1
|
Fitisemanu FM, Padilla-Benavides T. Emerging perspectives of copper-mediated transcriptional regulation in mammalian cell development. Metallomics 2024; 16:mfae046. [PMID: 39375833 PMCID: PMC11503025 DOI: 10.1093/mtomcs/mfae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Copper (Cu) is a vital micronutrient necessary for proper development and function of mammalian cells and tissues. Cu mediates the function of redox active enzymes that facilitate metabolic processes and signaling pathways. Cu levels are tightly regulated by a network of Cu-binding transporters, chaperones, and small molecule ligands. Extensive research has focused on the mammalian Cu homeostasis (cuprostasis) network and pathologies, which result from mutations and perturbations. There are roles for Cu-binding proteins as transcription factors (Cu-TFs) and regulators that mediate metal homeostasis through the activation or repression of genes associated with Cu handling. Emerging evidence suggests that Cu and some Cu-TFs may be involved in the regulation of targets related to development-expanding the biological roles of Cu-binding proteins. Cu and Cu-TFs are implicated in embryonic and tissue-specific development alongside the mediation of the cellular response to oxidative stress and hypoxia. Cu-TFs are also involved in the regulation of targets implicated in neurological disorders, providing new biomarkers and therapeutic targets for diseases such as Parkinson's disease, prion disease, and Friedreich's ataxia. This review provides a critical analysis of the current understanding of the role of Cu and cuproproteins in transcriptional regulation.
Collapse
|
2
|
Fang C, Peng Z, Sang Y, Ren Z, Ding H, Yuan H, Hu K. Copper in Cancer: from transition metal to potential target. Hum Cell 2024; 37:85-100. [PMID: 37751026 DOI: 10.1007/s13577-023-00985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
In recent years, with the continuous in-depth exploration of the molecular mechanisms of tumorigenesis, numerous potential new targets for cancer treatment have been identified, some of which have been further developed in clinical practice and have produced positive outcomes. Notably, researchers' initial motivation for studying copper metabolism in cancer stems from the fact that copper is a necessary trace element for organisms and is closely connected to body growth and metabolism. Moreover, over the past few decades, considerable progress has been made in understanding the molecular processes and correlations between copper and cancer. Certain achievements have been made in the development and use of relevant clinical medications. The concept of "cuproptosis," a novel concept that differs from previous forms of cell death, was first proposed by a group of scientists last year, offering fresh perspectives on the targeting capabilities of copper in the treatment of cancer. In this review, we introduced the fundamental physiological functions of copper, the key components of copper metabolism, and a summary of the current research contributions on the connection between copper and cancer. In addition, the development of new copper-based nanomaterials and their associated mechanisms of action are discussed. Finally, we described how the susceptibility of cancer cells to this metallic nutrition could be leveraged to further improve the existing cancer treatment paradigm in the new setting.
Collapse
Affiliation(s)
- Can Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Zhiwei Peng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Yaru Sang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zihao Ren
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Huiming Ding
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Haibo Yuan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Kongwang Hu
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, China.
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|
3
|
Niemi N. MOF moves into mitochondria. Nat Metab 2023; 5:1846-1847. [PMID: 37813993 DOI: 10.1038/s42255-023-00892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Affiliation(s)
- Natalie Niemi
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
4
|
Guhathakurta S, Erdogdu NU, Hoffmann JJ, Grzadzielewska I, Schendzielorz A, Seyfferth J, Mårtensson CU, Corrado M, Karoutas A, Warscheid B, Pfanner N, Becker T, Akhtar A. COX17 acetylation via MOF-KANSL complex promotes mitochondrial integrity and function. Nat Metab 2023; 5:1931-1952. [PMID: 37813994 PMCID: PMC10663164 DOI: 10.1038/s42255-023-00904-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
Reversible acetylation of mitochondrial proteins is a regulatory mechanism central to adaptive metabolic responses. Yet, how such functionally relevant protein acetylation is achieved remains unexplored. Here we reveal an unprecedented role of the MYST family lysine acetyltransferase MOF in energy metabolism via mitochondrial protein acetylation. Loss of MOF-KANSL complex members leads to mitochondrial defects including fragmentation, reduced cristae density and impaired mitochondrial electron transport chain complex IV integrity in primary mouse embryonic fibroblasts. We demonstrate COX17, a complex IV assembly factor, as a bona fide acetylation target of MOF. Loss of COX17 or expression of its non-acetylatable mutant phenocopies the mitochondrial defects observed upon MOF depletion. The acetylation-mimetic COX17 rescues these defects and maintains complex IV activity even in the absence of MOF, suggesting an activatory role of mitochondrial electron transport chain protein acetylation. Fibroblasts from patients with MOF syndrome who have intellectual disability also revealed respiratory defects that could be restored by alternative oxidase, acetylation-mimetic COX17 or mitochondrially targeted MOF. Overall, our findings highlight the critical role of MOF-KANSL complex in mitochondrial physiology and provide new insights into MOF syndrome.
Collapse
Affiliation(s)
- Sukanya Guhathakurta
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Niyazi Umut Erdogdu
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Juliane J Hoffmann
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Iga Grzadzielewska
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Janine Seyfferth
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Christoph U Mårtensson
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mauro Corrado
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Adam Karoutas
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Wynne ME, Ogunbona O, Lane AR, Gokhale A, Zlatic SA, Xu C, Wen Z, Duong DM, Rayaprolu S, Ivanova A, Ortlund EA, Dammer EB, Seyfried NT, Roberts BR, Crocker A, Shanbhag V, Petris M, Senoo N, Kandasamy S, Claypool SM, Barrientos A, Wingo A, Wingo TS, Rangaraju S, Levey AI, Werner E, Faundez V. APOE expression and secretion are modulated by mitochondrial dysfunction. eLife 2023; 12:e85779. [PMID: 37171075 PMCID: PMC10231934 DOI: 10.7554/elife.85779] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/11/2023] [Indexed: 05/13/2023] Open
Abstract
Mitochondria influence cellular function through both cell-autonomous and non-cell autonomous mechanisms, such as production of paracrine and endocrine factors. Here, we demonstrate that mitochondrial regulation of the secretome is more extensive than previously appreciated, as both genetic and pharmacological disruption of the electron transport chain caused upregulation of the Alzheimer's disease risk factor apolipoprotein E (APOE) and other secretome components. Indirect disruption of the electron transport chain by gene editing of SLC25A mitochondrial membrane transporters as well as direct genetic and pharmacological disruption of either complexes I, III, or the copper-containing complex IV of the electron transport chain elicited upregulation of APOE transcript, protein, and secretion, up to 49-fold. These APOE phenotypes were robustly expressed in diverse cell types and iPSC-derived human astrocytes as part of an inflammatory gene expression program. Moreover, age- and genotype-dependent decline in brain levels of respiratory complex I preceded an increase in APOE in the 5xFAD mouse model. We propose that mitochondria act as novel upstream regulators of APOE-dependent cellular processes in health and disease.
Collapse
Affiliation(s)
- Meghan E Wynne
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Oluwaseun Ogunbona
- Department of Cell Biology, Emory UniversityAtlantaUnited States
- Department of Pathology and Laboratory Medicine, Emory UniversityAtlantaUnited States
| | - Alicia R Lane
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Avanti Gokhale
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | | | - Chongchong Xu
- Department of Psychiatry and Behavioral Sciences, Emory UniversityAtlantaUnited States
| | - Zhexing Wen
- Department of Cell Biology, Emory UniversityAtlantaUnited States
- Department of Psychiatry and Behavioral Sciences, Emory UniversityAtlantaUnited States
- Department of Neurology and Human Genetics, Emory UniversityAtlantaUnited States
| | - Duc M Duong
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | - Sruti Rayaprolu
- Department of Neurology and Human Genetics, Emory UniversityAtlantaUnited States
| | - Anna Ivanova
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | - Eric A Ortlund
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | - Eric B Dammer
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | | | - Blaine R Roberts
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | - Amanda Crocker
- Program in Neuroscience, Middlebury CollegeMiddleburyUnited States
| | - Vinit Shanbhag
- Department of Biochemistry, University of MissouriColumbiaUnited States
| | - Michael Petris
- Department of Biochemistry, University of MissouriColumbiaUnited States
| | - Nanami Senoo
- Department of Physiology, Johns Hopkins UniversityBaltimoreUnited States
| | | | | | - Antoni Barrientos
- Department of Neurology and Biochemistry & Molecular Biology, University of MiamiMiamiUnited States
| | - Aliza Wingo
- Department of Neurology and Human Genetics, Emory UniversityAtlantaUnited States
| | - Thomas S Wingo
- Department of Neurology and Human Genetics, Emory UniversityAtlantaUnited States
| | - Srikant Rangaraju
- Department of Neurology and Human Genetics, Emory UniversityAtlantaUnited States
| | - Allan I Levey
- Department of Neurology and Human Genetics, Emory UniversityAtlantaUnited States
| | - Erica Werner
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Victor Faundez
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| |
Collapse
|
6
|
Ding Y, Chen Y, Wu Z, Yang N, Rana K, Meng X, Liu B, Wan H, Qian W. SsCox17, a copper chaperone, is required for pathogenic process and oxidative stress tolerance of Sclerotinia sclerotiorum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111345. [PMID: 35691151 DOI: 10.1016/j.plantsci.2022.111345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Stem rot, caused by Sclerotinia sclerotiorum has emerged as one of the major fungal pathogens of oilseed Brassica across the world. The pathogenic development is exquisitely dependent on reactive oxygen species (ROS) modulation. Cox17 is a crucial factor that shuttles copper ions from the cytosol to the mitochondria for the cytochrome c oxidase (CCO) assembly. Currently, no data is available regarding the impact of Cox17 in fungal pathogenesis. The present research was carried out to functionally characterize the role of Cox17 in S. sclerotiorum pathogenesis. SsCox17 transcripts showed high expression levels during inoculation on rapeseed. Intramitochondrial copper content and CCO activity were decreased in SsCox17 gene-silenced strains. The SsCox17 gene expression was up-regulated in the hyphae under oxidative stress and a deficiency response to oxidative stress was detected in SsCox17 gene-silenced strains. Compared to the S. sclerotiorum wild-type strain, there was a concomitant reduction in the virulence of SsCox17 gene-silenced strains. The SsCox17 overexpression strain was further found to increase copper content, CCO activity, tolerance to oxidative stress and virulence. We also observed a certain correlation of appressoria formation and SsCox17. These results provide evidence that SsCox17 is positively associated with fungal virulence and oxidative detoxification.
