1
|
Fasen F, Aarle DACV, Horst AVD, Sambeek MRHMV, Lopata RGP. Geometry and local wall thickness of abdominal aortic aneurysms using intravascular ultrasound. Comput Biol Med 2024; 185:109514. [PMID: 39667054 DOI: 10.1016/j.compbiomed.2024.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/12/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Currently, abdominal aortic aneurysms (AAAs) are treated based on the diameter of the aorta, however, a more robust patient-specific marker is needed. The mean thickness of the wall is a potential indicator for AAA rupture risk, which varies significantly within and between patients. So far, regional thickness has not been used in previous rupture risk analysis studies, since it is challenging to measure in CT, MRI, and non-invasive ultrasound (US). This study shows how to map locally varying wall thickness of AAAs using intravascular ultrasound (IVUS). Since no ground truth of AAA wall thickness can be obtained in vivo, a novel ex vivo dataset was created of porcine, phantom and simulated aortas, of which ground truth data are available. A U-net model was trained on the ex vivo data and results show that the predicted wall segmentation is in good agreement with the ground truth (DSC = 0.86, HD = 0.97 mm). Wall thickness and geometry plots show that the variation in wall thickness can be recognized. The in vivo demonstration in patients shows that the diseased wall can be segmented, a regionally varying wall thickness can be measured, and detailed maps of AAA geometries can be created. The measured local wall thickness could be used for better general understanding of AAA wall properties resulting in more advanced rupture risk assessment of AAAs.
Collapse
Affiliation(s)
- Floor Fasen
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600, The Netherlands; The Department of Vascular Surgery, Catharina Hospital, Eindhoven, 5602, The Netherlands; Image Guided Therapy Devices, Royal Philips, Best, 5684, The Netherlands.
| | - Daniek A C van Aarle
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600, The Netherlands; The Department of Vascular Surgery, Catharina Hospital, Eindhoven, 5602, The Netherlands; Image Guided Therapy Devices, Royal Philips, Best, 5684, The Netherlands
| | | | - Marc R H M van Sambeek
- The Department of Vascular Surgery, Catharina Hospital, Eindhoven, 5602, The Netherlands
| | - Richard G P Lopata
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600, The Netherlands
| |
Collapse
|
2
|
Bordet M, Rival G, Seveyrat L, Millon A, Capsal JF, Cottinet PJ, Le MQ, Della Schiava N. Cold Storage of Human Femoral Arteries for Twelve Months: Impact on Mechanical Properties. Eur J Vasc Endovasc Surg 2024; 68:797-802. [PMID: 39111534 DOI: 10.1016/j.ejvs.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 09/08/2024]
Abstract
OBJECTIVE This biomechanical pre-clinical study aimed to assess the consequences on mechanical properties of long term cold storage (+2 to +8 °C) of arterial allografts. METHODS Femoropopliteal arterial segments were collected from multiorgan donors and stored at +2 to +8 °C for twelve months in saline solution with added antibiotics. Mechanical characterisation was carried out using two different tests, with the aim of defining the physiological modulus and the maximum stress and strain borne by the sample before rupture. These characterisations were carried out after zero, six, and twelve months of storage for each sample (T0, T6, and T12, respectively). For comparison, the same tests were performed on cryopreserved femoropopliteal segments after thawing. RESULTS Twelve refrigerated allografts (RAs), each divided into three segments, and 10 cryopreserved allografts (CAs) were characterised. The median (interquartile range [IQR]) Young's modulus was not statistically significantly different between the storage times for cold stored allografts: RAT0, 164 (150, 188) kPa; RAT6, 178 (141, 185) kPa; RAT12, 177 (149, 185) kPa. The median (IQR) Young's modulus of the CA group (153; 130, 170 kPa) showed no significant differences from the RA groups, irrespective of storage time. Furthermore, median (IQR) maximum stress and strain values were not significantly different between the different groups: for maximum stress: RAT0, 1.58 (1.08, 2.09) MPa; RAT6, 1.74 (1.55, 2.36) MPa; RAT12, 2.25 (1.87, 2.53) MPa; CA, 2.25 (1.77, 2.61) MPa; and for maximum strain: RAT0, 64% (50, 90); RAT6, 79% (63, 84); RAT12, 72% (65, 86); CA, 67% (50, 95). CONCLUSION Cold storage for up to twelve months appears to have no impact on the mechanical characteristics of human arterial allografts. Therefore, this preservation method, which would greatly simplify routine care, seems feasible. Other indicators are being studied to verify the safety of this preservation process before considering its use in vivo.
Collapse
Affiliation(s)
- Marine Bordet
- Université de Lyon, INSA Lyon, LGEF, EA682, Villeurbanne, France; Department of Vascular and Endovascular Surgery, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France; Centre de Référence des Infections Vasculaire Complexes (CRIVasc Network), Hospices Civils de Lyon, Lyon, France.
| | - Guilhem Rival
- Université de Lyon, INSA Lyon, LGEF, EA682, Villeurbanne, France
| | | | - Antoine Millon
- Department of Vascular and Endovascular Surgery, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France; Centre de Référence des Infections Vasculaire Complexes (CRIVasc Network), Hospices Civils de Lyon, Lyon, France
| | | | | | - Minh Quyen Le
- Université de Lyon, INSA Lyon, LGEF, EA682, Villeurbanne, France
| | - Nellie Della Schiava
- Université de Lyon, INSA Lyon, LGEF, EA682, Villeurbanne, France; Department of Vascular and Endovascular Surgery, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France; Centre de Référence des Infections Vasculaire Complexes (CRIVasc Network), Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
3
|
Ngwangwa HM, Modungwa D, Pandelani T, Nemavhola FJ. Estimation of the biaxial tensile behavior of ovine esophageal tissue using artificial neural networks. Biomed Eng Online 2024; 23:100. [PMID: 39396034 PMCID: PMC11470611 DOI: 10.1186/s12938-024-01296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
Diseases of the esophagus affect its function and often lead to replacement of long sections of the organ. Current healing methods involve the use of bioscaffolds processed from other animal models. Although the properties of these animal models are not exactly the same as those of the human esophagus, they nevertheless present a reasonable means of assessing the biomechanical properties of the esophageal tissue. Besides, sheep bear many similarities physiologically to humans and they also suffer from same diseases as humans. The morphology of their esophagus is also comparable to that of humans. Thus, in the study, an ovine esophagus was studied. Studies on the planar biaxial tests of the gross esophageal anatomy are limited. The composite nature of the gross anatomy of the esophagus makes the application of structure-based models such as Holzapfel-type models very difficult. In current studies the tissue is therefore often separated into specific layers with substantial collagen content. The effects of adipose tissue and other non-collagenous tissue often make the mechanical behavior of the esophagus widely diverse and unpredictable using deterministic structure-based models. Thus, it may be very difficult to predict its mechanical behavior. In the study, an NARX neural network was used to predict the stress-strain response of the gross anatomy of the ovine esophagus. The results show that the NARX model was able to achieve a correlation above 99.9% within a fitting error margin of 16%. Therefore, the use of artificial neural networks may provide a more accurate way of predicting the biaxial stress-strain response of the esophageal tissue, and lead to further improvements in the design and development of synthetic replacement materials for esophageal tissue.
Collapse
Affiliation(s)
- H M Ngwangwa
- Department of Mechanical, Bioresources and Biomedical Engineering, School of Engineering and the Built Environment, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida, 1710, South Africa.
| | - D Modungwa
- Department of Mechanical, Bioresources and Biomedical Engineering, School of Engineering and the Built Environment, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida, 1710, South Africa
- Peace, Safety and Security, Council for Scientific and Industrial Research, PO Box 395, Pretoria, 0001, South Africa
| | - T Pandelani
- Department of Mechanical, Bioresources and Biomedical Engineering, School of Engineering and the Built Environment, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - F J Nemavhola
- Department of Mechanical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Durban, South Africa
| |
Collapse
|
4
|
Nightingale M, Scott MB, Sigaeva T, Guzzardi D, Garcia J, Malaisrie SC, McCarthy P, Markl M, Fedak PWM, Di Martino ES, Barker AJ. Magnetic resonance imaging-based hemodynamic wall shear stress alters aortic wall tissue biomechanics in bicuspid aortic valve patients. J Thorac Cardiovasc Surg 2024; 168:465-476.e5. [PMID: 36797175 PMCID: PMC10338641 DOI: 10.1016/j.jtcvs.2022.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVE In this study we aimed to conclusively determine whether altered aortic biomechanics are associated with wall shear stress (WSS) independent of region of tissue collection. Elevated WSS in the ascending aorta of patients with bicuspid aortic valve has been shown to contribute to local maladaptive aortic remodeling and might alter biomechanics. METHODS Preoperative 4-dimensional flow magnetic resonance imaging was performed on 22 patients who underwent prophylactic aortic root and/or ascending aorta replacement. Localized elevated WSS was identified in patients using age-matched healthy atlases (n = 60 controls). Tissue samples (n = 78) were collected and categorized according to WSS (elevated vs normal) and region. Samples were subjected to planar biaxial testing. To fully quantify the nonlinear biomechanical response, the tangential modulus (local stiffness) at a low-stretch (LTM) and high-stretch (HTM) linear region and the onset (TZo) and end stress of the nonlinear transition zone were measured. A linear mixed effect models was implemented to determine statistical relationships. RESULTS A higher LTM in the circumferential and axial direction was associated with elevated WSS (P = .007 and P = .018 respectively) independent of collection region. Circumferential TZo and HTM were higher with elevated WSS (P = .024 and P = .003); whereas the collection region was associated with variations in axial TZo (P = .013), circumferential HTM (P = .015), and axial HTM (P = .001). CONCLUSIONS This study shows strong evidence that biomechanical changes in the aorta are strongly associated with hemodynamics, and not region of tissue collection for bicuspid valve aortopathy patients. Elevated WSS is associated with tissue behavior at low stretch ranges (ie, LTM and TZo).
Collapse
Affiliation(s)
- Miriam Nightingale
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | | | - Taisiya Sigaeva
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - David Guzzardi
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Julio Garcia
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - S Chris Malaisrie
- Division of Surgery-Cardiac Surgery, Northwestern University, Evanston, Ill
| | - Patrick McCarthy
- Division of Surgery-Cardiac Surgery, Northwestern University, Evanston, Ill
| | - Michael Markl
- Department of Radiology, Northwestern University, Evanston, Ill; Department of Bioengineering, Northwestern University, Evanston, Ill
| | - Paul W M Fedak
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elena S Di Martino
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Alex J Barker
- Department of Radiology, Northwestern University, Evanston, Ill; Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colo.
| |
Collapse
|
5
|
Brecs I, Skuja S, Kasyanov V, Groma V, Kalejs M, Svirskis S, Ozolanta I, Stradins P. From Biomechanical Properties to Morphological Variations: Exploring the Interplay between Aortic Valve Cuspidity and Ascending Aortic Aneurysm. J Clin Med 2024; 13:4225. [PMID: 39064264 PMCID: PMC11277922 DOI: 10.3390/jcm13144225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Background: This research explores the biomechanical and structural characteristics of ascending thoracic aortic aneurysms (ATAAs), focusing on the differences between bicuspid aortic valve aneurysms (BAV-As) and tricuspid aortic valve aneurysms (TAV-As) with non-dilated aortas to identify specific traits of ATAAs. Methods: Clinical characteristics, laboratory indices, and imaging data from 26 adult patients operated on for aneurysms (BAV-A: n = 12; TAV-A: n = 14) and 13 controls were analyzed. Biomechanical parameters (maximal aortic diameter, strain, and stress) and structural analyses (collagen fiber organization, density, fragmentation, adipocyte deposits, and immune cell infiltration) were assessed. Results: Significant differences in biomechanical parameters were observed. Median maximal strain was 40.0% (control), 63.4% (BAV-A), and 45.3% (TAV-A); median maximal stress was 0.59 MPa (control), 0.78 MPa (BAV-A), and 0.48 MPa (TAV-A). BAV-A showed higher tangential modulus and smaller diameter, with substantial collagen fragmentation (p < 0.001 vs. TAV and controls). TAV-A exhibited increased collagen density (p = 0.025), thickening between media and adventitia layers, and disorganized fibers (p = 0.036). BAV-A patients had elevated adipocyte deposits and immune cell infiltration. Conclusions: This study highlights distinct pathological profiles associated with different valve anatomies. BAV-A is characterized by smaller diameters, higher biomechanical stress, and significant collagen deterioration, underscoring the necessity for tailored clinical strategies for effective management of thoracic aortic aneurysm.
