 for producing MUC5AC, a major mucin protein in the respiratory tract. All three S100 proteins induced MUC5AC mRNA and the protein in normal human bronchial epithelial cells as well as NCI-H292 lung carcinoma cells in a dose-dependent manner. A Toll-like receptor 4 (TLR4) inhibitor almost completely abolished MUC5AC expression by all three S100 proteins, while neutralization of the receptor for advanced glycation end-products (RAGE) inhibited only S100A12-mediated production of MUC5AC. The S100 protein-mediated production of MUC5AC was inhibited by the pharmacological agents that block prominent signalling molecules for MUC5AC expression, such as mitogen-activated protein kinases, nuclear factor-κB (NF-κB) and epidermal growth factor receptor. S100A8, S100A9 and S100A12 equally elicited both phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear translocation of NF-κB/degradation of cytosolic IκB with similar kinetics through TLR4. In contrast, S100A12 preferentially activated the ERK pathway rather than the NF-κB pathway through RAGE. Collectively, these data reveal the capacity of these three S100 proteins to induce MUC5AC production in airway epithelial cells, suggesting that they all serve as key mediators linking neutrophil-dominant airway inflammation to mucin hyperproduction.
Collapse
Affiliation(s)
- Jin Hyun Kang
- Department of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, South Korea
| | | | | |
Collapse
|
46
|
Shin IS, Shin NR, Park JW, Jeon CM, Hong JM, Kwon OK, Kim JS, Lee IC, Kim JC, Oh SR, Ahn KS. Melatonin attenuates neutrophil inflammation and mucus secretion in cigarette smoke-induced chronic obstructive pulmonary diseases via the suppression of Erk-Sp1 signaling. J Pineal Res 2015; 58:50-60. [PMID: 25388990 DOI: 10.1111/jpi.12192] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/07/2014] [Indexed: 01/13/2023]
Abstract
The incidence of chronic obstructive pulmonary disease (COPD) has substantially increased in recent decade. Cigarette smoke (CS) is the most important risk factor in the development of COPD. In this study, we investigated the effects of melatonin on the development of COPD using a CS and lipopolysaccharide (LPS)-induced COPD model and cigarette smoke condensate (CSC)-stimulated NCI-H292 cells, a human mucoepidermoid carcinoma cell. On day 4, the mice were treated intranasally with LPS. The mice were exposed to CS for 1 hr per day (8 cigarettes per day) from day 1 to day 7. Melatonin (10 or 20 mg/kg) was injected intraperitoneally 1 hr before CS exposure. Melatonin markedly decreased the neutrophil count in the BALF, with reduction in the proinflammatory mediators and MUC5AC. Melatonin inhibited Erk phosphorylation and Sp1 expression induced by CS and LPS treatment. Additionally, melatonin decreased airway inflammation with a reduction in myeloperoxidase expression in lung tissue. In in vitro experiments, melatonin suppressed the elevated expression of proinflammatory mediators induced by CSC treatment. Melatonin reduced Erk phosphorylation and Sp1 expression in CSC-stimulated H292 cells. In addition, cotreatment of melatonin and Erk inhibitors significantly limited the proinflammatory mediators with greater reductions in Erk phosphorylation and Sp1 expression than that observed in H292 cells treated with Erk inhibitor alone. Taken together, melatonin effectively inhibited the neutrophil airway inflammation induced by CS and LPS treatment, which was closely related to downregulation of Erk phosphorylation. These findings suggest that melatonin has a therapeutic potential for the treatment of COPD.
Collapse
Affiliation(s)
- In-Sik Shin
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, Korea; College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yoon YP, Ryu J, Park SH, Lee HJ, Lee S, Lee SK, Kim JO, Hong JH, Seok JH, Lee CJ. Effects of Lobetyolin, Lobetyol and Methyl linoleate on Secretion, Production and Gene Expression of MUC5AC Mucin from Airway Epithelial Cells. Tuberc Respir Dis (Seoul) 2014; 77:203-8. [PMID: 25473407 PMCID: PMC4250919 DOI: 10.4046/trd.2014.77.5.203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 07/15/2014] [Accepted: 08/21/2014] [Indexed: 11/24/2022] Open
Abstract
Background In this study, we investigated whether lobetyolin, lobetyol, and methyl linoleate derived from Codonopsis pilosula affect MUC5AC mucin secretion, production, and gene expression from airway epithelial cells. Methods Confluent NCI-H292 cells were pretreated with lobetyolin, lobetyol, or methyl linoleate for 30 minutes and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 hours. The MUC5AC mucin gene expression, and mucin protein production and secretion were measured by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Results Lobetyolin, lobetyol, and methyl linoleate inhibited the gene expression of MUC5AC mucin induced by PMA; lobetyolin did not affect PMA-induced MUC5AC mucin production. However, lobetyol and methyl linoleate inhibited the production of MUC5AC mucin; lobetyolin and lobetyol did not significantly affect PMA-induced MUC5AC mucin secretion from NCI-H292 cells. However, methyl linoleate decreased the MUC5AC mucin secretion. Conclusion These results suggest that among the three compounds, methyl linoleate can regulate gene expression, production, and secretion of MUC5AC mucin by directly acting on the airway epithelial cells.
