1
|
Marty AG, Barbone PE, Morgan EF. Multiscale theoretical model shows that aging-related mechanical degradation of cortical bone is driven by microstructural changes in addition to porosity. J Mech Behav Biomed Mater 2023; 145:106029. [PMID: 37499524 PMCID: PMC10528045 DOI: 10.1016/j.jmbbm.2023.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
This study aims to gain mechanistic understanding of how aging-related changes in the microstructure of cortical bone drive mechanical consequences at the macroscale. To that end, cortical bone was modeled as a bundle of elastic-plastic, parallel fibers, which represented osteons and interstitial tissue, loaded in uniaxial tension. Distinct material properties were assigned to each fiber in either the osteon or interstitial fiber "families." Models representative of mature (20-60 yrs.) bone, and elderly (60+) bone were created by modeling aging via the following changes to the input parameters: (i) increasing porosity from 5% to 15%, (ii) increasing the ratio of the number of osteon fibers relative to interstitial fibers from 40% to 50%, and (iii) changing the fiber material properties from representing mature bone samples to representing elderly bone samples (i.e., increased strength and decreased toughness of interstitial fibers together with decreased toughness of osteon fibers). To understand the respective contributions of these changes, additional models isolating one or two of each of these were also created. From the computed stress-strain curve for the fiber bundle, the yield point (ϵy, σy), ultimate point (ϵu, σu), and toughness (UT) for the bundle as a whole were measured. We found that changes to all three input parameters were required for the model to capture the aging-related decline in cortical bone mechanical properties consistent with those previously reported in the literature. In both mature and elderly bundles, rupture of the interstitial fibers drove the initial loss of strength following the ultimate point. Plasticity and more gradual rupture of the osteons drove the remainder of the response. Both the onset and completion of interstitial fiber rupture occurred at lower strains in the elderly vs. mature case. These findings point to the importance of studying microstructural changes beyond porosity, such as the area fraction of osteons and the material properties of osteon and interstitial tissue, in order to further understanding of aging-related changes in bone.
Collapse
Affiliation(s)
- André Gutiérrez Marty
- Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, 02115, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 110 Cummington Mall, Boston, 02115, MA, USA.
| | - Paul E Barbone
- Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, 02115, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 110 Cummington Mall, Boston, 02115, MA, USA.
| | - Elise F Morgan
- Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, 02115, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 110 Cummington Mall, Boston, 02115, MA, USA; Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, 02115, MA, USA.
| |
Collapse
|
2
|
Farlay D, Falgayrac G, Ponçon C, Rizzo S, Cortet B, Chapurlat R, Penel G, Badoud I, Ammann P, Boivin G. Material and nanomechanical properties of bone structural units of cortical and trabecular iliac bone tissues from untreated postmenopausal osteoporotic women. Bone Rep 2022; 17:101623. [PMID: 36213624 PMCID: PMC9535279 DOI: 10.1016/j.bonr.2022.101623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
The differences in bone nanomechanical properties between cortical (Ct) and trabecular (Tb) bone remain uncertain, whereas knowing the respective contribution of each compartment is critical to understand the origin of bone strength. Our purpose was to compare bone mechanical and intrinsic properties of Ct and Tb compartments, at the bone structural unit (BSU) level, in iliac bone taken from a homogeneous untreated human population. Among 60 PMMA-embedded transiliac bone biopsies from untreated postmenopausal osteoporotic women (64 ± 7 year-old), >2000 BSUs were analysed by nanoindentation in physiological wet conditions [indentation modulus (elasticity), hardness, dissipated energy], by Fourier transform infrared (FTIRM) and Raman microspectroscopy (mineral and organic characteristics), and by X-ray microradiography (degree of mineralization of bone, DMB). BSUs were categorized based on tissue age, osteonal (Ost) and interstitial (Int) tissues location and bone compartments (Ct and Tb). Indentation modulus was higher in Ct than in Tb BSUs, both in Ost and Int. dissipated energy was higher in Ct than Tb, in Int BSUs. Hardness was not different between Ct and Tb BSUs. In Ost or Int BSUs, mineral maturity (conversion of non-apatitic into apatitic phosphates) was higher in Ct than in Tb, as well as for collagen maturity (Ost). Mineral content assessed as mineral/matrix (FTIRM and Raman) or as DMB, was lower in Ct than in Tb. Crystallinity (FTIRM) was similar in BSUs from Ct and Tb, and slightly lower in Ct than in Tb when measured by Raman, indicating that the crystal size/perfection was quite similar between Ct and Tb BSUs. The differences found between Ost and Int tissues were much higher than the difference found between Ct and Tb for all those bone material properties. Multiple regression analysis showed that Indentation modulus and dissipated energy were mainly explained by mineral maturity in Ct and by collagen maturity in Tb, and hardness by mineral content in both Ct and Tb. In conclusion, in untreated human iliac bone, Ct and Tb BSUs exhibit different characteristics. Ct BSUs have higher indentation modulus, dissipated energy (Int), mineral and organic maturities than Tb BSUs, without difference in hardness. Although those differences are relatively small compared to those found between Ost and Int BSUs, they may influence bone strength at macroscale.
Collapse
|
3
|
Farlay D, Rizzo S, Dempster DW, Huang S, Chines A, Brown JP, Boivin G. Bone Mineral and Organic Properties in Postmenopausal Women Treated With Denosumab for Up to 10 years. J Bone Miner Res 2022; 37:856-864. [PMID: 35249242 DOI: 10.1002/jbmr.4538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 11/10/2022]
Abstract
In postmenopausal women with osteoporosis, denosumab (DMAb) therapy through 10 years resulted in significantly higher degree of mineralization of bone, with a subsequent increase from years 2-3 to year 5 and no further difference between years 5 and 10. Our aim was to assess the variables reflecting the quality of bone mineral and organic matrix (Fourier transform infrared microspectroscopy), and the microhardness of bone (Vickers microindentation). Cross-sectional assessments were performed in blinded fashion on iliac bone biopsies from osteoporotic women (72 from FREEDOM trial, 49 from FREEDOM Extension trial), separately in cortical and cancellous compartments. After 2-3 years of DMAb, mineral/matrix ratio and microhardness of cortical bone were significantly higher compared with placebo, whereas mineral maturity, mineral crystallinity, mineral carbonation, and collagen maturity were not different in both bone compartments. Through 5 years of DMAb, mineral carbonation was significantly lower and mineral/matrix ratio, mineral maturity, and crystallinity were significantly higher versus 2-3 years and were not different between 5 and 10 years, with the exception of mineral maturity in cancellous bone. These data support a transition of mineral to more mature crystals (within physiological range) and the completeness of secondary mineralization within 5 years of DMAb treatment. Microhardness in cortical and cancellous compartments was significantly lower at 5 years of DMAb versus 2-3 years and was not different from years 5 to 10. The lower microhardness at years 5 and 10 is likely the result of maturation of the organic matrix in a persistently low state of bone remodeling over 5 and 10 years. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Delphine Farlay
- INSERM, UMR 1033, University of Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Sébastien Rizzo
- INSERM, UMR 1033, University of Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - David W Dempster
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,Regional Bone Center, Helen Hayes Hospital, West Haverstraw, NY, USA
| | - Shuang Huang
- Clinical Development, Amgen Inc., Thousand Oaks, CA, USA
| | - Arkadi Chines
- Clinical Development, Amgen Inc., Thousand Oaks, CA, USA
| | - Jacques P Brown
- CHU de Quebec Research Centre, Laval University, Quebec City, Canada
| | - Georges Boivin
- INSERM, UMR 1033, University of Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
4
|
Bonicelli A, Kranioti EF, Xhemali B, Arnold E, Zioupos P. Assessing bone maturity: Compositional and mechanical properties of rib cortical bone at different ages. Bone 2022; 155:116265. [PMID: 34844026 DOI: 10.1016/j.bone.2021.116265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/19/2022]
Abstract
Understanding what maturity entails for bone, when it arrives, and its pre- and post-maturity traits and properties are very important for understanding its evolution and physiology. There is a clear but fine distinction between the chronological age of bone (the age of its donor) and the tissue age of the bone packets it comprises at the microscopic level. Whole bone fragility changes with age due to mass and architecture effects, but so do the properties of bone at the tissue level. Tissue age and tissue-level properties are therefore increasingly attracting a great deal of attention recently. The present study investigated compositional and material changes in the hydroxyapatite crystals, the collagenous phase, changes in bone matrix composition and its nanoindentation properties and their decline with chronological age in later life. The aim was to track the age threshold at which cortical bone arrives at maturity and what happens following that threshold. To do so FTIR, DSC/TGA, XRD, nanoindentation and microindentation were used to investigate rib cortical bone material across a cohort of 86 individuals from one ethnic group with age spanning between 17 and 82 years. Results of this cross-sectional study showed a clear increase in mineral content relative to the organic and water contents across all ages. Furthermore, an increase in crystal size and consequent decrease in strain (coherence length) was detected associated with secondary mineralisation and an increase in carbonate substitution. Overall, we observe a number of modifications which contribute to a typical functional behaviour of bone showing an increase in both indentation modulus and hardness until the age of about 35 after which both of these properties decline gradually and concomitantly to other physicochemical changes and seemingly until the end of one's life.
Collapse
Affiliation(s)
- Andrea Bonicelli
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK; Musculoskeletal & Medicolegal Research Group, Cranfield University, Defence Academy of the UK, Shrivenham, UK
| | - Elena F Kranioti
- Department of Forensic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | | | - Emily Arnold
- Musculoskeletal & Medicolegal Research Group, Cranfield University, Defence Academy of the UK, Shrivenham, UK
| | - Peter Zioupos
- Musculoskeletal & Medicolegal Research Group, Cranfield University, Defence Academy of the UK, Shrivenham, UK.
| |
Collapse
|
5
|
Hage IS, Hage RS, Yassine RA, Seif CY, Hamade RF. Mapping cortical bone stiffness and mineralization from endosteal to periosteal surfaces of bovine mid-diaphyseal femur. J Bone Miner Metab 2021; 39:725-736. [PMID: 33822263 DOI: 10.1007/s00774-021-01217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/23/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION While bone literature abounds with correlations of mechanical stiffness to mineralization, such correlations are reported without relating the findings to specific intracortical locations. This study reports on mapping of stiffness and mineralization distributions in ring-shaped cortical bone samples sliced from mid-diaphyseal bovine femur. Stiffness and mineralization measurements were conducted at points across the intracortical thickness along radial lines emanating from the inner (endosteal) surface to the outer (periosteal) surface. Measurements were taken along approximately 4 mm distance of cortical bone thickness. MATERIALS AND METHODS Three experimental techniques were employed: Vickers microhardness (HV), energy-dispersive X-ray (EDX) spectroscopy, and computed tomography (CT). Stiffness values were extracted from the Vickers microhardness tests. Elemental mineralization values (calcium %wt. and phosphorus %wt.) were determined from EDX data. All measurements were repeated on three different femur bones taken from different bovines (collected fresh from butcher). RESULTS The study plots stiffness values and elemental mineralization (calcium %wt. and phosphorus %wt.) versus cortical thickness. Both stiffness and Ca %wt. and P %wt. are found to track and to linearly increase when plotted along the radial distance. The stiffness and mineralization trends collected from Vickers and EDX measurements were verified by employing the CT number (Hounsfield units, HU) via CT scans of the same bone samples. Data fitting via statistical methods revealed that all correlations were statistically significant. CONCLUSION Starting from endosteal to periosteal surfaces of mid-diaphyseal bovine femur, it was found that stiffness, mineralization, and HU values all exhibit increasing and correlating trends.