Collapse
Affiliation(s)
- Ivars Brecs
- Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia; (V.K.); (M.K.); (I.O.); (P.S.)
- Centre of Cardiac Surgery, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia
| | - Sandra Skuja
- Joint Laboratory of Electron Microscopy, Riga Stradins University, 9 Kronvalda Boulevard, LV-1010 Riga, Latvia; (S.S.); (V.G.)
| | - Vladimir Kasyanov
- Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia; (V.K.); (M.K.); (I.O.); (P.S.)
- Laboratory of Biomechanics, Riga Stradins University, 5a Ratsupites Street, LV-1067 Riga, Latvia
| | - Valerija Groma
- Joint Laboratory of Electron Microscopy, Riga Stradins University, 9 Kronvalda Boulevard, LV-1010 Riga, Latvia; (S.S.); (V.G.)
| | - Martins Kalejs
- Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia; (V.K.); (M.K.); (I.O.); (P.S.)
- Centre of Cardiac Surgery, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia
| | - Simons Svirskis
- Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Street, LV-1067 Riga, Latvia;
| | - Iveta Ozolanta
- Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia; (V.K.); (M.K.); (I.O.); (P.S.)
- Laboratory of Biomechanics, Riga Stradins University, 5a Ratsupites Street, LV-1067 Riga, Latvia
| | - Peteris Stradins
- Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia; (V.K.); (M.K.); (I.O.); (P.S.)
- Centre of Cardiac Surgery, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia
| |
Collapse
|
6
|
Toaquiza Tubon J, Sree VD, Payne J, Solorio L, Tepole AB. Mechanical damage in porcine dermis: Micro-mechanical model and experimental characterization. J Mech Behav Biomed Mater 2023; 147:106143. [PMID: 37778167 DOI: 10.1016/j.jmbbm.2023.106143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/25/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Skin is subjected to extreme mechanical loading during needle insertion and drug delivery to the subcutaneous space. There is a rich literature on the characterization of porcine skin biomechanics as the preeminent animal model for human skin, but the emphasis has been on the elastic response and specific anatomical locations such as the dorsal and the ventral regions. During drug delivery, however, energy dissipation in the form of damage, softening, and fracture, is expected. Similarly, reports on experimental characterization are complemented by modeling efforts, but with similar gaps in microstructure-driven modeling of dissipative mechanisms. Here we contribute to the bridging of these gaps by testing porcine skin from belly and breast regions, in two different orientation with respect to anatomical axes, and to progressively higher stretches in order to show damage accumulation and stiffness degradation. We complement the mechanical test with imaging of the collagen structure and a micro-mechanics modeling framework. We found that skin from the belly is stiffer with respect to the breast region when comparing the calf stiffness of the J-shaped stress-stretch response observed in most collagenous tissues. No significant direction dependent properties were found in either anatomical location. Both locations showed energy dissipation due to damage, evident though a softening of the stress-stretch response. The microstructure model was able to capture the elastic and damage progression with a small set of parameters, some of which were determined directly from imaging. We anticipate that data and model fits can help in predictive simulations for device design in situations where skin is subject to supra-physiological deformation such as in subcutaneous drug delivery.
Collapse
Affiliation(s)
| | - Vivek D Sree
- School of Mechanical Engineering Purdue University, West Lafayette, IN, USA
| | - Jordanna Payne
- Weldon School of Biomedical Engineering Purdue University, West Lafayette, IN, USA
| | - Luis Solorio
- Weldon School of Biomedical Engineering Purdue University, West Lafayette, IN, USA
| | - Adrian Buganza Tepole
- School of Mechanical Engineering Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
7
|
Miralles M, Falcón M, Requejo L, Plana E, Medina P, Sánchez-Nevárez I, Clará A. "In Vitro" Evaluation of Energy-Based Sealing of Graft Side Branches in Bypass Surgery. World J Surg 2023; 47:2888-2896. [PMID: 37432421 DOI: 10.1007/s00268-023-07107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Our objective was to compare the in vitro efficacy of electrothermal bipolar [EB] vessel sealing and ultrasonic harmonic scalpel [HS] versus mechanical interruption, with conventional ties or surgical clips (SC), in sealing saphenous vein (SV) collaterals, during its eventual preparation for bypass surgery. METHODS Experimental in vitro study on 30 segments of SV. Each fragment included two collaterals at least 2 mm in diameter. One of them was sealed by ligation with 3/0 silk ties (control) and the other one with EB (n = 10), HS (n = 10) or medium-6 mm SC (n = 10). After incorporation in a closed circuit with pulsatile flow, the pressure was progressively increased until causing rupture. Collateral diameter, burst pressure, leak point, and histological study were recorded. RESULTS Burst pressure was higher for SC (1320.20 ± 373.847 mmHg) as compared with EB (942.2 ± 344.9 mmHg, p = 0.065), and especially with HS (637.00 ± 320.61 mmHg, p = 0.0001). No statistically significant difference between EB and HS was found, and bursting always happened at supraphysiological pressures. The leak point for HS was always detected in the sealing zone (10/10), while for EB and SC, it occurred in the sealing zone only in 6/10(60%) and 4/10(40%), respectively (p = 0.015). CONCLUSIONS Energy delivery devices showed similar efficacy and safety in sealing of SV side branches. Although bursting pressure was lower than with tie ligature or SC, non-inferiority efficacy was shown at the range of physiological pressures in both, EB and HS. Due to their speed and easy handling, they may be useful in the preparation of the venous graft during revascularization surgery. However, remaining questions about healing process, potential spread of tissue damage and sealing durability, will require further analysis.
Collapse
Affiliation(s)
- Manuel Miralles
- Department of Vascular Surgery, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- Department of Surgery, Facultad de Medicina, Universidad de Valencia (UV), Valencia, Spain
- Hemostasia, Thrombosis, Arteriosclerosis and Vascular Biology, Instituto de Investigación Sanitaria IIS La Fe, Valencia, Spain
| | - Moisés Falcón
- Department of Vascular Surgery, Hospital de Manises, Valencia, Spain.
| | - Lucía Requejo
- Department of Vascular Surgery, Hospital Universitario de La Ribera, Alzira, Valencia, Spain
| | - Emma Plana
- Hemostasia, Thrombosis, Arteriosclerosis and Vascular Biology, Instituto de Investigación Sanitaria IIS La Fe, Valencia, Spain
| | - Pilar Medina
- Hemostasia, Thrombosis, Arteriosclerosis and Vascular Biology, Instituto de Investigación Sanitaria IIS La Fe, Valencia, Spain
| | | | - Albert Clará
- Department of Vascular Surgery, Hospital Universitari del Mar, Barcelona, Spain
| |
Collapse
|
8
|
Furrer MK. Invited Commentary to "In Vitro" Evaluation of Energy-Based Sealing of Graft Side Branches in Bypass Surgery. World J Surg 2023; 47:2897-2898. [PMID: 37702777 DOI: 10.1007/s00268-023-07150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/14/2023]
Affiliation(s)
- Markus K Furrer
- Head of Vascular and Thoracic Surgery, Director of Surgical Department, Kantonsspital GR, Chur, Switzerland.
| |
Collapse
|
9
|
Sree VD, Toaquiza-Tubon JD, Payne J, Solorio L, Tepole AB. Damage and Fracture Mechanics of Porcine Subcutaneous Tissue Under Tensile Loading. Ann Biomed Eng 2023; 51:2056-2069. [PMID: 37233856 DOI: 10.1007/s10439-023-03233-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
Subcutaneous injection, which is a preferred delivery method for many drugs, causes deformation, damage, and fracture of the subcutaneous tissue. Yet, experimental data and constitutive modeling of these dissipation mechanisms in subcutaneous tissue remain limited. Here we show that subcutaneous tissue from the belly and breast anatomical regions in the swine show nonlinear stress-strain response with the characteristic J-shaped behavior of collagenous tissue. Additionally, subcutaneous tissue experiences damage, defined as a decrease in the strain energy capacity, as a function of the previously experienced maximum deformation. The elastic and damage response of the tissue are accurately described by a microstructure-driven constitutive model that relies on the convolution of a neo-Hookean material of individual fibers with a fiber orientation distribution and a fiber recruitment distribution. The model fit revealed that subcutaneous tissue can be treated as initially isotropic, and that changes in the fiber recruitment distribution with loading are enough to explain the dissipation of energy due to damage. When tested until failure, subcutaneous tissue that has undergone damage fails at the same peak stress as virgin samples, but at a much larger stretch, overall increasing the tissue toughness. Together with a finite element implementation, these data and constitutive model may enable improved drug delivery strategies and other applications for which subcutaneous tissue biomechanics are relevant.
Collapse
Affiliation(s)
- Vivek D Sree
- School of Mechanical Engineering, Purdue University, West Lafayette, USA
| | | | - Jordanna Payne
- School of Mechanical Engineering, Purdue University, West Lafayette, USA
| | - Luis Solorio
- School of Mechanical Engineering, Purdue University, West Lafayette, USA
| | | |
Collapse
|
10
|
Mariano CA, Sattari S, Ramirez GO, Eskandari M. Effects of tissue degradation by collagenase and elastase on the biaxial mechanics of porcine airways. Respir Res 2023; 24:105. [PMID: 37031200 PMCID: PMC10082978 DOI: 10.1186/s12931-023-02376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/22/2023] [Indexed: 04/10/2023] Open
Abstract
BACKGROUND Common respiratory illnesses, such as emphysema and chronic obstructive pulmonary disease, are characterized by connective tissue damage and remodeling. Two major fibers govern the mechanics of airway tissue: elastin enables stretch and permits airway recoil, while collagen prevents overextension with stiffer properties. Collagenase and elastase degradation treatments are common avenues for contrasting the role of collagen and elastin in healthy and diseased states; while previous lung studies of collagen and elastin have analyzed parenchymal strips in animal and human specimens, none have focused on the airways to date. METHODS Specimens were extracted from the proximal and distal airways, namely the trachea, large bronchi, and small bronchi to facilitate evaluations of material heterogeneity, and subjected to biaxial planar loading in the circumferential and axial directions to assess airway anisotropy. Next, samples were subjected to collagenase and elastase enzymatic treatment and tensile tests were repeated. Airway tissue mechanical properties pre- and post-treatment were comprehensively characterized via measures of initial and ultimate moduli, strain transitions, maximum stress, hysteresis, energy loss, and viscoelasticity to gain insights regarding the specialized role of individual connective tissue fibers and network interactions. RESULTS Enzymatic treatment demonstrated an increase in airway tissue compliance throughout loading and resulted in at least a 50% decrease in maximum stress overall. Strain transition values led to significant anisotropic manifestation post-treatment, where circumferential tissues transitioned at higher strains compared to axial counterparts. Hysteresis values and energy loss decreased after enzymatic treatment, where hysteresis reduced by almost half of the untreated value. Anisotropic ratios exhibited axially led stiffness at low strains which transitioned to circumferentially led stiffness when subjected to higher strains. Viscoelastic stress relaxation was found to be greater in the circumferential direction for bronchial airway regions compared to axial counterparts. CONCLUSION Targeted fiber treatment resulted in mechanical alterations across the loading range and interactions between elastin and collagen connective tissue networks was observed. Providing novel mechanical characterization of elastase and collagenase treated airways aids our understanding of individual and interconnected fiber roles, ultimately helping to establish a foundation for constructing constitutive models to represent various states and progressions of pulmonary disease.
