1
|
Averill LA, Jiang L, Purohit P, Coppoli A, Averill CL, Roscoe J, Kelmendi B, De Feyter HM, de Graaf RA, Gueorguieva R, Sanacora G, Krystal JH, Rothman DL, Mason GF, Abdallah CG. Prefrontal Glutamate Neurotransmission in PTSD: A Novel Approach to Estimate Synaptic Strength in Vivo in Humans. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2022; 6:24705470221092734. [PMID: 35434443 PMCID: PMC9008809 DOI: 10.1177/24705470221092734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
Background Trauma and chronic stress are believed to induce and exacerbate psychopathology by disrupting glutamate synaptic strength. However, in vivo in human methods to estimate synaptic strength are limited. In this study, we established a novel putative biomarker of glutamatergic synaptic strength, termed energy-per-cycle (EPC). Then, we used EPC to investigate the role of prefrontal neurotransmission in trauma-related psychopathology. Methods Healthy controls (n = 18) and patients with posttraumatic stress (PTSD; n = 16) completed 13C-acetate magnetic resonance spectroscopy (MRS) scans to estimate prefrontal EPC, which is the ratio of neuronal energetic needs per glutamate neurotransmission cycle (VTCA/VCycle). Results Patients with PTSD were found to have 28% reduction in prefrontal EPC (t = 3.0; df = 32, P = .005). There was no effect of sex on EPC, but age was negatively associated with prefrontal EPC across groups (r = -0.46, n = 34, P = .006). Controlling for age did not affect the study results. Conclusion The feasibility and utility of estimating prefrontal EPC using 13C-acetate MRS were established. Patients with PTSD were found to have reduced prefrontal glutamatergic synaptic strength. These findings suggest that reduced glutamatergic synaptic strength may contribute to the pathophysiology of PTSD and could be targeted by new treatments.
Collapse
Affiliation(s)
- Lynnette A. Averill
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Michael E. DeBakey VA Medical Center, Houston, TX, USA,Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Lihong Jiang
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Prerana Purohit
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Anastasia Coppoli
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Christopher L. Averill
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Michael E. DeBakey VA Medical Center, Houston, TX, USA,Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Jeremy Roscoe
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Benjamin Kelmendi
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Henk M. De Feyter
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Robin A de Graaf
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Ralitza Gueorguieva
- Department of Biostatistics, School of Public Health, Yale University School of
Medicine, New Haven, CT, USA
| | - Gerard Sanacora
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - John H. Krystal
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Douglas L. Rothman
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Graeme F. Mason
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA,Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Chadi G. Abdallah
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Michael E. DeBakey VA Medical Center, Houston, TX, USA,Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA,Core for Advanced Magnetic Resonance Imaging (CAMRI), Baylor College of Medicine, Houston, TX, USA,Chadi G. Abdallah, Menninger Department of
Psychiatry, Baylor College of Medicine, 1977 Butler Blvd, E4187, Houston, TX
77030, USA.
| |
Collapse
|
2
|
Mandal PK, Shukla D. KALPANA: Advanced Spectroscopic Signal Processing Platform for Improved Accuracy to Aid in Early Diagnosis of Brain Disorders in Clinical Setting. J Alzheimers Dis 2021; 75:397-402. [PMID: 32200359 DOI: 10.3233/jad-191351] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetic resonance spectroscopy (MRS) plays a substantial role in the non-invasive detection of brain neurochemicals, antioxidants, and neurotransmitters. Quantitative monitoring of these neurochemicals and neurotransmitters in the brain has a profound application for the understanding of brain disorders. Significant progress in the MR scanner as well as MR pulse sequence development to detect in vivo neurochemicals has been accomplished. The processing of MR signal from these low abundant neurochemicals/neurotransmitters should be very robust and sensitive in order to provide distinctive observations of disease-related neurochemical alterations and their absolute quantitation to aid in early clinical diagnosis. We highlight the diversity in currently available MRS processing tools, and recently introduced, KALPANA, a promising package integrating the end-to-end processing as well as robust quantitation of neurochemicals in a user-friendly approach through a graphical user interface. This further necessitates the futuristic need for advanced MRS processing pipeline and the respective readout that can help in early diagnosis and prognosis of diseases in the clinical environment.
