1
|
Jørgensen JA. Tuning expression of GPCRs for the secretory pathway in the baculovirus-insect cell expression system. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024:184397. [PMID: 39471908 DOI: 10.1016/j.bbamem.2024.184397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
The overexpression of G-protein-coupled receptors (GPCRs) remains one of the biggest hurdles for structural studies of these proteins. To date, the most usually applied system for this task is the insect cell/baculovirus expression system. A drawback of this system, however, is the accumulation of protein that is resistant to solubilization with the commonly used mild detergent DoDecylMaltoside (DDM). In addition, poor surface expression is often observed. In this study, it is shown how an earlier AcMNPV 39K promoter, can express receptors that are found primarily on the cell membrane, as revealed by confocal microscopy, and the protein can be solubilized to a higher degree by DDM in a less aggregation-prone form, as monitored by fluorescence size-exclusion chromatography. In addition, a strong effect on the yield was observed when the AcMNPV gp67 signal sequence was used. The documentation of the 39K promoter as an improvement over the frequently used polyhedrin promoter, along with the effect of the gp67 signal sequence are important steps toward ultimately improving the expression in terms of total functional yield, while also shedding light on the nature of the process of overproduction of membrane proteins, in particular, GPCRs.
Collapse
Affiliation(s)
- Jakob Aastrup Jørgensen
- Laboratory for Biomolecular Research, Paul Scherrer Institut, Villigen, Aargau, Switzerland; Institute for Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Abiko LA, Dias Teixeira R, Engilberge S, Grahl A, Mühlethaler T, Sharpe T, Grzesiek S. Filling of a water-free void explains the allosteric regulation of the β 1-adrenergic receptor by cholesterol. Nat Chem 2022; 14:1133-1141. [PMID: 35953642 DOI: 10.1038/s41557-022-01009-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Recent high-pressure NMR results indicate that the preactive conformation of the β1-adrenergic receptor (β1AR) harbours completely empty cavities of ~100 Å3 volume, which disappear in the active conformation of the receptor. Here we have localized these cavities using X-ray crystallography of xenon-derivatized β1AR crystals. One of the cavities is in direct contact with the cholesterol-binding pocket. Solution NMR shows that addition of the cholesterol analogue cholesteryl hemisuccinate impedes the formation of the active conformation of detergent-solubilized β1AR by blocking conserved G protein-coupled receptor microswitches, concomitant with an affinity reduction of both isoprenaline and G protein-mimicking nanobody Nb80 for β1AR detected by isothermal titration calorimetry. This wedge-like action explains the function of cholesterol as a negative allosteric modulator of β1AR. A detailed understanding of G protein-coupled receptor regulation by cholesterol by filling of a dry void and the easy scouting for such voids by xenon may provide new routes for the development of allosteric drugs.
Collapse
Affiliation(s)
| | | | - Sylvain Engilberge
- Paul Scherrer Institut, Villigen, Switzerland.,European Synchrotron Radiation Facility, Grenoble, France
| | - Anne Grahl
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
3
|
Köck Z, Ermel U, Martin J, Morgner N, Achilleas Frangakis S, Dötsch V, Hilger D, Bernhard F. Biochemical characterization of cell-free synthesized human β 1 adrenergic receptor cotranslationally inserted into nanodiscs. J Mol Biol 2022; 434:167687. [PMID: 35717996 DOI: 10.1016/j.jmb.2022.167687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022]
Abstract
Cell-free expression enables direct cotranslational insertion of G protein coupled receptors (GPCRs) and other membrane proteins into the defined membrane environments of nanodiscs. This technique avoids GPCR contacts with detergents and allows rapid identification of lipid effects on GPCR function as well as fast screening of receptor derivatives. Critical steps of conventional GPCR preparation from cellular membranes followed by detergent-based reconstitution into nanodisc membranes are thus eliminated. We report the efficient cotranslational insertion of full-length human β1-adrenergic receptor and of a truncated derivative into preformed nanodisc membranes. Their biochemical characterization revealed significant differences in lipid requirements, dimer formation and ligand binding activity. The truncated receptor showed a higher affinity to most tested ligands, in particular in presence of choline-containing lipids. However, introducing the naturally occurring G389R polymorphism in the full-length receptor resulted into an increased affinity to the antagonists alprenolol and carvedilol. Receptor quality was generally improved by coexpression with the agonist isoproterenol and the percentage of the ligand binding active fraction was twofold increased. Specific coupling of full-length and truncated human receptors in nanodisc membranes to Mini-Gαs protein as well as to purified Gs heterotrimer could be demonstrated and homogeneity of purified GPCR/Gs protein complexes in nanodiscs was demonstrated by negative stain single particle analysis.
Collapse
Affiliation(s)
- Zoe Köck
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main
| | - Utz Ermel
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe University of Frankfurt/Main
| | - Janosch Martin
- Institute of Physical and Theoretical Chemistry, Goethe University of Frankfurt/Main
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University of Frankfurt/Main
| | - S Achilleas Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe University of Frankfurt/Main
| | - Volker Dötsch
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main
| | - Daniel Hilger
- Department of Pharmaceutical Chemistry, Philipps-University Marburg
| | - Frank Bernhard
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main.
| |
Collapse
|
4
|
Liu S, Li S, Krezel AM, Li W. Stabilization and structure determination of integral membrane proteins by termini restraining. Nat Protoc 2022; 17:540-565. [PMID: 35039670 DOI: 10.1038/s41596-021-00656-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/05/2021] [Indexed: 12/28/2022]
Abstract
Integral membrane proteins isolated from cellular environment often lose activity and native conformation required for functional analyses and structural studies. Even in their native state, they lack sufficient surfaces to form crystal contacts. Furthermore, most of them are too small for cryogenic electron microscopy detection and too big for solution NMR. To overcome these difficulties, we recently developed a strategy to stabilize the folded state of membrane proteins by restraining their two termini with a self-assembling protein coupler. The termini-restrained membrane proteins from distinct functional families retain their activities and show increased stability and yield. This strategy enables their structure determination at near-atomic resolution by facilitating the entire pipeline from crystallization, crystal identification, diffraction enhancement and phase determination, to electron density improvement. Furthermore, stabilization of membrane proteins enables their biochemical and biophysical characterization. Here we present the protocol of membrane protein engineering (2 weeks), quality assessment (1-2 weeks), protein production (1-6 weeks), crystallization (1-2 weeks), diffraction improvement (1-3 months) and crystallographic data analysis (1 week). This protocol is intended not only for structural biologists, but also for biochemists, biophysicists and pharmaceutical scientists whose research focuses on membrane proteins.
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Shuang Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrzej M Krezel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Abiko LA, Rogowski M, Gautier A, Schertler G, Grzesiek S. Efficient production of a functional G protein-coupled receptor in E. coli for structural studies. JOURNAL OF BIOMOLECULAR NMR 2021; 75:25-38. [PMID: 33501610 PMCID: PMC7897205 DOI: 10.1007/s10858-020-00354-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/08/2020] [Indexed: 05/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane signal transducers which regulate many key physiological process. Since their discovery, their analysis has been limited by difficulties in obtaining sufficient amounts of the receptors in high-quality, functional form from heterologous expression hosts. Albeit highly attractive because of its simplicity and the ease of isotope labeling for NMR studies, heterologous expression of functional GPCRs in E. coli has proven particularly challenging due to the absence of the more evolved protein expression and folding machinery of higher eukaryotic hosts. Here we first give an overview on the previous strategies for GPCR E. coli expression and then describe the development of an optimized robust protocol for the E. coli expression and purification of two mutants of the turkey β1-adrenergic receptor (β1AR) uniformly or selectively labeled in 15N or 2H,15N. These mutants had been previously optimized for thermal stability using insect cell expression and used successfully in crystallographic and NMR studies. The same sequences were then used for E. coli expression. Optimization of E. coli expression was achieved by a quantitative analysis of losses of receptor material at each step of the solubilization and purification procedure. Final yields are 0.2-0.3 mg receptor per liter culture. Whereas both expressed mutants are well folded and competent for orthosteric ligand binding, the less stable YY-β1AR mutant also comprises the two native tyrosines Y5.58 and Y7.53, which enable G protein binding. High-quality 1H-15N TROSY spectra were obtained for E. coli-expressed YY-β1AR in three different functional states (antagonist, agonist, and agonist + G protein-mimicking nanobody-bound), which are identical to spectra obtained of the same forms of the receptor expressed in insect cells. NdeI and AgeI restriction sites introduced into the expression plasmid allow for the easy replacement of the receptor gene by other GPCR genes of interest, and the provided quantitative workflow analysis may guide the respective adaptation of the purification protocol.