Collapse
Affiliation(s)
- I S Hage
- Department of Mechanical Engineering, Notre Dame University-Louaize, Zouk Mikael, P.O. Box: 72, Zouk Mosbeh, Lebanon
| | - R S Hage
- Department of Mathematics, Notre Dame University-Louaize, Zouk Mikael, P.O. Box: 72, Zouk Mosbeh, Lebanon
| | - R A Yassine
- Department of Mechanical Engineering, American University of Beirut, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - C Y Seif
- Department of Mechanical Engineering, American University of Beirut, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - R F Hamade
- Department of Mechanical Engineering, American University of Beirut, Riad El-Solh, Beirut, 1107 2020, Lebanon.
| |
Collapse
|
6
|
Hadjab I, Farlay D, Crozier P, Douillard T, Boivin G, Chevalier J, Meille S, Follet H. Intrinsic properties of osteomalacia bone evaluated by nanoindentation and FTIRM analysis. J Biomech 2021; 117:110247. [PMID: 33493712 DOI: 10.1016/j.jbiomech.2021.110247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 11/17/2022]
Abstract
Osteomalacia is a pathological bone condition consisting in a deficient primary mineralization of the matrix, leading to an accumulation of osteoid tissue and reduced bone mechanical strength. The amounts, properties and organization of bone constituents at tissue level, are known to influence its mechanical properties. It is then important to investigate the relationship between mechanical behavior and tissue composition at this scale in order to provide a better understanding of bone fragility mechanisms associates with this pathology. Our purpose was to analyze the links between ultra-structural properties and the mechanical behavior of this pathological bone tissue (osteomalacia) at tissue level (mineral and osteoid separately, or global). Four bone biopsies were taken from patients with osteomalacia, and subsequently embedded, sectioned, and polished. Then nanoindentation tests were performed to determine local elastic modulus E, contact hardness Hc and true hardness H for both mineralized and organic bone phases and for the global bone. The creep of the bone was also studied using a special indentation procedure in order to assess visco-elasto-plastic (creep) bone behavior. This allowed a detailed study of the rheological models adapted to the bone and to calculate the parameters associated to a Burgers model. Ultra-structural parameters were measured by Fourier Transform InfraRed Microspectroscopy (FTIRM) on the same position as the indents. The use of rheological models confirmed a significant contribution from the organic phase on the viscous character of bone tissue. The elastic E and the elasto-plastic Hc deformation were correlated to both collagen maturity and Mineral/Matrix. The pure plastic deformation H was only correlated to the mineral phase. Our data show that mineral phase greatly affects mechanical variables (moduli and viscosities) and that organic phase (as illustrated in osteoid tissue) may play an important role in the creep behavior of bone. In conclusion, this study brings mechanical and physicochemical values for osteoid and mineral phases.
Collapse
Affiliation(s)
- I Hadjab
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France; Now, in École Polytechnique de Montréal, Canada
| | - D Farlay
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France.
| | - P Crozier
- Univ Lyon, INSA-LYON, MATEIS, UMR CNRS 5510, F69621 Villeurbanne, France
| | - T Douillard
- Univ Lyon, INSA-LYON, MATEIS, UMR CNRS 5510, F69621 Villeurbanne, France.
| | - G Boivin
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France.
| | - J Chevalier
- Univ Lyon, INSA-LYON, MATEIS, UMR CNRS 5510, F69621 Villeurbanne, France.
| | - S Meille
- Univ Lyon, INSA-LYON, MATEIS, UMR CNRS 5510, F69621 Villeurbanne, France.
| | - H Follet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France.
| |
Collapse
|
7
|
Pepe V, Oliviero S, Cristofolini L, Dall'Ara E. Regional Nanoindentation Properties in Different Locations on the Mouse Tibia From C57BL/6 and Balb/C Female Mice. Front Bioeng Biotechnol 2020; 8:478. [PMID: 32500069 PMCID: PMC7243342 DOI: 10.3389/fbioe.2020.00478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023] Open
Abstract
The local spatial heterogeneity of the material properties of the cortical and trabecular bone extracted from the mouse tibia is not well-known. Nevertheless, its characterization is fundamental to be able to study comprehensively the effect of interventions and to generate computational models to predict the bone strength preclinically. The goal of this study was to evaluate the nanoindentation properties of bone tissue extracted from two different mouse strains across the tibia length and in different sectors. Left tibiae were collected from four female mice, two C57BL/6, and two Balb/C mice. Nanoindentations with maximum 6 mN load were performed on different microstructures, regions along the axis of the tibiae, and sectors (379 in total). Reduced modulus (Er) and hardness (H) were computed for each indentation. Trabecular bone of Balb/C mice was 21% stiffer than that of C57BL/6 mice (20.8 ± 4.1 GPa vs. 16.5 ± 7.1 GPa). Moreover, the proximal regions of the bones were 13-36% less stiff than the mid-shaft and distal regions of the same bones. No significant differences were found for the different sectors for E r and H for Balb/C mice. The bone in the medial sector was found to be 8-14% harder and stiffer than the bone in the anterior or posterior sectors for C57BL/6 mice. In conclusion, this study showed that the nanoindentation properties of the mouse tibia are heterogeneous across the tibia length and the trabecular bone properties are different between Balb/C and C57BL/6 mice. These results will help the research community to identify regions where to characterize the mechanical properties of the bone during preclinical optimisation of treatments for skeletal diseases.
Collapse
Affiliation(s)
- Valentina Pepe
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom.,Department of Industrial Engineering, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Sara Oliviero
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Luca Cristofolini
- Department of Industrial Engineering, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
8
|
Molino G, Dalpozzi A, Ciapetti G, Lorusso M, Novara C, Cavallo M, Baldini N, Giorgis F, Fiorilli S, Vitale-Brovarone C. Osteoporosis-related variations of trabecular bone properties of proximal human humeral heads at different scale lengths. J Mech Behav Biomed Mater 2019; 100:103373. [DOI: 10.1016/j.jmbbm.2019.103373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 07/25/2019] [Indexed: 11/30/2022]
|
9
|
Lefèvre E, Farlay D, Bala Y, Subtil F, Wolfram U, Rizzo S, Baron C, Zysset P, Pithioux M, Follet H. Compositional and mechanical properties of growing cortical bone tissue: a study of the human fibula. Sci Rep 2019; 9:17629. [PMID: 31772277 PMCID: PMC6879611 DOI: 10.1038/s41598-019-54016-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/08/2019] [Indexed: 01/28/2023] Open
Abstract
Human cortical bone contains two types of tissue: osteonal and interstitial tissue. Growing bone is not well-known in terms of its intrinsic material properties. To date, distinctions between the mechanical properties of osteonal and interstitial regions have not been investigated in juvenile bone and compared to adult bone in a combined dataset. In this work, cortical bone samples obtained from fibulae of 13 juveniles patients (4 to 18 years old) during corrective surgery and from 17 adult donors (50 to 95 years old) were analyzed. Microindentation was used to assess the mechanical properties of the extracellular matrix, quantitative microradiography was used to measure the degree of bone mineralization (DMB), and Fourier transform infrared microspectroscopy was used to evaluate the physicochemical modifications of bone composition (organic versus mineral matrix). Juvenile and adult osteonal and interstitial regions were analyzed for DMB, crystallinity, mineral to organic matrix ratio, mineral maturity, collagen maturity, carbonation, indentation modulus, indicators of yield strain and tissue ductility using a mixed model. We found that the intrinsic properties of the juvenile bone were not all inferior to those of the adult bone. Mechanical properties were also differently explained in juvenile and adult groups. The study shows that different intrinsic properties should be used in case of juvenile bone investigation.
Collapse
Affiliation(s)
- Emmanuelle Lefèvre
- Aix-Marseille Univ., CNRS, ISM Inst Movement Sci, Marseille, France.,Department of Orthopaedics and Traumatology, Institute for Locomotion, APHM, Sainte-Marguerite Hospital, Marseille, France
| | - Delphine Farlay
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Lyos UMR1033, F69622, Lyon, France
| | - Yohann Bala
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Lyos UMR1033, F69622, Lyon, France.,Laboratoire Vibrations Acoustique, INSA Lyon, Campus LyonTech la Doua, F69621, Villeurbanne Cedex, France
| | - Fabien Subtil
- Univ Lyon, Université Claude Bernard Lyon 1, Equipe Biostatistique Santé - LBBE, F69003, Lyon, France
| | - Uwe Wolfram
- School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, United Kingdom
| | - Sébastien Rizzo
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Lyos UMR1033, F69622, Lyon, France
| | - Cécile Baron
- Aix-Marseille Univ., CNRS, ISM Inst Movement Sci, Marseille, France.,Department of Orthopaedics and Traumatology, Institute for Locomotion, APHM, Sainte-Marguerite Hospital, Marseille, France
| | - Philippe Zysset
- ARTORG Center for biomedical engineering research, University of Bern, Bern, Switzerland
| | - Martine Pithioux
- Aix-Marseille Univ., CNRS, ISM Inst Movement Sci, Marseille, France.,Department of Orthopaedics and Traumatology, Institute for Locomotion, APHM, Sainte-Marguerite Hospital, Marseille, France
| | - Hélène Follet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Lyos UMR1033, F69622, Lyon, France.
| |
Collapse
|
10
|
Farlay D, Bala Y, Rizzo S, Bare S, Lappe JM, Recker R, Boivin G. Bone remodeling and bone matrix quality before and after menopause in healthy women. Bone 2019; 128:115030. [PMID: 31404670 DOI: 10.1016/j.bone.2019.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 01/23/2023]
Abstract
Acceleration of remodeling activity after menopause leads to bone loss and fragility, however, whether this is associated with modifications of bone matrix quality has been less studied. The impact of variation in bone remodeling rate on bone matrix has been studied mainly in pathologies or anti-osteoporotic treatments. However, in healthy women this has been less studied. We analyzed, at the global level, bone matrix quality in bone biopsies from 3 groups of healthy women (20 per group): 1) before menopause (PreM), 2) 1 year after menopause (PostM, paired biopsies with preM), and 3) 14 (±9) years after menopause (LT-PostM). The mean degree of mineralization (DMB) and heterogeneity index (HI) of mineralization were assessed by X-ray microradiography on whole bone matrix; intrinsic properties (mineral/organic ratio, mineral maturity, mineral crystallinity, collagen maturity) were assessed by Fourier Transform Infrared microspectroscopy, microhardness by microindentation, both at a global level and calculated by mean of several measurements over the whole tissue area. In PostM compared to PreM (bone remodeling rate had doubled), mean DMB measured on the entire bone plane (whole bone matrix) of the sample was not different. HI was increased in trabecular bone indicating a higher heterogeneity of mineralization. However, in PostM, mineral/organic ratio (trabecular) and microhardness (cortical and trabecular) were decreased, whereas mineral/collagen maturation or crystal size/perfection were unchanged. Thus, in PostM, the local mineral content and microhardness were first affected. In LT-PostM (bone remodeling rate was 3 times higher), the mean DMB was still not different. However, the mineral/organic ratio, microhardness, mineral maturity, crystallinity all were lower compared to PreM and PostM, in both cortical and trabecular bone. Bone remodeling rate was negatively correlated with microhardness, DMB, mineral/organic and crystallinity. This suggests that increases in bone remodeling rates after menopause have a direct impact on bone quality by inducing the formation of more extensive "immature" bone areas, but the amount of immature bone does not cause modification of the global DMB.
