1
|
Ahmad S, Sayeed S, Bano N, Sheikh K, Raza K. In-silico analysis reveals Quinic acid as a multitargeted inhibitor against Cervical Cancer. J Biomol Struct Dyn 2023; 41:9770-9786. [PMID: 36379678 DOI: 10.1080/07391102.2022.2146202] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022]
Abstract
The cervix is the lowermost part of the uterus that connects to the vagina, and cervical cancer is a malignant cervix tumour. One of this cancer's most important risk factors is HPV infection. In the approach to finding an effective treatment for this disease, various works have been done around genomics and drug discovery. Finding the major altered genes was one of the most significant studies completed in the field of cervical cancer by TCGA (The Cancer Genome Atlas), and these genes are TGFBR2, MED1, ERBB3, CASP8, and HLA-A. The greatest genomic alterations were found in the PI3K/MAPK and TGF-Beta signalling pathways, suggesting that numerous therapeutic targets may come from these pathways in the future. We, therefore, conducted a combined enrichment analysis of genes gathered from various works of literature for this study. The final six key genes from the list were obtained after enrichment analysis using GO, KEGG, and Reactome methods. The six proteins against the identified genes were then subjected to a docking-based screening against a library of 6,87,843 prepared natural compounds from the ZINC15 database. The most stable compound was subsequently discovered through virtual screening to be the natural substance Quinic acid, which also had the highest binding affinity for all six proteins and a better docking score. To examine their stability, the study was extended to MM/GBSA and MD simulations on the six docked proteins, and comparative docking-based calculations led us to identify the Quinic Acid as a multitargeted compound. The overall deviation of the compound was less than 2 Å for all the complexes considered best for the biological molecules, and the simulation interaction analysis reveals a huge web of interaction during the simulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shaban Ahmad
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Salwa Sayeed
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Nagmi Bano
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Kayenat Sheikh
- Computational Structural Biology Lab, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
2
|
Chakraborty A, Tonui R, Edkins AL. Mutations F352A and Y528A in human HSP90α reduce fibronectin association and fibrillogenesis in cell-derived matrices. Cell Stress Chaperones 2023; 28:697-707. [PMID: 37353709 PMCID: PMC10746679 DOI: 10.1007/s12192-023-01362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023] Open
Abstract
HSP90 is a ubiquitously expressed chaperone protein that regulates the maturation of numerous substrate proteins called 'clients'. The glycoprotein fibronectin (FN) is an important protein of the extracellular matrix (ECM) and a client protein of HSP90. FN and HSP90 interact directly, and the FN ECM is regulated by exogenous HSP90 or HSP90 inhibitors. Here, we extend the analysis of the HSP90 - FN interaction. The importance of the N-terminal 70-kDa fragment of fibronectin (FN70) and FN type I repeat was demonstrated by competition for FN binding between HSP90 and the functional upstream domain (FUD) of the Streptococcus pyogenes F1 adhesin protein. Furthermore, His-HSP90α mutations F352A and Y528A (alone and in combination) reduced the association with full-length FN (FN-FL) and FN70 in vitro. Unlike wild type His-HSP90α, these HSP90 mutants did not enhance FN matrix assembly in the Hs578T cell line model when added exogenously. Interestingly, the HSP90 E353A mutation, which did not significantly reduce the HSP90 - FN interaction in vitro, dramatically blocked FN matrix assembly in Hs578T cell-derived matrices. Taken together, these data extend our understanding of the role of HSP90 in FN fibrillogenesis and suggest that promotion of FN ECM assembly by HSP90 is not solely regulated by the affinity of the direct interaction between HSP90 and FN.
Collapse
Affiliation(s)
- Abir Chakraborty
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6139, South Africa
| | - Ronald Tonui
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6139, South Africa
| | - Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6139, South Africa.
| |
Collapse
|
3
|
Garman EF. Raimond B. G. Ravelli (25 March 1968-30 June 2023). Acta Crystallogr D Struct Biol 2023; 79:866-870. [PMID: 37561406 DOI: 10.1107/s2059798323006897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
Raimond B. G. Ravelli is remembered.
Collapse
Affiliation(s)
- Elspeth F Garman
- University of Oxford, Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
4
|
Mariotti M, Rogowska-Wrzesinska A, Hägglund P, Davies MJ. Cross-linking and modification of fibronectin by peroxynitrous acid: Mapping and quantification of damage provides a new model for domain interactions. J Biol Chem 2021; 296:100360. [PMID: 33539924 PMCID: PMC7950325 DOI: 10.1016/j.jbc.2021.100360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Fibronectin (FN) is an abundant glycoprotein found in plasma and the extracellular matrix (ECM). It is present at high concentrations at sites of tissue damage, where it is exposed to oxidants generated by activated leukocytes, including peroxynitrous acid (ONOOH) formed from nitric oxide (from inducible nitric oxide synthase) and superoxide radicals (from NADPH oxidases and other sources). ONOOH reacts rapidly with the abundant tyrosine and tryptophan residues in ECM proteins, resulting in the formation of 3-nitrotyrosine, di-tyrosine, and 6-nitrotryptophan. We have shown previously that human plasma FN is readily modified by ONOOH, but the extent and location of modifications, and the role of FN structure (compact versus extended) in determining these factors is poorly understood. Here, we provide a detailed LC-MS analysis of ONOOH-induced FN modifications, including the extent of their formation and the sites of intramolecular and intermolecular cross-links, including Tyr-Tyr, Trp-Trp, and Tyr-Trp linkages. The localization of these cross-links to specific domains provides novel data on the interactions between different modules in the compact conformation of plasma FN and allows us to propose a model of its unknown quaternary structure. Interestingly, the pattern of modifications is significantly different to that generated by another inflammatory oxidant, HOCl, in both extent and sites. The characterization and quantification of these modifications offers the possibility of the use of these materials as specific biomarkers of ECM modification and turnover in the many pathologies associated with inflammation-associated fibrosis.