Collapse
Affiliation(s)
- Layara Akemi Abiko
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| | - Marco Rogowski
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Antoine Gautier
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | | | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
6
|
GPCR Activation States Induced by Nanobodies and Mini-G Proteins Compared by NMR Spectroscopy. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25245984. [PMID: 33348734 PMCID: PMC7767065 DOI: 10.3390/molecules25245984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
In this work, we examine methyl nuclear magnetic resonance (NMR) spectra of the methionine ε-[13CH3] labelled thermostabilized β1 adrenergic receptor from turkey in association with a variety of different effectors, including mini-Gs and nanobody 60 (Nb60), which have not been previously studied in complex with β1 adrenergic receptor (β1AR) by NMR. Complexes with pindolol and Nb60 induce highly similar inactive states of the receptor, closely resembling the resting state conformational ensemble. We show that, upon binding of mini-Gs or nanobody 80 (Nb80), large allosteric changes throughout the receptor take place. The conformation of tβ1AR stabilized by the native-like mini-Gs protein is highly similar to the conformation induced by the currently used surrogate Nb80. Interestingly, in both cases residual dynamics are present, which were not observed in the resting states. Finally, we reproduce a pharmaceutically relevant situation, where an antagonist abolishes the interaction of the receptor with the mini-G protein in a competitive manner, validating the functional integrity of our preparation. The presented system is therefore well suited for reproducing the individual steps of the activation cycle of a G protein-coupled receptor (GPCR) in vitro and serves as a basis for functional and pharmacological characterizations of more native-like systems in the future.
Collapse
|
7
|
IMPROvER: the Integral Membrane Protein Stability Selector. Sci Rep 2020; 10:15165. [PMID: 32938971 PMCID: PMC7495477 DOI: 10.1038/s41598-020-71744-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 08/04/2020] [Indexed: 01/20/2023] Open
Abstract
Identifying stabilising variants of membrane protein targets is often required for structure determination. Our new computational pipeline, the Integral Membrane Protein Stability Selector (IMPROvER) provides a rational approach to variant selection by employing three independent approaches: deep-sequence, model-based and data-driven. In silico tests using known stability data, and in vitro tests using three membrane protein targets with 7, 11 and 16 transmembrane helices provided measures of success. In vitro, individual approaches alone all identified stabilising variants at a rate better than expected by random selection. Low numbers of overlapping predictions between approaches meant a greater success rate was achieved (fourfold better than random) when approaches were combined and selections restricted to the highest ranked sites. The mix of information IMPROvER uses can be extracted for any helical membrane protein. We have developed the first general-purpose tool for selecting stabilising variants of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upalpha$$\end{document}α-helical membrane proteins, increasing efficiency and reducing workload. IMPROvER can be accessed at http://improver.ddns.net/IMPROvER/.
Collapse
|
8
|
Yao H, Cai H, Li D. Thermostabilization of Membrane Proteins by Consensus Mutation: A Case Study for a Fungal Δ8-7 Sterol Isomerase. J Mol Biol 2020; 432:5162-5183. [PMID: 32105736 DOI: 10.1016/j.jmb.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 11/15/2022]
Abstract
Membrane proteins are generally challenging to work with because of their notorious instability. Protein engineering has been used increasingly to thermostabilize labile membrane proteins such as G-protein-coupled receptors for structural and functional studies in recent years. Two major strategies exist. Scanning mutagenesis systematically eliminates destabilizing residues, whereas the consensus approach assembles mutants with the most frequent residues among selected homologs, bridging sequence conservation with stability. Here, we applied the consensus concept to stabilize a fungal homolog of the human sterol Δ8-7 isomerase, a 26.4 kDa protein with five transmembrane helices. The isomerase is also called emopamil-binding protein (EBP), as it binds this anti-ischemic drug with high affinity. The wild-type had an apparent melting temperature (Tm) of 35.9 °C as measured by the fluorescence-detection size-exclusion chromatography-based thermostability assay. A total of 87 consensus mutations sourced from 22 homologs gained expression level and thermostability, increasing the apparent Tm to 69.9 °C at the cost of partial function loss. Assessing the stability and activity of several systematic chimeric constructs identified a construct with an apparent Tm of 79.8 °C and two regions for function rescue. Further back-mutations of the chimeric construct in the two target regions yielded the final construct with similar apparent activity to the wild-type and an elevated Tm of 88.8 °C, totaling an increase of 52.9 °C. The consensus approach is effective and efficient because it involves fewer constructs compared with scanning mutagenesis. Our results should encourage more use of the consensus strategy for membrane protein thermostabilization.
Collapse
Affiliation(s)
- Hebang Yao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Hongmin Cai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China.
| |
Collapse
|
9
|
Miller-Gallacher J, Sanders P, Young S, Sullivan A, Baker S, Reddington SC, Clue M, Kabelis K, Clark J, Wilmot J, Thomas D, Chlebowska M, Cole F, Pearson E, Roberts E, Holly M, Evans M, Núñez Miguel R, Powell M, Sanders J, Furmaniak J, Rees Smith B. Crystal structure of a ligand-free stable TSH receptor leucine-rich repeat domain. J Mol Endocrinol 2019; 62:117-128. [PMID: 30689545 DOI: 10.1530/jme-18-0213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/28/2019] [Indexed: 12/19/2022]
Abstract
The crystal structures of the thyroid-stimulating hormone receptor (TSHR) leucine-rich repeat domain (amino acids 22-260; TSHR260) in complex with a stimulating human monoclonal autoantibody (M22TM) and in complex with a blocking human autoantibody (K1-70™) have been solved. However, attempts to purify and crystallise free TSHR260, that is not bound to an autoantibody, have been unsuccessful due to the poor stability of free TSHR260. We now describe a TSHR260 mutant that has been stabilised by the introduction of six mutations (H63C, R112P, D143P, D151E, V169R and I253R) to form TSHR260-JMG55TM, which is approximately 900 times more thermostable than wild-type TSHR260. These six mutations did not affect the binding of human TSHR monoclonal autoantibodies or patient serum TSHR autoantibodies to the TSHR260. Furthermore, the response of full-length TSHR to stimulation by TSH or human TSHR monoclonal autoantibodies was not affected by the six mutations. Thermostable TSHR260-JMG55TM has been purified and crystallised without ligand and the structure solved at 2.83 Å resolution. This is the first reported structure of a glycoprotein hormone receptor crystallised without ligand. The unbound TSHR260-JMG55TM structure and the M22 and K1-70 bound TSHR260 structures are remarkably similar except for small changes in side chain conformations. This suggests that neither the mutations nor the binding of M22TM or K1-70TM change the rigid leucine-rich repeat domain structure of TSHR260. The solved TSHR260-JMG55TM structure provides a rationale as to why the six mutations have a thermostabilising effect and provides helpful guidelines for thermostabilisation strategies of other soluble protein domains.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jill Clark
- FIRS Laboratories, RSR Ltd, Cardiff, CF14 5DUUK
| | - Jane Wilmot
- FIRS Laboratories, RSR Ltd, Cardiff, CF14 5DUUK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gavriilidou AFM, Hunziker H, Mayer D, Vuckovic Z, Veprintsev DB, Zenobi R. Insights into the Basal Activity and Activation Mechanism of the β1 Adrenergic Receptor Using Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:529-537. [PMID: 30511235 DOI: 10.1007/s13361-018-2110-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
In the absence of orthosteric ligands, most G protein-coupled receptors (GPCRs) exist in an equilibrium of different conformational states. This equilibrium is shifted by an agonist towards the active state or by an inverse agonist towards the inactive state. The basal activity of the receptor, and its ability to activate intracellular signaling pathways, is defined by the probability that a fraction of the receptor adopts the active state in the absence of ligand. Despite breakthroughs in native MS of membrane proteins, GPCR-transducing complexes have not been studied by this approach until very recently. Here, we investigated different conformational states of the turkey β1 adrenergic receptor (tβ1AR) in complex with two transducing partners: a G protein mimicking nanobody, Nb80, and an engineered truncated Gs protein (miniGs), in the presence of the full agonist isoprenaline by native MS. Interestingly, complex formation with both transducing partners was also observed in the absence of agonist, and allowed us to quantify basal activity of tβ1AR. We followed the stepwise disassembly of the transducing complexes by increasing the concentration of the inverse agonist S32212 in the presence of a constant concentration of isoprenaline. This allowed us to determine the relative binding affinity of S32212 in comparison to isoprenaline by native MS. Our approach provides a fast and sensitive way to detect complexes, study their stability in the presence of different ligands, and determine relative ligand affinities. Native mass spectrometry thus has the potential to become a useful tool to screen for orthosteric and allosteric GPCR drugs. Graphical Abstract.
Collapse
Affiliation(s)
- Agni F M Gavriilidou
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- OMass Technologies Ltd The Schrodinger Building, Heatly Road, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Hanna Hunziker
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Daniel Mayer
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ziva Vuckovic
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Dmitry B Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland.