Collapse
Affiliation(s)
- Crystal A Mariano
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA, USA
| | - Samaneh Sattari
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA, USA
| | - Gustavo O Ramirez
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA, USA
| | - Mona Eskandari
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA, USA.
- BREATHE Center, School of Medicine, University of California at Riverside, Riverside, CA, USA.
- Department of Bioengineering, University of California at Riverside, Riverside, CA, USA.
| |
Collapse
|
11
|
Methodology for estimation of undeformed thickness of arterial tissues. Sci Rep 2023; 13:2816. [PMID: 36797267 PMCID: PMC9935509 DOI: 10.1038/s41598-023-28871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Soft tissue sample thickness measurement is one of the major sources of differences between mechanical responses published by different groups. New method for the estimation of unloaded sample thickness of soft tissues is proposed in this study. Ten 30 × 30 mm and ten 20 × 20 mm samples of porcine anterior thoracic aortas were loaded by gradually increased radial force. Their deformed thickness was then recorded in order to generate a pressure-thickness response. Next, the limit pressure to which the response can be considered linear was estimated. Line was fitted to the linear part of the curve and extrapolated towards zero pressure to estimate unloaded thickness (7 kPa fit). For comparison, data near zero pressure were fitted separately and extrapolated towards zero (Near Zero fit). The limit pressure for the linearity of the response was around 7 kPa. The Unloaded thickness for 30 × 30 mm samples was 2.68 ± 0.31 mm and 2.68 ± 0.3 mm for Near Zero fit and 7 kPa fit, respectively. The Unloaded thickness for 20 × 20 mm samples was 2.60 ± 0.35 mm and 2.59 ± 0.35 mm for Near Zero fit and 7 kPa fit, respectively. The median of thickness difference between smaller and larger samples was not found statistically different. Proposed method can estimate unloaded undeformed sample thickness quickly and reliably.
Collapse
|
12
|
Importance of experimental evaluation of structural parameters for constitutive modelling of aorta. J Mech Behav Biomed Mater 2023; 138:105615. [PMID: 36512975 DOI: 10.1016/j.jmbbm.2022.105615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
The study compares stresses and strains in the aortic wall derived using different constitutive models for various stress-strain conditions. Structure-based constitutive models with two fibre families with (GOH) and without (HGO) dispersion of collagen fibres are compared. The constitutive models were fitted to data from equibiaxial tension tests of two separated layers of the porcine aortic wall. The initial fit was evaluated with unrestricted parameters and subsequently, the mean angles of the fibre families and the angular dispersion were fixed to the values obtained from histology. Surprisingly, none of the tested models was capable to provide a good quality fit with histologically obtained structural parameters. Fitting the HGO model to experimental data resulted in two fibre families under angles close to ±45°, while the GOH model resulted in a nearly isotropic fibre distribution. These results indicate that both of these models suffer from the absence of isotropic strain stiffening. After having modified both models with corresponding additional members based on the Yeoh model of matrix, we obtained a perfect fit to the measured data while keeping the structural histology-based parameters. Finally, significant differences in compliance and resulting stresses and strains between different models are shown by means of simulations of uniaxial tension test, equibiaxial tension tests and inflation of the aorta.
Collapse
|
13
|
Brunet J, Pierrat B, Adrien J, Maire E, Lane BA, Curt N, Bravin A, Laroche N, Badel P. In situ visualization of aortic dissection propagation in notched rabbit aorta using synchrotron X-ray tomography. Acta Biomater 2023; 155:449-460. [PMID: 36343907 DOI: 10.1016/j.actbio.2022.10.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Aortic dissection is a complex, intramural, and dynamic condition involving multiple mechanisms, hence, difficult to observe. In the present study, a controlled in vitro aortic dissection was performed using tension-inflation tests on notched rabbit aortic segments. The mechanical test was combined with conventional (cCT) and synchrotron (sCT) computed tomography for in situ imaging of the macro- and micro-structural morphological changes of the aortic wall during dissection. We demonstrate that the morphology of the notch and the aorta can be quantified in situ at different steps of the aortic dissection, and that the notch geometry correlates with the critical pressure. The phenomena prior to propagation of the notch are also described, for instance the presence of a bulge at the tip of the notch is identified, deforming the remaining wall. Finally, our method allows us to visualize for the first time the propagation of an aortic dissection in real-time with a resolution that has never previously been reached. STATEMENT OF SIGNIFICANCE: With the present study, we investigated the factors leading to the propagation of aortic dissection by reproducing this mechanical process in notched rabbit aortas. Synchrotron CT provided the first visualisation in real-time of an aortic dissection propagation with a resolution that has never previously been reached. The morphology of the intimal tear and aorta was quantified at different steps of the aortic dissection, demonstrating that the early notch geometry correlates with the critical pressure. This quantification is crucial for the development of better criteria identifying patients at risk. Phenomena prior to tear propagation were also described, such as the presence of a bulge at the tip of the notch, deforming the remaining wall.
Collapse
Affiliation(s)
- J Brunet
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France; European Synchrotron Radiation Facility (ESRF), Grenoble, France; Department of Mechanical Engineering, University College London, London, UK.
| | - B Pierrat
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France.
| | - J Adrien
- Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, Villeurbanne, France
| | - E Maire
- Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, Villeurbanne, France
| | - B A Lane
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - N Curt
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - A Bravin
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - N Laroche
- Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - P Badel
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| |
Collapse
|
14
|
Silva-Verissimo W, El Louali F, Godio-Raboutet Y, Leblond L, Sourdon J, Rapacchi S, Evin M. Traction mechanical characterization of porcine mitral valve annulus. J Biomech 2023; 146:111396. [PMID: 36459849 DOI: 10.1016/j.jbiomech.2022.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
The Mitral Annulus (MA) is an anisotropic, fibrous, flexible and dynamical structure. While MA dynamics are well documented, its passive mechanical properties remain poorly investigated to complete the design of adequate prostheses. Mechanical properties in traction on four sections of the MA (aortic, left, posterior and right segments) were assessed using a traction test system with a 30 N load cell and pulling jaws for sample fixation. Samples were submitted to a 1.5 N pre-load, 10 pre-conditioning cycles. Three strain rates were tested (5 %/min, 7 %/min and 13 %/min), the first two up to 10 % strain and the last until rupture. High-resolution diffusion-MRI provided microstructural mapping of fractional anisotropy and mean diffusion within muscle and collagen fibres. Ten MA from porcine hearts were excised resulting in 40 tested samples, out of which 28 were frozen prior to testing. Freezing samples significantly increased Young Moduli for all strain rates. No significant differences were found between Young Moduli at different strain rates (fresh samples 2.4 ± 1.1 MPa, 3.8 ± 2.2 MPa and 3.1 ± 1.8 MPa for increasing strain rates in fresh samples), while significant differences were found when comparing aortic with posterior and posterior with lateral (p < 0.012). Aortic segments deformed the most (24.1 ± 9.4 %) while lateral segments endured the highest stress (>0.3 MPa), corresponding to higher collagen fraction (0.46) and fractional anisotropy. Passive machinal properties differed between aortic and lateral segments of the MA. The process of freezing samples altered their mechanical properties. Underlying microstructural differences could be linked to changes in strain response.
Collapse
Affiliation(s)
| | - F El Louali
- Aix Marseille Univ, Univ Gustave Eiffel, LBA, Marseille, France; AP-HM, Marseille, France
| | | | | | - Joevin Sourdon
- Aix-Marseille University, CNRS, CRMBM, Marseille, France
| | - S Rapacchi
- Aix-Marseille University, CNRS, CRMBM, Marseille, France
| | - Morgane Evin
- Aix Marseille Univ, Univ Gustave Eiffel, LBA, Marseille, France.
| |
Collapse
|
15
|
Pukaluk A, Wolinski H, Viertler C, Regitnig P, Holzapfel GA, Sommer G. Changes in the microstructure of the human aortic medial layer under biaxial loading investigated by multi-photon microscopy. Acta Biomater 2022; 151:396-413. [PMID: 35970481 DOI: 10.1016/j.actbio.2022.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/01/2022]
Abstract
Understanding the correlation between tissue architecture, health status, and mechanical properties is essential for improving material models and developing tissue engineering scaffolds. Since structural-based material models are state of the art, there is an urgent need for experimentally obtained structural parameters. For this purpose, the medial layer of nine human abdominal aortas was simultaneously subjected to equibiaxial loading and multi-photon microscopy. At each loading interval of 0.02, collagen and elastin fibers were imaged based on their second-harmonic generation signal and two-photon excited autofluorescence, respectively. The structural alterations in the fibers were quantified using the parameters of orientation, diameter, and waviness. The results of the mechanical tests divided the sample cohort into the ruptured and non-ruptured, and stiff and non-stiff groups, which were covered by the findings from histological investigations. The alterations in structural parameters provided an explanation for the observed mechanical behavior. In addition, the waviness parameters of both collagen and elastin fibers showed the potential to serve as indicators of tissue strength. The data provided address deficiencies in current material models and bridge multiscale mechanisms in the aortic media. STATEMENT OF SIGNIFICANCE: Available material models can reproduce, but cannot predict, the mechanical behavior of human aortas. This deficiency could be overcome with the help of experimentally validated structural parameters as provided in this study. Simultaneous multi-photon microscopy and biaxial extension testing revealed the microstructure of human aortic media at different stretch levels. Changes in the arrangement of collagen and elastin fibers were quantified using structural parameters such as orientation, diameter and waviness. For the first time, structural parameters of human aortic tissue under continuous loading conditions have been obtained. In particular, the waviness parameters at the reference configuration have been associated with tissue stiffness, brittleness, and the onset of atherosclerosis.
Collapse
Affiliation(s)
- Anna Pukaluk
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Austria; Field of Excellence BioHealth - University of Graz, Austria
| | | | - Peter Regitnig
- Institute of Pathology, Medical University of Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, NTNU, Trondheim, Norway
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Austria.
| |
Collapse
|
16
|
Sutherland DW, McEleney A, de Almeida M, Kajimoto M, Ventura G, Isenberg BC, Portman MA, Stapleton SE, Williams C. Characterization of main pulmonary artery and valve annulus region of piglets using echocardiography, uniaxial tensile testing, and a novel non-destructive technique. Front Cardiovasc Med 2022; 9:884116. [PMID: 36093160 PMCID: PMC9459108 DOI: 10.3389/fcvm.2022.884116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Characterization of cardiovascular tissue geometry and mechanical properties of large animal models is essential when developing cardiovascular devices such as heart valve replacements. These datasets are especially critical when designing devices for pediatric patient populations, as there is often limited data for guidance. Here, we present a previously unavailable dataset capturing anatomical measurements and mechanical properties of juvenile Yorkshire (YO) and Yucatan (YU) porcine main pulmonary artery (PA) and pulmonary valve (PV) tissue regions that will inform pediatric heart valve design requirements for preclinical animal studies. In addition, we developed a novel radial balloon catheter-based method to measure tissue stiffness and validated it against a traditional uniaxial tensile testing method. YU piglets, which were significantly lower weight than YO counterparts despite similar age, had smaller PA and PV diameters (7.6-9.9 mm vs. 10.1-12.8 mm). Young's modulus (stiffness) was measured for the PA and the PV region using both the radial and uniaxial testing methods. There was no significant difference between the two breeds for Young's modulus measured in the elastic (YU PA 84.7 ± 37.3 kPa, YO PA 79.3 ± 15.7 kPa) and fibrous regimes (YU PA 308.6 ± 59.4 kPa, YO PA 355.7 ± 68.9 kPa) of the stress-strain curves. The two testing techniques also produced similar stiffness measurements for the PA and PV region, although PV data showed greater variation between techniques. Overall, YU and YO piglets had similar PA and PV diameters and tissue stiffness to previously reported infant pediatric patients. These results provide a previously unavailable age-specific juvenile porcine tissue geometry and stiffness dataset critical to the development of pediatric cardiovascular prostheses. Additionally, the data demonstrates the efficacy of a novel balloon catheter-based technique that could be adapted to non-destructively measure tissue stiffness in situ.