Collapse
Affiliation(s)
- Michele Mariotti
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Speziale P, Pietrocola G. The Multivalent Role of Fibronectin-Binding Proteins A and B (FnBPA and FnBPB) of Staphylococcus aureus in Host Infections. Front Microbiol 2020; 11:2054. [PMID: 32983039 PMCID: PMC7480013 DOI: 10.3389/fmicb.2020.02054] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/05/2020] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus, one of the most important human pathogens, is the causative agent of several infectious diseases including sepsis, pneumonia, osteomyelitis, endocarditis and soft tissue infections. This pathogenicity is due to a multitude of virulence factors including several cell wall-anchored proteins (CWA). CWA proteins have modular structures with distinct domains binding different ligands. The majority of S. aureus strains express two CWA fibronectin (Fn)-binding adhesins FnBPA and FnBPB (Fn-binding proteins A and B), which are encoded by closely related genes. The N-terminus of FnBPA and FnBPB comprises an A domain which binds ligands such as fibrinogen, elastin and plasminogen. The A domain of FnBPB also interacts with histones and this binding results in the neutralization of the antimicrobial activity of these molecules. The C-terminal moiety of these adhesins comprises a long, intrinsically disordered domain composed of 11/10 fibronectin-binding repeats. These repetitive motifs of FnBPs promote invasion of cells that are not usually phagocytic via a mechanism by which they interact with integrin α5β1 through a Fn mediated-bridge. The FnBPA and FnBPB A domains engage in homophilic cell-cell interactions and promote biofilm formation and enhance platelet aggregation. In this review we update the current understanding of the structure and functional properties of FnBPs and emphasize the role they may have in the staphylococcal infections.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Mezzenga R, Mitsi M. The Molecular Dance of Fibronectin: Conformational Flexibility Leads to Functional Versatility. Biomacromolecules 2018; 20:55-72. [PMID: 30403862 DOI: 10.1021/acs.biomac.8b01258] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fibronectin, a large multimodular protein and one of the major fibrillar components of the extracellular matrix, has been the subject of study for many decades and plays critical roles in embryonic development and tissue homeostasis. Moreover, fibronectin has been implicated in the pathology of many diseases, including cancer, and abnormal depositions of fibronectin have been identified in a number of amyloid and nonamyloid lesions. The ability of fibronectin to carry all these diverse functionalities depends on interactions with a large number of molecules, including adhesive and signaling cell surface receptors, other components of the extracellular matrix, and growth factors and cytokines. The regulation and integration of such large number of interactions depends on the modular architecture of fibronectin, which allows a large number of conformations, exposing or destroying different binding sites. In this Review, we summarize the current knowledge regarding the conformational flexibility of fibronectin, with an emphasis on how it regulates the ability of fibronectin to interact with various signaling molecules and cell-surface receptors and to form supramolecular assemblies and fibrillar structures.
Collapse
Affiliation(s)
- Raffaele Mezzenga
- Laboratory of Food and Soft Materials , ETH Zurich , 8092 Zurich , Switzerland
| | - Maria Mitsi
- Laboratory of Food and Soft Materials , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|
7
|
Usón I, Sheldrick GM. An introduction to experimental phasing of macromolecules illustrated by SHELX; new autotracing features. Acta Crystallogr D Struct Biol 2018; 74:106-116. [PMID: 29533236 PMCID: PMC5947774 DOI: 10.1107/s2059798317015121] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/17/2017] [Indexed: 11/10/2022] Open
Abstract
For the purpose of this article, experimental phasing is understood to mean the determination of macromolecular structures by exploiting small intensity differences of Friedel opposites and possibly of reflections measured at different wavelengths or for heavy-atom derivatives, without the use of specific structural models. The SHELX programs provide a robust and efficient route for routine structure solution by the SAD, MAD and related methods, but involve a number of simplifying assumptions that may limit their applicability in borderline cases. The substructure atoms (i.e. those with significant anomalous scattering) are first located by direct methods, and the experimental data are then used to estimate phase shifts that are added to the substructure phases to obtain starting phases for the native reflections. These are then improved by density modification and, if the resolution of the data and the type of structure permit, polyalanine tracing. A number of extensions to the tracing algorithm are discussed; these are designed to improve its performance at low resolution. Given native data to 2.5 Å resolution or better, a correlation coefficient greater than 25% between the structure factors calculated from such a trace and the native data is usually a good indication that the structure has been solved.