- Department of Biology, ETH Zurich, Zurich, Switzerland.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Rucktooa P, Cheng RKY, Segala E, Geng T, Errey JC, Brown GA, Cooke RM, Marshall FH, Doré AS. Towards high throughput GPCR crystallography: In Meso soaking of Adenosine A 2A Receptor crystals. Sci Rep 2018; 8:41. [PMID: 29311713 PMCID: PMC5758569 DOI: 10.1038/s41598-017-18570-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/08/2017] [Indexed: 01/14/2023] Open
Abstract
Here we report an efficient method to generate multiple co-structures of the A2A G protein-coupled receptor (GPCR) with small-molecules from a single preparation of a thermostabilised receptor crystallised in Lipidic Cubic Phase (LCP). Receptor crystallisation is achieved following purification using a low affinity “carrier” ligand (theophylline) and crystals are then soaked in solutions containing the desired (higher affinity) compounds. Complete datasets to high resolution can then be collected from single crystals and seven structures are reported here of which three are novel. The method significantly improves structural throughput for ligand screening using stabilised GPCRs, thereby actively driving Structure-Based Drug Discovery (SBDD).
Collapse
Affiliation(s)
- Prakash Rucktooa
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK
| | - Robert K Y Cheng
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK.,LeadXpro, Park InnovAARE, 5232, Villigen, Switzerland
| | - Elena Segala
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK
| | - Tian Geng
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK
| | - James C Errey
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK
| | - Giles A Brown
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK
| | - Robert M Cooke
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK
| | - Fiona H Marshall
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK.
| | - Andrew S Doré
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK
| |
Collapse
|
12
|
Wright DJ, O'Reilly M, Tisi D. Engineering and purification of a thermostable, high-yield, variant of PfCRT, the Plasmodium falciparum chloroquine resistance transporter. Protein Expr Purif 2017; 141:7-18. [PMID: 28823509 DOI: 10.1016/j.pep.2017.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/16/2017] [Accepted: 08/10/2017] [Indexed: 11/30/2022]
Abstract
Historically chloroquine was used to treat the most deadly form of malaria, caused by the parasite Plasmodium falciparum. The selective pressure of chloroquine therapy led to the rapid emergence of chloroquine resistant parasites. Resistance has been attributed to the Plasmodium falciparum Chloroquine Resistance Transporter (PfCRT), an integral membrane protein of unknown structure. A PfCRT structure would provide new insights into how the protein confers chloroquine resistance and thereby also yield novel opportunities for developing anti-malarial therapies. Although PfCRT is an attractive target for characterisation and structure determination, very little work has been published on its expression and purification. Here we present a medium throughput protocol, employing Sf9 insect cells, for testing the expression, stability and purification yield of rationally designed PfCRT mutant constructs and constructs of a PfCRT orthologue from Neospora caninum (NcCRT). We have identified a conserved cysteine residue in PfCRT that results in elevated protein stability when mutated. Combining this mutation with the insertion of T4-lysozyme into a specific surface loop further augments PfCRT protein yield and thermostability. Screening also identified an NcCRT construct with an elevated purification yield. Furthermore it was possible to purify both PfCRT and NcCRT constructs at milligram-scales, with high purities and with size exclusion chromatography profiles that were consistent with monodispersed, homogeneous protein.
Collapse
Affiliation(s)
- David J Wright
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK
| | - Marc O'Reilly
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK
| | - Dominic Tisi
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK.
| |
Collapse
|
13
|
Strege A, Carpenter B, Edwards PC, Tate CG. Strategy for the Thermostabilization of an Agonist-Bound GPCR Coupled to a G Protein. Methods Enzymol 2017; 594:243-264. [PMID: 28779842 DOI: 10.1016/bs.mie.2017.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Structure determination of G protein-coupled receptors (GPCRs) in the inactive state bound to high-affinity antagonists has been very successful through the implementation of a number of protein engineering and crystallization strategies. However, the structure determination of GPCRs in their fully active state coupled to a G protein is still very challenging. Recently, mini-G proteins were developed, which recapitulate the coupling of a full heterotrimeric G protein to a GPCR despite being less than one-third of the size. This allowed the structure determination of the agonist-bound adenosine A2A receptor (A2AR) coupled to mini-Gs. Although this is extremely encouraging, A2AR is very stable compared with many other GPCRs, particularly when an agonist is bound. In contrast, the agonist-bound conformation of the human corticotropin-releasing factor receptor is considerably less stable, impeding the formation of good quality crystals for structure determination. We have therefore developed a novel strategy for the thermostabilization of a GPCR-mini-G protein complex. In this chapter, we will describe the theoretical and practical principles of the thermostability assay for stabilizing this complex, discuss its strengths and weaknesses, and show some typical results from the thermostabilization process.
Collapse
Affiliation(s)
- Annette Strege
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Byron Carpenter
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
14
|
Errasti-Murugarren E, Rodríguez-Banqueri A, Vázquez-Ibar JL. Split GFP Complementation as Reporter of Membrane Protein Expression and Stability in E. coli: A Tool to Engineer Stability in a LAT Transporter. Methods Mol Biol 2017; 1586:181-195. [PMID: 28470605 DOI: 10.1007/978-1-4939-6887-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Obtaining enough quantity of recombinant membrane transport proteins with optimal purity and stability for structural studies is a remarkable challenge. In this chapter, we describe a protocol to engineer SteT, the amino acid transporter of Bacillus subtilis, in order to improve its heterologous expression in Escherichia coli and its stability in detergent micelles. We built a library of 70 SteT mutants, combining a random mutagenesis protocol with a split GFP assay as reporter of protein folding and membrane insertion. Mutagenesis was restricted to residues situated in the transmembrane domains. Improved versions of SteT were successfully identified after analyzing the expression yield and monodispersity in detergent micelles of the library's members.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Arturo Rodríguez-Banqueri
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
- Unitat de Proteòmica Aplicada i Enginyeria de Proteïnes, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - José Luis Vázquez-Ibar
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
- Institute for Integrative Biology of the Cell (I2BC), iBiTec-S/SB2SM, CEA Saclay CNRS UMR 9198, University Paris-Sud, University Paris-Saclay, Bâtiment 21, Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
15
|
Lee S, Mao A, Bhattacharya S, Robertson N, Grisshammer R, Tate CG, Vaidehi N. How Do Short Chain Nonionic Detergents Destabilize G-Protein-Coupled Receptors? J Am Chem Soc 2016; 138:15425-15433. [PMID: 27792324 PMCID: PMC5148649 DOI: 10.1021/jacs.6b08742] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stability of detergent-solubilized G-protein-coupled receptors (GPCRs) is crucial for their purification in a biologically relevant state, and it is well-known that short chain detergents such as octylglucoside are more denaturing than long chain detergents such as dodecylmaltoside. However, the molecular basis for this phenomenon is poorly understood. To gain insights into the mechanism of detergent destabilization of GPCRs, we used atomistic molecular dynamics simulations of thermostabilized adenosine receptor (A2AR) mutants embedded in either a lipid bilayer or detergent micelles of alkylmaltosides and alkylglucosides. A2AR mutants in dodecylmaltoside or phospholipid showed low flexibility and good interhelical packing. In contrast, A2AR mutants in either octylglucoside or nonylglucoside showed decreased α-helicity in transmembrane regions, decreased α-helical packing, and the interpenetration of detergent molecules between transmembrane α-helices. This was not observed in octylglucoside containing phospholipid. Cholesteryl hemisuccinate in dodecylmaltoside increased the energetic stability of the receptor by wedging into crevices on the hydrophobic surface of A2AR, increasing packing interactions within the receptor and stiffening the detergent micelle. The data suggest a three-stage process for the initial events in the destabilization of GPCRs by octylglucoside: (i) highly mobile detergent molecules form small micelles around the receptor; (ii) loss of α-helicity and decreased interhelical packing interactions in transmembrane regions are promoted by increased receptor thermal motion; (iii) transient separation of transmembrane helices allowed penetration of detergent molecules into the core of the receptor. The relative hydration of the headgroup and alkyl chain correlates with detergent harshness and suggests new avenues to develop milder versions of octylglucoside for receptor crystallization.
Collapse
Affiliation(s)
- Sangbae Lee
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California 91010, USA
| | - Allen Mao
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California 91010, USA
| | - Supriyo Bhattacharya
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California 91010, USA
| | - Nathan Robertson
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, UK
| | - Reinhard Grisshammer
- Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland 20852, USA
| | - Christopher G. Tate
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Nagarajan Vaidehi
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California 91010, USA
| |
Collapse
|
16
|
Carpenter B, Tate CG. Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation. Protein Eng Des Sel 2016; 29:583-594. [PMID: 27672048 PMCID: PMC5181381 DOI: 10.1093/protein/gzw049] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/01/2016] [Accepted: 08/23/2016] [Indexed: 11/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) modulate cytoplasmic signalling in response to extracellular stimuli, and are important therapeutic targets in a wide range of diseases. Structure determination of GPCRs in all activation states is important to elucidate the precise mechanism of signal transduction and to facilitate optimal drug design. However, due to their inherent instability, crystallisation of GPCRs in complex with cytoplasmic signalling proteins, such as heterotrimeric G proteins and β-arrestins, has proved challenging. Here, we describe the design of a minimal G protein, mini-Gs, which is composed solely of the GTPase domain from the adenylate cyclase stimulating G protein Gs. Mini-Gs is a small, soluble protein, which efficiently couples GPCRs in the absence of Gβγ subunits. We engineered mini-Gs, using rational design mutagenesis, to form a stable complex with detergent-solubilised β1-adrenergic receptor (β1AR). Mini G proteins induce similar pharmacological and structural changes in GPCRs as heterotrimeric G proteins, but eliminate many of the problems associated with crystallisation of these complexes, specifically their large size, conformational dynamics and instability in detergent. They are therefore novel tools, which will facilitate the biochemical and structural characterisation of GPCRs in their active conformation.