Collapse
Affiliation(s)
- David W. Sutherland
- Bioengineering Division, The Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Aisling McEleney
- Bioengineering Division, The Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Matheus de Almeida
- Bioengineering Division, The Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Masaki Kajimoto
- Seattle Children’s Research Institute, Seattle Children’s Hospital, Seattle, WA, United States
| | - Giselle Ventura
- Bioengineering Division, The Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Brett C. Isenberg
- Bioengineering Division, The Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Michael A. Portman
- Seattle Children’s Research Institute, Seattle Children’s Hospital, Seattle, WA, United States
| | - Scott E. Stapleton
- Department of Mechanical Engineering, University of Massachusetts, Lowell, MA, United States
| | - Corin Williams
- Bioengineering Division, The Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| |
Collapse
|
17
|
Koser J, Chirvi S, Banerjee A, Pintar FA, Hampton C, Kleinberger M. Repeated measures analysis of projectile penetration in porcine legs as a function of storage condition. J Forensic Leg Med 2022; 90:102395. [PMID: 35863258 DOI: 10.1016/j.jflm.2022.102395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/30/2022]
Abstract
Buried blast explosions create small projectiles which can become lodged in the tissue of personnel as far away as hundreds of meters. Without appropriate treatment, these lodged projectiles can become a source of infection and prolonged injury to soldiers in modern combat. Human cadavers can be used as surrogates for living humans for ballistic penetration testing, but human cadavers are frozen during transport and storage. The process of freezing and thawing the tissue before testing may change the biomechanical properties of the tissue. The goal of the current study was to understand penetration threshold differences between fresh, refrigerated, and frozen tissue and investigate factors that may contribute to these differences. A custom-built pneumatic launcher was used to accelerate 3/16″ stainless steel ball bearings toward porcine legs that were either tested fresh, following refrigerated storage, or following frozen storage. A generalized linear mixed model, accounting for within-animal dependence, owing to repeated observations, was found to be the most appropriate for these data and was used for analysis. The "generalized" model accommodated non-continuous observations, provided a straight-forward way to implement the repeated measures, and provided a risk estimate for projectile penetration. Both storage condition (p = 0.48) and leg (p = 0.07) were shown to be not significant and the confidence intervals for those variables were overlapping. As all covariates were found to be non-significant, a single model containing all impacts was used to develop a V50, or velocity at which 50% of impacts are expected to penetrate. From this model, 50% probability of penetration occurs at 137.3 m/s with 95% confidence intervals at 132.0 and 144.0 m/s. In this study, the fresh legs and previously frozen legs allowed penetration at similar velocities indicating that previously frozen legs were acceptable surrogates for fresh legs. This study only compared the penetration threshold in tissues that had been stored in differing conditions. To truly study penetration, more conditions will need to be studied including the effects of projectile mass and material, the effects of projectile shape, and the effects of clothing or protective layers on penetration threshold.
Collapse
Affiliation(s)
- Jared Koser
- Medical College of Wisconsin, Milwaukee, WI, USA; Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA; Marquette University, Milwaukee, WI, USA.
| | - Sajal Chirvi
- Medical College of Wisconsin, Milwaukee, WI, USA; Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | | | - Frank A Pintar
- Medical College of Wisconsin, Milwaukee, WI, USA; Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA; Marquette University, Milwaukee, WI, USA
| | - Carolyn Hampton
- DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD, USA
| | | |
Collapse
|
18
|
An improved parameter fitting approach of a planar biaxial test including the experimental prestretch. J Mech Behav Biomed Mater 2022; 134:105389. [DOI: 10.1016/j.jmbbm.2022.105389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 11/21/2022]
|
19
|
Maia BT, Vendruscolo CDP, de Souza AF, Zoppa ALDVD. Anatomical position of the palmar/plantar nerves at the metacarpal/metatarsal distal level in horses: An in vivo study by means of ultrasonography. Anat Histol Embryol 2022; 51:236-243. [PMID: 35000219 DOI: 10.1111/ahe.12782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/05/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
The neurovascular bundle of the equine distal cannon can dynamically vary with limb position, and this can affect the performance of low 4- or 6-point block. This study aims to identify and describe the anatomical position and variations of the lateral and medial palmar/plantar nerve at the metacarpal/metatarsal distal level in horses by ultrasonography. Eight mares underwent ultrasound examination on the lateral and medial palmar/plantar sides of the metacarpus/metatarsus. Images were obtained for measurements of the cross-sectional area of the nerve, distances between the nerve and the skin surface, branch of the suspensory ligament (SL), deep digital flexor tendon (DDFT) and superficial digital flexor tendon (SDFT) with limbs supported and elevated. The distance to the skin for forelimbs was higher on the lateral side when the limb was elevated (p < 0.001). The comparisons between supported and elevated limbs on the same side showed longer distances to the skin with the limb supported on the medial side (p < 0.001). Hindlimbs showed longer distances to the skin with the limb supported on the medial face (p = 0.027). The anatomical position of palmar/plantar nerves was similar between the lateral and medial sides of the limb, generally being in contact with the dorsal edge of DDFT. The strategy of elevating the limb during the injection of the low 4- or 6-point block can lead to a higher risk of puncture of the digital sheath.
Collapse
Affiliation(s)
| | - Cynthia do Prado Vendruscolo
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Anderson Fernando de Souza
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - André Luis do Valle De Zoppa
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Dwivedi KK, Lakhani P, Kumar S, Kumar N. Effect of collagen fibre orientation on the Poisson's ratio and stress relaxation of skin: an ex vivo and in vivo study. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211301. [PMID: 35345435 PMCID: PMC8941416 DOI: 10.1098/rsos.211301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
During surgical treatment skin undergoes extensive deformation, hence it must be able to withstand large mechanical stresses without damage. Therefore, understanding the mechanical properties of skin becomes important. A detailed investigation on the relationship between the three-dimensional deformation response of skin and its microstructure is conducted in the current study. This study also discloses the underlying science of skin viscoelasticity. Deformation response of skin is captured using digital image correlation, whereas micro-CT, scanning electron microscopy and atomic force microscopy are used for microstructure analysis. Skin shows a large lateral contraction and expansion (auxeticity) when stretched parallel and perpendicular to the skin tension lines, respectively. Large lateral contraction is a result of fluid exudation from the tissue, while large rotation of the stiff collagen fibres in the loading direction explains the skin auxeticity. During stress relaxation, lateral contraction and fluid effluxion from skin reveal that tissue volume loss is the intrinsic science of skin viscoelasticity. Furthermore, the results obtained from in vivo study on human skin show the relevance of the ex vivo study to physiological conditions and stretching of the skin during its treatments.
Collapse
Affiliation(s)
- Krashn Kumar Dwivedi
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, India
| | - Piyush Lakhani
- Department of Mechanical Engineering, Indian Institute of Technology, Ropar, India
| | - Sachin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology, Ropar, India
| | - Navin Kumar
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, India
- Department of Mechanical Engineering, Indian Institute of Technology, Ropar, India
| |
Collapse
|
21
|
Experimental Investigation of the Anisotropic Mechanical Response of the Porcine Thoracic Aorta. Ann Biomed Eng 2022; 50:452-466. [PMID: 35226280 DOI: 10.1007/s10439-022-02931-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 12/25/2022]
Abstract
Knowledge of the mechanical properties of blood vessels and determining appropriate constitutive relations are essential in developing methodologies for accurate prognosis of vascular diseases. We examine the directional variation of the mechanical properties of the porcine thoracic aorta by performing uniaxial extension tests on dumbbell-shaped specimens cut at five different orientations with respect to the circumferential direction of the aorta. Specimens in all the orientations considered exhibit a nonlinear constitutive response that is typical of collagenous soft tissues. Shear strain under uniaxial extension demonstrates clearly discernible anisotropy of the mechanical response of the porcine aorta, and samples oriented at 45[Formula: see text] and 60[Formula: see text] with respect to the circumferential direction show a peculiar crescent-shaped shear strain-nominal stretch response not displayed by axial and circumferential specimens. Failure stress indicates decreasing tensile strength of the porcine aortic wall from the circumferential direction to the longitudinal direction. Furthermore, we determine the material parameters for the four-fiber-family and Gasser-Holzapfel-Ogden models from the mechanical response data of the circumferential and longitudinal specimens. It is shown how the material parameters derived from the uniaxial tests on circumferential and longitudinal specimens are insufficient to characterize the response of off-axis specimens.
Collapse
|
22
|
Peña JA, Cilla M, Martínez MA, Peña E. Biomechanical characterization and constitutive modeling of the layer-dissected residual strains and mechanical properties of abdominal porcine aorta. J Biomech 2022; 132:110909. [PMID: 35032837 DOI: 10.1016/j.jbiomech.2021.110909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/03/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
We analyze the residual stresses and mechanical properties of layer-dissected infrarenal abdominal aorta (IAA). We measured the axial pre-stretch and opening angle and performed uniaxial tests to study and compare the mechanical behavior of both intact and layer-dissected porcine IAA samples under physiological loads. Finally, some of the most popular anisotropic hyperelastic constitutive models (GOH and microfiber models) were proposed to estimate the mechanical properties of the abdominal aorta by least-square fitting of the recorded in-vitro uniaxial test results. The results show that the residual stresses are layer dependent. In all cases, we found that the OA in the media layer is lower than in the whole artery, the intima and the adventitia. For the axial pre-stretch, we found that the adventitia and the media were slightly stretched in the environment of the intact arterial strip, whereas the intima appears to be compressed. Regarding the mechanical properties, the media seems to be the softest layer over the whole deformation domain showing high anisotropy, while the intima and adventitia exhibit considerable stiffness and a lower anisotropy response. Finally, all the hyperelastic anisotropic models considered in this study provided a reasonable approximation of the experimental data. The GOH model showed the best fitting.