Collapse
Affiliation(s)
- D Farlay
- INSERM, Université de Lyon, UMR 1033, F-69008 Lyon, France.
| | - Y Bala
- INSERM, Université de Lyon, UMR 1033, F-69008 Lyon, France
| | - S Rizzo
- INSERM, Université de Lyon, UMR 1033, F-69008 Lyon, France
| | - S Bare
- Osteoporosis Research Center, School of Medicine, Creighton University, Omaha, NE, USA
| | - J M Lappe
- Osteoporosis Research Center, School of Medicine, Creighton University, Omaha, NE, USA
| | - R Recker
- Osteoporosis Research Center, School of Medicine, Creighton University, Omaha, NE, USA
| | - G Boivin
- INSERM, Université de Lyon, UMR 1033, F-69008 Lyon, France
| |
Collapse
|
11
|
Nanoindentation: An advanced procedure to investigate osteochondral engineered tissues. J Mech Behav Biomed Mater 2019; 96:79-87. [DOI: 10.1016/j.jmbbm.2019.04.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/25/2019] [Accepted: 04/21/2019] [Indexed: 11/17/2022]
|
12
|
Semaan M, Karam E, Baron C, Pithioux M. Estimation of the elastic modulus of child cortical bone specimens via microindentation. Connect Tissue Res 2019; 60:399-405. [PMID: 30646770 DOI: 10.1080/03008207.2019.1570170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Non-pathological child cortical bone (NPCCB) studies can provide clinicians with vital information and insights. However, assessing the anisotropic elastic properties of NPCCB remains a challenge for the biomechanical engineering community. For the first time, this paper provides elastic moduli values for NPCCB specimens in two perpendicular directions (longitudinal and transverse) and for two different structural components of bone tissue (osteon and interstitial lamellae). Materials and Methods: Microindentation is one of the reference methods used to measure bone stiffness. Here, 8 adult femurs (mean age 82 ± 8.9 years), 3 child femurs (mean age 13.3 ± 2.1 years), and 16 child fibulae (mean age 10.2 ± 3.9 years) were used to assess the elastic moduli of adult and child bones by microindentation. Results: For adult specimens, the mean moduli measured in this study are 18.1 (2.6) GPa for osteons, 21.3 (2.3) GPa for interstitial lamellae, and 13.8 (1.7) GPa in the transverse direction. For child femur specimens, the mean modulus is 14.1 (0.8) GPa for osteons, lower than that for interstitial lamellae: 15.5 (1.5) GPa. The mean modulus is 11.8 (0.7) GPa in the transverse direction. Child fibula specimens show a higher elastic modulus for interstitial lamellae 15.8 (1.5) than for osteons 13.5 (1.6), with 10.2 (1) GPa in the transverse direction. Conclusion: For the first time, NPCCB elastic modulus values are provided in longitudinal and transverse directions at the microscale level.
Collapse
Affiliation(s)
- Marie Semaan
- a Aix Marseille Univ, CNRS, ISM, Inst Movement Sci , Marseille , France.,b Faculty of Engineering , University of Balamand , Al Kurah , Lebanon.,c APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology , , Marseille , France
| | - Elie Karam
- b Faculty of Engineering , University of Balamand , Al Kurah , Lebanon
| | - Cécile Baron
- a Aix Marseille Univ, CNRS, ISM, Inst Movement Sci , Marseille , France.,c APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology , , Marseille , France
| | - Martine Pithioux
- a Aix Marseille Univ, CNRS, ISM, Inst Movement Sci , Marseille , France.,c APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology , , Marseille , France
| |
Collapse
|
13
|
Cai X, Follet H, Peralta L, Gardegaront M, Farlay D, Gauthier R, Yu B, Gineyts E, Olivier C, Langer M, Gourrier A, Mitton D, Peyrin F, Grimal Q, Laugier P. Anisotropic elastic properties of human femoral cortical bone and relationships with composition and microstructure in elderly. Acta Biomater 2019; 90:254-266. [PMID: 30922952 DOI: 10.1016/j.actbio.2019.03.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 02/08/2023]
Abstract
The strong dependence between cortical bone elasticity at the millimetre-scale (mesoscale) and cortical porosity has been evidenced by previous studies. However, bone is an anisotropic composite material made by mineral, proteins and water assembled in a hierarchical structure. Whether the variations of structural and compositional properties of bone affect the different elastic coefficients at the mesoscale is not clear. Aiming to understand the relationships between bone elastic properties and compositions and microstructure, we applied state-of-the-art experimental modalities to assess these aspects of bone characteristics. All elastic coefficients (stiffness tensor of the transverse isotropic bone material), structure of the vascular pore network, collagen and mineral properties were measured in 52 specimens from the femoral diaphysis of 26 elderly donors. Statistical analyses and micromechanical modeling showed that vascular pore volume fraction and the degree of mineralization of bone are the most important determinants of cortical bone anisotropic mesoscopic elasticity. Though significant correlations were observed between collagen properties and elasticity, their effects in bone mesoscopic elasticity were minor in our data. This work also provides a unique set of data exhibiting a range of variations of compositional and microstructural cortical bone properties in the elderly and gives strong experimental evidence and basis for further development of biomechanical models for human cortical bone. STATEMENT OF SIGNIFICANCE: This study reports the relationships between microstructure, composition and the mesoscale anisotropic elastic properties of human femoral cortical bone in elderly. For the first time, we provide data covering the complete anisotropic elastic tensor, the microstructure of cortical vascular porosity, mineral and collagen characteristics obtained from the same or adjacent samples in each donor. The results revealed that cortical vascular porosity and degree of mineralization of bone are the most important determinants of bone anisotropic stiffness at the mesoscale. The presented data gives strong experimental evidence and basis for further development of biomechanical models for human cortical bone.
Collapse
|
14
|
Londoño-Restrepo SM, Jeronimo-Cruz R, Millán-Malo BM, Rivera-Muñoz EM, Rodriguez-García ME. Effect of the Nano Crystal Size on the X-ray Diffraction Patterns of Biogenic Hydroxyapatite from Human, Bovine, and Porcine Bones. Sci Rep 2019; 9:5915. [PMID: 30976023 PMCID: PMC6459976 DOI: 10.1038/s41598-019-42269-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/21/2019] [Indexed: 01/26/2023] Open
Abstract
This paper focuses on the study of the effect of the change of the crystal size on the shape and width of the X-ray diffraction patterns for defatted and deproteinized bones as well as incinerated biogenic hydroxyapatite obtained from bovine, porcine, and human bones. Inductively Couple Plasma showed the presence of some ions such as Mg, K, Al, Fe, Zn, and Na for all samples. The nanometric size of the crystals was determined through High Resolution Transmission Electron Microscopy in which ordered crystals were found. The calcination of raw clean bones at 720 °C produced a transition of crystal size from nano to micro due to a coalescence phenomenon, this was accompanied by a decrease of the peak width of the X-ray diffraction patterns due to the decrease of the inelastic scattering contribution from the microcrystals. A simulation of the effect of the crystallite size on the shape and width of the X-ray patterns was done using PDF-4 software which confirmed that raw ordered bone crystals produce broad peaks which so far have been erroneously assigned to polycrystalline hydroxyapatite with low crystalline quality.
Collapse
Affiliation(s)
- Sandra M Londoño-Restrepo
- Posgrado en Ciencia e Ingeniería de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230, Querétaro, Qro., Mexico
| | - Rodrigo Jeronimo-Cruz
- Licenciatura en Tecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230, Querétaro, Qro., Mexico
| | - Beatriz M Millán-Malo
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230, Querétaro, Qro., Mexico
| | - Eric M Rivera-Muñoz
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230, Querétaro, Qro., Mexico
| | - Mario E Rodriguez-García
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230, Querétaro, Qro., Mexico.
| |
Collapse
|
15
|
Instrumented Indentation of Super-Insulating Silica Compacts. MATERIALS 2019; 12:ma12050830. [PMID: 30870982 PMCID: PMC6427497 DOI: 10.3390/ma12050830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 11/23/2022]
Abstract
Highly porous silica compacts for superinsulation were characterized by instrumented indentation. Samples showed a multi-scale stacking of silica particles with a total porous fraction of 90 vol %. The two main sources of silica available for the superinsulation market were considered: fumed silica and precipitated silica. The compacts processed with these two silica displayed different mechanical properties at a similar porosity fraction, thus leading to different usage properties, as the superinsulation market requires sufficient mechanical properties at the lowest density. The measurement of Young’s modulus and hardness was possible with spherical indentation, which is an efficient method for characterizing highly porous structures. Comparison of the mechanical parameters measured on silica compacts and silica aerogels available from the literature was made. Differences in mechanical properties between fumed and precipitated compacts were explained by structural organization.
Collapse
|
16
|
Rizzo S, Farlay D, Akhter M, Boskey A, Recker R, Lappe J, Boivin G. Variables Reflecting the Mineralization of Bone Tissue From Fracturing Versus Nonfracturing Postmenopausal Nonosteoporotic Women. JBMR Plus 2018; 2:323-327. [PMID: 30460335 PMCID: PMC6237211 DOI: 10.1002/jbm4.10062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/09/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Women with equivalent areal bone mineral densities may show a different fracture incidence due to differences in bone intrinsic quality. Previously, Fourier transform infrared spectroscopic imaging (FTIRI) on the same iliac bone biopsies reported here, showed that the only significantly different variable was the carbonate/phosphate ratio, which was decreased in the fracturing group. Nanoindentation showed that fracturing bone was less mechanically heterogeneous than nonfracturing bone and could propagate damage (microcracks) more easily. The hypothesis is that fracturing women have reduced mineralization of bone tissue compared to nonfracturing women. Transiliac bone biopsies were collected from fracturing (n = 60, 62.5 ± 7.4 years old) and nonfracturing (n = 60, 62.3 ± 7.3 years old) postmenopausal women, to assess the mineralization of bone tissue using digitized microradiography. The degree of mineralization of bone (DMB, g/cm3) and the heterogeneity index (HI, g/cm3) of the DMB were calculated for cancellous (canc), cortical (cort) and total bone. Results were compared to variables from nanoindentation, FTIRI, and histomorphometry. DMB and HI were not significantly different between fracturing and nonfracturing groups. In the nonfracturing group, cort and canc HI were weakly negatively associated with cort and canc DMB (r' = -0.388, p < 0.003; r' = -0.532, p < 0.0001, respectively). In the fracturing group, DMB and HI were negatively correlated only in canc (r' = -0.295, p = 0.024). DMB and HI were not associated with nanoindentation variables. Cort and canc DMB were positively associated with mineral-to-matrix ratio measured by FTIRI (ratio between mineral and organic matrix representing the relative mineralization of the collagen matrix), and negatively associated with carbonate/phosphate ratio. None of the DMB variables were strongly associated with any of the histomorphometric variables. In conclusion, bone mineralization was not significantly different between fracturing and nonfracturing postmenopausal women, suggesting that bone fragility could be partly due to other variables, such as changes in hydration of bone matrix or an increase of non-enzymatic crosslinks in bone collagen. © 2018 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sébastien Rizzo
- INSERM, UMR 1033, Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - Delphine Farlay
- INSERM, UMR 1033, Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - Mohammed Akhter
- Creighton University Osteoporosis Research Center,OmahaNEUSA
| | | | - Robert Recker
- Creighton University Osteoporosis Research Center,OmahaNEUSA
| | - Joan Lappe
- Creighton University Osteoporosis Research Center,OmahaNEUSA
| | - Georges Boivin
- INSERM, UMR 1033, Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| |
Collapse
|
17
|
Imbert L, Gourion-Arsiquaud S, Villarreal-Ramirez E, Spevak L, Taleb H, van der Meulen MCH, Mendelsohn R, Boskey AL. Dynamic structure and composition of bone investigated by nanoscale infrared spectroscopy. PLoS One 2018; 13:e0202833. [PMID: 30180177 PMCID: PMC6122783 DOI: 10.1371/journal.pone.0202833] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
Bone is a highly organized tissue in which each structural level influences the macroscopic and microscopic mechanical behavior. In particular, the quantity, quality, and distribution of the different bone components, i.e. collagen matrix and hydroxyapatite crystals, are associated with bone strength or fragility. Common spectroscopic techniques used to assess bone composition have resolutions limited to the micrometer range. In this study, our aims were two-fold: i) to develop and validate the AFM-IR methodology for skeletal tissues and ii) to apply the methodology to sheep cancellous bone with the objective to obtain novel findings on the composition and structure of trabecular packets.To develop the methodology, we assessed spatial and temporal reproducibility using a known homogeneous material (polymethylmethacrylate, PMMA). We verified that the major peak positions were similar and not shifted when compared to traditional Fourier Transform Infrared imaging (FTIRI). When AFM-IR was applied to sheep cancellous bone, the mineral-to-matrix ratio increased and the acid phosphate substitution ratio decreased as a function of tissue maturity. The resolution of the technique enabled visualization of different stages of the bone maturation process, particularly newly-formed osteoid prior to mineralization. We also observed alternating patterns of IR parameters in line and imaging measurements, suggesting the apposition of layers of alternating structure and / or composition that were not visible with traditional spectroscopic methods. In conclusion, nanoscale IR spectroscopy demonstrates novel compositional and structural changes within trabecular packets in cancellous bone. Based on these results, AFM-IR is a valuable tool to investigate cancellous bone at the nanoscale and, more generally, to analyze small dynamic areas that are invisible to traditional spectroscopic methods.