Collapse
Affiliation(s)
- Byron Carpenter
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus , Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher G Tate
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus , Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
17
|
Almeida FAD, Pinto UM, Vanetti MCD. Novel insights from molecular docking of SdiA from Salmonella Enteritidis and Escherichia coli with quorum sensing and quorum quenching molecules. Microb Pathog 2016; 99:178-190. [PMID: 27565088 DOI: 10.1016/j.micpath.2016.08.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/04/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022]
Abstract
Quorum sensing is a cell-to-cell communication mechanism leading to differential gene expression in response to high population density. The autoinducer-1 (AI-1) type quorum sensing system is incomplete in Escherichia coli and Salmonella due to the lack of the AI-1 synthase (LuxI homolog) responsible for acyl homoserine lactone (AHL) synthesis. However, these bacteria encode the AHL receptor SdiA (a LuxR homolog) leading to gene regulation in response to AI-1 produced by other bacteria. This study aimed to model the SdiA protein of Salmonella enterica serovar Enteritidis PT4 578 based on three crystallized SdiA structures from Enterohemorrhagic E. coli (EHEC) with different ligands. Molecular docking of these predicted structures with AHLs, furanones and 1-octanoyl-rac-glycerol were also performed. The available EHEC SdiA structures provided good prototypes for modeling SdiA from Salmonella. The molecular docking of these proteins showed that residues Y63, W67, Y71, D80 and S134 are common binding sites for different quorum modulating signals, besides being conserved among other LuxR type proteins. We also show that AHLs with twelve carbons presented better binding affinity to SdiA than AHLs with smaller side chains in our docking analysis, regardless of the protein structures used. Interestingly, the conformational changes provided by AHL binding resulted in structural models with increased affinities to brominated furanones. These results suggest that the use of brominated furanones to inhibit phenotypes controlled by quorum sensing in Salmonella and EHEC may present a good strategy since these inhibitors seem to specifically compete with AHLs for binding to SdiA in both pathogens.
Collapse
Affiliation(s)
- Felipe Alves de Almeida
- Department of Microbiology, Laboratory of Food Microbiology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Cristina Dantas Vanetti
- Department of Microbiology, Laboratory of Food Microbiology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
18
|
Magnani F, Serrano-Vega MJ, Shibata Y, Abdul-Hussein S, Lebon G, Miller-Gallacher J, Singhal A, Strege A, Thomas JA, Tate CG. A mutagenesis and screening strategy to generate optimally thermostabilized membrane proteins for structural studies. Nat Protoc 2016; 11:1554-71. [PMID: 27466713 PMCID: PMC5268090 DOI: 10.1038/nprot.2016.088] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thermostability of an integral membrane protein (MP) in detergent solution is a key parameter that dictates the likelihood of obtaining well-diffracting crystals that are suitable for structure determination. However, many mammalian MPs are too unstable for crystallization. We developed a thermostabilization strategy based on systematic mutagenesis coupled to a radioligand-binding thermostability assay that can be applied to receptors, ion channels and transporters. It takes ∼6-12 months to thermostabilize a G-protein-coupled receptor (GPCR) containing 300 amino acid (aa) residues. The resulting thermostabilized MPs are more easily crystallized and result in high-quality structures. This methodology has facilitated structure-based drug design applied to GPCRs because it is possible to determine multiple structures of the thermostabilized receptors bound to low-affinity ligands. Protocols and advice are given on how to develop thermostability assays for MPs and how to combine mutations to make an optimally stable mutant suitable for structural studies. The steps in the procedure include the generation of ∼300 site-directed mutants by Ala/Leu scanning mutagenesis, the expression of each mutant in mammalian cells by transient transfection and the identification of thermostable mutants using a thermostability assay that is based on binding of an (125)I-labeled radioligand to the unpurified, detergent-solubilized MP. Individual thermostabilizing point mutations are then combined to make an optimally stable MP that is suitable for structural biology and other biophysical studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ankita Singhal
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Annette Strege
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jennifer A. Thomas
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Christopher G. Tate
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
19
|
Jazayeri A, Andrews SP, Marshall FH. Structurally Enabled Discovery of Adenosine A 2A Receptor Antagonists. Chem Rev 2016; 117:21-37. [PMID: 27333206 DOI: 10.1021/acs.chemrev.6b00119] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past decade there has been a revolution in the field of G protein-coupled receptor (GPCR) structural biology. Many years of innovative research from different areas have come together to fuel this significant change in the fortunes of this field, which for many years was characterized by the paucity of high-resolution structures. The determination to succeed has been in part due to the recognized importance of these proteins as drug targets, and although the pharmaceutical industry has been focusing on these receptors, it can be justifiably argued and demonstrated that many of the approved and commercially successful GPCR drugs can be significantly improved to increase efficacy and/or reduce undesired side effects. In addition, many validated targets in this class remain to be drugged. It is widely recognized that application of structure-based drug design approaches can help medicinal chemists a long way toward discovering better drugs. The achievement of structural biologists in providing high-resolution insight is beginning to transform drug discovery efforts, and there are a number of GPCR drugs that have been discovered by use of structural information that are in clinical development. This review aims to highlight the key developments that have brought success to GPCR structure resolution efforts and exemplify the practical application of structural information for the discovery of adenosine A2A receptor antagonists that have potential to treat multiple conditions.
Collapse
Affiliation(s)
- Ali Jazayeri
- Heptares Therapeutics Limited , BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, United Kingdom
| | - Stephen P Andrews
- Heptares Therapeutics Limited , BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, United Kingdom
| | - Fiona H Marshall
- Heptares Therapeutics Limited , BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, United Kingdom
| |
Collapse
|
20
|
Huang R, Kiss MM, Batonick M, Weiner MP, Kay BK. Generating Recombinant Antibodies to Membrane Proteins through Phage Display. Antibodies (Basel) 2016; 5:antib5020011. [PMID: 31557992 PMCID: PMC6698964 DOI: 10.3390/antib5020011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 01/03/2023] Open
Abstract
One of the most important classes of proteins in terms of drug targets is cell surface membrane proteins, and yet it is a challenging set of proteins for generating high-quality affinity reagents. In this review, we focus on the use of phage libraries, which display antibody fragments, for generating recombinant antibodies to membrane proteins. Such affinity reagents generally have high specificity and affinity for their targets. They have been used for cell staining, for promoting protein crystallization to solve three-dimensional structures, for diagnostics, and for treating diseases as therapeutics. We cover publications on this topic from the past 10 years, with a focus on the various formats of membrane proteins for affinity selection and the diverse affinity selection strategies used. Lastly, we discuss the challenges faced in this field and provide possible directions for future efforts.
Collapse
Affiliation(s)
- Renhua Huang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607-7060, USA.
| | - Margaret M Kiss
- AxioMx Inc., a subsidiary of Abcam Plc, Branford, CT 06405, USA.
| | - Melissa Batonick
- AxioMx Inc., a subsidiary of Abcam Plc, Branford, CT 06405, USA.
| | - Michael P Weiner
- AxioMx Inc., a subsidiary of Abcam Plc, Branford, CT 06405, USA.
| | - Brian K Kay
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607-7060, USA.
| |
Collapse
|
21
|
Rodríguez-Banqueri A, Errasti-Murugarren E, Bartoccioni P, Kowalczyk L, Perálvarez-Marín A, Palacín M, Vázquez-Ibar JL. Stabilization of a prokaryotic LAT transporter by random mutagenesis. ACTA ACUST UNITED AC 2016; 147:353-68. [PMID: 26976827 PMCID: PMC4810068 DOI: 10.1085/jgp.201511510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/22/2016] [Indexed: 12/31/2022]
Abstract
The knowledge of three-dimensional structures at atomic resolution of membrane transport proteins has improved considerably our understanding of their physiological roles and pathological implications. However, most structural biology techniques require an optimal candidate within a protein family for structural determination with (a) reasonable production in heterologous hosts and (b) good stability in detergent micelles. SteT, the Bacillus subtilis L-serine/L-threonine exchanger is the best-known prokaryotic paradigm of the mammalian L-amino acid transporter (LAT) family. Unfortunately, SteT's lousy stability after extracting from the membrane prevents its structural characterization. Here, we have used an approach based on random mutagenesis to engineer stability in SteT. Using a split GFP complementation assay as reporter of protein expression and membrane insertion, we created a library of 70 SteT mutants each containing random replacements of one or two residues situated in the transmembrane domains. Analysis of expression and monodispersity in detergent of this library permitted the identification of evolved versions of SteT with a significant increase in both expression yield and stability in detergent with respect to wild type. In addition, these experiments revealed a correlation between the yield of expression and the stability in detergent micelles. Finally, and based on protein delipidation and relipidation assays together with transport experiments, possible mechanisms of SteT stabilization are discussed. Besides optimizing a member of the LAT family for structural determination, our work proposes a new approach that can be used to optimize any membrane protein of interest.