Collapse
Affiliation(s)
- Juan A Peña
- Department of Management and Manufacturing Engineering, Faculty of Engineering and Architecture, University of Zaragoza, Spain; Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain
| | - M Cilla
- Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain; Centro Universitario de la Defensa, Academia General Militar, Zaragoza, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Miguel A Martínez
- Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain; Department of Mechanical Engineering, University of Zaragoza, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Estefanía Peña
- Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain; Department of Mechanical Engineering, University of Zaragoza, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain.
| |
Collapse
|
23
|
Chiu P, Lee HP, Dalal AR, Koyano T, Nguyen M, Connolly AJ, Chaudhuri O, Fischbein MP. Relative strain is a novel predictor of aneurysmal degeneration of the thoracic aorta: An ex vivo mechanical study. JVS Vasc Sci 2021; 2:235-246. [PMID: 34806052 PMCID: PMC8585654 DOI: 10.1016/j.jvssci.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/28/2021] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Current guidelines for prophylactic replacement of the thoracic aorta, primarily based on size alone, may not be adequate in identifying patients at risk for either progression of disease or aortic catastrophe. We undertook the current study to determine whether the mechanical properties of the aorta might be able to predict aneurysmal dilatation of the aorta using a clinical database and benchtop mechanical testing of human aortic tissue. METHODS Using over 400 samples from 31 patients, mechanical properties were studied in (a) normal aorta and then (b) between normal and diseased aorta using linear mixed-effects models. A machine learning technique was used to predict aortic growth rate over time using mechanical properties and baseline clinical characteristics. RESULTS Healthy aortic tissue under in vivo loading conditions, after accounting for aortic segment location, had lower longitudinal elastic modulus compared with circumferential elastic modulus: -166.8 kPa (95% confidence interval [CI]: -210.8 to -122.7, P < .001). Fracture toughness was also lower in the longitudinal vs circumferential direction: -201.2 J/m3 (95% CI: -272.9 to -129.5, P < .001). Finally, relative strain was lower in the longitudinal direction compared with the circumferential direction: -0.01 (95% CI: -0.02 to -0.004, P = .002). Patients with diseased aorta, after accounting for segment location and sample direction, had decreased toughness compared with normal aorta, -431.7 J/m3 (95% CI: -628.6 to -234.8, P < .001), and increased relative strain, 0.09 (95% CI: 0.04 to 0.14, P = .003). CONCLUSIONS Increasing relative strain was identified as a novel independent predictor of aneurysmal degeneration. Noninvasive measurement of relative strain may aid in the identification and monitoring of patients at risk for aneurysmal degeneration. (JVS-Vascular Science 2021;2:1-12.). CLINICAL RELEVANCE Aortic aneurysm surveillance and prophylactic surgical recommendations are based on computed tomographic angiogram aortic dimensions and growth rate measurements. However, aortic catastrophes may occur at small sizes, confounding current risk stratification models. Herein, we report that increasing aortic relative strain, that is, greater distensibility, is associated with growth over time, thus potentially identifying patients at risk for dissection/rupture.
Collapse
Affiliation(s)
- Peter Chiu
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford University, Stanford, Calif
| | - Hong-Pyo Lee
- Department of Mechanical Engineering, Stanford University, Stanford, Calif
| | - Alex R. Dalal
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford University, Stanford, Calif
| | - Tiffany Koyano
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford University, Stanford, Calif
| | - Marie Nguyen
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford University, Stanford, Calif
| | - Andrew J. Connolly
- Department of Pathology, University of California San Francisco, San Francisco, Calif
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, Calif
| | - Michael P. Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford University, Stanford, Calif
| |
Collapse
|
24
|
Biomechanical properties of ascending aortic aneurysms: Quantification of inter- and intra-patient variability. J Biomech 2021; 125:110542. [PMID: 34237660 DOI: 10.1016/j.jbiomech.2021.110542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/19/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
This study investigates the biomechanical properties of ascending aortic aneurysms focusing on the inter-patient differences vs. the heterogeneity within a patient's aneurysm. Each specimen was tested on a biaxial testing device and the resulting stress-strain response was fitted to a four-parameter Fung constitutive model. We postulate that the inter-patient variability (differences between patients) blurs possible intra-patient variability (regional heterogeneity) and, thus, that both effects must be considered to shed light on the role of heterogeneity in aneurysm progression. We propose, demonstrate, and discuss two techniques to assess differences by, first, comparing conventional biomechanical properties and, second, the overall constitutive response. Results show that both inter- and intra-patient variability contribute to errors when using population averaged models to fit individual tissue behaviour. When inter-patient variability was accounted for and its effects excluded, intra-patient heterogeneity could be assessed, showing a wide degree of heterogeneity at the individual patient level. Furthermore, the right lateral region (from the patient's perspective) appeared different (stiffer) than the other regions. We posit that this heterogeneity could be a consequence of maladaptive remodelling due to altered loading conditions that hastens microstructural changes naturally occurring with age. Further validation of these results should be sought from a larger cohort study.
Collapse
|
25
|
Cunnane CV, Croghan SM, Walsh MT, Cunnane EM, Davis NF, Flood HD, Mulvihill JJE. Cryopreservation of porcine urethral tissue: Storage at -20°C preserves the mechanical, failure and geometrical properties. J Mech Behav Biomed Mater 2021; 119:104516. [PMID: 33932753 DOI: 10.1016/j.jmbbm.2021.104516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Cryopreservation is required to preserve the native properties of tissue for prolonged periods of time. In this study, we evaluate the impact that 4 different cryopreservation protocols have on porcine urethral tissue, to identify a protocol that best preserves the native properties of the tissue. The cryopreservation protocols include storage in cryoprotective agents at -20 °C and -80 °C with a slow, gradual, and fast reduction in temperature. To evaluate the effects of cryopreservation, the tissue is mechanically characterised in uniaxial tension and the mechanical properties, failure mechanics, and tissue dimensions are compared fresh and following cryopreservation. The mechanical response of the tissue is altered following cryopreservation, yet the elastic modulus from the high stress, linear region of the Cauchy stress - stretch curves is unaffected by the freezing process. To further investigate the change in mechanical response following cryopreservation, the stretch at different tensile stress values was evaluated, which revealed that storage at -20 °C is the only protocol that does not significantly alter the mechanical properties of the tissue compared to the fresh samples. Conversely, the ultimate tensile strength and the stretch at failure were relatively unaffected by the freezing process, regardless of the cryopreservation protocol. However, there were alterations to the tissue dimensions following cryopreservation that were significantly different from the fresh samples for the tissue stored at -80 °C. Therefore, any study intent on preserving the mechanical, failure, and geometric properties of urethral tissue during cryopreservation should do so by freezing samples at -20 °C, as storage at -80 °C is shown here to significantly alter the tissue properties.
Collapse
Affiliation(s)
- Connor V Cunnane
- BioSciBer, Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | | | - Michael T Walsh
- BioSciBer, Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | | | - Niall F Davis
- Department of Urology, Beaumont Hospital, Dublin, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Hugh D Flood
- Class Medical Limited, Unit 1 D, Annacotty Business Park, Co. Limerick, Ireland
| | - John J E Mulvihill
- BioSciBer, Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
26
|
Forneris A, Kennard J, Ismaguilova A, Shepherd RD, Studer D, Bromley A, Moore RD, Rinker KD, Di Martino ES. Linking Aortic Mechanical Properties, Gene Expression and Microstructure: A New Perspective on Regional Weakening in Abdominal Aortic Aneurysms. Front Cardiovasc Med 2021; 8:631790. [PMID: 33659281 PMCID: PMC7917077 DOI: 10.3389/fcvm.2021.631790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/15/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Current clinical practice for the assessment of abdominal aortic aneurysms (AAA) is based on vessel diameter and does not account for the multifactorial, heterogeneous remodeling that results in the regional weakening of the aortic wall leading to aortic growth and rupture. The present study was conducted to determine correlations between a novel non-invasive surrogate measure of regional aortic weakening and the results from invasive analyses performed on corresponding ex vivo aortic samples. Tissue samples were evaluated to classify local wall weakening and the likelihood of further degeneration based on non-invasive indices. Methods: A combined, image-based fluid dynamic and in-vivo strain analysis approach was used to estimate the Regional Aortic Weakness (RAW) index and assess individual aortas of AAA patients prior to elective surgery. Nine patients were treated with complete aortic resection allowing the systematic collection of tissue samples that were used to determine regional aortic mechanics, microstructure and gene expression by means of mechanical testing, microscopy and transcriptomic analyses. Results: The RAW index was significantly higher for samples exhibiting lower mechanical strength (p = 0.035) and samples classified as low elastin content (p = 0.020). Samples with higher RAW index had the greatest number of genes differentially expressed compared to any constitutive metric. High RAW samples showed a decrease in gene expression for elastin and a down-regulation of pathways responsible for cell movement, reorganization of cytoskeleton, and angiogenesis. Conclusions: This work describes the first AAA index free of assumptions for material properties and accounting for patient-specific mechanical behavior in relation to aneurysm strength. Use of the RAW index captured biomechanical changes linked to the weakening of the aorta and revealed changes in microstructure and gene expression. This approach has the potential to provide an improved tool to aid clinical decision-making in the management of aortic pathology.
Collapse
Affiliation(s)
- Arianna Forneris
- Biomedical Engineering, University of Calgary, Calgary, AB, Canada.,Department of Civil Engineering, University of Calgary, Calgary, AB, Canada
| | - Jacob Kennard
- Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | | | | | - Deborah Studer
- Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Amy Bromley
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Randy D Moore
- Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Kristina D Rinker
- Biomedical Engineering, University of Calgary, Calgary, AB, Canada.,Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Elena S Di Martino
- Biomedical Engineering, University of Calgary, Calgary, AB, Canada.,Department of Civil Engineering, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Mechanical, compositional and morphological characterisation of the human male urethra for the development of a biomimetic tissue engineered urethral scaffold. Biomaterials 2021; 269:120651. [PMID: 33476892 DOI: 10.1016/j.biomaterials.2021.120651] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022]
Abstract
This study addresses a crucial gap in the literature by characterising the relationship between urethral tissue mechanics, composition and gross structure. We then utilise these data to develop a biomimetic urethral scaffold with physical properties that more accurately mimic the native tissue than existing gold standard scaffolds; small intestinal submucosa (SIS) and urinary bladder matrix (UBM). Nine human urethra samples were mechanically characterised using pressure-diameter and uniaxial extension testing. The composition and gross structure of the tissue was determined using immunohistological staining. A pressure stiffening response is observed during the application of intraluminal pressure. The elastic and viscous tissue responses to extension are free of regional or directional variance. The elastin and collagen content of the tissue correlates significantly with tissue mechanics. Building on these data, a biomimetic urethral scaffold was fabricated from collagen and elastin in a ratio that mimics the composition of the native tissue. The resultant scaffold is comprised of a dense inner layer and a porous outer layer that structurally mimic the submucosa and corpus spongiosum layers of the native tissue, respectively. The porous outer layer facilitated more uniform cell infiltration relative to SIS and UBM when implanted subcutaneously (p < 0.05). The mechanical properties of the biomimetic scaffold better mimic the native tissue compared to SIS and UBM. The tissue characterisation data presented herein paves the way for the development of biomimetic urethral grafts, and the novel scaffold we develop demonstrates positive findings that warrant further in vivo evaluation.
Collapse
|
28
|
Pillalamarri N, Patnaik S, Piskin S, Gueldner P, Finol E. Ex Vivo Regional Mechanical Characterization of Porcine Pulmonary Arteries. EXPERIMENTAL MECHANICS 2021; 61:285-303. [PMID: 33814554 PMCID: PMC8011683 DOI: 10.1007/s11340-020-00678-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Regional mechanical characterization of pulmonary arteries can be useful in the development of computational models of pulmonary arterial mechanics. OBJECTIVE We performed a biomechanical and microstructural characterization study of porcine pulmonary arteries, inclusive of the main, left, and right pulmonary arteries (MPA, LPA, and RPA, respectively). METHODS The specimens were initially stored at -20°C and allowed to thaw for 12-24 hours prior to testing. Each artery was further subdivided into proximal, middle, and distal regions, leading to ten location-based experimental groups. Planar equibiaxial tensile testing was performed to evaluate the mechanical behavior of the specimens, from which we calculated the stress at the maximum strain (S 55), tensile modulus (TM), anisotropy index (AI), and strain energy in terms of area under the stress-strain curve (AUC). Histological quantification was performed to evaluate the area fraction of elastin and collagen content, intima-media thickness (IMT), and adventitial thickness (AT). The constitutive material behavior of each group was represented by a five-constant Holzapfel-Gasser-Ogden model. RESULTS The specimens exhibited non-linear stress-strain characteristics across all groups. The MPA exhibited the highest mean wall stress and TM in the longitudinal and circumferential directions, while the bifurcation region yielded the highest values of AI and AUC. All regions revealed a higher stiffness in the longitudinal direction compared to the circumferential direction, suggesting a degree of anisotropy that is believed to be within the margin of experimental uncertainty. Collagen content was found to be the highest in the MPA and decreased significantly at the bifurcation, LPA and RPA. Elastin content did not yield such significant differences amongst the ten groups. The MPA had the highest IMT, which decreased concomitantly to the distal LPA and RPA. No significant differences were found in the AT amongst the ten groups. CONCLUSION The mechanical properties of porcine pulmonary arteries exhibit strong regional dissimilarities, which can be used to inform future studies of high fidelity finite element models.