Collapse
Affiliation(s)
- Yijuan Ding
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Yangui Chen
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Zhaohui Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Nan Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Kusum Rana
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Xiao Meng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Bangyan Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Huafang Wan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
7
|
Geldon S, Fernández-Vizarra E, Tokatlidis K. Redox-Mediated Regulation of Mitochondrial Biogenesis, Dynamics, and Respiratory Chain Assembly in Yeast and Human Cells. Front Cell Dev Biol 2021; 9:720656. [PMID: 34557489 PMCID: PMC8452992 DOI: 10.3389/fcell.2021.720656] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are double-membrane organelles that contain their own genome, the mitochondrial DNA (mtDNA), and reminiscent of its endosymbiotic origin. Mitochondria are responsible for cellular respiration via the function of the electron oxidative phosphorylation system (OXPHOS), located in the mitochondrial inner membrane and composed of the four electron transport chain (ETC) enzymes (complexes I-IV), and the ATP synthase (complex V). Even though the mtDNA encodes essential OXPHOS components, the large majority of the structural subunits and additional biogenetical factors (more than seventy proteins) are encoded in the nucleus and translated in the cytoplasm. To incorporate these proteins and the rest of the mitochondrial proteome, mitochondria have evolved varied, and sophisticated import machineries that specifically target proteins to the different compartments defined by the two membranes. The intermembrane space (IMS) contains a high number of cysteine-rich proteins, which are mostly imported via the MIA40 oxidative folding system, dependent on the reduction, and oxidation of key Cys residues. Several of these proteins are structural components or assembly factors necessary for the correct maturation and function of the ETC complexes. Interestingly, many of these proteins are involved in the metalation of the active redox centers of complex IV, the terminal oxidase of the mitochondrial ETC. Due to their function in oxygen reduction, mitochondria are the main generators of reactive oxygen species (ROS), on both sides of the inner membrane, i.e., in the matrix and the IMS. ROS generation is important due to their role as signaling molecules, but an excessive production is detrimental due to unwanted oxidation reactions that impact on the function of different types of biomolecules contained in mitochondria. Therefore, the maintenance of the redox balance in the IMS is essential for mitochondrial function. In this review, we will discuss the role that redox regulation plays in the maintenance of IMS homeostasis as well as how mitochondrial ROS generation may be a key regulatory factor for ETC biogenesis, especially for complex IV.
Collapse
Affiliation(s)
| | - Erika Fernández-Vizarra
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
8
|
Maung MT, Carlson A, Olea-Flores M, Elkhadragy L, Schachtschneider KM, Navarro-Tito N, Padilla-Benavides T. The molecular and cellular basis of copper dysregulation and its relationship with human pathologies. FASEB J 2021; 35:e21810. [PMID: 34390520 DOI: 10.1096/fj.202100273rr] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential micronutrient required for the activity of redox-active enzymes involved in critical metabolic reactions, signaling pathways, and biological functions. Transporters and chaperones control Cu ion levels and bioavailability to ensure proper subcellular and systemic Cu distribution. Intensive research has focused on understanding how mammalian cells maintain Cu homeostasis, and how molecular signals coordinate Cu acquisition and storage within organs. In humans, mutations of genes that regulate Cu homeostasis or facilitate interactions with Cu ions lead to numerous pathologic conditions. Malfunctions of the Cu+ -transporting ATPases ATP7A and ATP7B cause Menkes disease and Wilson disease, respectively. Additionally, defects in the mitochondrial and cellular distributions and homeostasis of Cu lead to severe neurodegenerative conditions, mitochondrial myopathies, and metabolic diseases. Cu has a dual nature in carcinogenesis as a promotor of tumor growth and an inducer of redox stress in cancer cells. Cu also plays role in cancer treatment as a component of drugs and a regulator of drug sensitivity and uptake. In this review, we provide an overview of the current knowledge of Cu metabolism and transport and its relation to various human pathologies.
Collapse
Affiliation(s)
- May T Maung
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Alyssa Carlson
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Lobna Elkhadragy
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Napoleon Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | | |
Collapse
|
9
|
Palmer CS, Lou J, Kouskousis B, Pandzic E, Anderson AJ, Kang Y, Hinde E, Stojanovski D. Super-resolution microscopy reveals the arrangement of inner membrane protein complexes in mammalian mitochondria. J Cell Sci 2021; 134:jcs252197. [PMID: 34313317 DOI: 10.1242/jcs.252197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial inner membrane is a protein-rich environment containing large multimeric complexes, including complexes of the mitochondrial electron transport chain, mitochondrial translocases and quality control machineries. Although the inner membrane is highly proteinaceous, with 40-60% of all mitochondrial proteins localised to this compartment, little is known about the spatial distribution and organisation of complexes in this environment. We set out to survey the arrangement of inner membrane complexes using stochastic optical reconstruction microscopy (STORM). We reveal that subunits of the TIM23 complex, TIM23 and TIM44 (also known as TIMM23 and TIMM44, respectively), and the complex IV subunit COXIV, form organised clusters and show properties distinct from the outer membrane protein TOM20 (also known as TOMM20). Density based cluster analysis indicated a bimodal distribution of TIM44 that is distinct from TIM23, suggesting distinct TIM23 subcomplexes. COXIV is arranged in larger clusters that are disrupted upon disruption of complex IV assembly. Thus, STORM super-resolution microscopy is a powerful tool for examining the nanoscale distribution of mitochondrial inner membrane complexes, providing a 'visual' approach for obtaining pivotal information on how mitochondrial complexes exist in a cellular context.
Collapse
Affiliation(s)
- Catherine S Palmer
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jieqiong Lou
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Betty Kouskousis
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia
- Monash Micro Imaging, Monash University, Clayton, Victoria 3168, Australia
| | - Elvis Pandzic
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alexander J Anderson
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yilin Kang
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Elizabeth Hinde
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
10
|
Gladyck S, Aras S, Hüttemann M, Grossman LI. Regulation of COX Assembly and Function by Twin CX 9C Proteins-Implications for Human Disease. Cells 2021; 10:197. [PMID: 33498264 PMCID: PMC7909247 DOI: 10.3390/cells10020197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/29/2022] Open
Abstract
Oxidative phosphorylation is a tightly regulated process in mammals that takes place in and across the inner mitochondrial membrane and consists of the electron transport chain and ATP synthase. Complex IV, or cytochrome c oxidase (COX), is the terminal enzyme of the electron transport chain, responsible for accepting electrons from cytochrome c, pumping protons to contribute to the gradient utilized by ATP synthase to produce ATP, and reducing oxygen to water. As such, COX is tightly regulated through numerous mechanisms including protein-protein interactions. The twin CX9C family of proteins has recently been shown to be involved in COX regulation by assisting with complex assembly, biogenesis, and activity. The twin CX9C motif allows for the import of these proteins into the intermembrane space of the mitochondria using the redox import machinery of Mia40/CHCHD4. Studies have shown that knockdown of the proteins discussed in this review results in decreased or completely deficient aerobic respiration in experimental models ranging from yeast to human cells, as the proteins are conserved across species. This article highlights and discusses the importance of COX regulation by twin CX9C proteins in the mitochondria via COX assembly and control of its activity through protein-protein interactions, which is further modulated by cell signaling pathways. Interestingly, select members of the CX9C protein family, including MNRR1 and CHCHD10, show a novel feature in that they not only localize to the mitochondria but also to the nucleus, where they mediate oxygen- and stress-induced transcriptional regulation, opening a new view of mitochondrial-nuclear crosstalk and its involvement in human disease.