Collapse
Affiliation(s)
- Laurianne Imbert
- Hospital for Special Surgery, Research Institute, New York, New York, United States of America
- * E-mail:
| | | | - Eduardo Villarreal-Ramirez
- Tissue Bioengineering Laboratory, DEPeI, Faculty of Dentistry, National Autonomous University of Mexico, Mexico Distrito Federal, Mexico
| | - Lyudmila Spevak
- Hospital for Special Surgery, Research Institute, New York, New York, United States of America
| | - Hayat Taleb
- Hospital for Special Surgery, Research Institute, New York, New York, United States of America
| | - Marjolein C. H. van der Meulen
- Hospital for Special Surgery, Research Institute, New York, New York, United States of America
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Richard Mendelsohn
- Department of Chemistry, Newark College of Arts and Science, Rutgers University, New Jersey, United States of America
| | - Adele L. Boskey
- Hospital for Special Surgery, Research Institute, New York, New York, United States of America
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, United States of America
| |
Collapse
|
18
|
Chekroun A, Pujo-Menjouet L, Berteau JP. A Novel Multiscale Mathematical Model for Building Bone Substitute Materials for Children. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1045. [PMID: 29925773 PMCID: PMC6025631 DOI: 10.3390/ma11061045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 01/22/2023]
Abstract
Bone is an engineering marvel that achieves a unique combination of stiffness and toughness exceeding that of synthesized materials. In orthopedics, we are currently challenged for the child population that needs a less stiff but a tougher bone substitute than adults. Recent evidence suggests that the relationship between inter-molecular connections that involve the two main bone building blocks, TropoCollagen molecules (TC) and carbonated Hydroxyapatite (cAp), and bone macroscopic mechanical properties, stiffness and toughness, are key to building bone substitute materials for children. The goal of our study is to establish how inter-molecular connections that occur during bone mineralization are related to macroscopic mechanical properties in child bones. Our aim is to link the biological alterations of the TC-cAp self assembly process happening during bone mineralization to the bone macroscopic mechanical properties' alterations during aging. To do so, we have developed a multiscale mathematical model that includes collagen cross links (TC⁻TC interface) from experimental studies of bone samples to forecast bone macroscopic mechanical properties. Our results support that the Young's modulus cannot be a linear parameter if we want to solve our system. In relation to bone substitute material with innovative properties for children, our results propose values of several biological parameters, such as the number of crystals and their size, and collagen crosslink maturity for the desired bone mechanical competence. Our novel mathematical model combines mineralization and macroscopic mechanical behavior of bone and is a step forward in building mechanically customized biomimetic bone grafts that would fit children's orthopedic needs.
Collapse
Affiliation(s)
- Abdennasser Chekroun
- Laboratoire d'Analyse Non Linéaire et Mathématiques Appliquées, University of Tlemcen, Chetouane 13000, Algeria.
| | - Laurent Pujo-Menjouet
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, F-69622 Villeurbanne CEDEX, France; Inria Team Dracula, Inria Grenoble Rhône-Alpes Center, 69100 Villeurbanne CEDEX, France.
| | - Jean-Philippe Berteau
- Department of Physical Therapy, College of Staten Island, City University of New York, New York, NY 10314, USA.
- New York Center for Biomedical Engineering, City College of New York, City University of New York, New York, NY 10031, USA.
- Nanoscience Initiative, Advance Science Research Center, City University of New York, New York, NY 10031, USA.
| |
Collapse
|
19
|
Depalle B, Duarte AG, Fiedler IAK, Pujo-Menjouet L, Buehler MJ, Berteau JP. The different distribution of enzymatic collagen cross-links found in adult and children bone result in different mechanical behavior of collagen. Bone 2018; 110:107-114. [PMID: 29414596 DOI: 10.1016/j.bone.2018.01.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/28/2022]
Abstract
Enzymatic collagen cross-linking has been shown to play an important role in the macroscopic elastic and plastic deformation of bone across ages. However, its direct contribution to collagen fibril deformation is unknown. The aim of this study is to determine how covalent intermolecular connections from enzymatic collagen cross-links contribute to collagen fibril elastic and plastic deformation of adults and children's bone matrix. We used ex vivo data previously obtained from biochemical analysis of children and adults bone samples (n = 14; n = 8, respectively) to create 22 sample-specific computational models of cross-linked collagen fibrils. By simulating a tensile test for each fibril, we computed the modulus of elasticity (E), ultimate tensile and yield stress (σu and σy), and elastic, plastic and total work (We, Wp and Wtot) for each collagen fibril. We present a novel difference between children and adult bone in the deformation of the collagen phase and suggest a link between collagen fibril scale and macroscale for elastic behavior in children bone under the influence of immature enzymatic cross-links. We show a parametric linear correlation between We and immature enzymatic collagen cross-links at the collagen fibril scale in the children population that is similar to the one we found at the macroscale in our previous study. Finally, we suggest the key role of covalent intermolecular connections to stiffness parameters (e.g. elastic modulus and We) in children's collagen fibril and to toughness parameters in adult's collagen fibril, respectively.
Collapse
Affiliation(s)
- Baptiste Depalle
- Department of Materials, Imperial College London, UK; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, USA
| | - Andre G Duarte
- Department of Physical Therapy, College of Staten Island, USA
| | | | | | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, USA
| | - Jean-Philippe Berteau
- Department of Physical Therapy, College of Staten Island, USA; New York Center for Biomedical Engineering, City College of New York, USA.
| |
Collapse
|
20
|
Anesi A, Ferretti M, Cavani F, Salvatori R, Bianchi M, Russo A, Chiarini L, Palumbo C. Structural and ultrastructural analyses of bone regeneration in rabbit cranial osteotomy: Piezosurgery versus traditional osteotomes. J Craniomaxillofac Surg 2018; 46:107-118. [DOI: 10.1016/j.jcms.2017.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 09/07/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022] Open
|
21
|
Frame JC, Wheel MA, Riches PE. A numerical investigation and experimental verification of size effects in loaded bovine cortical bone. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2903. [PMID: 28558162 DOI: 10.1002/cnm.2903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
In this paper, we present 2- and 3-dimensional finite element-based numerical models of loaded bovine cortical bone that explicitly incorporate the dominant microstructural feature: the vascular channel or Haversian canal system. The finite element models along with the representation of the microstructure within them are relatively simple: 2-dimensional models, consisting of a structured mesh of linear elastic planar elements punctuated by a periodic distribution of circular voids, are used to represent beam samples of cortical bone in which the channels are orientated perpendicular to the sample major axis, while 3-dimensional models, using a corresponding mesh of equivalent solid elements, represent those samples in which the canals are aligned with the axis. However, these models are exploited in an entirely novel approach involving the representation of material samples of different sizes and surface morphology. The numerical results obtained for the virtual material samples when loaded in bending indicate that they exhibit size effects not forecast by either classical (Cauchy) or more generalized elasticity theories. However, these effects are qualitatively consistent with those that we observed in a series of carefully conducted experiments involving the flexural testing of bone samples of different sizes. Encouraged by this qualitative agreement, we have identified appropriate model parameters, primarily void volume fraction but also void separation and matrix modulus by matching the computed size effects to those we observed experimentally. Interestingly, the parameter choices that provide the most suitable match of these effects broadly concur with those we actually observed in cortical bone.
Collapse
Affiliation(s)
- J C Frame
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - M A Wheel
- Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK
| | - P E Riches
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| |
Collapse
|
22
|
Shahrezaie M, Moshiri A, Shekarchi B, Oryan A, Maffulli N, Parvizi J. Effectiveness of tissue engineered three‐dimensional bioactive graft on bone healing and regeneration: an
in vivo
study with significant clinical value. J Tissue Eng Regen Med 2017; 12:936-960. [DOI: 10.1002/term.2510] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/03/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Mostafa Shahrezaie
- Department of Orthopedic Surgery, Faculty of MedicineAJA University of Medical Science Tehran Iran
| | - Ali Moshiri
- Department of Orthopedic Surgery, Faculty of MedicineAJA University of Medical Science Tehran Iran
- Department of Surgery and RadiologyDr. Moshiri Veterinary Clinic Tehran Iran
| | - Babak Shekarchi
- Department of Radiology, Faculty of MedicineAJA University of Medical Science Tehran Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary MedicineShiraz University Shiraz Iran
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and SurgeryUniversity of Salerno Salerno Italy
- Centre for Sports and Exercise MedicineQueen Mary University of London, Barts and the London School of Medicine and Dentistry, Mile End Hospital London UK
| | - Javad Parvizi
- Department of OrthopaedicsThe Rothman Institute at Thomas Jefferson University Hospital Philadelphia PA USA
| |
Collapse
|
23
|
The use of bone mineral density measured by dual energy X-ray absorptiometry (DXA) and peripheral quantitative computed microtomography in chronic kidney disease. J Nephrol 2017; 30:635-643. [PMID: 28900872 DOI: 10.1007/s40620-017-0433-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/14/2017] [Indexed: 10/18/2022]
Abstract
Chronic kidney disease (CKD) is a risk factor for fractures. The current evaluation of fracture risk is based upon the combination of various clinical factors and quantitative imaging of bone. X-ray-based tools were developed to evaluate bone status and predict fracture risk. Dual energy X-ray absorptiometry (DXA) is available worldwide. Longitudinal studies showed that low areal Bone Mineral Density (BMD) measured by DXA predicts fractures in the CKD population as it does in non uremic populations, with good specificity and moderate sensitivity. Peripheral quantitative computed tomography (pQCT) and high resolution pQCT are research tools which measure volumetric BMD at the tibia and radius. They are able to discriminate between the cortical and trabecular envelopes which are differentially affected by renal osteodystrophy. In CKD, a rapid thinning and increased porosity at the cortex is observed which is associated with increased the risk for fracture.
Collapse
|
24
|
Deymier AC, An Y, Boyle JJ, Schwartz AG, Birman V, Genin GM, Thomopoulos S, Barber AH. Micro-mechanical properties of the tendon-to-bone attachment. Acta Biomater 2017; 56:25-35. [PMID: 28088669 DOI: 10.1016/j.actbio.2017.01.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/14/2016] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
Abstract
The tendon-to-bone attachment (enthesis) is a complex hierarchical tissue that connects stiff bone to compliant tendon. The attachment site at the micrometer scale exhibits gradients in mineral content and collagen orientation, which likely act to minimize stress concentrations. The physiological micromechanics of the attachment thus define resultant performance, but difficulties in sample preparation and mechanical testing at this scale have restricted understanding of structure-mechanical function. Here, microscale beams from entheses of wild type mice and mice with mineral defects were prepared using cryo-focused ion beam milling and pulled to failure using a modified atomic force microscopy system. Micromechanical behavior of tendon-to-bone structures, including elastic modulus, strength, resilience, and toughness, were obtained. Results demonstrated considerably higher mechanical performance at the micrometer length scale compared to the millimeter tissue length scale, describing enthesis material properties without the influence of higher order structural effects such as defects. Micromechanical investigation revealed a decrease in strength in entheses with mineral defects. To further examine structure-mechanical function relationships, local deformation behavior along the tendon-to-bone attachment was determined using local image correlation. A high compliance zone near the mineralized gradient of the attachment was clearly identified and highlighted the lack of correlation between mineral distribution and strain on the low-mineral end of the attachment. This compliant region is proposed to act as an energy absorbing component, limiting catastrophic failure within the tendon-to-bone attachment through higher local deformation. This understanding of tendon-to-bone micromechanics demonstrates the critical role of micrometer scale features in the mechanics of the tissue. STATEMENT OF SIGNIFICANCE The tendon-to-bone attachment (enthesis) is a complex hierarchical tissue with features at a numerous scales that dissipate stress concentrations between compliant tendon and stiff bone. At the micrometer scale, the enthesis exhibits gradients in collagen and mineral composition and organization. However, the physiological mechanics of the enthesis at this scale remained unknown due to difficulty in preparing and testing micrometer scale samples. This study is the first to measure the tensile mechanical properties of the enthesis at the micrometer scale. Results demonstrated considerably enhanced mechanical performance at the micrometer length scale compared to the millimeter tissue length scale and identified a high-compliance zone near the mineralized gradient of the attachment. This understanding of tendon-to-bone micromechanics demonstrates the critical role of micrometer scale features in the mechanics of the tissue.