Collapse
Affiliation(s)
- N.R. Pillalamarri
- University of Texas at San Antonio, Department of Mechanical Engineering, San Antonio, TX
| | - S.S. Patnaik
- University of Texas at San Antonio, Department of Mechanical Engineering, San Antonio, TX
| | - S. Piskin
- University of Texas at San Antonio, Department of Mechanical Engineering, San Antonio, TX
- Istinye University, Department of Mechanical Engineering, Zeytinburnu, Istanbul, Turkey
| | - P. Gueldner
- University of Texas at San Antonio, Department of Biomedical Engineering, San Antonio, TX
| | - E.A. Finol
- University of Texas at San Antonio, Department of Mechanical Engineering, San Antonio, TX
- University of Texas at San Antonio, UTSA/UTHSA Joint Graduate Program in Biomedical Engineering, San Antonio, TX
| |
Collapse
|
29
|
Vignali E, di Bartolo F, Gasparotti E, Malacarne A, Concistré G, Chiaramonti F, Murzi M, Positano V, Landini L, Celi S. Correlation between micro and macrostructural biaxial behavior of ascending thoracic aneurysm: a novel experimental technique. Med Eng Phys 2020; 86:78-85. [PMID: 33261737 DOI: 10.1016/j.medengphy.2020.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 10/01/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
Abstract
Mechanical properties and microstructural modifications of vessel tissues are strongly linked, as established in the state of the art of cardiovascular diseases. Techniques to obtain both mechanical and structural information are reported, but the possibility to obtain real-time microstructural and macrostructural data correlated is still lacking. An experimental approach to characterize the aortic tissue is presented. A setup integrating biaxial traction and Small Angle Light Scattering (SALS) analysis is described. The system was adopted to test ex-vivo aorta specimens from healthy and aneusymatic (aTAA) cases. A significant variation of the fiber dispersion with respect to the unloaded state was encountered during the material traction. The corresponding microstructural and mechanical data were successfully used to fit a given anisotropic constitutive model, with satisfactory R2 values (0.97±0.11 and 0.96±0.17, for aTAA and healthy population, respectively) and fiber dispersion parameters variations between the aTAA and healthy populations (0.39±0.23 and 0.15±0.10). The method integrating the biaxial/SALS technique was validated, allowing for real-time synchronization between mechanical and microstructural analysis of anisotropic biological tissues.
Collapse
Affiliation(s)
- Emanuele Vignali
- BioCardioLab, Ospedale del Cuore, Fondazione Toscana G. Monasterio, Massa, Italy; Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Francesco di Bartolo
- BioCardioLab, Ospedale del Cuore, Fondazione Toscana G. Monasterio, Massa, Italy; Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Emanuele Gasparotti
- BioCardioLab, Ospedale del Cuore, Fondazione Toscana G. Monasterio, Massa, Italy; Department of Information Engineering, University of Pisa, Pisa, Italy
| | | | - Giovanni Concistré
- Adult Cardiosurgery Unit, Ospedale del Cuore, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Francesca Chiaramonti
- Adult Cardiosurgery Unit, Ospedale del Cuore, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Michele Murzi
- Adult Cardiosurgery Unit, Ospedale del Cuore, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Vincenzo Positano
- BioCardioLab, Ospedale del Cuore, Fondazione Toscana G. Monasterio, Massa, Italy
| | - Luigi Landini
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Simona Celi
- BioCardioLab, Ospedale del Cuore, Fondazione Toscana G. Monasterio, Massa, Italy.
| |
Collapse
|
30
|
Dynamic mechanical characterization and viscoelastic modeling of bovine brain tissue. J Mech Behav Biomed Mater 2020; 114:104204. [PMID: 33218929 DOI: 10.1016/j.jmbbm.2020.104204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 10/23/2020] [Accepted: 11/07/2020] [Indexed: 01/12/2023]
Abstract
Brain tissue is vulnerable and sensitive, predisposed to potential damage under various conditions of mechanical loading. Although its material properties have been investigated extensively, the frequency-dependent viscoelastic characterization is currently limited. Computational models can provide a non-invasive method by which to analyze brain injuries and predict the mechanical response of the tissue. The brain injuries are expected to be induced by dynamic loading, mostly in compression and measurement of dynamic viscoelastic properties are essential to improve the accuracy and variety of finite element simulations on brain tissue. Thus, the aim of this study was to investigate the compressive frequency-dependent properties of brain tissue and present a mathematical model in the frequency domain to capture the tissue behavior based on experimental results. Bovine brain specimens, obtained from four locations of corona radiata, corpus callosum, basal ganglia and cortex, were tested under compression using dynamic mechanical analysis over a range of frequencies between 0.5 and 35 Hz to characterize the regional and directional response of the tissue. The compressive dynamic properties of bovine brain tissue were heterogenous for regions but not sensitive to orientation showing frequency dependent statistical results, with viscoelastic properties increasing with frequency. The mean storage and loss modulus were found to be 12.41 kPa and 5.54 kPa, respectively. The material parameters were obtained using the linear viscoelastic model in the frequency domain and the numeric simulation can capture the compressive mechanical behavior of bovine brain tissue across a range of frequencies. The frequency-dependent viscoelastic characterization of brain tissue will improve the fidelity of the computational models of the head and provide essential information to the prediction and analysis of brain injuries in clinical treatments.
Collapse
|
31
|
Sigaeva T, Polzer S, Vitásek R, Di Martino ES. Effect of testing conditions on the mechanical response of aortic tissues from planar biaxial experiments: Loading protocol and specimen side. J Mech Behav Biomed Mater 2020; 111:103882. [DOI: 10.1016/j.jmbbm.2020.103882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 01/15/2023]
|
32
|
de Hoop H, Petterson NJ, van de Vosse FN, van Sambeek MRHM, Schwab HM, Lopata RGP. Multiperspective Ultrasound Strain Imaging of the Abdominal Aorta. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3714-3724. [PMID: 32746118 DOI: 10.1109/tmi.2020.3003430] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Current decision-making for clinical intervention of abdominal aortic aneurysms (AAAs) is based on the maximum diameter of the aortic wall, but this does not provide patient-specific information on rupture risk. Ultrasound (US) imaging can assess both geometry and deformation of the aortic wall. However, low lateral contrast and resolution are currently limiting the precision of both geometry and local strain estimates. To tackle these drawbacks, a multiperspective scanning mode was developed on a dual transducer US system to perform strain imaging at high frame rates. Experimental imaging was performed on porcine aortas embedded in a phantom of the abdomen, pressurized in a mock circulation loop. US images were acquired with three acquisition schemes: Multiperspective ultrafast imaging, single perspective ultrafast imaging, and conventional line-by-line scanning. Image registration was performed by automatic detection of the transducer surfaces. Multiperspective images and axial displacements were compounded for improved segmentation and tracking of the aortic wall, respectively. Performance was compared in terms of image quality, motion tracking, and strain estimation. Multiperspective compound displacement estimation reduced the mean motion tracking error over one cardiac cycle by a factor 10 compared to conventional scanning. Resolution increased in radial and circumferential strain images, and circumferential signal-to-noise ratio (SNRe) increased by 10 dB. Radial SNRe is high in wall regions moving towards the transducer. In other regions, radial strain estimates remain cumbersome for the frequency used. In conclusion, multiperspective US imaging was demonstrated to improve motion tracking and circumferential strain estimation of porcine aortas in an experimental set-up.
Collapse
|
33
|
Dwivedi KK, Lakhani P, Kumar S, Kumar N. The Effect of Strain Rate on the Stress Relaxation of the Pig Dermis: A Hyper-Viscoelastic Approach. J Biomech Eng 2020; 142:091006. [PMID: 32005989 DOI: 10.1115/1.4046205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 01/01/2023]
Abstract
The understanding of strain rate-dependent mechanical properties of the skin is important for accurate prediction of its biomechanics under different loading conditions. This study investigated the effect of strain rate, i.e., 0.025/s (low), 0.5/s (medium), and 1.25/s (high), ranging in the physiological loading rate of connective tissue, on the stress-relaxation response of the porcine dermis. Results show that in the initial phase of the relaxation, the value of stress relaxation (extent of relaxation) was found higher for high strain rate. However, the equilibrium stress was found strain rate independent. A Mooney-Rivlin-based five-term quasi-linear viscoelastic (QLV) model was proposed to determine the effect of strain rate on the stress-relaxation behavior of the porcine dermis. The value of relaxation modulus G1 and G2 were found higher for the high strain rate, whereas the reverse trend was observed for G3, G4, and G5. Moreover, the value of time constants τ1,τ2,τ3τ4, and τ5 were found higher for low strain rate. Statistical analysis shows no significant difference in the values of G5, τ4, and τ5 among the three strain rates. The proposed model was found capable to fit the stress-relaxation response of skin with great accuracy, e.g., root-mean-squared-error (RMSE) value equal to 0.015 ± 0.00012 MPa. Moreover, this hyper-viscoelastic model can be utilized: to quantify the effects of age and diseases on the skin; to simulate the stresses on sutures during large wound closure and impact loading.
Collapse
Affiliation(s)
- Krashn K Dwivedi
- Centre for Biomedical Engineering, Indian Institute of Technology Ropar, Punjab 140001, India
| | - Piyush Lakhani
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab 140001, India
| | - Sachin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab 140001, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab 140001, India
| |
Collapse
|
34
|
Dwivedi KK, Lakhani P, Kumar S, Kumar N. Frequency dependent inelastic response of collagen architecture of pig dermis under cyclic tensile loading: An experimental study. J Mech Behav Biomed Mater 2020; 112:104030. [PMID: 32858398 DOI: 10.1016/j.jmbbm.2020.104030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 08/07/2020] [Indexed: 01/20/2023]
Abstract
The evaluation of collagen architecture of the dermis in response to mechanical stimulation is important as it affects the macroscopic mechanical properties of the dermis. A detailed understanding of the processes involved in the alteration of the collagen structure is required to correlate the mechanical stimulation with tissue remodeling. This study investigated the effect of cyclic frequencies i.e. low (0.1 Hz), medium (2.0 Hz), and high (5.0 Hz) (physiological range) in the alteration of pig dermis collagen structure and its correlation with the macroscopic mechanical response of the dermis. The assessment of the collagen structure of virgin and mechanical tested specimens at tropocollagen, collagen fibril, and fiber level was performed using Fourier-transform infrared-attenuated total reflection (FTIR-ATR), atomic force microscopy (AFM), and scanning electron microscopy (SEM) respectively. After 103 cycles, a significantly higher alteration in collagen structure with discrete plastic-type damage was found for low frequency. This frequency dependent alteration of the collagen structure was found in correlation with the dermis macroscopic response. The value of inelastic strain, stress softening, damage parameter (reduction in elastic modulus), and reduction in energy dissipation were observed significantly large for slow frequency. A power-law based empirical relations, as a function of frequency and number of cycles, were proposed to predict the value of inelastic strain and damage parameter. This study also suggests that hierarchical structural response against the mechanical stimulation is time-dependent rather than cycle-dependent, may affect the tissue remodeling.