Collapse
Affiliation(s)
- Stephanie Gladyck
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.G.); (S.A.); (M.H.)
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.G.); (S.A.); (M.H.)
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.G.); (S.A.); (M.H.)
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.G.); (S.A.); (M.H.)
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA
| |
Collapse
|
11
|
Hao Y, Reyes LT, Morris R, Xu Y, Wang Y, Cheng F. Changes of protein levels in human urine reflect the dysregulation of signaling pathways of chronic kidney disease and its complications. Sci Rep 2020; 10:20743. [PMID: 33247215 PMCID: PMC7699629 DOI: 10.1038/s41598-020-77916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
The increasing prevalence of chronic kidney disease (CKD) seriously is threatening human health and overall quality of life. The discovery of biomarkers of pathogenesis of CKD and the associated complications are very important for CDK diagnosis and treatment. In this paper, urine protein biomarkers were investigated because urine sample collection is convenient and non-invasive. We analyzed the protein concentrations in the urine of CKD patients and extracted abnormal protein signals comparing with the healthy control groups. The enriched signaling pathways that may characterize CKD pathology were identified from these proteins. We applied surface-enhanced laser desorption and ionization time of flight mass spectrometry technology to detect different protein peaks in urine samples from patients with CKD and healthy controls. We searched the proteins corresponding to protein peaks through the UniProt database and identified the signaling pathways of CKD and its complications by using the NIH DAVID database. 42 low abundance proteins and 46 high abundance proteins in the urine samples from CKD patients were found by comparing with healthy controls. Seven KEGG pathways related to CKD and its complications were identified from the regulated proteins. These pathways included chemokine signaling pathway, cytokine-cytokine receptor interaction, oxidative phosphorylation, cardiac muscle contraction, Alzheimer's disease, Parkinson's disease, and salivary secretion. In CKD stages 2, 3, 4, and 5, five proteins showed significantly differential abundances. The differential protein signals and regulated signaling pathways will provide new insight for the pathogenesis of CKD and its complications. These altered proteins may also be used as novel biomarkers for the noninvasive and convenient diagnosis methods of CKD and its complications through urine testing in the future.
Collapse
Affiliation(s)
- Yiming Hao
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Luis Tanon Reyes
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, 33612, USA
| | - Robert Morris
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, 33612, USA
| | - Yifeng Xu
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiqin Wang
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Feng Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
12
|
The Involvement of Cytochrome c Oxidase in Mitochondrial Fusion in Primary Cultures of Neonatal Rat Cardiomyocytes. Cardiovasc Toxicol 2019; 18:365-373. [PMID: 29396798 DOI: 10.1007/s12012-018-9447-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cytochrome c oxidase (CCO) is a copper-dependent enzyme of mitochondrial respiratory chain. In pressure overload-induced cardiac hypertrophy, copper level and CCO activity are both depressed, along with disturbance in mitochondrial fusion and fission dynamics. Copper repletion leads to recovery of CCO activity and normalized mitochondrial dynamics. The present study was undertaken to define the link between CCO activity and mitochondrial dynamic changes. Primary cultures of neonatal rat cardiomyocytes were treated with phenylephrine to induce cell hypertrophy. Hypertrophic cardiomyocytes were then treated with copper to reverse hypertrophy. In the hypertrophic cardiomyocytes, CCO activity was depressed and mitochondrial fusion was suppressed. Upon copper repletion, CCO activity was recovered and mitochondrial fusion was reestablished. Depression of CCO activity by siRNA targeting CCO assembly homolog 17 (COX17), a copper chaperone for CCO, led to fragmentation of mitochondria, which was not recoverable by copper supplementation. This study thus demonstrates that copper-dependent CCO is critical for mitochondrial fusion in the regression of cardiomyocyte hypertrophy.
Collapse
|
13
|
Vanišová M, Burská D, Křížová J, Daňhelovská T, Dosoudilová Ž, Zeman J, Stibůrek L, Hansíková H. Stable COX17 Downregulation Leads to Alterations in Mitochondrial Ultrastructure, Decreased Copper Content and Impaired Cytochrome c Oxidase Biogenesis in HEK293 Cells. Folia Biol (Praha) 2019; 65:181-187. [PMID: 31903891 DOI: 10.14712/fb2019065040181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cox17 is an assembly factor that participates in early cytochrome c oxidase (COX, CcO) assembly stages. Cox17 shuttles copper ions from the cytosol to the mitochondria and, together with Sco1 and Sco2, provides copper ions to the Cox1 and Cox2 mitochondrially encoded subunits. In Saccharomyces cerevisiae, Cox17 also modulates mitochondrial membrane architecture due to the interaction of Cox17 with proteins of the MICOS complex (mitochondrial contact site and cristae organizing system). There is currently no data regarding the impact of long-term Cox17 deficiency in human cells. Here, we present construction and characterization of three stable COX17 shRNA-downregulated HEK293 cell lines that have less than 10 % of the residual Cox17 protein level. Cox17-depleted cell lines exhibited decreased intramitochondrial copper content, decreased CcO subunit levels (Cox1, Cox4 and Cox5a) and accumulation of CcO subcomplexes. Similarly to yeast cells, mitochondria in Cox17-downregulated HEK293 cell lines exhibited ultrastructural changes including cristae reduction and mitochondrial swelling. Characterization of the molecular pathogenesis of long-term Cox17 deficiency complements our knowledge of the mitochondrial copper metabolism and assembly of cytochrome c oxidase in human cells.
Collapse
Affiliation(s)
- M Vanišová
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - D Burská
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - J Křížová
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - T Daňhelovská
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Ž Dosoudilová
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - J Zeman
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - L Stibůrek
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - H Hansíková
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| |
Collapse
|
14
|
Alejandra Sánchez-Muñoz M, Valdez-Solana MA, Campos-Almazán MI, Flores-Herrera Ó, Esparza-Perusquía M, Olvera-Sánchez S, García-Arenas G, Avitia-Domínguez C, Téllez-Valencia A, Sierra-Campos E. Streptozotocin-Induced Adaptive Modification of Mitochondrial Supercomplexes in Liver of Wistar Rats and the Protective Effect of Moringa oleifera Lam. Biochem Res Int 2018; 2018:5681081. [PMID: 29686903 PMCID: PMC5852898 DOI: 10.1155/2018/5681081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/28/2017] [Indexed: 12/04/2022] Open
Abstract
The increasing prevalence of diabetes continues to be a major health issue worldwide. Alteration of mitochondrial electron transport chain is a recognized hallmark of the diabetic-associated decline in liver bioenergetics; however, the molecular events involved are only poorly understood. Moringa oleifera is used for the treatment of diabetes. However, its role on mitochondrial functionality is not yet established. This study was aimed to evaluate the effect of M. oleifera extract on supercomplex formation, ATPase activity, ROS production, GSH levels, lipid peroxidation, and protein carbonylation. The levels of lipid peroxidation and protein carbonylation were increased in diabetic group. However, the levels were decreased in Moringa-treated diabetic rats. Analysis of in-gel activity showed an increase in all complex activities in the diabetic group, but spectrophotometric determinations of complex II and IV activities were unaffected in this treatment. However, we found an oxygen consumption abolition through complex I-III-IV pathway in the diabetic group treated with Moringa. While respiration with succinate feeding into complex II-III-IV was increased in the diabetic group. These findings suggest that hyperglycemia modifies oxygen consumption, supercomplexes formation, and increases ROS levels in mitochondria from the liver of STZ-diabetic rats, whereas M. oleifera may have a protective role against some alterations.
Collapse
Affiliation(s)
| | | | - Mara Ibeth Campos-Almazán
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango Campus, Durango, DGO, Mexico
| | - Óscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mercedes Esparza-Perusquía
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sofia Olvera-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guadalupe García-Arenas
- Facultad de Ciencias de la Salud, Universidad Juárez del Estado de Durango Campus, Gómez Palacio, DGO, Mexico
| | - Claudia Avitia-Domínguez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango Campus, Durango, DGO, Mexico
| | - Alfredo Téllez-Valencia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango Campus, Durango, DGO, Mexico
| | - Erick Sierra-Campos
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango Campus, Gómez Palacio, DGO, Mexico
| |
Collapse
|
15
|
Castro JP, Wardelmann K, Grune T, Kleinridders A. Mitochondrial Chaperones in the Brain: Safeguarding Brain Health and Metabolism? Front Endocrinol (Lausanne) 2018; 9:196. [PMID: 29755410 PMCID: PMC5932182 DOI: 10.3389/fendo.2018.00196] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/10/2018] [Indexed: 12/31/2022] Open
Abstract
The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA) mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis), cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function) has been observed during aging, metabolic diseases such as type 2 diabetes and in neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD) or even Huntington's (HD) diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases.