Collapse
Affiliation(s)
- Arturo Rodríguez-Banqueri
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Ekaitz Errasti-Murugarren
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Paola Bartoccioni
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain Spanish Biomedical Research Center in Rare Diseases (CIBERER), 08028 Barcelona, Spain
| | - Lukasz Kowalczyk
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Cerdanyola del Vallés, Spain
| | - Manuel Palacín
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain Spanish Biomedical Research Center in Rare Diseases (CIBERER), 08028 Barcelona, Spain Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - José Luis Vázquez-Ibar
- Institute for Integrative Biology of the Cell (I2BC), CEA, French National Centre for Scientific Research (CNRS) UMR 9198, University Paris-Sud, University Paris-Saclay, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
22
|
Rues RB, Dötsch V, Bernhard F. Co-translational formation and pharmacological characterization of beta1-adrenergic receptor/nanodisc complexes with different lipid environments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1306-16. [PMID: 26922884 DOI: 10.1016/j.bbamem.2016.02.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/17/2016] [Accepted: 02/24/2016] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors are of key significance for biomedical research. Streamlined approaches for their efficient recombinant production are of pivotal interest in order to explore their intrinsic conformational dynamics and complex ligand binding behavior. We have systematically optimized the co-translational association and folding of G protein-coupled receptors with defined membranes of nanodiscs by cell-free expression approaches. Each optimization step was quantified and the ligand binding active fraction of the receptor samples could drastically be improved. The strategy was exemplified with a stabilized and a non-stabilized derivative of the turkey beta1-adrenergic receptor. Systematic lipid screens with preformed nanodiscs revealed that generation of ligand binding active conformations of the analyzed beta1-adrenergic receptors strongly depends on lipid charge, flexibility and chain length. The lipid composition of the nanodisc membranes modulates the affinities to a variety of ligands of both receptor derivatives. In addition, the thermostabilization procedure had a significant impact on specific ligand affinities of the receptor and abolished or reduced the binding of certain antagonists. Both receptors were highly stable after purification with optimized nanodisc membranes. The procedure avoids any detergent contact of the receptors and sample production takes less than two days. Moreover, even non-stabilized receptors can be analyzed and their prior purification is not necessary for the formation of nanodisc complexes. The established process appears therefore to be suitable as a new platform for the functional or even structural characterization of recombinant G protein-coupled receptors associated with defined lipid environments.
Collapse
Affiliation(s)
- Ralf-Bernhardt Rues
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany.
| |
Collapse
|
23
|
Isogai S, Deupi X, Opitz C, Heydenreich FM, Tsai CJ, Brueckner F, Schertler GFX, Veprintsev DB, Grzesiek S. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature 2016; 530:237-41. [DOI: 10.1038/nature16577] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/04/2015] [Indexed: 01/20/2023]
|
24
|
How Can Mutations Thermostabilize G-Protein-Coupled Receptors? Trends Pharmacol Sci 2015; 37:37-46. [PMID: 26547284 DOI: 10.1016/j.tips.2015.09.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 01/04/2023]
Abstract
Structures of over 30 different G-protein-coupled receptors (GPCRs) have advanced our understanding of cell signaling and have provided a foundation for structure-guided drug design. This exciting progress has required the development of three complementary methods to facilitate GPCR crystallization, one of which is the thermostabilization of receptors by systematic mutagenesis. However, the reason why a particular mutation, or combination of mutations, stabilizes the receptor is not always evident from a static crystal structure. Molecular dynamics (MD) simulations have been used to identify and estimate the energetic factors that affect thermostability through comparing the dynamics of the thermostabilized receptors with structure-based models of the wild-type receptor. The data indicate that receptors are stabilized through a combination of factors, including an increase in receptor rigidity, a decrease in collective motion, reduced stress at specific residues, and the presence of ordered water molecules. Predicting thermostabilizing mutations computationally represents a major challenge for the field.
Collapse
|
25
|
Sato T, Baker J, Warne T, Brown GA, Leslie AGW, Congreve M, Tate CG. Pharmacological Analysis and Structure Determination of 7-Methylcyanopindolol-Bound β1-Adrenergic Receptor. Mol Pharmacol 2015; 88:1024-34. [PMID: 26385885 DOI: 10.1124/mol.115.101030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/17/2015] [Indexed: 11/22/2022] Open
Abstract
Comparisons between structures of the β1-adrenergic receptor (AR) bound to either agonists, partial agonists, or weak partial agonists led to the proposal that rotamer changes of Ser(5.46), coupled to a contraction of the binding pocket, are sufficient to increase the probability of receptor activation. (RS)-4-[3-(tert-butylamino)-2-hydroxypropoxy]-1H-indole-2-carbonitrile (cyanopindolol) is a weak partial agonist of β1AR and, based on the hypothesis above, we predicted that the addition of a methyl group to form 4-[(2S)-3-(tert-butylamino)-2-hydroxypropoxy]-7-methyl-1H-indole-2-carbonitrile (7-methylcyanopindolol) would dramatically reduce its efficacy. An eight-step synthesis of 7-methylcyanopindolol was developed and its pharmacology was analyzed. 7-Methylcyanopindolol bound with similar affinity to cyanopindolol to both β1AR and β2AR. As predicted, the efficacy of 7-methylcyanopindolol was reduced significantly compared with cyanopindolol, acting as a very weak partial agonist of turkey β1AR and an inverse agonist of human β2AR. The structure of 7-methylcyanopindolol-bound β1AR was determined to 2.4-Å resolution and found to be virtually identical to the structure of cyanopindolol-bound β1AR. The major differences in the orthosteric binding pocket are that it has expanded by 0.3 Å in 7-methylcyanopindolol-bound β1AR and the hydroxyl group of Ser(5.46) is positioned 0.8 Å further from the ligand, with respect to the position of the Ser(5.46) side chain in cyanopindolol-bound β1AR. Thus, the molecular basis for the reduction in efficacy of 7-methylcyanopindolol compared with cyanopindolol may be regarded as the opposite of the mechanism proposed for the increase in efficacy of agonists compared with antagonists.
Collapse
Affiliation(s)
- Tomomi Sato
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom (T.S., T.W., A.G.W.L., C.G.T.); Heptares Therapeutics Ltd, Welwyn Garden City, United Kingdom (G.A.B., M.C.); School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (J.B.); KEK High Energy Accelerator Research Organization, Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan (T.S.)
| | - Jillian Baker
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom (T.S., T.W., A.G.W.L., C.G.T.); Heptares Therapeutics Ltd, Welwyn Garden City, United Kingdom (G.A.B., M.C.); School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (J.B.); KEK High Energy Accelerator Research Organization, Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan (T.S.)
| | - Tony Warne
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom (T.S., T.W., A.G.W.L., C.G.T.); Heptares Therapeutics Ltd, Welwyn Garden City, United Kingdom (G.A.B., M.C.); School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (J.B.); KEK High Energy Accelerator Research Organization, Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan (T.S.)
| | - Giles A Brown
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom (T.S., T.W., A.G.W.L., C.G.T.); Heptares Therapeutics Ltd, Welwyn Garden City, United Kingdom (G.A.B., M.C.); School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (J.B.); KEK High Energy Accelerator Research Organization, Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan (T.S.)
| | - Andrew G W Leslie
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom (T.S., T.W., A.G.W.L., C.G.T.); Heptares Therapeutics Ltd, Welwyn Garden City, United Kingdom (G.A.B., M.C.); School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (J.B.); KEK High Energy Accelerator Research Organization, Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan (T.S.)
| | - Miles Congreve
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom (T.S., T.W., A.G.W.L., C.G.T.); Heptares Therapeutics Ltd, Welwyn Garden City, United Kingdom (G.A.B., M.C.); School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (J.B.); KEK High Energy Accelerator Research Organization, Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan (T.S.)
| | - Christopher G Tate
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom (T.S., T.W., A.G.W.L., C.G.T.); Heptares Therapeutics Ltd, Welwyn Garden City, United Kingdom (G.A.B., M.C.); School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (J.B.); KEK High Energy Accelerator Research Organization, Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan (T.S.)
| |
Collapse
|
26
|
Opitz C, Isogai S, Grzesiek S. An economic approach to efficient isotope labeling in insect cells using homemade 15N-, 13C- and 2H-labeled yeast extracts. JOURNAL OF BIOMOLECULAR NMR 2015; 62:373-85. [PMID: 26070442 DOI: 10.1007/s10858-015-9954-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/01/2015] [Indexed: 05/26/2023]
Abstract
Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein (15)N and (13)C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor.