Collapse
Affiliation(s)
- Isabel Usón
- Structural Biology, IBMB–CSIC, Baldiri Reixach 13-15, 08028 Barcelona, Spain
- ICREA, Baldiri Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - George M. Sheldrick
- Department of Structural Chemistry, Georg-August Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| |
Collapse
|
8
|
Olczak A, Cianci M. The signal-to-noise ratio in SAD experiments. CRYSTALLOGR REV 2017. [DOI: 10.1080/0889311x.2017.1386182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Andrzej Olczak
- Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
9
|
Abstract
Fibronectin is a large vertebrate glycoprotein that is found in soluble and insoluble forms and involved in diverse processes. Protomeric fibronectin is a dimer of subunits, each of which comprises 29-31 modules - 12 type I, two type II and 15-17 type III. Plasma fibronectin is secreted by hepatocytes and circulates in a compact conformation before it binds to cell surfaces, converts to an extended conformation and is assembled into fibronectin fibrils. Here we review biophysical and structural studies that have shed light on how plasma fibronectin transitions from the compact to the extended conformation. The three types of modules each have a well-organized secondary and tertiary structure as defined by NMR and crystallography and have been likened to "beads on a string". There are flexible sequences in the N-terminal tail, between the fifth and sixth type I modules, between the first two and last two of the type III modules, and at the C-terminus. Several specific module-module interactions have been identified that likely maintain the compact quaternary structure of circulating fibronectin. The quaternary structure is perturbed in response to binding events, including binding of fibronectin to the surface of vertebrate cells for fibril assembly and to bacterial adhesins.
Collapse
Affiliation(s)
- Lisa M Maurer
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , United States
| | - Wenjiang Ma
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , United States
| | - Deane F Mosher
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , United States
| |
Collapse
|
10
|
de Sanctis D, Zubieta C, Felisaz F, Caserotto H, Nanao MH. Radiation-damage-induced phasing: a case study using UV irradiation with light-emitting diodes. Acta Crystallogr D Struct Biol 2016; 72:395-402. [PMID: 26960126 PMCID: PMC4784670 DOI: 10.1107/s2059798315021658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/15/2015] [Indexed: 11/16/2022] Open
Abstract
Exposure to X-rays, high-intensity visible light or ultraviolet radiation results in alterations to protein structure such as the breakage of disulfide bonds, the loss of electron density at electron-rich centres and the movement of side chains. These specific changes can be exploited in order to obtain phase information. Here, a case study using insulin to illustrate each step of the radiation-damage-induced phasing (RIP) method is presented. Unlike a traditional X-ray-induced damage step, specific damage is introduced via ultraviolet light-emitting diodes (UV-LEDs). In contrast to UV lasers, UV-LEDs have the advantages of small size, low cost and relative ease of use.
Collapse
Affiliation(s)
- Daniele de Sanctis
- ESRF, The European Synchrotron, 71 Rue des Martyrs, 38000 Grenoble, France
| | - Chloe Zubieta
- CNRS, Université Grenoble Alpes, CEA, DSV, INRA, iRTSV, Laboratoire de Physiologie Cellulaire and Végétale, UMR 5168, 38054 Grenoble, France
| | - Franck Felisaz
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France
| | - Hugo Caserotto
- ESRF, The European Synchrotron, 71 Rue des Martyrs, 38000 Grenoble, France
| | - Max H. Nanao
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France
- Unit of Virus Host Cell Interactions, UJF–EMBL–CNRS, UMI 3265, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France
| |
Collapse
|
11
|
Abstract
Although crystallographers typically seek to mitigate radiation damage in macromolecular crystals, in some cases, radiation damage to specific atoms can be used to determine phases de novo. This process is called radiation damage-induced phasing or "RIP." Here, we provide a general overview of the method and a practical set of data collection and processing strategies for phasing macromolecular structures using RIP.
Collapse
Affiliation(s)
- Chloe Zubieta
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
| | | |
Collapse
|
12
|
Gorgel M, Bøggild A, Ulstrup JJ, Weiss MS, Müller U, Nissen P, Boesen T. Against the odds? De novo structure determination of a pilin with two cysteine residues by sulfur SAD. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1095-101. [PMID: 25945575 DOI: 10.1107/s1399004715003272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/16/2015] [Indexed: 11/11/2022]
Abstract
Exploiting the anomalous signal of the intrinsic S atoms to phase a protein structure is advantageous, as ideally only a single well diffracting native crystal is required. However, sulfur is a weak anomalous scatterer at the typical wavelengths used for X-ray diffraction experiments, and therefore sulfur SAD data sets need to be recorded with a high multiplicity. In this study, the structure of a small pilin protein was determined by sulfur SAD despite several obstacles such as a low anomalous signal (a theoretical Bijvoet ratio of 0.9% at a wavelength of 1.8 Å), radiation damage-induced reduction of the cysteines and a multiplicity of only 5.5. The anomalous signal was improved by merging three data sets from different volumes of a single crystal, yielding a multiplicity of 17.5, and a sodium ion was added to the substructure of anomalous scatterers. In general, all data sets were balanced around the threshold values for a successful phasing strategy. In addition, a collection of statistics on structures from the PDB that were solved by sulfur SAD are presented and compared with the data. Looking at the quality indicator R(anom)/R(p.i.m.), an inconsistency in the documentation of the anomalous R factor is noted and reported.