Collapse
Affiliation(s)
- José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- *Correspondence: José Pedro Castro, ; André Kleinridders,
| | - Kristina Wardelmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - André Kleinridders
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
- *Correspondence: José Pedro Castro, ; André Kleinridders,
| |
Collapse
|
16
|
Mitochondrial disulfide relay and its substrates: mechanisms in health and disease. Cell Tissue Res 2016; 367:59-72. [DOI: 10.1007/s00441-016-2481-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/18/2016] [Indexed: 01/06/2023]
|
17
|
Copper dyshomoeostasis in Parkinson's disease: implications for pathogenesis and indications for novel therapeutics. Clin Sci (Lond) 2016; 130:565-74. [PMID: 26957644 DOI: 10.1042/cs20150153] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Copper is a biometal essential for normal brain development and function, thus copper deficiency or excess results in central nervous system disease. Well-characterized disorders of disrupted copper homoeostasis with neuronal degeneration include Menkes disease and Wilson's disease but a large body of evidence also implicates disrupted copper pathways in other neurodegenerative disorders, including Parkinson's disease, Alzheimer's disease, Amyotrophic lateral sclerosis, Huntington's disease and prion diseases. In this short review we critically evaluate the data regarding changes in systemic and brain copper levels in Parkinson's disease, where alterations in brain copper are associated with regional neuronal cell death and disease pathology. We review copper regulating mechanisms in the human brain and the effects of dysfunction within these systems. We then examine the evidence for a role for copper in pathogenic processes in Parkinson's disease and consider reports of diverse copper-modulating strategies in in vitro and in vivo models of this disorder. Copper-modulating therapies are currently advancing through clinical trials for Alzheimer's and Huntington's disease and may also hold promise as disease modifying agents in Parkinson's disease.
Collapse
|
18
|
Garcia L, Welchen E, Gey U, Arce AL, Steinebrunner I, Gonzalez DH. The cytochrome c oxidase biogenesis factor AtCOX17 modulates stress responses in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:628-44. [PMID: 26436309 DOI: 10.1111/pce.12647] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/22/2015] [Indexed: 05/03/2023]
Abstract
COX17 is a soluble protein from the mitochondrial intermembrane space that participates in the transfer of copper for cytochrome c oxidase (COX) assembly in eukaryotic organisms. In this work, we studied the function of both Arabidopsis thaliana AtCOX17 genes using plants with altered expression levels of these genes. Silencing of AtCOX17-1 in a cox17-2 knockout background generates plants with smaller rosettes and decreased expression of genes involved in the response of plants to different stress conditions, including several genes that are induced by mitochondrial dysfunctions. Silencing of either of the AtCOX17 genes does not affect plant development or COX activity but causes a decrease in the response of genes to salt stress. In addition, these plants contain higher reactive oxygen and lipid peroxidation levels after irrigation with high NaCl concentrations and are less sensitive to abscisic acid. In agreement with a role of AtCOX17 in stress and abscisic acid responses, both AtCOX17 genes are induced by several stress conditions, abscisic acid and mutation of the transcription factor ABI4. The results indicate that AtCOX17 is required for optimal expression of a group of stress-responsive genes, probably as a component of signalling pathways that link stress conditions to gene expression responses.
Collapse
Affiliation(s)
- Lucila Garcia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Uta Gey
- Technische Universität Dresden, Department of Biology, 01062, Dresden, Germany
| | - Agustín L Arce
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Iris Steinebrunner
- Technische Universität Dresden, Department of Biology, 01062, Dresden, Germany
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| |
Collapse
|
19
|
Kovářová N, Pecina P, Nůsková H, Vrbacký M, Zeviani M, Mráček T, Viscomi C, Houštěk J. Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects. Biochim Biophys Acta Mol Basis Dis 2016; 1862:705-715. [PMID: 26804654 PMCID: PMC4793088 DOI: 10.1016/j.bbadis.2016.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 12/08/2015] [Accepted: 01/08/2016] [Indexed: 12/17/2022]
Abstract
Mitochondrial protein SURF1 is a specific assembly factor of cytochrome c oxidase (COX), but its function is poorly understood. SURF1 gene mutations cause a severe COX deficiency manifesting as the Leigh syndrome in humans, whereas in mice SURF1−/− knockout leads only to a mild COX defect. We used SURF1−/− mouse model for detailed analysis of disturbed COX assembly and COX ability to incorporate into respiratory supercomplexes (SCs) in different tissues and fibroblasts. Furthermore, we compared fibroblasts from SURF1−/− mouse and SURF1 patients to reveal interspecies differences in kinetics of COX biogenesis using 2D electrophoresis, immunodetection, arrest of mitochondrial proteosynthesis and pulse-chase metabolic labeling. The crucial differences observed are an accumulation of abundant COX1 assembly intermediates, low content of COX monomer and preferential recruitment of COX into I–III2–IVn SCs in SURF1 patient fibroblasts, whereas SURF1−/− mouse fibroblasts were characterized by low content of COX1 assembly intermediates and milder decrease in COX monomer, which appeared more stable. This pattern was even less pronounced in SURF1−/− mouse liver and brain. Both the control and SURF1−/− mice revealed only negligible formation of the I–III2–IVn SCs and marked tissue differences in the contents of COX dimer and III2–IV SCs, also less noticeable in liver and brain than in heart and muscle. Our studies support the view that COX assembly is much more dependent on SURF1 in humans than in mice. We also demonstrate markedly lower ability of mouse COX to form I–III2–IVn supercomplexes, pointing to tissue-specific and species-specific differences in COX biogenesis. In SURF1 −/− mouse the decrease of COX amount and activity was tissue/cell specific. Assembly kinetics proceeded to the level of stable COX monomer in SURF1 −/− mouse. COX assembly intermediates were faster degraded/depleted in time in SURF1 −/− mouse. COX was preferentially recruited in supercomplex I–III2–IV1 in SURF1 patient cells. Newly synthesized COX monomer was unstable and rapidly degraded in SURF1 patient.
Collapse
Affiliation(s)
- Nikola Kovářová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Petr Pecina
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Hana Nůsková
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Marek Vrbacký
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Massimo Zeviani
- Molecular Neurogenetics Unit, Instituto Neurologico "C. Besta", via Temolo 4, 20126 Milan, Italy; MRC-Mitochondrial Biology Unit, Wellcome Trust MRC Bldg, Addenbrookes Hospital Hills Rd, Cambridge CB2 0XY, UK
| | - Tomáš Mráček
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Carlo Viscomi
- MRC-Mitochondrial Biology Unit, Wellcome Trust MRC Bldg, Addenbrookes Hospital Hills Rd, Cambridge CB2 0XY, UK
| | - Josef Houštěk
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic.
| |
Collapse
|
20
|
Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase. Proc Natl Acad Sci U S A 2015; 112:11771-6. [PMID: 26351686 DOI: 10.1073/pnas.1505056112] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maturation of cytochrome oxidases is a complex process requiring assembly of several subunits and adequate uptake of the metal cofactors. Two orthologous Sco proteins (Sco1 and Sco2) are essential for the correct assembly of the dicopper CuA site in the human oxidase, but their function is not fully understood. Here, we report an in vitro biochemical study that shows that Sco1 is a metallochaperone that selectively transfers Cu(I) ions based on loop recognition, whereas Sco2 is a copper-dependent thiol reductase of the cysteine ligands in the oxidase. Copper binding to Sco2 is essential to elicit its redox function and as a guardian of the reduced state of its own cysteine residues in the oxidizing environment of the mitochondrial intermembrane space (IMS). These results provide a detailed molecular mechanism for CuA assembly, suggesting that copper and redox homeostasis are intimately linked in the mitochondrion.