Collapse
Affiliation(s)
- Christian Opitz
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | | | | |
Collapse
|
27
|
Heydenreich FM, Vuckovic Z, Matkovic M, Veprintsev DB. Stabilization of G protein-coupled receptors by point mutations. Front Pharmacol 2015; 6:82. [PMID: 25941489 PMCID: PMC4403299 DOI: 10.3389/fphar.2015.00082] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/31/2015] [Indexed: 11/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are flexible integral membrane proteins involved in transmembrane signaling. Their involvement in many physiological processes makes them interesting targets for drug development. Determination of the structure of these receptors will help to design more specific drugs, however, their structural characterization has so far been hampered by the low expression and their inherent instability in detergents which made protein engineering indispensable for structural and biophysical characterization. Several approaches to stabilize the receptors in a particular conformation have led to breakthroughs in GPCR structure determination. These include truncations of the flexible regions, stabilization by antibodies and nanobodies, fusion partners, high affinity and covalently bound ligands as well as conformational stabilization by mutagenesis. In this review we focus on stabilization of GPCRs by insertion of point mutations, which lead to increased conformational and thermal stability as well as improved expression levels. We summarize existing mutagenesis strategies with different coverage of GPCR sequence space and depth of information, design and transferability of mutations and the molecular basis for stabilization. We also discuss whether mutations alter the structure and pharmacological properties of GPCRs.
Collapse
Affiliation(s)
- Franziska M Heydenreich
- Laboratory of Biomolecular Research, Paul Scherrer Institut Villigen, Switzerland ; Department of Biology, ETH Zürich Zürich, Switzerland
| | - Ziva Vuckovic
- Laboratory of Biomolecular Research, Paul Scherrer Institut Villigen, Switzerland ; Department of Biology, ETH Zürich Zürich, Switzerland
| | - Milos Matkovic
- Laboratory of Biomolecular Research, Paul Scherrer Institut Villigen, Switzerland ; Department of Biology, ETH Zürich Zürich, Switzerland
| | - Dmitry B Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institut Villigen, Switzerland ; Department of Biology, ETH Zürich Zürich, Switzerland
| |
Collapse
|
28
|
Milić D, Veprintsev DB. Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Front Pharmacol 2015; 6:66. [PMID: 25873898 PMCID: PMC4379943 DOI: 10.3389/fphar.2015.00066] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/13/2015] [Indexed: 01/26/2023] Open
Abstract
Structural studies of G protein-coupled receptors (GPCRs) gave insights into molecular mechanisms of their action and contributed significantly to molecular pharmacology. This is primarily due to technical advances in protein engineering, production and crystallization of these important receptor targets. On the other hand, NMR spectroscopy of GPCRs, which can provide information about their dynamics, still remains challenging due to difficulties in preparation of isotopically labeled receptors and their low long-term stabilities. In this review, we discuss methods used for expression and purification of GPCRs for crystallographic and NMR studies. We also summarize protein engineering methods that played a crucial role in obtaining GPCR crystal structures.
Collapse
Affiliation(s)
- Dalibor Milić
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen Switzerland
| | - Dmitry B Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen Switzerland ; Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich Switzerland
| |
Collapse
|
29
|
Hirozane Y, Motoyaji T, Maru T, Okada K, Tarui N. Generating thermostabilized agonist-bound GPR40/FFAR1 using virus-like particles and a label-free binding assay. Mol Membr Biol 2015; 31:168-75. [PMID: 25068810 DOI: 10.3109/09687688.2014.923588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Elucidating the detailed mechanism of activation of membrane protein receptors and their ligand binding is essential for structure-based drug design. Membrane protein crystal structure analysis successfully aids in understanding these fundamental molecular interactions. However, protein crystal structure analysis of the G-protein-coupled receptor (GPCR) remains challenging, even for the class of GPCRs which have been included in the majority of structure analysis reports among membrane proteins, due to the substantial instability of these receptors when extracted from lipid bilayer membranes. It is known that increased thermostability tends to decrease conformational flexibility, which contributes to the generation of diffraction quality crystals. However, this is still not straightforward, and significant effort is required to identify thermostabilized mutants that are optimal for crystallography. To address this issue, a versatile screening platform based on a label-free ligand binding assay combined with transient overexpression in virus-like particles was developed. This platform was used to generate thermostabilized GPR40 [also known as free fatty acid receptor 1 (FFAR1)] for fasiglifam (TAK-875). This demonstrated that the thermostabilized mutant GPR40 (L42A/F88A/G103A/Y202F) was successfully used for crystal structure analysis.
Collapse
Affiliation(s)
- Yoshihiko Hirozane
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd , Fujisawa, Kanagawa , Japan
| | | | | | | | | |
Collapse
|
30
|
Zuber J, Danial SA, Connelly SM, Naider F, Dumont ME. Identification of destabilizing and stabilizing mutations of Ste2p, a G protein-coupled receptor in Saccharomyces cerevisiae. Biochemistry 2015; 54:1787-806. [PMID: 25647246 DOI: 10.1021/bi501314t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The isolation of mutations affecting the stabilities of transmembrane proteins is useful for enhancing the suitability of proteins for structural characterization and identification of determinants of membrane protein stability. We have pursued a strategy for the identification of stabilized variants of the yeast α-factor receptor Ste2p. Because it was not possible to screen directly for mutations providing thermal stabilization, we first isolated a battery of destabilized temperature-sensitive variants, based on loss of signaling function and decreased levels of binding of the fluorescent ligand, and then screened for intragenic second-site suppressors of these phenotypes. The initial screens recovered singly and multiply substituted mutations conferring temperature sensitivity throughout the predicted transmembrane helices of the receptor. All of the singly substituted variants exhibit decreases in cell-surface expression. We then screened randomly mutagenized libraries of clones expressing temperature-sensitive variants for second-site suppressors that restore elevated levels of binding sites for fluorescent ligand. To determine whether any of these were global suppressors, and thus likely stabilizing mutations, they were combined with different temperature-sensitive mutations. Eight of the suppressors exhibited the ability to reverse the defect in ligand binding of multiple temperature-sensitive mutations. Combining certain suppressors into a single allele resulted in levels of suppression greater than that seen with either suppressor alone. Solubilized receptors containing suppressor mutations in the absence of temperature-sensitive mutations exhibit a reduced tendency to aggregate during immobilization on an affinity matrix. Several of the suppressors also exhibit allele-specific behavior indicative of specific intramolecular interactions in the receptor.
Collapse
Affiliation(s)
- Jeffrey Zuber
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry , P.O. Box 712, Rochester, New York 14642, United States
| | | | | | | | | |
Collapse
|
31
|
Folding and stability of integral membrane proteins in amphipols. Arch Biochem Biophys 2014; 564:327-43. [PMID: 25449655 DOI: 10.1016/j.abb.2014.10.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/11/2014] [Accepted: 10/22/2014] [Indexed: 11/23/2022]
Abstract
Amphipols (APols) are a family of amphipathic polymers designed to keep transmembrane proteins (TMPs) soluble in aqueous solutions in the absence of detergent. APols have proven remarkably efficient at (i) stabilizing TMPs, as compared to detergent solutions, and (ii) folding them from a denatured state to a native, functional one. The underlying physical-chemical mechanisms are discussed.
Collapse
|
32
|
Emmerstorfer A, Wriessnegger T, Hirz M, Pichler H. Overexpression of membrane proteins from higher eukaryotes in yeasts. Appl Microbiol Biotechnol 2014; 98:7671-98. [PMID: 25070595 DOI: 10.1007/s00253-014-5948-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 02/08/2023]
Abstract
Heterologous expression and characterisation of the membrane proteins of higher eukaryotes is of paramount interest in fundamental and applied research. Due to the rather simple and well-established methods for their genetic modification and cultivation, yeast cells are attractive host systems for recombinant protein production. This review provides an overview on the remarkable progress, and discusses pitfalls, in applying various yeast host strains for high-level expression of eukaryotic membrane proteins. In contrast to the cell lines of higher eukaryotes, yeasts permit efficient library screening methods. Modified yeasts are used as high-throughput screening tools for heterologous membrane protein functions or as benchmark for analysing drug-target relationships, e.g., by using yeasts as sensors. Furthermore, yeasts are powerful hosts for revealing interactions stabilising and/or activating membrane proteins. We also discuss the stress responses of yeasts upon heterologous expression of membrane proteins. Through co-expression of chaperones and/or optimising yeast cultivation and expression strategies, yield-optimised hosts have been created for membrane protein crystallography or efficient whole-cell production of fine chemicals.