Collapse
Affiliation(s)
- Manuela Gorgel
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Andreas Bøggild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Jakob Jensen Ulstrup
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Manfred S Weiss
- Macromolecular Crystallography (HZB-MX), Helmholtz Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Uwe Müller
- Macromolecular Crystallography (HZB-MX), Helmholtz Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Thomas Boesen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Ma W, Ma H, Mosher DF. On-Off Kinetics of Engagement of FNI Modules of Soluble Fibronectin by β-Strand Addition. PLoS One 2015; 10:e0124941. [PMID: 25919138 PMCID: PMC4412574 DOI: 10.1371/journal.pone.0124941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/20/2015] [Indexed: 02/07/2023] Open
Abstract
Intrinsically disordered sequences within bacterial adhesins bind to E-strands in the β-sheets of multiple FNI modules of fibronectin (FN) by anti-parallel β-strand addition, also called tandem β-zipper formation. The FUD segment of SfbI of Streptococcus pyogenes and Bbk32 segment of BBK32 of Borrelia burgdorferi, despite being imbedded in different adhesins from different bacteria, target the same 2-5,8-9 FNI modules, 2-5,8-9 FNI, in the N-terminal 70-kDa region (FN70K) of FN. To facilitate further comparisons, FUD, Bbk32, two other polypeptides based on SfbI that target 1-5 FNI (HADD) and 2-5 FNI (FRD), and mutant Bbk32 (ΔBbk32) were produced with fluorochromes placed just outside of the binding sequences. Unlabeled FUD competed ~ 1000-fold better for binding of labeled Bbk32 to FN than unlabeled Bbk32 competed for binding of labeled FUD to FN. Binding kinetics were determined by fluorescence polarization in a stopped-flow apparatus. On-rates for FUD, Bbk32, HADD, and FRD were similar, and all bound more rapidly to FN70K fragment than to full length FN. In stopped-flow displacement and size exclusion chromatographic assays, however, k off for FUD or HADD to FN70K or FN was considerably lower compared to k off of FRD or Bbk32. FUD and Bbk32 differ in the spacing between sequences that interact with 3FNI and 4FNI or with 5FNI and 8FNI. ΔBbk32, in which 2 residues were removed from Bbk32 to make the spacing more like FUD, had a k off intermediate between that of Bbk32 and FUD. These results indicate a "folding-after-binding" process after initial association of certain polypeptide sequences to FN that results in formation of a stable complex and is a function of number of FNI modules engaged by the polypeptide, spacing of engagement sites, and perhaps flexibility within the polypeptide-FN complex. We suggest that contributions of SfbI and BBK32 adhesins to bacterial pathogenicity may be determined in part by stability of adhesin-FN complexes.
Collapse
Affiliation(s)
- Wenjiang Ma
- Departments of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hanqing Ma
- Departments of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Deane F. Mosher
- Departments of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
14
|
Harris G, Ma W, Maurer LM, Potts JR, Mosher DF. Borrelia burgdorferi protein BBK32 binds to soluble fibronectin via the N-terminal 70-kDa region, causing fibronectin to undergo conformational extension. J Biol Chem 2014; 289:22490-9. [PMID: 24962582 DOI: 10.1074/jbc.m114.578419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BBK32 is a fibronectin (FN)-binding protein expressed on the cell surface of Borrelia burgdorferi, the causative agent of Lyme disease. There is conflicting information about where and how BBK32 interacts with FN. We have characterized interactions of a recombinant 86-mer polypeptide, "Bbk32," comprising the unstructured FN-binding region of BBK32. Competitive enzyme-linked assays utilizing various FN fragments and epitope-mapped anti-FN monoclonal antibodies showed that Bbk32 binding involves both the fibrin-binding and the gelatin-binding domains of the 70-kDa N-terminal region (FN70K). Crystallographic and NMR analyses of smaller Bbk32 peptides complexed, respectively, with (2-3)FNI and (8-9)FNI, demonstrated that binding occurs by β-strand addition. Isothermal titration calorimetry indicated that Bbk32 binds to isolated FN70K more tightly than to intact FN. In a competitive enzyme-linked binding assay, complex formation with Bbk32 enhanced binding of FN with mAbIII-10 to the (10)FNIII module. Thus, Bbk32 binds to multiple FN type 1 modules of the FN70K region by a tandem β-zipper mechanism, and in doing so increases accessibility of FNIII modules that interact with other ligands. The similarity in the FN-binding mechanism of BBK32 and previously studied streptococcal proteins suggests that the binding and associated conformational change of FN play a role in infection.