Collapse
|
21
|
Stroud DA, Maher MJ, Lindau C, Vögtle FN, Frazier AE, Surgenor E, Mountford H, Singh AP, Bonas M, Oeljeklaus S, Warscheid B, Meisinger C, Thorburn DR, Ryan MT. COA6 is a mitochondrial complex IV assembly factor critical for biogenesis of mtDNA-encoded COX2. Hum Mol Genet 2015; 24:5404-15. [PMID: 26160915 DOI: 10.1093/hmg/ddv265] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/06/2015] [Indexed: 01/29/2023] Open
Abstract
Biogenesis of complex IV of the mitochondrial respiratory chain requires assembly factors for subunit maturation, co-factor attachment and stabilization of intermediate assemblies. A pathogenic mutation in COA6, leading to substitution of a conserved tryptophan for a cysteine residue, results in a loss of complex IV activity and cardiomyopathy. Here, we demonstrate that the complex IV defect correlates with a severe loss in complex IV assembly in patient heart but not fibroblasts. Complete loss of COA6 activity using gene editing in HEK293T cells resulted in a profound growth defect due to complex IV deficiency, caused by impaired biogenesis of the copper-bound mitochondrial DNA-encoded subunit COX2 and subsequent accumulation of complex IV assembly intermediates. We show that the pathogenic mutation in COA6 does not affect its import into mitochondria but impairs its maturation and stability. Furthermore, we show that COA6 has the capacity to bind copper and can associate with newly translated COX2 and the mitochondrial copper chaperone SCO1. Our data reveal that COA6 is intricately involved in the copper-dependent biogenesis of COX2.
Collapse
Affiliation(s)
- David A Stroud
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Melbourne, Australia
| | - Megan J Maher
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Melbourne, Australia
| | - Caroline Lindau
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Melbourne, Australia
| | - F-Nora Vögtle
- Institut für Biochemie und Molekularbiologie, ZBMZ, University of Freiburg, 79104 Freiburg, Germany
| | - Ann E Frazier
- Murdoch Childrens Research Institute and Victorian Clinical Genetics Services, Royal Children's Hospital, University of Melbourne and Department of Pediatrics, University of Melbourne, 3052 Melbourne, Australia and
| | - Elliot Surgenor
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Melbourne, Australia
| | - Hayley Mountford
- Murdoch Childrens Research Institute and Victorian Clinical Genetics Services, Royal Children's Hospital, University of Melbourne and Department of Pediatrics, University of Melbourne, 3052 Melbourne, Australia and
| | - Abeer P Singh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Melbourne, Australia
| | - Matteo Bonas
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Melbourne, Australia
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Chris Meisinger
- Institut für Biochemie und Molekularbiologie, ZBMZ, University of Freiburg, 79104 Freiburg, Germany, Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - David R Thorburn
- Institut für Biochemie und Molekularbiologie, ZBMZ, University of Freiburg, 79104 Freiburg, Germany
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Melbourne, Australia,
| |
Collapse
|
22
|
Choveaux DL, Krause RG, Przyborski JM, Goldring JD. Identification and initial characterisation of a Plasmodium falciparum Cox17 copper metallochaperone. Exp Parasitol 2015; 148:30-9. [DOI: 10.1016/j.exppara.2014.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/06/2014] [Indexed: 12/15/2022]
|
23
|
Zheng L, Han P, Liu J, Li R, Yin W, Wang T, Zhang W, Kang YJ. Role of copper in regression of cardiac hypertrophy. Pharmacol Ther 2014; 148:66-84. [PMID: 25476109 DOI: 10.1016/j.pharmthera.2014.11.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 02/07/2023]
Abstract
Pressure overload causes an accumulation of homocysteine in the heart, which is accompanied by copper depletion through the formation of copper-homocysteine complexes and the excretion of the complexes. Copper supplementation recovers cytochrome c oxidase (CCO) activity and promotes myocardial angiogenesis, along with the regression of cardiac hypertrophy and the recovery of cardiac contractile function. Increased copper availability is responsible for the recovery of CCO activity. Copper promoted expression of angiogenesis factors including vascular endothelial growth factor (VEGF) in endothelial cells is responsible for angiogenesis. VEGF receptor-2 (VEGFR-2) is critical for hypertrophic growth of cardiomyocytes and VEGFR-1 is essential for the regression of cardiomyocyte hypertrophy. Copper, through promoting VEGF production and suppressing VEGFR-2, switches the VEGF signaling pathway from VEGFR-2-dependent to VEGFR-1-dependent, leading to the regression of cardiomyocyte hypertrophy. Copper is also required for hypoxia-inducible factor-1 (HIF-1) transcriptional activity, acting on the interaction between HIF-1 and the hypoxia responsible element and the formation of HIF-1 transcriptional complex by inhibiting the factor inhibiting HIF-1. Therefore, therapeutic targets for copper supplementation-induced regression of cardiac hypertrophy include: (1) the recovery of copper availability for CCO and other critical cellular events; (2) the activation of HIF-1 transcriptional complex leading to the promotion of angiogenesis in the endothelial cells by VEGF and other factors; (3) the activation of VEGFR-1-dependent regression signaling pathway in the cardiomyocytes; and (4) the inhibition of VEGFR-2 through post-translational regulation in the hypertrophic cardiomyocytes. Future studies should focus on target-specific delivery of copper for the development of clinical application.
Collapse
Affiliation(s)
- Lily Zheng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Pengfei Han
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiaming Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Rui Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wen Yin
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tao Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wenjing Zhang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
24
|
Lenartowicz M, Kennedy C, Hayes H, McArdle HJ. Transcriptional regulation of copper metabolism genes in the liver of fetal and neonatal control and iron-deficient rats. Biometals 2014; 28:51-9. [PMID: 25349135 PMCID: PMC4300417 DOI: 10.1007/s10534-014-9802-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/16/2014] [Indexed: 12/25/2022]
Abstract
Copper and iron metabolism have been known to interact for many years. We have previously shown, during pregnancy, that copper levels in the maternal liver rise as a consequence of iron deficiency, but that levels in the fetal liver decrease. In this paper, we measure expression of genes involved in copper metabolism in fetal and postnatal liver, to test whether alterations can explain this observation. Additionally, we study the extent to which gene expression changes in the latter stages of pregnancy and in the perinatal period. Ctr1 expression levels dropped to term, rising again thereafter. There was no difference in gene expression between control and iron deficient animals. Atox1 expression remained approximately stable until term, and then there was a rise to a maximum at about Day 8. Atp7a expression levels remained constant, except for a brief drop at term. Atp7b levels, in contrast, decreased from a maximum early in gestation to low levels in the term and post-natal livers. Ceruloplasmin expression appeared to be diametrically opposite to Atp7b. The other two metallochaperones showed the same pattern of expression as Atox1, with a decrease to term, a rise at Day 1, or a rise after birth followed by a brief decrease at about Day 3. None of the genes were significantly affected by iron deficiency, suggesting that changes in expression cannot explain the altered copper levels in the fetal and neonatal liver.
Collapse
Affiliation(s)
- Malgorzata Lenartowicz
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | | | | | | |
Collapse
|
25
|
Proteomic analysis reveals a novel function of the kinase Sat4p in Saccharomyces cerevisiae mitochondria. PLoS One 2014; 9:e103956. [PMID: 25117470 PMCID: PMC4138037 DOI: 10.1371/journal.pone.0103956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/03/2014] [Indexed: 12/24/2022] Open
Abstract
The Saccharomyces cerevisiae kinase Sat4p has been originally identified as a protein involved in salt tolerance and stabilization of plasma membrane transporters, implicating a cytoplasmic localization. Our study revealed an additional mitochondrial (mt) localization, suggesting a dual function for Sat4p. While no mt related phenotype was observed in the absence of Sat4p, its overexpression resulted in significant changes of a specific mitochondrial subproteome. As shown by a comparative two dimensional difference gel electrophoresis (2D-DIGE) approach combined with mass spectrometry, particularly two groups of proteins were affected: the iron-sulfur containing aconitase-type proteins (Aco1p, Lys4p) and the lipoamide-containing subproteome (Lat1p, Kgd2p and Gcv3p). The lipoylation sites of all three proteins could be assigned by nanoLC-MS/MS to Lys75 (Lat1p), Lys114 (Kgd2p) and Lys102 (Gcv3p), respectively. Sat4p overexpression resulted in accumulation of the delipoylated protein variants and in reduced levels of aconitase-type proteins, accompanied by a decrease in the activities of the respective enzyme complexes. We propose a regulatory role of Sat4p in the late steps of the maturation of a specific subset of mitochondrial iron-sulfur cluster proteins, including Aco1p and lipoate synthase Lip5p. Impairment of the latter enzyme may account for the observed lipoylation defects.
Collapse
|
26
|
Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol 2014; 116:33-57. [DOI: 10.1016/j.pneurobio.2014.01.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/15/2022]
|
27
|
Garcia L, Welchen E, Gonzalez DH. Mitochondria and copper homeostasis in plants. Mitochondrion 2014; 19 Pt B:269-74. [PMID: 24582977 DOI: 10.1016/j.mito.2014.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 11/17/2022]
Abstract
Copper (Cu) and other transition metals are essential for living organisms but also toxic when present in excess. To cope with this apparent paradox, organisms have developed sophisticated mechanisms to acquire, transport and store these metals. Particularly, plant mitochondria require Cu for the assembly and function of cytochrome c oxidase (COX), the terminal enzyme of the respiratory chain. COX assembly is a complex process that requires the action of multiple factors, many of them involved in the delivery and insertion of Cu into the enzyme. In this review, we summarize what is known about the processes involved in Cu delivery to mitochondria and how these processes impact in Cu homeostasis at the cellular level. We also discuss evidence indicating that metallochaperones involved in COX assembly play additional roles in signaling pathways related to changes in Cu and redox homeostasis and the response of plants to stress. We propose that cysteine-rich proteins present in the mitochondrial intermembrane space are excellent candidates as sensors of these changes and transducers of signals originated in the organelle to the rest of the cell.