Collapse
Affiliation(s)
- Yong Pill Yoon
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jiho Ryu
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Su Hyun Park
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Jae Lee
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Seungho Lee
- Department of Pharmacy, College of Pharmacy, Yeungnam University, Daegu, Korea
| | - Sang Kook Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Ju-Ock Kim
- Pulmonology Section, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Jang-Hee Hong
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jeong Ho Seok
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Choong Jae Lee
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
48
|
Lee HJ, Ryu J, Park SH, Woo ER, Kim AR, Lee SK, Kim YS, Kim JO, Hong JH, Lee CJ. Effects of Morus alba L. and Natural Products Including Morusin on In Vivo Secretion and In Vitro Production of Airway MUC5AC Mucin. Tuberc Respir Dis (Seoul) 2014; 77:65-72. [PMID: 25237377 PMCID: PMC4165662 DOI: 10.4046/trd.2014.77.2.65] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/05/2014] [Accepted: 05/21/2014] [Indexed: 11/24/2022] Open
Abstract
Background It is valuable to find the potential activity of regulating the excessive mucin secretion by the compounds derived from various medicinal plants. We investigated whether aqueous extract of the root bark of Morus alba L. (AMA), kuwanon E, kuwanon G, mulberrofuran G, and morusin significantly affect the secretion and production of airway mucin using in vivo and in vitro experimental models. Methods Effect of AMA was examined on hypersecretion of airway mucin in sulfur dioxide-induced acute bronchitis in rats. Confluent NCI-H292 cells were pretreated with ethanolic extract, kuwanon E, kuwanon G, mulberrofuran G, or morusin for 30 minutes and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 hours. The MUC5AC mucin secretion and production were measured by enzyme-linked immunosorbent assay. Results AMA stimulated the secretion of airway mucin in sulfur dioxide-induced bronchitis rat model; aqueous extract, ethanolic extract, kuwanon E, kuwanon G, mulberrofuran G and morusin inhibited the production of MUC5AC mucin induced by PMA from NCI-H292 cells, respectively. Conclusion These results suggest that extract of the root bark and the natural products derived from Morus alba L. can regulate the secretion and production of airway mucin and, at least in part, explains the folk use of extract of Morus alba L. as mucoregulators in diverse inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jiho Ryu
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Su Hyun Park
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun-Rhan Woo
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, Korea
| | - A Ryun Kim
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, Korea
| | - Sang Kook Lee
- Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yeong Shik Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Ju-Ock Kim
- Pulmonology Section, Department of Internal Medicine, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jang-Hee Hong
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Choong Jae Lee
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
49
|
Inhibition of E-Cadherin Dependent Cell-Cell Contact Promotes MUC5AC Mucin Production through the Activation of Epidermal Growth Factor Receptors. Biosci Biotechnol Biochem 2014; 75:688-93. [DOI: 10.1271/bbb.100830] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Shin IS, Park JW, Shin NR, Jeon CM, Kwon OK, Lee MY, Kim HS, Kim JC, Oh SR, Ahn KS. Melatonin inhibits MUC5AC production via suppression of MAPK signaling in human airway epithelial cells. J Pineal Res 2014; 56:398-407. [PMID: 24720799 DOI: 10.1111/jpi.12127] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 02/14/2014] [Indexed: 01/05/2023]
Abstract
Mucus acts as a primary defense system in the airway against various stimuli. However, excess mucus production causes a reduction in lung function via limitation of the airflow in the airway of patients suffering from asthma or chronic obstructive pulmonary disease (COPD). In this study, we evaluated the effects of melatonin on the production of MUC5AC, a major constituent of the mucin that is secreted from the airway, using epidermal growth factor (EGF)-stimulated NCI-H292 cells, a human mucoepidermoid carcinoma cell line, and an ovalbumin (OVA)-induced asthma murine model. Melatonin treatment significantly reduced the mRNA and protein levels of MUC5AC and reduced interleukin (IL)-6 production in EGF-stimulated H292 cells. Melatonin markedly decreased the phosphorylation of MAPKs, including ERK1/2, JNK, and p-38, induced by EGF stimulation. These findings were consistent with the results using MAPK inhibitors. Particularly, co-treatment with melatonin and a MAPK inhibitor more effectively suppressed MAPK phosphorylation than treatment with a MAPK inhibitor alone, which resulted in a reduction in MUC5AC expression. In the asthma murine model, melatonin-treated mice exhibited a marked reduction in MUC5AC expression in the airway compared with the OVA-induced mice. These reductions were accompanied by reductions in proinflammatory cytokine production and inflammatory cell infiltration. Collectively, these findings indicate that melatonin effectively inhibits MUC5AC expression. These effects may be closely associated with the inhibition of MAPK phosphorylation. Furthermore, our study suggests that melatonin could represent a potential therapeutic for chronic airway diseases, such as asthma and COPD.
Collapse
Affiliation(s)
- In-Sik Shin
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, Korea; College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|