Collapse
|
25
|
Lv H, Wang H, Zhang Z, Yang W, Liu W, Li Y, Li L. Biomaterial stiffness determines stem cell fate. Life Sci 2017; 178:42-48. [PMID: 28433510 DOI: 10.1016/j.lfs.2017.04.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 01/01/2023]
Abstract
Stem cells have potential to develop into numerous cell types, thus they are good cell source for tissue engineering. As an external physical signal, material stiffness is capable of regulating stem cell fate. Biomaterial stiffness is an important parameter in tissue engineering. We summarize main measurements of material stiffness under different condition, then list and compare three main methods of controlling stiffness (material amount, crosslinking density and photopolymeriztion time) which interplay with one another and correlate with stiffness positively, and current advances in effects of biomaterial stiffness on stem cell fate. We discuss the unsolved problems and future directions of biomaterial stiffness in tissue engineering.
Collapse
Affiliation(s)
- Hongwei Lv
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune Medical College, Jilin University, Changchun 130021, China
| | - Heping Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijun Zhang
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Wang Yang
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Wenbin Liu
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune Medical College, Jilin University, Changchun 130021, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune Medical College, Jilin University, Changchun 130021, China.
| |
Collapse
|
26
|
Gauthier R, Follet H, Langer M, Meille S, Chevalier J, Rongiéras F, Peyrin F, Mitton D. Strain rate influence on human cortical bone toughness: A comparative study of four paired anatomical sites. J Mech Behav Biomed Mater 2017; 71:223-230. [PMID: 28360020 DOI: 10.1016/j.jmbbm.2017.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 01/20/2023]
Abstract
Bone fracture is a major health issue worldwide and consequently there have been extensive investigations into the fracture behavior of human cortical bone. However, the fracture properties of human cortical bone under fall-like loading conditions remains poorly documented. Further, most published research has been performed on femoral diaphyseal bone, whereas it is known that the femoral neck and the radius are the most vulnerable sites to fracture. Hence, the aim of this study is to provide information on human cortical bone fracture behavior by comparing different anatomical sites including the radius and the femoral neck acquired from 32 elderly subjects (50 - 98 y.o.). In order to investigate the intrinsic fracture behavior of human cortical bone, toughness experiments were performed at two different strain rates: standard quasi-static conditions, and a higher strain rate representative of a fall from a standing position. The tests were performed on paired femoral neck, femoral, tibial and radius diaphyseal samples. Linear elastic fracture toughness and the non-linear J-integral method were used to take into account both the elastic and non-elastic behavior of cortical bone. Under quasi-static conditions, the radius presents a significantly higher toughness than the other sites. At the higher strain rate, all sites showed a significantly lower toughness. Also, at the high strain rate, there is no significant difference in fracture properties between the four anatomical sites. These results suggest that regardless of the anatomical site (femur, femoral neck, tibia and radius), the bone has the same fracture properties under fall loading conditions. This should be considered in biomechanical models under fall-like loading conditions.
Collapse
Affiliation(s)
- Rémy Gauthier
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France
| | - Hélène Follet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France
| | - Max Langer
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France
| | - Sylvain Meille
- Univ Lyon, INSA-LYON, MATEIS, UMR CNRS 5510, F69621 Villeurbanne, France
| | - Jérôme Chevalier
- Univ Lyon, INSA-LYON, MATEIS, UMR CNRS 5510, F69621 Villeurbanne, France
| | - Frédéric Rongiéras
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France; Service Chirurgie Orthopédique et Traumatologie - Hôpital Desgenettes, 69003 Lyon, France
| | - Françoise Peyrin
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France
| | - David Mitton
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France.
| |
Collapse
|
27
|
Bi X, Grafe I, Ding H, Flores R, Munivez E, Jiang MM, Dawson B, Lee B, Ambrose CG. Correlations Between Bone Mechanical Properties and Bone Composition Parameters in Mouse Models of Dominant and Recessive Osteogenesis Imperfecta and the Response to Anti-TGF-β Treatment. J Bone Miner Res 2017; 32:347-359. [PMID: 27649409 PMCID: PMC7894383 DOI: 10.1002/jbmr.2997] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 12/12/2022]
Abstract
Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by brittle bones that are prone to fracture. Although previous studies in animal models investigated the mechanical properties and material composition of OI bone, little work has been conducted to statistically correlate these parameters to identify key compositional contributors to the impaired bone mechanical behaviors in OI. Further, although increased TGF-β signaling has been demonstrated as a contributing mechanism to the bone pathology in OI models, the relationship between mechanical properties and bone composition after anti-TGF-β treatment in OI has not been studied. Here, we performed follow-up analyses of femurs collected in an earlier study from OI mice with and without anti-TGF-β treatment from both recessive (Crtap-/- ) and dominant (Col1a2+/P.G610C ) OI mouse models and WT mice. Mechanical properties were determined using three-point bending tests and evaluated for statistical correlation with molecular composition in bone tissue assessed by Raman spectroscopy. Statistical regression analysis was conducted to determine significant compositional determinants of mechanical integrity. Interestingly, we found differences in the relationships between bone composition and mechanical properties and in the response to anti-TGF-β treatment. Femurs of both OI models exhibited increased brittleness, which was associated with reduced collagen content and carbonate substitution. In the Col1a2+/P.G610C femurs, reduced hydroxyapatite crystallinity was also found to be associated with increased brittleness, and increased mineral-to-collagen ratio was correlated with increased ultimate strength, elastic modulus, and bone brittleness. In both models of OI, regression analysis demonstrated that collagen content was an important predictor of the increased brittleness. In summary, this work provides new insights into the relationships between bone composition and material properties in models of OI, identifies key bone compositional parameters that correlate with the impaired mechanical integrity of OI bone, and explores the effects of anti-TGF-β treatment on bone-quality parameters in these models. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xiaohong Bi
- Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hao Ding
- Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rene Flores
- Academic and Research Affairs, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elda Munivez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ming Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Catherine G Ambrose
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
28
|
Wolfram U, Schwiedrzik J. Post-yield and failure properties of cortical bone. BONEKEY REPORTS 2016; 5:829. [PMID: 27579166 DOI: 10.1038/bonekey.2016.60] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/05/2016] [Indexed: 12/22/2022]
Abstract
Ageing and associated skeletal diseases pose a significant challenge for health care systems worldwide. Age-related fractures have a serious impact on personal, social and economic wellbeing. A significant proportion of physiological loading is carried by the cortical shell. Its role in the fracture resistance and strength of whole bones in the ageing skeleton is of utmost importance. Even though a large body of knowledge has been accumulated on this topic on the macroscale, the underlying micromechanical material behaviour and the scale transition of bone's mechanical properties are yet to be uncovered. Therefore, this review aims at providing an overview of the state-of-the-art of the post-yield and failure properties of cortical bone at the extracellular matrix and the tissue level.
Collapse
Affiliation(s)
- Uwe Wolfram
- School of Engineering and Physical Science, Institute for Mechanical, Process and Energy Engineering, Heriot-Watt University , Edinburgh, UK
| | - Jakob Schwiedrzik
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures , Thun, Switzerland
| |
Collapse
|
29
|
Russo A, Bianchi M, Sartori M, Parrilli A, Panseri S, Ortolani A, Sandri M, Boi M, Salter DM, Maltarello MC, Giavaresi G, Fini M, Dediu V, Tampieri A, Marcacci M. Magnetic forces and magnetized biomaterials provide dynamic flux information during bone regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:51. [PMID: 26758898 DOI: 10.1007/s10856-015-5659-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
The fascinating prospect to direct tissue regeneration by magnetic activation has been recently explored. In this study we investigate the possibility to boost bone regeneration in an experimental defect in rabbit femoral condyle by combining static magnetic fields and magnetic biomaterials. NdFeB permanent magnets are implanted close to biomimetic collagen/hydroxyapatite resorbable scaffolds magnetized according to two different protocols . Permanent magnet only or non-magnetic scaffolds are used as controls. Bone tissue regeneration is evaluated at 12 weeks from surgery from a histological, histomorphometric and biomechanical point of view. The reorganization of the magnetized collagen fibers under the effect of the static magnetic field generated by the permanent magnet produces a highly-peculiar bone pattern, with highly-interconnected trabeculae orthogonally oriented with respect to the magnetic field lines. In contrast, only partial defect healing is achieved within the control groups. We ascribe the peculiar bone regeneration to the transfer of micro-environmental information, mediated by collagen fibrils magnetized by magnetic nanoparticles, under the effect of the static magnetic field. These results open new perspectives on the possibility to improve implant fixation and control the morphology and maturity of regenerated bone providing "in site" forces by synergically combining static magnetic fields and biomaterials.
Collapse
Affiliation(s)
- Alessandro Russo
- Laboratorio di NanoBiotechnologie (NABI), Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy.
- Laboratorio di Biomeccanica ed Innovazione Tecnologica, Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Michele Bianchi
- Laboratorio di NanoBiotechnologie (NABI), Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Maria Sartori
- Laboratorio di Biocompatibilità Innovazioni Tecnologiche e Terapie Avanzate (BITTA), Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Annapaola Parrilli
- Laboratorio di Biocompatibilità Innovazioni Tecnologiche e Terapie Avanzate (BITTA), Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Silvia Panseri
- Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC), Consiglio Nazionale delle Ricerche, via Granarolo 64, 48018, Faenza, Italy
| | - Alessandro Ortolani
- Laboratorio di Biomeccanica ed Innovazione Tecnologica, Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Monica Sandri
- Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC), Consiglio Nazionale delle Ricerche, via Granarolo 64, 48018, Faenza, Italy
| | - Marco Boi
- Laboratorio di NanoBiotechnologie (NABI), Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Donald M Salter
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Maria Cristina Maltarello
- Laboratorio di Biologia Cellulare Muscoloscheletrica, Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Gianluca Giavaresi
- Laboratorio di Biocompatibilità Innovazioni Tecnologiche e Terapie Avanzate (BITTA), Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
- Laboratorio Studi Preclinici e Chirurgici, Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Milena Fini
- Laboratorio di Biocompatibilità Innovazioni Tecnologiche e Terapie Avanzate (BITTA), Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
- Laboratorio Studi Preclinici e Chirurgici, Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Valentin Dediu
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129, Bologna, Italy
| | - Anna Tampieri
- Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC), Consiglio Nazionale delle Ricerche, via Granarolo 64, 48018, Faenza, Italy
| | - Maurilio Marcacci
- Laboratorio di NanoBiotechnologie (NABI), Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
- Laboratorio di Biomeccanica ed Innovazione Tecnologica, Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| |
Collapse
|
30
|
Estimation of local anisotropy of plexiform bone: Comparison between depth sensing micro-indentation and Reference Point Indentation. J Biomech 2015; 48:4073-4080. [DOI: 10.1016/j.jbiomech.2015.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022]
|
31
|
Berteau JP, Gineyts E, Pithioux M, Baron C, Boivin G, Lasaygues P, Chabrand P, Follet H. Ratio between mature and immature enzymatic cross-links correlates with post-yield cortical bone behavior: An insight into greenstick fractures of the child fibula. Bone 2015; 79:190-5. [PMID: 26079997 DOI: 10.1016/j.bone.2015.05.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 01/22/2023]
Abstract
As a determinant of skeletal fragility, the organic matrix is responsible for the post-yield and creep behavior of bone and for its toughness, while the mineral apatite acts on stiffness. Specific to the fibula and ulna in children, greenstick fractures show a plastic in vivo mechanical behavior before bone fracture. During growth, the immature form of collagen enzymatic cross-links gradually decreases, to be replaced by the mature form until adolescence, subsequently remaining constant throughout adult life. However, the link between the cortical bone organic matrix and greenstick fractures in children remains to be explored. Here, we sought to determine: 1) whether plastic bending fractures can occur in vitro, by testing cortical bone samples from children's fibula and 2) whether the post-yield behavior (ωp plastic energy) of cortical bone before fracture is related to total quantity of the collagen matrix, or to the quantity of mature and immature enzymatic cross-links and the quantity of non-enzymatic cross-links. We used a two-step approach; first, a 3-point microbending device tested 22 fibula machined bone samples from 7 children and 3 elderly adults until fracture. Second, biochemical analysis by HPLC was performed on the sample fragments. When pooling two groups of donors, children and elderly adults, results show a rank correlation between total energy dissipated before fracture and age and a linear correlation between plastic energy dissipated before fracture and ratio of immature/mature cross-links. A collagen matrix with more immature cross-links (i.e. a higher immature/mature cross-link ratio) is more likely to plastically deform before fracture. We conclude that this ratio in the sub-nanostructure of the organic matrix in cortical bone from the fibula may go some way towards explaining the variance in post-yield behavior. From a clinical point of view, therefore, our results provide a potential explanation of the presence of greenstick fractures in children.