Collapse
Affiliation(s)
| | | | - Sachin Kumar
- Department of Mechanical Engineering, IIT, Ropar, India.
| | - Navin Kumar
- Center for Biomedical Engineering Department, IIT, Ropar, India; Department of Mechanical Engineering, IIT, Ropar, India.
| |
Collapse
|
35
|
Ross CJ, Hsu MC, Baumwart R, Mir A, Burkhart HM, Holzapfel GA, Wu Y, Lee CH. Quantification of load-dependent changes in the collagen fiber architecture for the strut chordae tendineae-leaflet insertion of porcine atrioventricular heart valves. Biomech Model Mechanobiol 2020; 20:223-241. [PMID: 32809131 PMCID: PMC8008705 DOI: 10.1007/s10237-020-01379-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
Atrioventricular heart valves (AHVs) regulate the unidirectional flow of blood through the heart by opening and closing of the leaflets, which are supported in their functions by the chordae tendineae (CT). The leaflets and CT are primarily composed of collagen fibers that act as the load-bearing component of the tissue microstructures. At the CT-leaflet insertion, the collagen fiber architecture is complex, and has been of increasing focus in the previous literature. However, these previous studies have not been able to quantify the load-dependent changes in the tissue's collagen fiber orientations and alignments. In the present study, we address this gap in knowledge by quantifying the changes in the collagen fiber architecture of the mitral and tricuspid valve's strut CT-leaflet insertions in response to the applied loads by using a unique approach, which combines polarized spatial frequency domain imaging with uniaxial mechanical testing. Additionally, we characterized these microstructural changes across the same specimen without the need for tissue fixatives. We observed increases in the collagen fiber alignments in the CT-leaflet insertion with increased loading, as described through the degree of optical anisotropy. Furthermore, we used a leaflet-CT-papillary muscle entity method during uniaxial testing to quantify the chordae tendineae mechanics, including the derivation of the Ogden-type constitutive modeling parameters. The results from this study provide a valuable insight into the load-dependent behaviors of the strut CT-leaflet insertion, offering a research avenue to better understand the relationship between tissue mechanics and the microstructure, which will contribute to a deeper understanding of AHV biomechanics.
Collapse
Affiliation(s)
- Colton J Ross
- Biomechanics and Biomaterial Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Ryan Baumwart
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Arshid Mir
- Department of Pediatric Cardiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Harold M Burkhart
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria.,Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Yi Wu
- Biomechanics and Biomaterial Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Chung-Hao Lee
- Biomechanics and Biomaterial Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA. .,School of Aerospace and Mechanical Engineering, Affiliated Faculty, Institute for Biomedical Engineering, Science and Technology (IBEST), The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK, 73019, USA.
| |
Collapse
|
36
|
Geelhoed WJ, Lalai RA, Sinnige JH, Jongeleen PJ, Storm C, Rotmans JI. Indirect Burst Pressure Measurements for the Mechanical Assessment of Biological Vessels. Tissue Eng Part C Methods 2020; 25:472-478. [PMID: 31328661 DOI: 10.1089/ten.tec.2019.0133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IMPACT STATEMENT Vascular tissue engineering (VTE) is a rapidly expanding field, with numerous approaches being explored both in preclinical and clinical settings. A pivotal factor in the development of VTE techniques is patient safety, notably with respect to the mechanical properties of the vessels. Of the mechanical properties, the bursting strength, representing the ability of a vessel to withstand the forces exerted on it by blood pressure, is the most important. The burst pressure is commonly assessed using one of three methods proposed by the ISO 7198. In this study, we evaluate the three burst pressure assessment methods exactly as they are presently in the field of VTE. We show that the indirect assessment methods, as they are presently used, provide inconsistent and therefore unreliable estimates of the true yield stress of a vessel.
Collapse
Affiliation(s)
- Wouter Jan Geelhoed
- 1Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.,2Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Reshma A Lalai
- 1Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.,2Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Joep H Sinnige
- 1Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.,2Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick J Jongeleen
- 1Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.,2Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis Storm
- 3Department of Applied Physics and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Joris I Rotmans
- 1Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
37
|
Stoiber M, Grasl C, Frieberger K, Moscato F, Bergmeister H, Schima H. Impact of the testing protocol on the mechanical characterization of small diameter electrospun vascular grafts. J Mech Behav Biomed Mater 2020; 104:103652. [DOI: 10.1016/j.jmbbm.2020.103652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
|
38
|
Myneni M, Rao A, Jiang M, Moreno MR, Rajagopal KR, Benjamin CC. Segmental Variations in the Peel Characteristics of the Porcine Thoracic Aorta. Ann Biomed Eng 2020; 48:1751-1767. [PMID: 32152801 DOI: 10.1007/s10439-020-02489-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
Aortic dissection occurs predominantly in the thoracic aorta and the mechanisms for the initiation and propagation of the tear in aortic dissection are not well understood. We study the tearing characteristics of the porcine thoracic aorta using a peeling test and we estimate the peeling energy per unit area in the ascending and the descending segments. The stretch and the peel force per unit width undergone by the peeled halves of a rectangular specimen are measured. We find that there can be significant variation in the stretch within the specimen and the stretch between the markers in the specimen varies with the dynamics of peeling. We found that in our experiment the stretch achieved in the peeled halves was such that it was in the range of the stretch at which the stress-stretch curve for the uniaxial experiment starts deviating from linearity. Higher peeling energy per unit area is required in the ascending aorta compared to the descending aorta. Longitudinal specimens required higher peeling energy per unit area when compared to the circumferential specimens.
Collapse
Affiliation(s)
- Manoj Myneni
- Department of Mechanical Engineering, Texas A&M University, 100 Mechanical Engineering Office Building, College Station, TX, 77843-3123, USA
| | - Akshay Rao
- Department of Mechanical Engineering, Texas A&M University, 100 Mechanical Engineering Office Building, College Station, TX, 77843-3123, USA
| | - Mingliang Jiang
- Department of Mechanical Engineering, Texas A&M University, 100 Mechanical Engineering Office Building, College Station, TX, 77843-3123, USA
| | - Michael R Moreno
- Department of Mechanical Engineering, Texas A&M University, 100 Mechanical Engineering Office Building, College Station, TX, 77843-3123, USA
| | - K R Rajagopal
- Department of Mechanical Engineering, Texas A&M University, 100 Mechanical Engineering Office Building, College Station, TX, 77843-3123, USA
| | - Chandler C Benjamin
- Department of Mechanical Engineering, Texas A&M University, 100 Mechanical Engineering Office Building, College Station, TX, 77843-3123, USA.
| |
Collapse
|
39
|
Paritala PK, Yarlagadda PKDV, Kansky R, Wang J, Mendieta JB, Gu Y, McGahan T, Lloyd T, Li Z. Stress-Relaxation and Cyclic Behavior of Human Carotid Plaque Tissue. Front Bioeng Biotechnol 2020; 8:60. [PMID: 32117939 PMCID: PMC7026010 DOI: 10.3389/fbioe.2020.00060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerotic plaque rupture is a catastrophic event that contributes to mortality and long-term disability. A better understanding of the plaque mechanical behavior is essential for the identification of vulnerable plaques pre-rupture. Plaque is subjected to a natural dynamic mechanical environment under hemodynamic loading. Therefore, it is important to understand the mechanical response of plaque tissue under cyclic loading conditions. Moreover, experimental data of such mechanical properties are fundamental for more clinically relevant biomechanical modeling and numerical simulations for risk stratification. This study aims to experimentally and numerically characterize the stress-relaxation and cyclic mechanical behavior of carotid plaque tissue. Instron microtester equipped with a custom-developed setup was used for the experiments. Carotid plaque samples excised at endarterectomy were subjected to uniaxial tensile, stress-relaxation, and cyclic loading protocols. Thirty percent of the underlying load level obtained from the uniaxial tensile test results was used to determine the change in mechanical properties of the tissue over time under a controlled testing environment (Control tests). The stress-relaxation test data was used to calibrate the hyperelastic (neo-Hookean, Ogden, Yeoh) and linear viscoelastic (Prony series) material parameters. The normalized relaxation force increased initially and slowly stabilized toward the end of relaxation phase, highlighting the viscoelastic behavior. During the cyclic tests, there was a decrease in the peak force as a function of the cycle number indicating mechanical distension due to repeated loading that varied with different frequencies. The material also accumulated residual deformation, which increased with the cycle number. This trend showed softening behavior of the samples. The results of this preliminary study provide an enhanced understanding of in vivo stress-relaxation and cyclic behavior of the human atherosclerotic plaque tissue.
Collapse
Affiliation(s)
- Phani Kumari Paritala
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Prasad K D V Yarlagadda
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rhys Kansky
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jiaqiu Wang
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jessica Benitez Mendieta
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - YuanTong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tim McGahan
- Department of Vascular Surgery, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Thomas Lloyd
- Department of Radiology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Zhiyong Li
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
40
|
Reproducibility assessment of ultrasound-based aortic stiffness quantification and verification using Bi-axial tensile testing. J Mech Behav Biomed Mater 2020; 103:103571. [DOI: 10.1016/j.jmbbm.2019.103571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 09/10/2019] [Accepted: 11/29/2019] [Indexed: 01/04/2023]
|
41
|
Quitzan JG, Singh A, Beaufrere H, Valverde A, Lillie B, Salahshoor M, Bardelcik A, Saleh TM. Evaluation of the performance of an endoscopic 3-mm electrothermal bipolar vessel sealing device intended for single use after multiple use-and-resterilization cycles. Vet Surg 2020; 49 Suppl 1:O120-O130. [PMID: 32053219 DOI: 10.1111/vsu.13396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/22/2019] [Accepted: 01/18/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To evaluate the performance of an endoscopic 3-mm electrothermal bipolar vessel sealing device (EBVS) intended for single use after multiple use-and-resterilization cycles. STUDY DESIGN Ex vivo study. SAMPLE POPULATION Eight 3-mm EBVS handpieces. METHODS Handpieces were subjected to a maximum of 15 cycles of testing, including simulated surgery, sealing and burst pressure testing of porcine carotid arteries, reprocessing, and hydrogen peroxide plasma resterilization. Failure was defined as two sequential vascular seal leakage events occurring at <250 mm Hg. Histological evaluation, maximum external temperature of the jaws, sealing time, tissue adherence, jaw surface characterization, and mechanical deterioration were studied. Failure rate was analyzed by using a Kaplan-Meier curve. Linear and ordinal logistic mixed models were used to analyze sealing time, handpiece jaw temperature, and adherence score. RESULTS Mean ± SD diameter of arteries was 3.22 ± 0.35 mm. Failure was observed starting at cycle 10 and going up to cycle 13 in 37.5% (3/8) of the handpieces. Tissue adherence increased after each cycle (P < .001). Maximum external temperature (79.8°C ± 13.9°C) and sealing time (1.8 ± 0.5 seconds) were not significantly different throughout cycles up to failure. A flatter surface and large scratches were observed microscopically throughout the jaw surface after repeated use and resterilization. CONCLUSION The 3-mm EBVS handpiece evaluated in this study can be considered safe to use for up to nine reuse-and-resterilization cycles. CLINICAL SIGNIFICANCE These data provide the basis for establishing preliminary guidelines for the reuse and hydrogen peroxide plasma resterilization of an endoscopic 3-mm EBVS handpiece.