Collapse
Affiliation(s)
- Gemma Harris
- From the Department of Biology, University of York, York YO10 5DD, United Kingdom and
| | - Wenjiang Ma
- the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Lisa M Maurer
- the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Jennifer R Potts
- From the Department of Biology, University of York, York YO10 5DD, United Kingdom and
| | - Deane F Mosher
- the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
15
|
Matthews JM, Potts JR. The tandem β-zipper: Modular binding of tandem domains and linear motifs. FEBS Lett 2013; 587:1164-71. [DOI: 10.1016/j.febslet.2013.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/07/2013] [Accepted: 01/07/2013] [Indexed: 11/17/2022]
|
16
|
de Sanctis D, Nanao MH. Segmenting data sets for RIP. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1152-62. [PMID: 22948916 DOI: 10.1107/s0907444912023475] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/22/2012] [Indexed: 11/10/2022]
Abstract
Specific radiation damage can be used for the phasing of macromolecular crystal structures. In practice, however, the optimization of the X-ray dose used to `burn' the crystal to induce specific damage can be difficult. Here, a method is presented in which a single large data set that has not been optimized in any way for radiation-damage-induced phasing (RIP) is segmented into multiple sub-data sets, which can then be used for RIP. The efficacy of this method is demonstrated using two model systems and two test systems. A method to improve the success of this type of phasing experiment by varying the composition of the two sub-data sets with respect to their separation by image number, and hence by absorbed dose, as well as their individual completeness is illustrated.
Collapse
Affiliation(s)
- Daniele de Sanctis
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
| | | |
Collapse
|
17
|
Henderson B, Nair S, Pallas J, Williams MA. Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 2011; 35:147-200. [DOI: 10.1111/j.1574-6976.2010.00243.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
18
|
Maurer LM, Tomasini-Johansson BR, Ma W, Annis DS, Eickstaedt NL, Ensenberger MG, Satyshur KA, Mosher DF. Extended binding site on fibronectin for the functional upstream domain of protein F1 of Streptococcus pyogenes. J Biol Chem 2010; 285:41087-99. [PMID: 20947497 PMCID: PMC3003407 DOI: 10.1074/jbc.m110.153692] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/23/2010] [Indexed: 01/14/2023] Open
Abstract
The 49-residue functional upstream domain (FUD) of Streptococcus pyogenes F1 adhesin interacts with fibronectin (FN) in a heretofore unknown manner that prevents assembly of a FN matrix. Biotinylated FUD (b-FUD) bound to adsorbed FN or its recombinant N-terminal 70-kDa fibrin- and gelatin-binding fragment (70K). Binding was blocked by FN or 70K, but not by fibrin- or gelatin-binding subfragments of 70K. Isothermal titration calorimetry showed that FUD binds with K(d) values of 5.2 and 59 nM to soluble 70K and FN, respectively. We tested sets of FUD mutants and epitope-mapped monoclonal antibodies (mAbs) for ability to compete with b-FUD for binding to FN or to block FN assembly by cultured fibroblasts. Deletions or alanine substitutions throughout FUD caused loss of both activities. mAb 4D1 to the (2)FNI module had little effect, whereas mAb 7D5 to the (4)FNI module in the fibrin-binding region, 5C3 to the (9)FNI module in the gelatin-binding region, or L8 to the G-strand of (1)FNIII module adjacent to (9)FNI caused loss of binding of b-FUD to FN and decreased FN assembly. Conversely, FUD blocked binding of 7D5, 5C3, or L8, but not of 4D1, to FN. Circular dichroism indicated that FUD binds to 70K by β-strand addition, a possibility supported by modeling based on crystal structures of peptides bound to (2)FNI-(5)FNI of the fibrin-binding domain and (8)FNI-(9)FNI of the gelatin-binding domain. Thus, the interaction likely involves an extensive anti-parallel β-zipper in which FUD interacts with the E-strands of (2)FNI-(5)FNI and (8)FNI-(9)FNI.
Collapse
Affiliation(s)
- Lisa M. Maurer
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Wenjiang Ma
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Douglas S. Annis
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Nathan L. Eickstaedt
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Martin G. Ensenberger
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Kenneth A. Satyshur
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Deane F. Mosher
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
19
|
Zinc induces structural reorganization of gelatin binding domain from human fibronectin and affects collagen binding. Structure 2010; 18:710-8. [PMID: 20541508 DOI: 10.1016/j.str.2010.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/19/2010] [Accepted: 03/20/2010] [Indexed: 11/29/2022]
Abstract
Fibronectin is a modular extracellular matrix protein involved in cell adhesion, cell motility, wound healing, and maintenance of cell morphology. It is composed of multiple repeats of three distinct modules: F(I), F(II), and F(III). Various combinations of these modules create fragments able to interact with different constituents of the extracellular matrix. Here, we present the 2.5-A resolution crystal structure of its 45-kDa gelatin-binding domain (GBD; 6F(I)-1F(II)-2F(II)-7F(I)-8F(I)-9F(I)), which also corresponds to the C-terminal half of the migration stimulating factor, a Fn splice variant expressed in human breast cancers. GBD forms a very compact zinc-mediated homodimer, in stark contrast with previous structures of fibronectin fragments. Most remarkably, 8F(I) no longer adopts the canonical F(I) fold but is composed of two long strands that associate with 7F(I) and 9F(I) into a large beta-sheet superdomain. Binding studies in solution confirmed that Zn induces conformational rearrangements and causes loss of binding of Fn-GBD to high-affinity collagen peptides. These data suggest the Zn may play a regulatory role for the cellular functions of fibronectin.