Collapse
Affiliation(s)
- Jean-Philippe Berteau
- Institute of Movement Science (ISM), CNRS, UMR 7287, Aix-Marseille University, av. de, Luminy, F-13288 Marseille France; Laboratory of Mechanics and Acoustics (LMA), CNRS, UPR 7051, Aix-Marseille University, Centrale Marseille, 31 chemin Joseph-Aiguier, F-13402 Marseille cedex 20, France; Department of Physical Therapy, College of Staten Island, City University of New York, NY 10314, United States.
| | - Evelyne Gineyts
- INSERM, UMR 1033, F-69008 Lyon, France; Université de Lyon, F-69008 Lyon, France
| | - Martine Pithioux
- Institute of Movement Science (ISM), CNRS, UMR 7287, Aix-Marseille University, av. de, Luminy, F-13288 Marseille France
| | - Cécile Baron
- Institute of Movement Science (ISM), CNRS, UMR 7287, Aix-Marseille University, av. de, Luminy, F-13288 Marseille France
| | - Georges Boivin
- Department of Physical Therapy, College of Staten Island, City University of New York, NY 10314, United States; INSERM, UMR 1033, F-69008 Lyon, France
| | - Philippe Lasaygues
- Laboratory of Mechanics and Acoustics (LMA), CNRS, UPR 7051, Aix-Marseille University, Centrale Marseille, 31 chemin Joseph-Aiguier, F-13402 Marseille cedex 20, France
| | - Patrick Chabrand
- Institute of Movement Science (ISM), CNRS, UMR 7287, Aix-Marseille University, av. de, Luminy, F-13288 Marseille France
| | - Hélène Follet
- INSERM, UMR 1033, F-69008 Lyon, France; Université de Lyon, F-69008 Lyon, France
| |
Collapse
|
32
|
Bala Y, Seeman E. Bone's Material Constituents and their Contribution to Bone Strength in Health, Disease, and Treatment. Calcif Tissue Int 2015; 97:308-26. [PMID: 25712256 DOI: 10.1007/s00223-015-9971-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/11/2015] [Indexed: 12/24/2022]
Abstract
Type 1 collagen matrix volume, its degree of completeness of its mineralization, the extent of collagen crosslinking and water content, and the non-collagenous proteins like osteopontin and osteocalcin comprise the main constituents of bone's material composition. Each influences material strength and change in different ways during advancing age, health, disease, and drug therapy. These traits are not quantifiable using bone densitometry and their plurality is better captured by the term bone 'qualities' than 'quality'. These qualities are the subject of this manuscript.
Collapse
Affiliation(s)
- Y Bala
- Laboratoire Vibrations Acoustique, Institut National des Sciences Appliquées de Lyon, Campus LyonTech la Doua, Villeurbanne, France
| | | |
Collapse
|
33
|
Moshiri A, Shahrezaee M, Shekarchi B, Oryan A, Azma K. Three-Dimensional Porous Gelapin-Simvastatin Scaffolds Promoted Bone Defect Healing in Rabbits. Calcif Tissue Int 2015; 96:552-64. [PMID: 25804980 DOI: 10.1007/s00223-015-9981-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/03/2015] [Indexed: 12/11/2022]
Abstract
Treatment of large bone defects (LBDs) is technically demanding. Tissue engineering is an option. A bioactive graft may be produced by combining tissue scaffolds and healing promotive factors in order to accelerate bone repair. We investigated the role of Simvastatin (Sim)-embedded porous Gelapin (Gel) scaffold on experimental bone healing. At first, the effectiveness of different concentrations of Gel and Sim powders was investigated in an experimentally induced femoral hole model in rabbits (n = 6) for 30 days. Then bone bioactive grafts were produced by combination of the effective concentrations of Gel, Sim, and Genipin. The bioimplants were subcutaneously tested in a rabbit model (n = 9) to determine their biocompatibility and biodegradability for 10-30 days. Finally, a large radial bone defect model was produced in rabbits (n = 20), and the bioimplants were inserted in the defects. The untreated and autograft-treated bone defects were served as controls. The animals were euthanized after 30 and 60 days of bone injury. The bone samples were evaluated by radiography, three-dimensional CT scan, bone densitometry, histopathology, and nano-indentation. At a concentration of 5 mg/hole, Sim closed the femoral bone holes after 30 days, while in the defect, autograft, and Gel groups, the holes were open. Both the Gel and Gel-Sim scaffolds were biocompatible and biodegradable. Subcutaneously, the Gel-Sim scaffold was replaced with the newly regenerated ectopic bone after 30 days. After implantation of the Gel-Sim scaffold in the radial bone defects, the scaffold was completely replaced with new woven bone after 30 days which was then matured and remodeled into a cortical bone after 60 days. Sixty days after bone injury, the Gel-Sim-treated defects had significantly higher bone volume, matrix mineralization, elastic modulus, and contact hardness when compared to the controls. The Gel-Sim scaffold may be a suitable option in managing LBDs.
Collapse
Affiliation(s)
- Ali Moshiri
- Department of Orthopedic Surgery, School of Medicine, AJA University of Medical Science, Tehran, Iran
| | | | | | | | | |
Collapse
|
34
|
Duboeuf F, Burt-Pichat B, Farlay D, Suy P, Truy E, Boivin G. Bone quality and biomechanical function: a lesson from human ossicles. Bone 2015; 73:105-10. [PMID: 25532479 DOI: 10.1016/j.bone.2014.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/08/2014] [Accepted: 12/12/2014] [Indexed: 11/30/2022]
Abstract
In humans, the middle ear contains a chain of three ossicles with a major highly specific mechanical property (transmission of vibrations) and modeling that stops rapidly after birth. Their bone quality has been rarely studied either in noninflammatory ossicles or in those from ears with chronic inflammation. Our primary goal was to assess bone microarchitecture, morphology and variables reflecting bone quality from incuses, in comparison with those from human femoral cortical bone as controls. Secondly, the impact of chronic inflammation on quality of ossicles was documented. The study was performed on 15 noninflammatory incuses from 15 patients (35±32 years, range: 2-91). Comparisons were performed with 13 inflammatory incuses from 13 patients (55±20 years, range: 1-79) with chronic inflammation of the middle ear, essentially cholesteatoma. Microarchitecture and bone mineral density (BMD) were assessed by microcomputed tomography. Microhardness was measured by microindentation. Mineral and organic characteristics were investigated by Fourier transform infrared microspectroscopy. Noninflammatory incuses were composed of a compact, well mineralized bone without bone marrow and with sparse vessels. Remodeling activity was rarely observed. Woven or lamellar textures and numerous osteocytes were observed. In inflammatory incuses, architecture was degraded, organic tissue was abundant and bone cavities contained fibrocellular tissue and adipocytes. BMD of noninflammatory incuses was significantly higher than BMD from both control bones (4 embedded cortical femoral bone samples; age: 72±15 years, range: 50-85) and inflammatory incuses. Noninflammatory incuses were less hard than both control bone (8 cortical femoral bone samples; age: 49±18 years, range: 24-74) and inflammatory incuses. All incuses were more mineralized and less mature than controls. In conclusion, bone quality of incuses (dense, well mineralized, hard) is well adapted to their function of sound transmission. In inflammatory condition, incuses were degraded, thus explaining the decline of hearing. Moreover, microhardness was found higher than in noninflammatory incuses. Compared to bone with remodeling, the mineralization index in incuses does not explain variation of microhardness. Interestingly, a linear multiple regression model indicated that a combination of two variables, i.e., crystallinity index (crystal size/perfection) and carbonation (incorporation of carbonate ions in apatite) explains 26% of the increase in microhardness variability. Because the low remodeling level of ossicles could not prevent the reversibility of their degradation which impacts audition quality, an early management of ear inflammation in chronic otitis is recommended.
Collapse
Affiliation(s)
- François Duboeuf
- INSERM UMR 1033, Equipe Qualité Osseuse et Marqueurs Biologiques, Lyon, France; Université de Lyon, Lyon, France.
| | - Brigitte Burt-Pichat
- INSERM UMR 1033, Equipe Qualité Osseuse et Marqueurs Biologiques, Lyon, France; Université de Lyon, Lyon, France.
| | - Delphine Farlay
- INSERM UMR 1033, Equipe Qualité Osseuse et Marqueurs Biologiques, Lyon, France; Université de Lyon, Lyon, France.
| | - Paul Suy
- ENT Department, Hôpital Edouard Herriot, Lyon, France.
| | - Eric Truy
- Université de Lyon, Lyon, France; ENT Department, Hôpital Edouard Herriot, Lyon, France; Lyon Neurosciences Research Center, Brain Dynamics and Cognition Team, CRNL, INSERM UMR 1028, CNRS UMR 5292, Lyon, France.
| | - Georges Boivin
- INSERM UMR 1033, Equipe Qualité Osseuse et Marqueurs Biologiques, Lyon, France; Université de Lyon, Lyon, France.
| |
Collapse
|
35
|
Berteau JP, Mielke G, Morlock MM, Huber G. Morphological and biomechanical analyses of the subchondral mineralized zone in human sacral facet joints: Application to improved diagnosis of osteoarthritis. Clin Anat 2015; 28:538-44. [DOI: 10.1002/ca.22519] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 12/10/2014] [Accepted: 01/18/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Jean-Philippe Berteau
- Institute of Biomechanics, TUHH Hamburg University of Technology; Hamburg Germany
- Department of Physical Therapy; College of Staten Island, City University of New York; New York
- Graduate Center, City University of New York; New York
| | - Gabriela Mielke
- Institute of Biomechanics, TUHH Hamburg University of Technology; Hamburg Germany
| | - Michael M. Morlock
- Institute of Biomechanics, TUHH Hamburg University of Technology; Hamburg Germany
| | - Gerd Huber
- Institute of Biomechanics, TUHH Hamburg University of Technology; Hamburg Germany
| |
Collapse
|
36
|
Milovanovic P, Zimmermann EA, Riedel C, vom Scheidt A, Herzog L, Krause M, Djonic D, Djuric M, Püschel K, Amling M, Ritchie RO, Busse B. Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone. Biomaterials 2015; 45:46-55. [PMID: 25662494 DOI: 10.1016/j.biomaterials.2014.12.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/11/2014] [Accepted: 12/20/2014] [Indexed: 01/04/2023]
Abstract
Characterization of bone's hierarchical structure in aging, disease and treatment conditions is imperative to understand the architectural and compositional modifications to the material and its mechanical integrity. Here, cortical bone sections from 30 female proximal femurs - a frequent fracture site - were rigorously assessed to characterize the osteocyte lacunar network, osteon density and patterns of bone matrix mineralization by backscatter-electron imaging and Fourier-transform infrared spectroscopy in relation to mechanical properties obtained by reference-point indentation. We show that young, healthy bone revealed the highest resistance to mechanical loading (indentation) along with higher mineralization and preserved osteocyte-lacunar characteristics. In contrast, aging and osteoporosis significantly alter bone material properties, where impairment of the osteocyte-lacunar network was evident through accumulation of hypermineralized osteocyte lacunae with aging and even more in osteoporosis, highlighting increased osteocyte apoptosis and reduced mechanical competence. But antiresorptive treatment led to fewer mineralized lacunae and fewer but larger osteons signifying rejuvenated bone. In summary, multiple structural and compositional changes to the bone material were identified leading to decay or maintenance of bone quality in disease, health and treatment conditions. Clearly, antiresorptive treatment reflected favorable effects on the multifunctional osteocytic cells that are a prerequisite for bone's structural, metabolic and mechanosensory integrity.