Collapse
Affiliation(s)
- Lucila Garcia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina.
| |
Collapse
|
28
|
Kozjak-Pavlovic V, Prell F, Thiede B, Götz M, Wosiek D, Ott C, Rudel T. C1orf163/RESA1 Is a Novel Mitochondrial Intermembrane Space Protein Connected to Respiratory Chain Assembly. J Mol Biol 2014; 426:908-20. [DOI: 10.1016/j.jmb.2013.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/15/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
|
29
|
The mitochondrial disulfide relay system: roles in oxidative protein folding and beyond. Int J Cell Biol 2013; 2013:742923. [PMID: 24348563 PMCID: PMC3848088 DOI: 10.1155/2013/742923] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/01/2013] [Indexed: 12/31/2022] Open
Abstract
Disulfide bond formation drives protein import of most proteins of the mitochondrial intermembrane space (IMS). The main components of this disulfide relay machinery are the oxidoreductase Mia40 and the sulfhydryl oxidase Erv1/ALR. Their precise functions have been elucidated in molecular detail for the yeast and human enzymes in vitro and in intact cells. However, we still lack knowledge on how Mia40 and Erv1/ALR impact cellular and organism physiology and whether they have functions beyond their role in disulfide bond formation. Here we summarize the principles of oxidation-dependent protein import mediated by the mitochondrial disulfide relay. We proceed by discussing recently described functions of Mia40 in the hypoxia response and of ALR in influencing mitochondrial morphology and its importance for tissue development and embryogenesis. We also include a discussion of the still mysterious function of Erv1/ALR in liver regeneration.
Collapse
|
30
|
Wang B, Dong D, Kang YJ. Copper chaperone for superoxide dismutase-1 transfers copper to mitochondria but does not affect cytochrome c oxidase activity. Exp Biol Med (Maywood) 2013; 238:1017-23. [PMID: 23900152 DOI: 10.1177/1535370213497327] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Copper chaperone for superoxide dismutase-1 (CCS-1) is present in the cytosol and in the intermembrane space of mitochondria. It transfers copper ions to superoxide dismutase 1 in the cytosol, but its function in the mitochondria is not clear. The present study was undertaken to test the hypothesis that CCS-1 functions in mitochondrial copper homeostasis. Mitochondria were isolated from human umbilical vein endothelial cells and copper concentrations in the mitochondria were measured in the CCS-1 deficient cells made by siRNA targeting the protein. Copper concentrations in the mitochondria were about 10 fold higher than its total concentrations in the cell and the CCS-1 deficiency significantly reduced the copper level in the mitochondria. However, this decrease in the mitochondrial copper concentration did not affect cytochrome c oxidase (CCO) activity. On the other hand, siRNA targeting COX17, a copper chaperone for the CCO, significantly increased the mitochondrial copper concentration, but suppressed the CCO activity. This study thus demonstrates that CCS-1 facilitates copper trafficking to the mitochondria, but does not affect the transfer of copper to the CCO. In addition, the COX17 not only functions in the copper shuttling to the CCO, but also may participate in the copper efflux from the mitochondria.
Collapse
Affiliation(s)
- Biao Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Daoyin Dong
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
31
|
Zuo X, Dong D, Sun M, Xie H, Kang YJ. Homocysteine restricts copper availability leading to suppression of cytochrome C oxidase activity in phenylephrine-treated cardiomyocytes. PLoS One 2013; 8:e67549. [PMID: 23818984 PMCID: PMC3688604 DOI: 10.1371/journal.pone.0067549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 05/20/2013] [Indexed: 02/05/2023] Open
Abstract
Cardiomyocyte hypertrophy induced by phenylephrine (PE) is accompanied by suppression of cytochrome c oxidase (CCO) activity, and copper (Cu) supplementation restores CCO activity and reverses the hypertrophy. The present study was aimed to understand the mechanism of PE-induced decrease in CCO activity. Primary cultures of neonatal rat cardiomyocytes were treated with PE at a final concentration of l00 µM in cultures for 72 h to induce cell hypertrophy. The CCO activity was determined by enzymatic assay and changes in CCO subunit COX-IV as well as copper chaperones for CCO (COX17, SCO2, and COX11) were determined by Western blotting. PE treatment increased both intracellular and extracellular homocysteine concentrations and decreased intracellular Cu concentrations. Studies in vitro found that homocysteine and Cu form complexes. Inhibition of the intracellular homocysteine synthesis in the PE-treated cardiomyocytes prevented the increase in the extracellular homocysteine concentration, retained the intracellular Cu concentration, and preserved the CCO activity. PE treatment decreased protein concentrations of the COX-IV, and the Cu chaperones COX17, COX11, and SCO2. These PE effects were prevented by either inhibition of the intracellular homocysteine synthesis or Cu supplementation. Therefore, PE-induced elevation of homocysteine restricts Cu availability through its interaction with Cu and suppression of Cu chaperones, leading to the decrease in CCO enzyme activity.
Collapse
Affiliation(s)
- Xiao Zuo
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Daoyin Dong
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Miao Sun
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huiqi Xie
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y. James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
32
|
Maxwell S, Harding J, Brabin C, Appleford PJ, Brown R, Delaney C, Brown G, Woollard A. The SFT-1 and OXA-1 respiratory chain complex assembly factors influence lifespan by distinct mechanisms in C. elegans. LONGEVITY & HEALTHSPAN 2013; 2:9. [PMID: 24472117 PMCID: PMC3922957 DOI: 10.1186/2046-2395-2-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 03/25/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND C. elegans mitochondrial (Mit) mutants have disrupted mitochondrial electron transport chain function, yet, surprisingly, they are often long-lived, a property that has offered unique insights into the molecular mechanisms of aging. In this study, we examine the phenotypic consequences of reducing the expression of the respiratory chain complex assembly factors sft-1 (homologous to human SURF1) and oxa-1 (homologous to human OXA1) by RNA interference (RNAi). Mutations in human SURF1 are associated with Leigh syndrome, a neurodegenerative condition of the brain caused by cytochrome oxidase (COX) deficiency. Both SURF1 and OXA1 are integral proteins of the inner mitochondrial membrane, functioning in the COX assembly pathway. RESULTS RNAi of both of these genes in C. elegans is associated with increased longevity, but the mechanism by which lifespan is extended is different in each case. sft-1(RNAi) animals display lifespan extension that is dependent on the daf-16 insulin-like signaling pathway, and associated with sensitivity to oxidative stress. oxa-1(RNAi) animals, in contrast, exhibit increased longevity that is at least partially independent of daf-16, and associated with a reduced developmental rate and increased resistance to oxidative stress. CONCLUSIONS This study further delineates the consequences of mitochondrial dysfunction within a whole organism that will ultimately help provide new models for human mitochondrial-associated diseases. The difference in phenotype observed upon down-regulation of these two COX assembly factors, as well as phenotypic differences between these factors and other respiratory chain components analyzed thus far, illustrates the complex inter-relationships that exist among energy metabolism, reproduction and aging even in this simplest of metazoan model organisms.