Collapse
|
20
|
Erat MC, Schwarz-Linek U, Pickford AR, Farndale RW, Campbell ID, Vakonakis I. Implications for collagen binding from the crystallographic structure of fibronectin 6FnI1-2FnII7FnI. J Biol Chem 2010; 285:33764-70. [PMID: 20739283 PMCID: PMC2962475 DOI: 10.1074/jbc.m110.139394] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Collagen and fibronectin (FN) are two abundant and essential components of the vertebrate extracellular matrix; they interact directly with cellular receptors and affect cell adhesion and migration. Past studies identified a FN fragment comprising six modules, 6FnI1–2FnII7–9FnI, and termed the gelatin binding domain (GBD) as responsible for collagen interaction. Recently, we showed that the GBD binds tightly to a specific site within type I collagen and determined the structure of domains 8–9FnI in complex with a peptide from that site. Here, we present the crystallographic structure of domains 6FnI1–2FnII7FnI, which form a compact, globular unit through interdomain interactions. Analysis of NMR titrations with single-stranded collagen peptides reveals a dominant collagen interaction surface on domains 2FnII and 7FnI; a similar surface appears involved in interactions with triple-helical peptides. Models of the complete GBD, based on the new structure and the 8–9FnI·collagen complex show a continuous putative collagen binding surface. We explore the implications of this model using long collagen peptides and discuss our findings in the context of FN interactions with collagen fibrils.
Collapse
Affiliation(s)
- Michèle C Erat
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | |
Collapse
|
21
|
Diao J, Maniotis AJ, Folberg R, Tajkhorshid E. Interplay of mechanical and binding properties of Fibronectin type I. Theor Chem Acc 2010; 125:397-405. [PMID: 20824113 PMCID: PMC2932639 DOI: 10.1007/s00214-009-0677-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fibronectins (FNs) are a major component of the extracellular matrix (ECM), and provide important binding sites for a variety of ligands outside and on the surface of the cell. Similar to other ECM proteins, FNs are consistently subject to mechanical stress in the ECM. Therefore, it is important to study their structure and binding properties under mechanical stress and understand how their binding and mechanical properties might affect each other. Although certain FN modules have been extensively investigated, no simulation studies have been reported for the FN type I (Fn1) domains, despite their prominent role in binding of various protein modules to FN polymers in the ECM. Using equilibrium and steered molecular dynamics simulations, we have studied mechanical properties of Fn1 modules in the presence or the absence of a specific FN-binding peptide (FnBP). We have also investigated how the binding of the FnBP peptide to Fn1 might be affected by tensile force. Despite the presence of disulfide bonds within individual Fn1 modules that are presumed to prevent their extension, it is found that significant internal structural changes within individual modules are induced by the forces applied in our simulations. These internal structural changes result in significant variations in the accessibility of different residues of the Fn1 modules, which affect their exposure, and, thus, the binding properties of the Fn1 modules. Binding of the FnBP appears to reduce the flexibility of the linker region connecting individual Fn1 modules (exhibited in the form of reduced fluctuation and motion of the linker region), both with regard to bending and stretching motions, and hence stabilizes the inter-domain configuration under force. Under large tensile forces, the FnBP peptide unbinds from Fn1. The results suggest that Fn1 modules in FN polymers do contribute to the overall extension caused by force-induced stretching of the polymer in the ECM, and that binding properties of Fn1 modules can be affected by mechanically induced internal protein conformational changes in spite of the presence of disulfide bonds which were presumed to completely abolish the capacity of Fn1 modules to undergo extension in response to external forces.
Collapse
Affiliation(s)
- Jiankuai Diao
- Department of Biochemistry, Beckman Institute, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew J. Maniotis
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Robert Folberg
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
22
|
Ellis IR, Jones SJ, Staunton D, Vakonakis I, Norman DG, Potts JR, Milner CM, Meenan NAG, Raibaud S, Ohea G, Schor AM, Schor SL. Multi-factorial modulation of IGD motogenic potential in MSF (migration stimulating factor). Exp Cell Res 2010; 316:2465-76. [PMID: 20403349 DOI: 10.1016/j.yexcr.2010.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/04/2010] [Indexed: 12/11/2022]
Abstract
Migration Stimulating Factor (MSF) is a genetically truncated isoform of fibronectin (Fn). MSF is a potent stimulator of fibroblast migration, whereas full length Fn is devoid of motogenic activity. MSF and Fn contain four IGD motifs, located in the 3rd, 5th, 7th and 9th type I modules; these modules are referred to as (3)FnI, (5)FnI, (7)FnI and (9)FnI, respectively. We have previously reported that mutation of IGD motifs in modules (7)FnI and (9)FnI of MSF is sufficient to completely abolish the motogenic response of target adult skin fibroblasts. We now report that the IGD sequences in (3)FnI and (5)FnI are also capable of exhibiting motogenic activity when present within fragments of MSF. When present within (1-5)FnI, these sequences require the presence of serum or vitronectin for their motogenic activity to be manifest, whereas the IGD sequences in (7)FnI and (9)FnI are bioactive in the absence of serum factors. All MSF and IGD-containing peptides stimulated the phosphorylation of the integrin binding protein focal adhesion kinase (FAK) but did not necessarily affect migration. These results suggest that steric hindrance determines the motogenic activity of MSF and Fn, and that both molecules contain cryptic bioactive fragments.