Collapse
Affiliation(s)
- Petar Milovanovic
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529 Hamburg, Germany; Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia
| | - Elizabeth A Zimmermann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529 Hamburg, Germany
| | - Christoph Riedel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529 Hamburg, Germany
| | - Annika vom Scheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529 Hamburg, Germany
| | - Lydia Herzog
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529 Hamburg, Germany
| | - Matthias Krause
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529 Hamburg, Germany
| | - Danijela Djonic
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia
| | - Marija Djuric
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia
| | - Klaus Püschel
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529 Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529 Hamburg, Germany
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California, Berkeley, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529 Hamburg, Germany; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA.
| |
Collapse
|
37
|
Kariem H, Pastrama MI, Roohani-Esfahani SI, Pivonka P, Zreiqat H, Hellmich C. Micro-poro-elasticity of baghdadite-based bone tissue engineering scaffolds: A unifying approach based on ultrasonics, nanoindentation, and homogenization theory. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 46:553-64. [DOI: 10.1016/j.msec.2014.10.072] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/21/2014] [Accepted: 10/27/2014] [Indexed: 12/30/2022]
|
38
|
Bianchi M, Boi M, Sartori M, Giavaresi G, Lopomo N, Fini M, Dediu A, Tampieri A, Marcacci M, Russo A. Nanomechanical mapping of bone tissue regenerated by magnetic scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:5363. [PMID: 25578711 DOI: 10.1007/s10856-014-5363-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/06/2014] [Indexed: 06/04/2023]
Abstract
Nanoindentation can provide new insights on the maturity stage of regenerating bone. The aim of the present study was the evaluation of the nanomechanical properties of newly-formed bone tissue at 4 weeks from the implantation of permanent magnets and magnetic scaffolds in the trabecular bone of rabbit femoral condyles. Three different groups have been investigated: MAG-A (NdFeB magnet + apatite/collagen scaffold with magnetic nanoparticles directly nucleated on the collagen fibers during scaffold synthesis); MAG-B (NdFeB magnet + apatite/collagen scaffold later infiltrated with magnetic nanoparticles) and MAG (NdFeB magnet). The mechanical properties of different-maturity bone tissues, i.e. newly-formed immature, newly-formed mature and native trabecular bone have been evaluated for the three groups. Contingent correlations between elastic modulus and hardness of immature, mature and native bone have been examined and discussed, as well as the efficacy of the adopted regeneration method in terms of "mechanical gap" between newly-formed and native bone tissue. The results showed that MAG-B group provided regenerated bone tissue with mechanical properties closer to that of native bone compared to MAG-A or MAG groups after 4 weeks from implantation. Further, whereas the mechanical properties of newly-formed immature and mature bone were found to be fairly good correlated, no correlation was detected between immature or mature bone and native bone. The reported results evidence the efficacy of nanoindentation tests for the investigation of the maturity of newly-formed bone not accessible through conventional analyses.
Collapse
Affiliation(s)
- Michele Bianchi
- Laboratory of Nano-Biotechnologies (NaBi), Rizzoli Orthopaedic Institute, Via Gobetti 1/10, Bologna, 40136, Italy,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Soares PBF, Nunes SA, Franco SD, Pires RR, Zanetta-Barbosa D, Soares CJ. Measurement of Elastic Modulus and Vickers Hardness of Surround Bone Implant Using Dynamic Microindentation - Parameters Definition. Braz Dent J 2014; 25:385-90. [DOI: 10.1590/0103-6440201300169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 10/20/2014] [Indexed: 01/15/2023] Open
Abstract
The clinical performance of dental implants is strongly defined by biomechanical principles. The aim of this study was to quantify the Vicker's hardness (VHN) and elastic modulus (E) surround bone to dental implant in different regions, and to discuss the parameters of dynamic microindantion test. Ten cylindrical implants with morse taper interface (Titamax CM, Neodent; 3.5 mm diameter and 7 mm a height) were inserted in rabbit tibia. The mechanical properties were analyzed using microhardness dynamic indenter with 200 mN load and 15 s penetration time. Seven continuous indentations were made distancing 0.08 mm between each other perpendicularly to the implant-bone interface towards the external surface, at the limit of low (Lp) and high implant profile (Hp). Data were analyzed by Student's t-test (a=0.05) to compare the E and VHN values obtained on both regions. Mean and standard deviation of E (GPa) were: Lp. 16.6 ± 1.7, Hp. 17.0 ± 2.5 and VHN (N/mm2): Lp. 12.6 ± 40.8, Hp. 120.1 ± 43.7. No statistical difference was found between bone mechanical properties of high and low profile of the surround bone to implant, demonstrating that the bone characterization homogeneously is pertinent. Dynamic microindantion method proved to be highly useful in the characterization of the individual peri-implant bone tissue.
Collapse
|
40
|
Berteau JP, Baron C, Pithioux M, Launay F, Chabrand P, Lasaygues P. In vitro ultrasonic and mechanic characterization of the modulus of elasticity of children cortical bone. ULTRASONICS 2014; 54:1270-1276. [PMID: 24112598 DOI: 10.1016/j.ultras.2013.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 08/30/2013] [Accepted: 09/10/2013] [Indexed: 06/02/2023]
Abstract
The assessment of elastic properties in children's cortical bone is a major challenge for biomechanical engineering community, more widely for health care professionals. Even with classical clinical modalities such as X-ray tomography, MRI, and/or echography, inappropriate diagnosis can result from the lack of reference values for children bone. This study provides values for elastic properties of cortical bone in children using ultrasonic and mechanical measurements, and compares them with adult values. 18 fibula samples from 8 children (5-16 years old, mean age 10.6 years old ±4.4) were compared to 16 fibula samples from 3 elderly adults (more than 65 years old). First, the dynamic modulus of elasticity (Edyn) and Poisson's ratio (ν) are evaluated via an ultrasonic method. Second, the static modulus of elasticity (Esta) is estimated from a 3-point microbending test. The mean values of longitudinal and transverse wave velocities measured at 10 MHz for the children's samples are respectively 3.2mm/μs (±0.5) and 1.8mm/μs (±0.1); for the elderly adults' samples, velocities are respectively 3.5mm/μs (±0.2) and 1.9 mm/μs (±0.09). The mean Edyn and the mean Esta for the children's samples are respectively 15.5 GPa (±3.4) and 9.1 GPa (±3.5); for the elderly adults' samples, they are respectively 16.7 GPa (±1.9) and 5.8 GPa (±2.1). Edyn, ν and Esta are in the same range for children's and elderly adults' bone without any parametric statistical difference; a ranking correlation between Edyn and Esta is shown for the first time.
Collapse
Affiliation(s)
- Jean-Philippe Berteau
- Laboratory of Mechanics and Acoustics (LMA), CNRS UPR 7051, Aix-Marseille University, Centrale Marseille, 31 Chemin Joseph-Aiguier, F-13402 Marseille cedex 20, France; Aix-Marseille University, CNRS, ISM UMR 7287, 13288 Marseille cedex 9, France.
| | - Cécile Baron
- Aix-Marseille University, CNRS, ISM UMR 7287, 13288 Marseille cedex 9, France
| | - Martine Pithioux
- Aix-Marseille University, CNRS, ISM UMR 7287, 13288 Marseille cedex 9, France
| | - Franck Launay
- Aix-Marseille University, CNRS, ISM UMR 7287, 13288 Marseille cedex 9, France
| | - Patrick Chabrand
- Aix-Marseille University, CNRS, ISM UMR 7287, 13288 Marseille cedex 9, France
| | - Philippe Lasaygues
- Laboratory of Mechanics and Acoustics (LMA), CNRS UPR 7051, Aix-Marseille University, Centrale Marseille, 31 Chemin Joseph-Aiguier, F-13402 Marseille cedex 20, France
| |
Collapse
|
41
|
Bernhard A, Milovanovic P, Zimmermann EA, Hahn M, Djonic D, Krause M, Breer S, Püschel K, Djuric M, Amling M, Busse B. Micro-morphological properties of osteons reveal changes in cortical bone stability during aging, osteoporosis, and bisphosphonate treatment in women. Osteoporos Int 2013; 24:2671-80. [PMID: 23632826 DOI: 10.1007/s00198-013-2374-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/09/2013] [Indexed: 02/07/2023]
Abstract
SUMMARY We analyzed morphological characteristics of osteons along with the geometrical indices of individual osteonal mechanical stability in young, healthy aged, untreated osteoporotic, and bisphosphonate-treated osteoporotic women. Our study revealed significant intergroup differences in osteonal morphology and osteocyte lacunae indicating different remodeling patterns with implications for fracture susceptibility. INTRODUCTION Bone remodeling is the key process in bone structural reorganization, and its alterations lead to changes in bone mechanical strength. Since osteons reflect different bone remodeling patterns, we hypothesize that the femoral cortices of females under miscellaneous age, disease and treatment conditions will display distinct osteonal morphology and osteocyte lacunar numbers along with different mechanical properties. METHODS The specimens used in this study were collected at autopsy from 35 female donors (young group, n = 6, age 32 ± 8 years; aged group, n = 10, age 79 ± 9 years; osteoporosis group, n = 10, age 81 ± 9 years; and bisphosphonate group, n = 9, age 81 ± 7 years). Von Kossa-modified stained femoral proximal diaphyseal sections were evaluated for osteonal morphometric parameters and osteocyte lacunar data. Geometrical indices of osteonal cross-sections were calculated to assess the mechanical stability of individual osteons, in terms of their resistance to compression, bending, and buckling. RESULTS The morphological assessment of osteons and quantification of their osteocyte lacunae revealed significant differences between the young, aged, osteoporosis and bisphosphonate-treated groups. Calculated osteonal geometric indices provided estimates of the individual osteons' resistance to compression, bending and buckling based on their size. In particular, the osteons in the bisphosphonate-treated group presented improved osteonal geometry along with increased numbers of osteocyte lacunae that had been formerly impaired due to aging and osteoporosis. CONCLUSIONS The data derived from osteons (as the basic structural units of the cortical bone) in different skeletal conditions can be employed to highlight structural factors contributing to the fracture susceptibility of various groups of individuals.
Collapse
Affiliation(s)
- A Bernhard
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wegrzyn J, Roux JP, Farlay D, Follet H, Chapurlat R. The role of bone intrinsic properties measured by infrared spectroscopy in whole lumbar vertebra mechanics: organic rather than inorganic bone matrix? Bone 2013; 56:229-33. [PMID: 23777959 DOI: 10.1016/j.bone.2013.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/24/2013] [Accepted: 06/10/2013] [Indexed: 12/17/2022]
Abstract
Whole bone strength is determined by bone mass, microarchitecture and intrinsic properties of the bone matrix. However, few studies have directly investigated the contribution of bone tissue material properties to whole bone strength in humans. This study assessed the role of bone matrix composition on whole lumbar vertebra mechanics. We obtained 17 fresh frozen human lumbar spines (8 W, 9 M, aged 76±11years). L3 bone mass was measured by DXA and microarchitecture by μ-CT with a 35 μm-isotropic resolution. Microarchitectural parameters were directly measured: Tb.BV/TV, SMI, Tb.Th, DA, Ct.Th, Ct.Po and radius of anterior cortical curvature. Failure load (N), stiffness (N/mm) and work to failure (N.mm) were extracted from quasi-static uniaxial compressive testing performed on L3 vertebral bodies. FTIRM analysis was performed on 2 μm-thick sections from L2 trabecular cores, with a Perkin-Elmer GXII Auto-image Microscope equipped with a wide band detector. Twenty measurements per sample were performed at 30∗100 μm of spatial resolution. Each spectrum was collected at 4 cm(-1) resolution and 50 scans in transmission mode. Mineral and collagen maturity, and mineralization and crystallinity index were measured. There was no association between the bone matrix characteristics and bone mass or microarchitecture. Mineral maturity, mineralization and crystallinity index were not related to whole vertebra mechanics. However, collagen maturity was positively correlated with whole vertebra failure load and stiffness (r=0.64, p=0.005 and r=0.54, p=0.025, respectively). The collagen maturity (3rd step) in combination with bone mass (i.e., BMC, 1st step) and microarchitecture (i.e., Tb.Th, 2nd step) improved the prediction of whole vertebra mechanical properties in forward stepwise multiple regression models, together explaining 71% of the variability in whole vertebra stiffness (p=0.001). In conclusion, we demonstrated a substantial contribution of collagen maturity, but not mineralization parameters, to whole bone strength of human lumbar vertebrae that was independent of bone mass and microarchitecture.