Collapse
Affiliation(s)
- Anita Emmerstorfer
- ACIB-Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | | | | | | |
Collapse
|
33
|
Miller-Gallacher JL, Nehmé R, Warne T, Edwards PC, Schertler GFX, Leslie AGW, Tate CG. The 2.1 Å resolution structure of cyanopindolol-bound β1-adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand-free receptor. PLoS One 2014; 9:e92727. [PMID: 24663151 PMCID: PMC3963952 DOI: 10.1371/journal.pone.0092727] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/25/2014] [Indexed: 12/30/2022] Open
Abstract
The β1-adrenoceptor (β1AR) is a G protein-coupled receptor (GPCR) that is activated by the endogenous agonists adrenaline and noradrenaline. We have determined the structure of an ultra-thermostable β1AR mutant bound to the weak partial agonist cyanopindolol to 2.1 Å resolution. High-quality crystals (100 μm plates) were grown in lipidic cubic phase without the assistance of a T4 lysozyme or BRIL fusion in cytoplasmic loop 3, which is commonly employed for GPCR crystallisation. An intramembrane Na+ ion was identified co-ordinated to Asp872.50, Ser1283.39 and 3 water molecules, which is part of a more extensive network of water molecules in a cavity formed between transmembrane helices 1, 2, 3, 6 and 7. Remarkably, this water network and Na+ ion is highly conserved between β1AR and the adenosine A2A receptor (rmsd of 0.3 Å), despite an overall rmsd of 2.4 Å for all Cα atoms and only 23% amino acid identity in the transmembrane regions. The affinity of agonist binding and nanobody Nb80 binding to β1AR is unaffected by Na+ ions, but the stability of the receptor is decreased by 7.5°C in the absence of Na+. Mutation of amino acid side chains that are involved in the co-ordination of either Na+ or water molecules in the network decreases the stability of β1AR by 5–10°C. The data suggest that the intramembrane Na+ and associated water network stabilise the ligand-free state of β1AR, but still permits the receptor to form the activated state which involves the collapse of the Na+ binding pocket on agonist binding.
Collapse
Affiliation(s)
| | - Rony Nehmé
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, United Kingdom
| | - Tony Warne
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, United Kingdom
| | - Patricia C. Edwards
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, United Kingdom
| | - Gebhard F. X. Schertler
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, United Kingdom
| | - Andrew G. W. Leslie
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, United Kingdom
| | - Christopher G. Tate
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
L. Pollock N, Moran O, Baroni D, Zegarra-Moran O, C. Ford R. Characterisation of the salmon cystic fibrosis transmembrane conductance regulator protein for structural studies. AIMS MOLECULAR SCIENCE 2014. [DOI: 10.3934/molsci.2014.4.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
35
|
Affiliation(s)
- Robert O J Weinzierl
- Department of Life Sciences, Division of Biomolecular Sciences, Imperial College London , Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
36
|
The importance of interactions with helix 5 in determining the efficacy of β-adrenoceptor ligands. Biochem Soc Trans 2013; 41:159-65. [PMID: 23356277 DOI: 10.1042/bst20120228] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Structures of the inactive state of the thermostabilized β1-adrenoceptor have been determined bound to eight different ligands, including full agonists, partial agonists, inverse agonists and biased agonists. Comparison of the structures shows distinct differences within the binding pocket that correlate with the pharmacological properties of the ligands. These data suggest that full agonists stabilize a structure with a contracted binding pocket and a rotamer change of serine (5.46) compared with when antagonists are bound. Inverse agonists may prevent both of these occurrences, whereas partial agonists stabilize a contraction of the binding pocket but not the rotamer change of serine (5.46). It is likely that subtle changes in the interactions between transmembrane helix 5 (H5) and H3/H4 on agonist binding promote the formation of the activated state.
Collapse
|
37
|
Abdul-Hussein S, Andréll J, Tate CG. Thermostabilisation of the serotonin transporter in a cocaine-bound conformation. J Mol Biol 2013; 425:2198-207. [PMID: 23706649 PMCID: PMC3678023 DOI: 10.1016/j.jmb.2013.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/25/2013] [Accepted: 03/12/2013] [Indexed: 11/15/2022]
Abstract
Structure determination of mammalian integral membrane proteins is challenging due to their instability upon detergent solubilisation and purification. Recent successes in the structure determination of G-protein-coupled receptors (GPCRs) resulted from the development of GPCR-specific protein engineering strategies. One of these, conformational thermostabilisation, could in theory facilitate structure determination of other membrane proteins by improving their tolerance to detergents and locking them in a specific conformation. We have therefore used this approach on the cocaine-sensitive rat serotonin transporter (SERT). Out of a panel of 554 point mutants throughout SERT, 10 were found to improve its thermostability. The most stabilising mutations were combined to make the thermostabilised mutants SAH6 (L99A + G278A + A505L) and SAH7 (L405A + P499A + A505L) that were more stable than SERT by 18 °C and 16 °C, respectively. Inhibitor binding assays showed that both of the thermostabilised SERT mutants bound [125I]RTI55 (β-CIT) with affinity similar to that of the wild-type transporter, although cocaine bound with increased affinity (17- to 56-fold) whilst ibogaine, imipramine and paroxetine all bound with lower affinity (up to 90-fold). Neither SAH6 nor SAH7 was capable of transporting [3H]serotonin into HEK293 cell lines stably expressing the mutants, although serotonin bound to them with an apparent Ki of 155 μM or 82 μM, respectively. These data combined suggest that SAH6 and SAH7 are thermostabilised in a specific cocaine-bound conformation, making them promising candidates for crystallisation. Conformational thermostabilisation is thus equally applicable to membrane proteins that are transporters in addition to those that are GPCRs.
Collapse
|
38
|
Locatelli-Hoops S, Yeliseev AA, Gawrisch K, Gorshkova I. Surface plasmon resonance applied to G protein-coupled receptors. BIOMEDICAL SPECTROSCOPY AND IMAGING 2013; 2:155-181. [PMID: 24466506 PMCID: PMC3898597 DOI: 10.3233/bsi-130045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
G protein-coupled receptors (GPCR) are integral membrane proteins that transmit signals from external stimuli to the cell interior via activation of GTP-binding proteins (G proteins) thereby mediating key sensorial, hormonal, metabolic, immunological, and neurotransmission processes. Elucidating their structure and mechanism of interaction with extracellular and intracellular binding partners is of fundamental importance and highly relevant to rational design of new effective drugs. Surface plasmon resonance (SPR) has become a method of choice for studying biomolecular interactions at interfaces because measurements take place in real-time and do not require labeling of any of the interactants. However, due to the particular challenges imposed by the high hydrophobicity of membrane proteins and the great diversity of receptor-stimulating ligands, the application of this technique to characterize interactions of GPCR is still in the developmental phase. Here we give an overview of the principle of SPR and analyze current approaches for the preparation of the sensor chip surface, capture and stabilization of GPCR, and experimental design to characterize their interaction with ligands, G proteins and specific antibodies.
Collapse
Affiliation(s)
- Silvia Locatelli-Hoops
- National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 5625 Fishers Lane, Bethesda, MD 20892, USA
| | - Alexei A. Yeliseev
- National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 5625 Fishers Lane, Bethesda, MD 20892, USA
| | - Klaus Gawrisch
- National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 5625 Fishers Lane, Bethesda, MD 20892, USA
| | - Inna Gorshkova
- Biomedical Engineering and Physical Science Shared Resource,
National Institute of Biomedical Imaging and Bioengineering, National Institutes of
Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Scott DJ, Kummer L, Tremmel D, Plückthun A. Stabilizing membrane proteins through protein engineering. Curr Opin Chem Biol 2013; 17:427-35. [PMID: 23639904 DOI: 10.1016/j.cbpa.2013.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 12/18/2022]
Abstract
Integral membrane proteins (IMPs) are crucial components of all cells but are difficult to study in vitro because they are generally unstable when removed from their native membranes using detergents. Despite the major biomedical relevance of IMPs, less than 1% of Protein Data Bank (PDB) entries are IMP structures, reflecting the technical gap between studies of soluble proteins compared to IMPs. Stability can be engineered into IMPs by inserting stabilizing mutations, thereby generating proteins that can be successfully applied to biochemical and structural studies when solubilized in detergent micelles. The identification of stabilizing mutations is not trivial, and this review will focus on the methods that have been used to identify stabilized membrane proteins, including alanine scanning and screening, directed evolution and computational design.