Collapse
Affiliation(s)
- Ian R Ellis
- Unit of Cell and Molecular Biology, The Dental School, College of Medicine, Dentistry and Nursing, University of Dundee, Park Place, DD1 4 HR, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Garman EF. Radiation damage in macromolecular crystallography: what is it and why should we care? ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:339-51. [PMID: 20382986 PMCID: PMC2852297 DOI: 10.1107/s0907444910008656] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/06/2010] [Indexed: 11/10/2022]
Abstract
Radiation damage inflicted during diffraction data collection in macromolecular crystallography has re-emerged in the last decade as a major experimental and computational challenge, as even for crystals held at 100 K it can result in severe data-quality degradation and the appearance in solved structures of artefacts which affect biological interpretations. Here, the observable symptoms and basic physical processes involved in radiation damage are described and the concept of absorbed dose as the basic metric against which to monitor the experimentally observed changes is outlined. Investigations into radiation damage in macromolecular crystallography are ongoing and the number of studies is rapidly increasing. The current literature on the subject is compiled as a resource for the interested researcher.
Collapse
Affiliation(s)
- Elspeth F Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England.
| |
Collapse
|
24
|
Sheldrick GM. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:479-85. [PMID: 20383001 PMCID: PMC2852312 DOI: 10.1107/s0907444909038360] [Citation(s) in RCA: 978] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 09/22/2009] [Indexed: 12/05/2022]
Abstract
Experimental phasing with SHELXC/D/E has been enhanced by the incorporation of main-chain tracing into the iterative density modification; this also provides a simple and effective way of exploiting noncrystallographic symmetry. The programs SHELXC, SHELXD and SHELXE are designed to provide simple, robust and efficient experimental phasing of macromolecules by the SAD, MAD, SIR, SIRAS and RIP methods and are particularly suitable for use in automated structure-solution pipelines. This paper gives a general account of experimental phasing using these programs and describes the extension of iterative density modification in SHELXE by the inclusion of automated protein main-chain tracing. This gives a good indication as to whether the structure has been solved and enables interpretable maps to be obtained from poorer starting phases. The autotracing algorithm starts with the location of possible seven-residue α-helices and common tripeptides. After extension of these fragments in both directions, various criteria are used to decide whether to accept or reject the resulting poly-Ala traces. Noncrystallographic symmetry (NCS) is applied to the traced fragments, not to the density. Further features are the use of a ‘no-go’ map to prevent the traces from passing through heavy atoms or symmetry elements and a splicing technique to combine the best parts of traces (including those generated by NCS) that partly overlap.
Collapse
Affiliation(s)
- George M Sheldrick
- Department of Structural Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany.
| |
Collapse
|
25
|
Vakonakis I, Staunton D, Ellis IR, Sarkies P, Flanagan A, Schor AM, Schor SL, Campbell ID. Motogenic sites in human fibronectin are masked by long range interactions. J Biol Chem 2009; 284:15668-75. [PMID: 19366708 PMCID: PMC2708863 DOI: 10.1074/jbc.m109.003673] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibronectin (FN) is a large extracellular matrix glycoprotein important for development and wound healing in vertebrates. Recent work has focused on the ability of FN fragments and embryonic or tumorigenic splicing variants to stimulate fibroblast migration into collagen gels. This activity has been localized to specific sites and is not exhibited by full-length FN. Here we show that an N-terminal FN fragment, spanning the migration stimulation sites and including the first three type III FN domains, also lacks this activity. A screen for interdomain interactions by solution-state NMR spectroscopy revealed specific contacts between the Fn N terminus and two of the type III domains. A single amino acid substitution, R222A, disrupts the strongest interaction, between domains (4-5)FnI and (3)FnIII, and restores motogenic activity to the FN N-terminal fragment. Anastellin, which promotes fibril formation, destabilizes (3)FnIII and disrupts the observed (4-5)FnI-(3)FnIII interaction. We discuss these findings in the context of the control of cellular activity through exposure of masked sites.
Collapse
Affiliation(s)
- Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU , UK.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Manjasetty BA, Turnbull AP, Panjikar S. The impact of Structural Proteomics on Biotechnology. Biotechnol Genet Eng Rev 2009; 26:353-70. [DOI: 10.5661/bger-26-353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Schönfeld DL, Ravelli RBG, Mueller U, Skerra A. The 1.8-A crystal structure of alpha1-acid glycoprotein (Orosomucoid) solved by UV RIP reveals the broad drug-binding activity of this human plasma lipocalin. J Mol Biol 2008; 384:393-405. [PMID: 18823996 DOI: 10.1016/j.jmb.2008.09.020] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 08/31/2008] [Accepted: 09/09/2008] [Indexed: 11/26/2022]
Abstract
Alpha(1)-acid glycoprotein (AGP) is an important drug-binding protein in human plasma and, as an acute-phase protein, it has a strong influence on pharmacokinetics and pharmacodynamics of many pharmaceuticals. We report the crystal structure of the recombinant unglycosylated human AGP at 1.8 A resolution, which was solved using the new method of UV-radiation-damage-induced phasing (UV RIP). AGP reveals a typical lipocalin fold comprising an eight-stranded beta-barrel. Of the four loops that form the entrance to the ligand-binding site, loop 1, which connects beta-strands A and B, is among the longest observed so far and exhibits two full turns of an alpha-helix. Furthermore, it carries one of the five N-linked glycosylation sites, while a second one occurs underneath the tip of loop 2. The branched, partly hydrophobic, and partly acidic cavity, together with the presumably flexible loop 1 and the two sugar side chains at its entrance, explains the diverse ligand spectrum of AGP, which is known to vary with changes in glycosylation pattern.