Collapse
|
43
|
Bala Y, Farlay D, Boivin G. Bone mineralization: from tissue to crystal in normal and pathological contexts. Osteoporos Int 2013; 24:2153-66. [PMID: 23229470 DOI: 10.1007/s00198-012-2228-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
Abstract
Bone is a complex and structured material; its mechanical behavior results from an interaction between the properties of each level of its structural hierarchy. The degree of mineralization of bone (bone density measured at tissue level) and the characteristics of the mineral deposited (apatite crystals) are major determinants of bone strength. Bone remodeling activity acts as a regulator of the degree of mineralization and of the distribution of mineral at the tissue level, directly impacting bone mechanical properties. Recent findings have highlighted the need to understand the underlying process occurring at the nanostructure level that may be independent of bone remodeling itself. A more global comprehension of bone qualities will need further works designed to characterize what are the consequences on whole bone strength of changes at nano- or microstructure levels relative to each other.
Collapse
Affiliation(s)
- Y Bala
- Endocrine Center, Austin Health, University of Melbourne, Melbourne, Australia.
| | | | | |
Collapse
|
44
|
Niu LN, Jiao K, Ryou H, Diogenes A, Yiu CKY, Mazzoni A, Chen JH, Arola DD, Hargreaves KM, Pashley DH, Tay FR. Biomimetic silicification of demineralized hierarchical collagenous tissues. Biomacromolecules 2013; 14:1661-8. [PMID: 23586938 DOI: 10.1021/bm400316e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Unlike man-made composite materials, natural biominerals containing composites usually demonstrate different levels of sophisticated hierarchical structures which are responsible for their mechanical properties and other metabolic functions. However, the complex spatial organizations of the organic-inorganic phases are far beyond what they achieved by contemporary engineering techniques. Here, we demonstrate that carbonated apatite present in collagen matrices derived from fish scale and bovine bone may be replaced by amorphous silica, using an approach that simulates what is utilized by phylogenetically ancient glass sponges. The structural hierarchy of these collagen-based biomaterials is replicated by the infiltration and condensation of fluidic polymer-stabilized silicic acid precursors within the intrafibrillar milieu of type I collagen fibrils. This facile biomimetic silicification strategy may be used for fabricating silica-based, three-dimensional functional materials with specific morphological and hierarchical requirements.
Collapse
Affiliation(s)
- Li-Na Niu
- Fourth Military Medical University, Xi'an, China
| | - Kai Jiao
- Fourth Military Medical University, Xi'an, China
| | - Heonjune Ryou
- University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Anibal Diogenes
- University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA
| | | | | | - Ji-Hua Chen
- Fourth Military Medical University, Xi'an, China
| | - Dwayne D Arola
- University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Kenneth M Hargreaves
- University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA
| | | | | |
Collapse
|
45
|
Faingold A, Cohen SR, Reznikov N, Wagner HD. Osteonal lamellae elementary units: lamellar microstructure, curvature and mechanical properties. Acta Biomater 2013; 9:5956-62. [PMID: 23220032 DOI: 10.1016/j.actbio.2012.11.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/09/2012] [Accepted: 11/28/2012] [Indexed: 11/30/2022]
Abstract
The mechanical and structural properties of the sublayers of osteonal lamellae were studied. Young's modulus (E) of adjacent individual lamellae was measured by nanoindentation of parallel slices every 1-3 μm, in planes parallel and perpendicular to the osteon axis (OA). In planes parallel to the OA, the modulus of a lamella could vary significantly between sequential slices. Significant modulus variations were also sometimes found on opposing sides of the osteonal canal for the same lamella. These results are rationalized by considerations involving the microstructural organization of the collagen fibrils in the lamellae. Scanning electron microscope imaging of freeze fractured surfaces revealed that the substructure of a single lamella can vary significantly on the opposing sides of the osteonal axis. Using a serial surface view method, parallel planes were exposed every 8-10 nm using a dual-beam microscope. Analysis of the orientations of fibrils revealed that the structure is rotated plywood like, consisting of unidirectional sublayers of fibrils of several orientations, with occasional randomly oriented sublayers. The dependence of the measured mechanical properties of the lamellae on the indentation location may be explained by the observed structure, as well as by the curvature of the osteonal lamellae through simple geometrical-structural considerations. Mechanical advantages arising from the curved laminate structure are discussed.
Collapse
Affiliation(s)
- Anna Faingold
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
46
|
Granke M, Gourrier A, Rupin F, Raum K, Peyrin F, Burghammer M, Saïed A, Laugier P. Microfibril orientation dominates the microelastic properties of human bone tissue at the lamellar length scale. PLoS One 2013; 8:e58043. [PMID: 23472132 PMCID: PMC3589472 DOI: 10.1371/journal.pone.0058043] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/30/2013] [Indexed: 11/25/2022] Open
Abstract
The elastic properties of bone tissue determine the biomechanical behavior of bone at the organ level. It is now widely accepted that the nanoscale structure of bone plays an important role to determine the elastic properties at the tissue level. Hence, in addition to the mineral density, the structure and organization of the mineral nanoparticles and of the collagen microfibrils appear as potential key factors governing the elasticity. Many studies exist on the role of the organization of collagen microfibril and mineral nanocrystals in strongly remodeled bone. However, there is no direct experimental proof to support the theoretical calculations. Here, we provide such evidence through a novel approach combining several high resolution imaging techniques: scanning acoustic microscopy, quantitative scanning small-Angle X-ray scattering imaging and synchrotron radiation computed microtomography. We find that the periodic modulations of elasticity across osteonal bone are essentially determined by the orientation of the mineral nanoparticles and to a lesser extent only by the particle size and density. Based on the strong correlation between the orientation of the mineral nanoparticles and the collagen molecules, we conclude that the microfibril orientation is the main determinant of the observed undulations of microelastic properties in regions of constant mineralization in osteonal lamellar bone. This multimodal approach could be applied to a much broader range of fibrous biological materials for the purpose of biomimetic technologies.
Collapse
Affiliation(s)
- Mathilde Granke
- UMPC Univ Paris 6, UMR 7623, Laboratoire d'Imagerie Paramétrique, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Determinants of microdamage in elderly human vertebral trabecular bone. PLoS One 2013; 8:e55232. [PMID: 23457465 PMCID: PMC3574158 DOI: 10.1371/journal.pone.0055232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 12/23/2012] [Indexed: 01/22/2023] Open
Abstract
Previous studies have shown that microdamage accumulates in bone as a result of physiological loading and occurs naturally in human trabecular bone. The purpose of this study was to determine the factors associated with pre-existing microdamage in human vertebral trabecular bone, namely age, architecture, hardness, mineral and organic matrix. Trabecular bone cores were collected from human L2 vertebrae (n = 53) from donors 54–95 years of age (22 men and 30 women, 1 unknown) and previous cited parameters were evaluated. Collagen cross-link content (PYD, DPD, PEN and % of collagen) was measured on surrounding trabecular bone. We found that determinants of microdamage were mostly the age of donors, architecture, mineral characteristics and mature enzymatic cross-links. Moreover, linear microcracks were mostly associated with the bone matrix characteristics whereas diffuse damage was associated with architecture. We conclude that linear and diffuse types of microdamage seemed to have different determinants, with age being critical for both types.
Collapse
|
48
|
Finite element dependence of stress evaluation for human trabecular bone. J Mech Behav Biomed Mater 2013; 18:200-12. [DOI: 10.1016/j.jmbbm.2012.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 07/30/2012] [Accepted: 08/18/2012] [Indexed: 01/15/2023]
|
49
|
Bala Y, Kohles J, Recker RR, Boivin G. Oral ibandronate in postmenopausal osteoporotic women alters micromechanical properties independently of changes in mineralization. Calcif Tissue Int 2013; 92:6-14. [PMID: 23090678 DOI: 10.1007/s00223-012-9658-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 09/30/2012] [Indexed: 10/27/2022]
Abstract
Postmenopausal osteoporotic (PMOP) women treated with ibandronate had higher bone mineral density, lower bone turnover, and decreased incidence of new vertebral fractures. The aim of this study was to investigate the effect of daily or intermittent oral ibandronate on the degree of mineralization (DMB) of bone and microhardness (Hv) at the bone tissue and bone structural unit (BSU) levels. A total of 110 iliac biopsies were taken from patients treated for 22 or 34 months with an oral placebo (n = 36), 2.5 mg daily oral ibandronate (n = 40), or 20 mg intermittent oral ibandronate (n = 34). These regimens provide annual cumulative exposures (ACEs) that are about half of the therapeutic doses currently licensed for PMOP women. DMB and Hv were measured at the global level (i.e., cortical or cancellous) and the focal level (i.e., BSU). At the global level, DMB and its distribution were not significantly different from placebo after 22 and 34 months of treatment. Hv was significantly higher in the cortical, cancellous, and total bone after 22 and 34 months of ibandronate versus placebo for both regimens. At the focal level, DMB and Hv, measured simultaneously in 3,760 BSUs, were significantly and positively correlated in all groups (r = 0.59-0.65, p < 0.0001). However, analysis of covariance highlighted the differences in the y intercepts of the linear regressions of the placebo- and ibandronate-treated groups. We infer that a low ACE of oral ibandronate altered the bone micromechanical properties irrespective of changes in secondary mineralization.
Collapse
Affiliation(s)
- Yohann Bala
- INSERM UMR 1033 Equipe Qualité Osseuse et Marqueurs Biologiques, Faculté de Médecine Lyon Est, Claude Bernard (Domaine Laennec), Université de Lyon, 7-11 rue Guillaume Paradin, 69372, Lyon Cedex 08, France.
| | | | | | | |
Collapse
|
50
|
Chen X, Goh JCH, Teoh SH, De SD, Soong R, Lee T. Localized sclerotic bone response demonstrated reduced nanomechanical creep properties. J Mech Behav Biomed Mater 2012; 17:198-208. [PMID: 23127639 DOI: 10.1016/j.jmbbm.2012.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 01/13/2023]
Abstract
Sclerosis (tissue hardening) development is a common occurrence in slow growing or benign osteolytic lesions. However, there is lack of knowledge on the mechanical and material property changes associated with sclerotic bone response. The immune system is postulated to play a relevant role in evoking sclerotic bone responses. In this study, localized sclerotic response in an immunocompetent model of Walker 256 breast carcinoma in SD rats showed an apparent increase in new reactive bone formation. Sclerotic rat femurs had significant increases in bone mineral density (BMD), bone mineral content (BMC), bone volume fraction (BV/TV), bone surface density (BS/TV), trabecular number (Tb.N) and a significant decrease in trabecular separation (Tb.Sp) and structural model index (SMI) as compared to control rat femurs. Significantly reduced creep responses (increased η) were observed for both trabecular and cortical bone in sclerotic bones while no significant difference was observed in elastic modulus (E) and hardness (H) values. Therefore, we conclude that viscoelastic creep property using nanoindentation would serve as a more sensitive indicator of localized bone modeling than elastic properties. Moreover, reduced viscoelasticity can contribute towards increased microcrack propagation and therefore reduced toughness. Since significant positive correlations between elastic properties (E) and (H) with viscosity (η) were also observed, our results indicate that sclerotic response of bone metastasis would cause reduced toughness (increased η) with stiffening of material (increased E and H).
Collapse
Affiliation(s)
- Xiuli Chen
- Department of Bioengineering, 9 Engineering Drive 1, National University of Singapore, and Department of Orthopaedic Surgery, National University Hospital, 117576 Singapore, Singapore
| | | | | | | | | | | |
Collapse
|