Collapse
Affiliation(s)
- Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
40
|
Rapid screening of membrane protein expression in transiently transfected insect cells. Protein Expr Purif 2013; 88:134-42. [DOI: 10.1016/j.pep.2012.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/07/2012] [Accepted: 12/08/2012] [Indexed: 01/09/2023]
|
41
|
Kang HJ, Lee C, Drew D. Breaking the barriers in membrane protein crystallography. Int J Biochem Cell Biol 2013; 45:636-44. [DOI: 10.1016/j.biocel.2012.12.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 12/03/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
|
42
|
Shibata Y, Gvozdenovic-Jeremic J, Love J, Kloss B, White JF, Grisshammer R, Tate CG. Optimising the combination of thermostabilising mutations in the neurotensin receptor for structure determination. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1293-301. [PMID: 23337476 DOI: 10.1016/j.bbamem.2013.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
Conformational thermostabilisation of G protein-coupled receptors is a successful approach for their structure determination. We have recently determined the structure of a thermostabilised neurotensin receptor NTS1 in complex with its peptide agonist and here we describe the strategy for the identification and combination of the 6 thermostabilising mutations essential for crystallisation. First, thermostability assays were performed on a panel of 340 detergent-solubilised Ala/Leu NTS1 mutants and the best 16 thermostabilising mutations were identified. These mutations were combined pair-wise in nearly all combinations (119 out of a possible 120 combinations) and each mutant was expressed and its thermostability was experimentally determined. A theoretical stability score was calculated from the sum of the stabilities measured for each double mutant and applied to develop 24 triple mutants, which in turn led to the construction of 14 quadruple mutants. Use of the thermostability data for the double mutants to predict further mutant combinations resulted in a greater percentage of the triple and quadruple mutants showing improved thermostability than if only the thermostability data for the single mutations was considered. The best quadruple mutant (NTS1-Nag36k) was further improved by including an additional 2 mutations (resulting in NTS1-GW5) that were identified from a complete Ala/Leu scan of Nag36k by testing the thermostability of the mutants in situ in whole bacteria. NTS1-GW5 had excellent stability in short chain detergents and could be readily purified as a homogenous sample that ultimately allowed crystallisation and structure determination.
Collapse
Affiliation(s)
- Yoko Shibata
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Brueckner F, Piscitelli CL, Tsai CJ, Standfuss J, Deupi X, Schertler GFX. Structure of β-adrenergic receptors. Methods Enzymol 2013; 520:117-51. [PMID: 23332698 DOI: 10.1016/b978-0-12-391861-1.00006-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
β-Adrenergic receptors (βARs) control key physiological functions by transducing signals encoded in catecholamine hormones and neurotransmitters to activate intracellular signaling pathways. As members of the large family of G protein-coupled receptors (GPCRs), βARs have a seven-transmembrane helix topology and signal via G protein- and arrestin-dependent pathways. Until 2007, three-dimensional structural information of GPCRs activated by diffusible ligands, including βARs, was limited to homology models that used the related photoreceptor rhodopsin as a template. Over many years, several labs have developed strategies that have finally allowed the structures of the turkey β(1)AR and the human β(2)AR to be determined experimentally. The challenges to overcome included heterologous receptor overexpression, design of stabilized and crystallizable modified receptor constructs, ligand-affinity purification of active receptor and the development of novel techniques in crystallization and microcrystallography. The structures of βARs in complex with inverse agonists, antagonists, and agonists have revealed the binding mode of ligands with different efficacies, have allowed to obtain insights into ligand selectivity, and have provided better templates for drug design. Also, the structures of β(2)AR in complex with a G protein and a G protein-mimicking nanobody have provided important insights into the mechanism of receptor activation and G protein coupling. This chapter summarizes the strategies and methods that have been successfully applied to the structural studies of βARs. These are exemplified with detailed protocols toward the structure determination of stabilized turkey β(1)AR-ligand complexes. We also discuss the spectacular insights into adrenergic receptor function that were obtained from the structures.
Collapse
Affiliation(s)
- Florian Brueckner
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen PSI, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
Directed evolution of G-protein-coupled receptors for high functional expression and detergent stability. Methods Enzymol 2013; 520:67-97. [PMID: 23332696 DOI: 10.1016/b978-0-12-391861-1.00004-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
G-protein-coupled receptors (GPCRs) are cell-surface receptors exhibiting a key role in cellular signal transduction processes, thus making them pharmacologically highly relevant target proteins. However, the molecular mechanisms driving receptor activation by ligand binding and signal transduction are poorly understood, since as integral membrane proteins, most GPCRs are very challenging for functional and structural studies. The biophysical properties of natural GPCRs, usually required by the cell in only low amounts, support their functionality in the lipid bilayer but are insufficient for high-level recombinant overexpression and stability in detergent solution. Current structural information about GPCRs is thus limited to a subset of GPCRs with either intrinsically favorable or properly improved biophysical behavior. Recently, directed protein evolution techniques for functional expression and detergent stability have been developed to increase the accessibility of GPCRs for functional and structural studies. Directed evolution does not rely on any preconceived notion of what might be limiting biophysical properties. By random mutagenesis combined with a high-throughput screening and selection system, directed protein evolution has the power to efficiently isolate rare phenotypes and thus contribute to the elucidation of the stability-determining factors, in addition to solving the practical problem of creating stable GPCRs. In the current chapter, protocols for generation of genetic diversity within GPCRs and selection are provided and discussed.
Collapse
|
45
|
Chun E, Thompson AA, Liu W, Roth CB, Griffith MT, Katritch V, Kunken J, Xu F, Cherezov V, Hanson MA, Stevens RC. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 2012; 20:967-76. [PMID: 22681902 DOI: 10.1016/j.str.2012.04.010] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/25/2012] [Accepted: 04/25/2012] [Indexed: 12/11/2022]
Abstract
Structural studies of human G protein-coupled receptors (GPCRs) have recently been accelerated through the use of a fusion partner that was inserted into the third intracellular loop. Using chimeras of the human β(2)-adrenergic and human A(2A) adenosine receptors, we present the methodology and data for the initial selection of an expanded set of fusion partners for crystallizing GPCRs. In particular, use of the thermostabilized apocytochrome b(562)RIL as a fusion partner displays certain advantages over previously utilized fusion proteins, resulting in a significant improvement in stability and structure of GPCR-fusion constructs.
Collapse
Affiliation(s)
- Eugene Chun
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Caffrey M, Li D, Dukkipati A. Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Biochemistry 2012; 51:6266-88. [PMID: 22783824 DOI: 10.1021/bi300010w] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The crystal structure of the β(2)-adrenergic receptor in complex with an agonist and its cognate G protein has just recently been determined. It is now possible to explore in molecular detail the means by which this paradigmatic transmembrane receptor binds agonist, communicates the impulse or signaling event across the membrane, and sets in motion a series of G protein-directed intracellular responses. The structure was determined using crystals of the ternary complex grown in a rationally designed lipidic mesophase by the so-called in meso method. The method is proving to be particularly useful in the G protein-coupled receptor field where the structures of 13 distinct receptor types have been determined in the past 5 years. In addition to receptors, the method has proven to be useful with a wide variety of integral membrane protein classes that include bacterial and eukaryotic rhodopsins, light-harvesting complex II (LHII), photosynthetic reaction centers, cytochrome oxidases, β-barrels, an exchanger, and an integral membrane peptide. This attests to the versatility and range of the method and supports the view that the in meso method should be included in the arsenal of the serious membrane structural biologist. For this to happen, however, the reluctance to adopt it attributable, in part, to the anticipated difficulties associated with handling the sticky, viscous cubic mesophase in which crystals grow must be overcome. Harvesting and collecting diffraction data with the mesophase-grown crystals are also viewed with some trepidation. It is acknowledged that there are challenges associated with the method. Over the years, we have endeavored to establish how the method works at a molecular level and to make it user-friendly. To these ends, tools for handling the mesophase in the pico- to nanoliter volume range have been developed for highly efficient crystallization screening in manual and robotic modes. Methods have been implemented for evaluating the functional activity of membrane proteins reconstituted into the bilayer of the cubic phase as a prelude to crystallogenesis. Glass crystallization plates that provide unparalleled optical quality and sensitivity to nascent crystals have been built. Lipid and precipitant screens have been designed for a more rational approach to crystallogenesis such that the method can now be applied to an even wider variety of membrane protein types. In this work, these assorted advances are outlined along with a summary of the membrane proteins that have yielded to the method. The prospects for and the challenges that must be overcome to further develop the method are described.
Collapse
Affiliation(s)
- Martin Caffrey
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
47
|
A crystal clear solution for determining G-protein-coupled receptor structures. Trends Biochem Sci 2012; 37:343-52. [PMID: 22784935 DOI: 10.1016/j.tibs.2012.06.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 11/21/2022]
Abstract
G-protein-coupled receptors (GPCRs) are medically important membrane proteins that are targeted by over 30% of small molecule drugs. At the time of writing, 15 unique GPCR structures have been determined, with 77 structures deposited in the PDB database, which offers new opportunities for drug development and for understanding the molecular mechanisms of GPCR activation. Many different factors have contributed to this success, but if there is one single factor that can be singled out as the foundation for producing well-diffracting GPCR crystals, it is the stabilisation of the detergent-solubilised receptor-ligand complex. This review will focus predominantly on one of the successful strategies for the stabilisation of GPCRs, namely the thermostabilisation of GPCRs using systematic mutagenesis coupled with thermostability assays. Structures of thermostabilised GPCRs bound to a wide variety of ligands have been determined, which has led to an understanding of ligand specificity; why some ligands act as agonists as opposed to partial or inverse agonists; and the structural basis for receptor activation.
Collapse
|