Collapse
Affiliation(s)
- Dorian L Schönfeld
- Lehrstuhl für Biologische Chemie, Technische Universität München, An der Saatzucht 5, 85350 Freising-Weihenstephan, Germany
| | | | | | | |
Collapse
|
28
|
Liu Y, Strauss J, Camesano TA. Adhesion forces between Staphylococcus epidermidis and surfaces bearing self-assembled monolayers in the presence of model proteins. Biomaterials 2008; 29:4374-82. [PMID: 18760835 DOI: 10.1016/j.biomaterials.2008.07.044] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 07/26/2008] [Indexed: 10/21/2022]
Abstract
Self-assembled monolayers (SAMs) are being developed into coatings to reduce microbial biofilm formation on biomaterials. To test anti-adhesion properties, SAMs can be easily constructed on gold, and used to represent a coated biomaterial. However, coatings that prevent bacterial adhesion must also resist protein adsorption. We explored the competitive effects of bacteria and protein for adsorption to SAMs, choosing fetal bovine serum (FBS) to represent protein non-specific binding, and fibronectin (FN) to evaluate ligand/receptor binding. Staphylococcus epidermidis were immobilized on an atomic force microscope (AFM) tip and used as a force probe to detect the interaction forces between bacteria and gold-coated SAMs. The SAMs tested were alkanethiol molecules terminating in isophthalic acid (IPA) or isophthalic acid with silver (IAG). While S. epidermidis showed weak interactions with FBS, the bacteria showed strong adhesion with FN, due to ligand/receptor binding. Bacterial retention and viability experiments were correlated with the force measurements. S. epidermidis interacting with IAG SAMs showed a loss of viability, due to the mobility of silver ions. For most substrata, there was a link between high adhesion forces with bacteria and a high percentage of dead cells being retained on that substratum (even in the absence of a specific biocidal effect, such as silver). This may suggest that high adhesion forces can cause stress to the bacteria which contributed to their death. The relationship between highly adhesive SAMs and bacterial inactivation may be useful in future biomaterial design. When evaluating coatings for biomaterials, it is important to consider the interplay between bacteria, proteins, and the coating material.
Collapse
Affiliation(s)
- Yatao Liu
- Department of Chemical Engineering, Life Science and Bioengineering Center at Gateway Park, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | | | | |
Collapse
|
29
|
Bingham RJ, Rudiño-Piñera E, Meenan NAG, Schwarz-Linek U, Turkenburg JP, Höök M, Garman EF, Potts JR. Crystal structures of fibronectin-binding sites from Staphylococcus aureus FnBPA in complex with fibronectin domains. Proc Natl Acad Sci U S A 2008; 105:12254-8. [PMID: 18713862 PMCID: PMC2518095 DOI: 10.1073/pnas.0803556105] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus can adhere to and invade endothelial cells by binding to the human protein fibronectin (Fn). FnBPA and FnBPB, cell wall-attached proteins from S. aureus, have multiple, intrinsically disordered, high-affinity binding repeats (FnBRs) for Fn. Here, 30 years after the first report of S. aureus/Fn interactions, we present four crystal structures that together comprise the structures of two complete FnBRs, each in complex with four of the N-terminal modules of Fn. Each approximately 40-residue FnBR forms antiparallel strands along the triple-stranded beta-sheets of four sequential F1 modules ((2-5)F1) with each FnBR/(2-5)F1 interface burying a total surface area of approximately 4,300 A(2). The structures reveal the roles of residues conserved between S. aureus and Streptococcus pyogenes FnBRs and show that there are few linker residues between FnBRs. The ability to form large intermolecular interfaces with relatively few residues has been proposed to be a feature of disordered proteins, and S. aureus/Fn interactions provide an unusual illustration of this efficiency.
Collapse
Affiliation(s)
- Richard J. Bingham
- *Department of Biology, University of York, PO Box 373, York YO10 5YW, United Kingdom
| | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, P. O. Box 510-3 Cuernavaca, MOR 62271, Mexico
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicola A. G. Meenan
- *Department of Biology, University of York, PO Box 373, York YO10 5YW, United Kingdom
| | - Ulrich Schwarz-Linek
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom
| | - Johan P. Turkenburg
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom; and
| | - Magnus Höök
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030-3303
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Jennifer R. Potts
- *Department of Biology, University of York, PO Box 373, York YO10 5YW, United Kingdom
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom; and
| |
Collapse
|
30
|
Millard CJ, Ellis IR, Pickford AR, Schor AM, Schor SL, Campbell ID. The Role of the Fibronectin IGD Motif in Stimulating Fibroblast Migration. J Biol Chem 2007; 282:35530-5. [DOI: 10.1074/jbc.m707532200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|