Collapse
Affiliation(s)
- Sara Maxwell
- Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Joanne Harding
- Present address: CRUK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
| | - Charles Brabin
- Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter J Appleford
- Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ruth Brown
- Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Carol Delaney
- Present address: Cytogenetics Department, South East Scotland Genetics Service, Western General Hospital, Edinburgh, UK
| | - Garry Brown
- Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Alison Woollard
- Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
33
|
Soto IC, Fontanesi F, Liu J, Barrientos A. Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1817:883-97. [PMID: 21958598 PMCID: PMC3262112 DOI: 10.1016/j.bbabio.2011.09.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
Eukaryotic cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. COX is a multimeric enzyme formed by subunits of dual genetic origin which assembly is intricate and highly regulated. The COX catalytic core is formed by three mitochondrial DNA encoded subunits, Cox1, Cox2 and Cox3, conserved in the bacterial enzyme. Their biogenesis requires the action of messenger-specific and subunit-specific factors which facilitate the synthesis, membrane insertion, maturation or assembly of the core subunits. The study of yeast strains and human cell lines from patients carrying mutations in structural subunits and COX assembly factors has been invaluable to identify these ancillary factors. Here we review the current state of knowledge of the biogenesis and assembly of the eukaryotic COX catalytic core and discuss the degree of conservation of the players and mechanisms operating from yeast to human. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Ileana C. Soto
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Flavia Fontanesi
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| | - Jingjing Liu
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Antoni Barrientos
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| |
Collapse
|
34
|
Hofmann AD, Beyer M, Krause-Buchholz U, Wobus M, Bornhäuser M, Rödel G. OXPHOS supercomplexes as a hallmark of the mitochondrial phenotype of adipogenic differentiated human MSCs. PLoS One 2012; 7:e35160. [PMID: 22523573 PMCID: PMC3327658 DOI: 10.1371/journal.pone.0035160] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/12/2012] [Indexed: 01/05/2023] Open
Abstract
Mitochondria are essential organelles with multiple functions, especially in energy metabolism. Recently, an increasing number of data has highlighted the role of mitochondria for cellular differentiation processes. Metabolic differences between stem cells and mature derivatives require an adaptation of mitochondrial function during differentiation. In this study we investigated alterations of the mitochondrial phenotype of human mesenchymal stem cells undergoing adipogenic differentiation. Maturation of adipocytes is accompanied by mitochondrial biogenesis and an increase of oxidative metabolism. Adaptation of the mt phenotype during differentiation is reflected by changes in the distribution of the mitochondrial network as well as marked alterations of gene expression and organization of the oxidative phosphorylation system (OXPHOS). Distinct differences in the supramolecular organization forms of cytochrome c oxidase (COX) were detected using 2D blue native (BN)-PAGE analysis. Most remarkably we observed a significant increase in the abundance of OXPHOS supercomplexes in mitochondria, emphasizing the change of the mitochondrial phenotype during adipogenic differentiation.
Collapse
Affiliation(s)
- Andreas D Hofmann
- Institute of Genetics, Technical University of Dresden, Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Gómez LA, Hagen TM. Age-related decline in mitochondrial bioenergetics: does supercomplex destabilization determine lower oxidative capacity and higher superoxide production? Semin Cell Dev Biol 2012; 23:758-67. [PMID: 22521482 DOI: 10.1016/j.semcdb.2012.04.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 03/31/2012] [Accepted: 04/04/2012] [Indexed: 12/17/2022]
Abstract
Mitochondrial decay plays a central role in the aging process. Although certainly multifactorial in nature, defective operation of the electron transport chain (ETC) constitutes a key mechanism involved in the age-associated loss of mitochondrial energy metabolism. Primarily, mitochondrial dysfunction affects the aging animal by limiting bioenergetic reserve capacity and/or increasing oxidative stress via enhanced electron leakage from the ETC. Even though the important aging characteristics of mitochondrial decay are known, the molecular events underlying inefficient electron flux that ultimately leads to higher superoxide appearance and impaired respiration are not completely understood. This review focuses on the potential role(s) that age-associated destabilization of the macromolecular organization of the ETC (i.e. supercomplexes) may be important for development of the mitochondrial aging phenotype, particularly in post-mitotic tissues.
Collapse
Affiliation(s)
- Luis A Gómez
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | | |
Collapse
|
36
|
Nevitt T, Ohrvik H, Thiele DJ. Charting the travels of copper in eukaryotes from yeast to mammals. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1580-93. [PMID: 22387373 DOI: 10.1016/j.bbamcr.2012.02.011] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/08/2012] [Accepted: 02/16/2012] [Indexed: 12/13/2022]
Abstract
Throughout evolution, all organisms have harnessed the redox properties of copper (Cu) and iron (Fe) as a cofactor or structural determinant of proteins that perform critical functions in biology. At its most sobering stance to Earth's biome, Cu biochemistry allows photosynthetic organisms to harness solar energy and convert it into the organic energy that sustains the existence of all nonphotosynthetic life forms. The conversion of organic energy, in the form of nutrients that include carbohydrates, amino acids and fatty acids, is subsequently released during cellular respiration, itself a Cu-dependent process, and stored as ATP that is used to drive a myriad of critical biological processes such as enzyme-catalyzed biosynthetic processes, transport of cargo around cells and across membranes, and protein degradation. The life-supporting properties of Cu incur a significant challenge to cells that must not only exquisitely balance intracellular Cu concentrations, but also chaperone this redox-active metal from its point of cellular entry to its ultimate destination so as to avert the potential for inappropriate biochemical interactions or generation of damaging reactive oxidative species (ROS). In this review we chart the travels of Cu from the extracellular milieu of fungal and mammalian cells, its path within the cytosol as inferred by the proteins and ligands that escort and deliver Cu to intracellular organelles and protein targets, and its journey throughout the body of mammals. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Tracy Nevitt
- Department of Pharmacology, Duke University Medical School, Durham, NC 27710, USA
| | | | | |
Collapse
|
37
|
Szklarczyk R, Wanschers BF, Cuypers TD, Esseling JJ, Riemersma M, van den Brand MA, Gloerich J, Lasonder E, van den Heuvel LP, Nijtmans LG, Huynen MA. Iterative orthology prediction uncovers new mitochondrial proteins and identifies C12orf62 as the human ortholog of COX14, a protein involved in the assembly of cytochrome c oxidase. Genome Biol 2012; 13:R12. [PMID: 22356826 PMCID: PMC3334569 DOI: 10.1186/gb-2012-13-2-r12] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/03/2012] [Accepted: 02/22/2012] [Indexed: 11/10/2022] Open
Abstract
Background Orthology is a central tenet of comparative genomics and ortholog identification is instrumental to protein function prediction. Major advances have been made to determine orthology relations among a set of homologous proteins. However, they depend on the comparison of individual sequences and do not take into account divergent orthologs. Results We have developed an iterative orthology prediction method, Ortho-Profile, that uses reciprocal best hits at the level of sequence profiles to infer orthology. It increases ortholog detection by 20% compared to sequence-to-sequence comparisons. Ortho-Profile predicts 598 human orthologs of mitochondrial proteins from Saccharomyces cerevisiae and Schizosaccharomyces pombe with 94% accuracy. Of these, 181 were not known to localize to mitochondria in mammals. Among the predictions of the Ortho-Profile method are 11 human cytochrome c oxidase (COX) assembly proteins that are implicated in mitochondrial function and disease. Their co-expression patterns, experimentally verified subcellular localization, and co-purification with human COX-associated proteins support these predictions. For the human gene C12orf62, the ortholog of S. cerevisiae COX14, we specifically confirm its role in negative regulation of the translation of cytochrome c oxidase. Conclusions Divergent homologs can often only be detected by comparing sequence profiles and profile-based hidden Markov models. The Ortho-Profile method takes advantage of these techniques in the quest for orthologs.
Collapse
Affiliation(s)
- Radek Szklarczyk
- Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, Nijmegen, 6500 HB, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pidoux G, Witczak O, Jarnæss E, Myrvold L, Urlaub H, Stokka AJ, Küntziger T, Taskén K. Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis. EMBO J 2011; 30:4371-86. [PMID: 21983901 DOI: 10.1038/emboj.2011.365] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 09/07/2011] [Indexed: 12/16/2022] Open
Abstract
Adrenergic stimulation of adipocytes yields a cAMP signal that activates protein kinase A (PKA). PKA phosphorylates perilipin, a protein localized on the surface of lipid droplets that serves as a gatekeeper to regulate access of lipases converting stored triglycerides to free fatty acids and glycerol in a phosphorylation-dependent manner. Here, we report a new function for optic atrophy 1 (OPA1), a protein known to regulate mitochondrial dynamics, as a dual-specificity A-kinase anchoring protein associated with lipid droplets. By a variety of protein interaction assays, immunoprecipitation and immunolocalization experiments, we show that OPA1 organizes a supramolecular complex containing both PKA and perilipin. Furthermore, by a combination of siRNA-mediated knockdown, reconstitution experiments using full-length OPA1 with or without the ability to bind PKA or truncated OPA1 fused to a lipid droplet targeting domain and cellular delivery of PKA anchoring disruptor peptides, we demonstrate that OPA1 targeting of PKA to lipid droplets is necessary for hormonal control of perilipin phosphorylation and lipolysis.