Collapse
Affiliation(s)
- Juliany Gomes Quitzan
- School of Veterinary Medicine and Animal Science, Sao Paulo State University, Botucatu, Sao Paulo, Brazil.,Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Ameet Singh
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Hugues Beaufrere
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Alexander Valverde
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Brandon Lillie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Masoomeh Salahshoor
- School of Engineering, College of Engineering and Physical Sciences, University of Guelph, Ontario, Canada
| | - Alexander Bardelcik
- School of Engineering, College of Engineering and Physical Sciences, University of Guelph, Ontario, Canada
| | - Tarek M Saleh
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| |
Collapse
|
42
|
Frequency dependent viscoelastic properties of porcine brain tissue. J Mech Behav Biomed Mater 2020; 102:103460. [DOI: 10.1016/j.jmbbm.2019.103460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 02/06/2023]
|
43
|
Load-dependent collagen fiber architecture data of representative bovine tendon and mitral valve anterior leaflet tissues as quantified by an integrated opto-mechanical system. Data Brief 2020; 28:105081. [PMID: 31921956 PMCID: PMC6950777 DOI: 10.1016/j.dib.2019.105081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 11/22/2022] Open
Abstract
The data presented in this article provide load-dependent collagen fiber architecture (CFA) of one representative bovine tendon tissue sample and two representative porcine mitral valve anterior leaflet tissues, and they are stored in a MATLAB MAT-file format. Each dataset contains: (i) the number of pixel points, (ii) the array of pixel's x- and y-coordinates, (iii) the three acquired pixel intensity arrays, and (iv) the Delaunay triangulation for visualization purpose. This dataset is associated with a companion journal article, which can be consulted for further information about the methodology, results, and discussion of the opto-mechanical characterization of the tissue's CFA's (Jett etal. [1]).
Collapse
|
44
|
The status and challenges of replicating the mechanical properties of connective tissues using additive manufacturing. J Mech Behav Biomed Mater 2019; 103:103544. [PMID: 32090944 DOI: 10.1016/j.jmbbm.2019.103544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/16/2019] [Indexed: 01/23/2023]
Abstract
The ability to fabricate complex structures via precise and heterogeneous deposition of biomaterials makes additive manufacturing (AM) a leading technology in the creation of implants and tissue engineered scaffolds. Connective tissues (CTs) remain attractive targets for manufacturing due to their "simple" tissue compositions that, in theory, are replicable through choice of biomaterial(s) and implant microarchitecture. Nevertheless, characterisation of the mechanical and biological functions of 3D printed constructs with respect to their host tissues is often limited and remains a restriction towards their translation into clinical practice. This review aims to provide an update on the current status of AM to mimic the mechanical properties of CTs, with focus on arterial tissue, articular cartilage and bone, from the perspective of printing platforms, biomaterial properties, and topological design. Furthermore, the grand challenges associated with the AM of CT replacements and their subsequent regulatory requirements are discussed to aid further development of reliable and effective implants.
Collapse
|
45
|
Beger O, Karagül Mİ, Koç T, Kayan G, Cengiz A, Yılmaz ŞN, Olgunus ZK. Effects of different cadaver preservation methods on muscles and tendons: a morphometric, biomechanical and histological study. Anat Sci Int 2019; 95:174-189. [DOI: 10.1007/s12565-019-00508-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/28/2019] [Indexed: 12/29/2022]
|
46
|
Chorath K, Krysinski M, Bunegin L, Majors J, Weitzel EK, McMains KC, Chen PG. Failure Pressures of Dural Repairs in a Porcine Ex Vivo Model: Novel Use of Titanium Clips Versus Tissue Glue. ALLERGY & RHINOLOGY 2019; 10:2152656719879677. [PMID: 31632835 PMCID: PMC6769216 DOI: 10.1177/2152656719879677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Objective Endoscopic skull base surgery is advancing, and it is important to have reliable methods to repair the resulting defect. The objective of this study was to determine the failure pressures of 2 commonly used methods to repair large dural defects: collagen matrix underlay with fibrin glue and collagen matrix underlay with polyethylene glue, as well as a novel repair method: fascia lata with nonpenetrating titanium vascular clips. Methods The failure pressure of the 3 dural repairs was determined in a closed testing apparatus. Defects in porcine dura were created and collagen matrix grafts were used as an underlay followed by either fibrin glue (FG/CMG) or polyethylene glycol glue (PEG/CMG). A third condition using a segment of fascia lata was positioned flush with the edges of the dural defect and secured with titanium clips (TC/FL). Saline was infused to simulate increasing intracranial pressure (ICP) applied to the undersurface of the grafts until the repairs failed. Results The mean failure pressure of the PEG/CMG repair was 34.506 ± 14.822 cm H2O, FG/CMG was 12.413 ± 5.114 cm H2O, and TC/FL was 8.330 ± 3.483 cm H2O. There were statistically significant differences in mean failure pressures among the 3 repair methods. Conclusion In this ex vivo model comparing skull base repairs’ ability to withstand cerebrospinal fluid leak, the repairs that utilized PEG/CMG tolerated the greatest amount of pressure and was the only repair that exceeded normal physiologic ICP’s. Repair methods utilizing glues generally tolerated higher pressures compared to the novel repair using clips alone.
Collapse
Affiliation(s)
- Kevin Chorath
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Health San Antonio, San Antonio, Texas
| | - Mason Krysinski
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Health San Antonio, San Antonio, Texas
| | - Leonid Bunegin
- Department of Anesthesiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Jacob Majors
- Uniformed Services, University of Health Sciences and San Antonio Uniformed Health Sciences Educational Consortium, Joint Base San Antonio, San Antonio, Texas
| | - Erik Kent Weitzel
- Uniformed Services, University of Health Sciences and San Antonio Uniformed Health Sciences Educational Consortium, Joint Base San Antonio, San Antonio, Texas
| | - Kevin Christopher McMains
- Uniformed Services, University of Health Sciences and San Antonio Uniformed Health Sciences Educational Consortium, Joint Base San Antonio, San Antonio, Texas
| | - Philip G Chen
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
47
|
Duginski GA, Ross CJ, Laurence DW, Johns CH, Lee CH. An investigation of the effect of freezing storage on the biaxial mechanical properties of excised porcine tricuspid valve anterior leaflets. J Mech Behav Biomed Mater 2019; 101:103438. [PMID: 31542570 PMCID: PMC8008703 DOI: 10.1016/j.jmbbm.2019.103438] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/27/2019] [Accepted: 09/15/2019] [Indexed: 01/03/2023]
Abstract
The atrioventricular heart valve (AHV) leaflets are critical to the facilitation of proper unidirectional blood flow through the heart. Previously, studies have been conducted to understand the tissue mechanics of healthy AHV leaflets to inform the development of valve-specific computational models and replacement materials for use in diagnosing and treating valvular heart disease. Generally, these studies involved biaxial mechanical testing of the AHV leaflet tissue specimens to extract relevant mechanical properties. Most of those studies considered freezing-based storage systems based on previous findings for other connective tissues such as aortic tissue or skin. However, there remains no study that specifically examines the effects of freezing storage on the characterized mechanical properties of the AHV leaflets. In this study, we aimed to address this gap in knowledge by performing biaxial mechanical characterizations of the tricuspid valve anterior leaflet (TVAL) tissue both before and after a 48-h freezing period. Primary findings of this study include: (i) a statistically insignificant change in the tissue extensibilities, with the frozen tissues being slightly stiffer and more anisotropic than the fresh tissues; and (ii) minimal variations in the stress relaxation behaviors between the fresh and frozen tissues, with the frozen tissues demonstrating slightly lessened relaxation. The findings from this study suggested that freezing-based storage does not significantly impact the observed mechanical properties of one of the five AHV leaflets-the TVAL. The results from this study are useful for reaffirming the experimental methodologies in the previous studies, as well as informing the tissue preservation methods of future investigations of AHV leaflet mechanics.
Collapse
Affiliation(s)
- Grace A Duginski
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA.
| | - Colton J Ross
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA.
| | - Devin W Laurence
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA.
| | - Cortland H Johns
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA.
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA; Institute for Biomedical Engineering, Science and Technology, School of Aerospace and Mechanical Engineering (IBEST), The University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
48
|
Joyce K, Rochev Y, Rahmani S. Assessment of the uniaxial experimental parameters utilised for the mechanical testing of bovine pericardium. J Mech Behav Biomed Mater 2019; 96:27-37. [DOI: 10.1016/j.jmbbm.2019.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/09/2019] [Accepted: 04/13/2019] [Indexed: 11/26/2022]
|
49
|
Cheng J, Wang C, Gu Y. Combination of freeze-thaw with detergents: A promising approach to the decellularization of porcine carotid arteries. Biomed Mater Eng 2019; 30:191-205. [PMID: 30741667 DOI: 10.3233/bme-191044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jin Cheng
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, , P.R. China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, , P.R. China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, , P.R. China
| |
Collapse
|
50
|
de Beaufort HWL, Ferrara A, Conti M, Moll FL, van Herwaarden JA, Figueroa CA, Bismuth J, Auricchio F, Trimarchi S. Comparative Analysis of Porcine and Human Thoracic Aortic Stiffness. Eur J Vasc Endovasc Surg 2018; 55:560-566. [PMID: 29402669 DOI: 10.1016/j.ejvs.2017.12.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/14/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVES To compare porcine and human thoracic aortic stiffness using the available literature. METHODS The available literature was searched for studies reporting data on porcine or human thoracic aortic mechanical behaviour. A four fibre constitutive model was used to transform the data from included studies. Thus, equi-biaxial stress stretch curves were generated to calculate circumferential and longitudinal aortic stiffness. Analysis was performed separately for the ascending and descending thoracic aorta. Data on human aortic stiffness were divided by age <60 or ≥60 years. Porcine and human aortic stiffness were compared. RESULTS Eleven studies were included, six reported on young porcine aortas, four on human aortas of various ages, and one reported on both. In the ascending aorta, circumferential and longitudinal stiffness were 0.42±0.08 MPa and 0.37±0.06 MPa for porcine aortas (4-9 months) versus 0.55±0.15 MPa and 0.45±0.08 MPa for humans <60 years, and 1.02±0.59 MPa and 1.03±0.54 MPa for humans ≥60 years. In the descending aorta, circumferential and longitudinal stiffness were 0.46±0.03 MPa and 0.44±0.01 MPa for porcine aortas (4-10 months) versus 1.04±0.70 MPa and 1.24±0.76 MPa for humans <60 years, and 3.15±3.31 MPa and 1.17±0.31 MPa for humans ≥60 years. CONCLUSIONS The stiffness of young porcine aortic tissue shows good correspondence with human tissue aged <60 years, especially in the ascending aorta. Young porcine aortic tissue is less stiff than human aortic tissue aged ≥60 years.
Collapse
Affiliation(s)
- Hector W L de Beaufort
- Thoracic Aortic Research Centre, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Anna Ferrara
- Department of Civil Engineering and Architecture, University of Pavia, Italy
| | - Michele Conti
- Department of Civil Engineering and Architecture, University of Pavia, Italy
| | - Frans L Moll
- Department of Vascular Surgery, University Medical Centre Utrecht, The Netherlands
| | | | - C Alberto Figueroa
- Departments of Biomedical Engineering and Surgery, University of Michigan, Ann Arbor, USA
| | - Jean Bismuth
- Houston Methodist DeBakey Heart & Vascular Centre, Houston, USA
| | | | - Santi Trimarchi
- Department of Scienze Biomediche per la Salute, University of Milan, Milan, Italy.
| |
Collapse
|