Collapse
Affiliation(s)
- Guillaume Pidoux
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Heidler J, Al-Furoukh N, Kukat C, Salwig I, Ingelmann ME, Seibel P, Krüger M, Holtz J, Wittig I, Braun T, Szibor M. Nitric oxide-associated protein 1 (NOA1) is necessary for oxygen-dependent regulation of mitochondrial respiratory complexes. J Biol Chem 2011; 286:32086-93. [PMID: 21771794 DOI: 10.1074/jbc.m111.221986] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, maintenance of cellular ATP stores depends mainly on mitochondrial oxidative phosphorylation (OXPHOS), which in turn requires sufficient cellular oxygenation. The crucial role of proper oxygenation for cellular viability is reflected by involvement of several mechanisms, which sense hypoxia and regulate activities of respiratory complexes according to available oxygen concentrations. Here, we focus on mouse nitric oxide-associated protein 1 (mNOA1), which has been identified as an important component of the machinery that adjusts OXPHOS activity to oxygen concentrations. mNOA1 is an evolutionary conserved GTP-binding protein that is involved in the regulation of mitochondrial protein translation and respiration. We found that mNOA1 is located mostly in the mitochondrial matrix from where it interacts with several high molecular mass complexes, most notably with the complex IV of the respiratory chain and the prohibitin complex. Knock-down of mNOA1 impaired enzyme activity I+III, resulting in oxidative stress and eventually cell death. mNOA1 is transcriptionally regulated in an oxygen-sensitive manner. We propose that oxygen-dependent regulation of mNOA1 is instrumental to adjusting OXPHOS activity to oxygen availability, thereby controlling mitochondrial metabolism.
Collapse
Affiliation(s)
- Juliana Heidler
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Remacle C, Coosemans N, Jans F, Hanikenne M, Motte P, Cardol P. Knock-down of the COX3 and COX17 gene expression of cytochrome c oxidase in the unicellular green alga Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 2010; 74:223-33. [PMID: 20700628 DOI: 10.1007/s11103-010-9668-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Accepted: 07/15/2010] [Indexed: 05/08/2023]
Abstract
The COX3 gene encodes a core subunit of mitochondrial cytochrome c oxidase (complex IV) whereas the COX17 gene encodes a chaperone delivering copper to the enzyme. Mutants of these two genes were isolated by RNA interference in the microalga Chlamydomonas. The COX3 mRNA was completely lacking in the cox3-RNAi mutant and no activity and assembly of complex IV were detected. The cox17-RNAi mutant presented a reduced level of COX17 mRNA, a reduced activity of the cytochrome c oxidase but no modification of its amount. The cox3-RNAi mutant had only 40% of the wild-type rate of dark respiration which was cyanide-insensitive. The mutant presented a 60% decrease of H(2)O(2) production in the dark compared to wild type, which probably accounts for a reduced electron leakage by respiratory complexes III and IV. In contrast, the cox17-RNAi mutant showed no modification of respiration and of H(2)O(2) production in the dark but a two to threefold increase of H(2)O(2) in the light compared to wild type and the cox3-RNAi mutant. The cox17-RNAi mutant was more sensitive to cadmium than the wild-type and cox3-RNAi strains. This suggested that besides its role in complex IV assembly, Cox17 could have additional functions in the cell such as metal detoxification or Reactive Oxygen Species protection or signaling. Concerning Cox3, its role in Chlamydomonas complex IV is similar to that of other eukaryotes although this subunit is encoded in the nuclear genome in the alga contrary to the situation found in all other organisms.
Collapse
Affiliation(s)
- Claire Remacle
- Department of Life Sciences, Institute of Botany, B22 University of Liege, 4000 Liege, Belgium.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the Cu(A) and intramembrane Cu(B) sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution.
Collapse
Affiliation(s)
- Nigel J Robinson
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, NE2 4HH, United Kingdom.
| | | |
Collapse
|
42
|
Novel insights into the assembly and function of human nuclear-encoded cytochrome c oxidase subunits 4, 5a, 6a, 7a and 7b. Biochem J 2010; 428:363-74. [DOI: 10.1042/bj20091714] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammalian CcO (cytochrome c oxidase) is a hetero-oligomeric protein complex composed of 13 structural subunits encoded by both the mitochondrial and nuclear genomes. To study the role of nuclear-encoded CcO subunits in the assembly and function of the human complex, we used stable RNA interference of COX4, COX5A and COX6A1, as well as expression of epitope-tagged Cox6a, Cox7a and Cox7b, in HEK (human embryonic kidney)-293 cells. Knockdown of Cox4, Cox5a and Cox6a resulted in reduced CcO activity, diminished affinity of the residual enzyme for oxygen, decreased holoCcO and CcO dimer levels, increased accumulation of CcO subcomplexes and gave rise to an altered pattern of respiratory supercomplexes. An analysis of the patterns of CcO subcomplexes found in both knockdown and overexpressing cells identified a novel CcO assembly intermediate, identified the entry points of three late-assembled subunits and demonstrated directly the essential character as well as the interdependence of the assembly of Cox4 and Cox5a. The ectopic expression of the heart/muscle-specific isoform of the Cox6 subunit (COX6A2) resulted in restoration of both CcO holoenzyme and activity in COX6A1-knockdown cells. This was in sharp contrast with the unaltered levels of COX6A2 mRNA in these cells, suggesting the existence of a fixed expression programme. The normal amount and function of respiratory complex I in all of our CcO-deficient knockdown cell lines suggest that, unlike non-human CcO-deficient models, even relatively small amounts of CcO can maintain the normal biogenesis of this respiratory complex in cultured human cells.
Collapse
|
43
|
Stiburek L, Zeman J. Assembly factors and ATP-dependent proteases in cytochrome c oxidase biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1149-58. [PMID: 20398622 DOI: 10.1016/j.bbabio.2010.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 03/14/2010] [Accepted: 04/07/2010] [Indexed: 12/29/2022]
Abstract
Eukaryotic cytochrome c oxidase (CcO), the terminal enzyme of the energy-transducing mitochondrial electron transport chain is a hetero-oligomeric, heme-copper oxidase complex composed of both mitochondrially and nuclear-encoded subunits. It is embedded in the inner mitochondrial membrane where it couples the transfer of electrons from reduced cytochrome c to molecular oxygen with vectorial proton translocation across the membrane. The biogenesis of CcO is a complicated sequential process that requires numerous specific accessory proteins, so-called assembly factors, which include translational activators, translocases, molecular chaperones, copper metallochaperones and heme a biosynthetic enzymes. Besides these CcO-specific protein factors, the correct biogenesis of CcO requires an even greater number of proteins with much broader substrate specificities. Indeed, growing evidence indicates that mitochondrial ATP-dependent proteases might play an important role in CcO biogenesis. Out of the four identified energy-dependent mitochondrial proteases, three were shown to be directly involved in proteolysis of CcO subunits. In addition to their well-established protein-quality control function these oligomeric proteolytic complexes with chaperone-like activities may function as molecular chaperones promoting productive folding and assembly of subunit proteins. In this review, we summarize the current knowledge of the functional involvement of eukaryotic CcO-specific assembly factors and highlight the possible significance for CcO biogenesis of mitochondrial ATP-dependent proteases.
Collapse
Affiliation(s)
- Lukas Stiburek
- Charles University in Prague, First Faculty of Medicine, Department of Pediatrics, Prague, Czech Republic.
| | | |
Collapse
|
44
|
Robinson NJ, Winge DR. Copper metallochaperones. Annu Rev Biochem 2010. [PMID: 20205585 DOI: 10.1146/annurev-biochem-030409-143539]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the Cu(A) and intramembrane Cu(B) sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution.
Collapse
Affiliation(s)
- Nigel J Robinson
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, NE2 4HH, United Kingdom.
| | | |
Collapse
|
45
|
Abstract
The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the Cu(A) and intramembrane Cu(B) sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution.
Collapse
Affiliation(s)
- Nigel J Robinson
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, NE2 4HH, United Kingdom.
| | | |
Collapse
|
46
|
Lutsenko S, Bhattacharjee A, Hubbard AL. Copper handling machinery of the brain. Metallomics 2010; 2:596-608. [DOI: 10.1039/c0mt00006j] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Gómez LA, Monette JS, Chavez JD, Maier CS, Hagen TM. Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart. Arch Biochem Biophys 2009; 490:30-5. [PMID: 19679098 DOI: 10.1016/j.abb.2009.08.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 01/06/2023]
Abstract
Accumulation of mitochondrial electron transport chain (ETC) defects is a recognized hallmark of the age-associated decline in cardiac bioenergetics; however, the molecular events involved are only poorly understood. In the present work, we hypothesized that age-related ETC deterioration stemmed partly from disassociation of large solid-state macromolecular assemblies termed "supercomplexes". Mitochondrial proteins from young and old rat hearts were separated by blue native-PAGE, protein bands analyzed by LC-MALDI-MS/MS, and protein levels quantified by densitometry. Results showed that supercomplexes comprised of various stoichiometries of complexes I, III and IV were observed, and declined significantly (p<0.05, n=4) with age. Supercomplexes displaying the highest molecular masses were the most severely affected. Considering that certain diseases (e.g. Barth Syndrome) display similar supercomplex destabilization as our results for aging, the deterioration in ETC supercomplexes may be an important underlying factor for both impaired mitochondrial function and loss of cardiac bioenergetics with age.
Collapse
Affiliation(s)
- Luis A Gómez
- Linus Pauling Institute and Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|