Collapse
Affiliation(s)
- Pravat K Mandal
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India.,Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria, Australia
| | - Deepika Shukla
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
3
|
Sen K, Anderson AA, Whitehead MT, Gropman AL. Review of Multi-Modal Imaging in Urea Cycle Disorders: The Old, the New, the Borrowed, and the Blue. Front Neurol 2021; 12:632307. [PMID: 33995244 PMCID: PMC8113618 DOI: 10.3389/fneur.2021.632307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
The urea cycle disorders (UCD) are rare genetic disorder due to a deficiency of one of six enzymes or two transport proteins that act to remove waste nitrogen in form of ammonia from the body. In this review, we focus on neuroimaging studies in OTCD and Arginase deficiency, two of the UCD we have extensively studied. Ornithine transcarbamylase deficiency (OTCD) is the most common of these, and X-linked. Hyperammonemia (HA) in OTCD is due to deficient protein handling. Cognitive impairments and neurobehavioral disorders have emerged as the major sequelae in Arginase deficiency and OTCD, especially in relation to executive function and working memory, impacting pre-frontal cortex (PFC). Clinical management focuses on neuroprotection from HA, as well as neurotoxicity from other known and yet unclassified metabolites. Prevention and mitigation of neurological injury is a major challenge and research focus. Given the impact of HA on neurocognitive function of UCD, neuroimaging modalities, especially multi-modality imaging platforms, can bring a wealth of information to understand the neurocognitive function and biomarkers. Such information can further improve clinical decision making, and result in better therapeutic interventions. In vivo investigations of the affected brain using multimodal neuroimaging combined with clinical and behavioral phenotyping hold promise. MR Spectroscopy has already proven as a tool to study biochemical aberrations such as elevated glutamine surrounding HA as well as to diagnose partial UCD. Functional Near Infrared Spectroscopy (fNIRS), which assesses local changes in cerebral hemodynamic levels of cortical regions, is emerging as a non-invasive technique and will serve as a surrogate to fMRI with better portability. Here we review two decades of our research using non-invasive imaging and how it has contributed to an understanding of the cognitive effects of this group of genetic conditions.
Collapse
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, United States
| | - Afrouz A Anderson
- Department of Research, Focus Foundation, Crofton, MD, United States
| | - Matthew T Whitehead
- Department of Radiology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, United States
| | - Andrea L Gropman
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, United States
| |
Collapse
|
4
|
Choi CH, Hong SM, Felder J, Shah NJ. The state-of-the-art and emerging design approaches of double-tuned RF coils for X-nuclei, brain MR imaging and spectroscopy: A review. Magn Reson Imaging 2020; 72:103-116. [DOI: 10.1016/j.mri.2020.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022]
|
5
|
Grist JT, Miller JJ, Zaccagna F, McLean MA, Riemer F, Matys T, Tyler DJ, Laustsen C, Coles AJ, Gallagher FA. Hyperpolarized 13C MRI: A novel approach for probing cerebral metabolism in health and neurological disease. J Cereb Blood Flow Metab 2020; 40:1137-1147. [PMID: 32153235 PMCID: PMC7238376 DOI: 10.1177/0271678x20909045] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Cerebral metabolism is tightly regulated and fundamental for healthy neurological function. There is increasing evidence that alterations in this metabolism may be a precursor and early biomarker of later stage disease processes. Proton magnetic resonance spectroscopy (1H-MRS) is a powerful tool to non-invasively assess tissue metabolites and has many applications for studying the normal and diseased brain. However, the technique has limitations including low spatial and temporal resolution, difficulties in discriminating overlapping peaks, and challenges in assessing metabolic flux rather than steady-state concentrations. Hyperpolarized carbon-13 magnetic resonance imaging is an emerging clinical technique that may overcome some of these spatial and temporal limitations, providing novel insights into neurometabolism in both health and in pathological processes such as glioma, stroke and multiple sclerosis. This review will explore the growing body of pre-clinical data that demonstrates a potential role for the technique in assessing metabolism in the central nervous system. There are now a number of clinical studies being undertaken in this area and this review will present the emerging clinical data as well as the potential future applications of hyperpolarized 13C magnetic resonance imaging in the brain, in both clinical and pre-clinical studies.
Collapse
Affiliation(s)
- James T Grist
- Institute of Cancer and Genomic Sciences, University of
Birmingham, Birmingham, UK
- Department of Radiology, University of Cambridge, Cambridge,
UK
| | - Jack J Miller
- Department of Physiology, Anatomy, and Genetics, University of
Oxford, Oxford, UK
- Department of Physics, Clarendon Laboratory, University of
Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, John
Radcliffe Hospital, Oxford, UK
| | - Fulvio Zaccagna
- Department of Radiology, University of Cambridge, Cambridge,
UK
| | - Mary A McLean
- Department of Radiology, University of Cambridge, Cambridge,
UK
- CRUK Cambridge Institute, Cambridge, UK
| | - Frank Riemer
- Department of Radiology, University of Cambridge, Cambridge,
UK
| | - Tomasz Matys
- Department of Radiology, University of Cambridge, Cambridge,
UK
| | - Damian J Tyler
- Department of Physiology, Anatomy, and Genetics, University of
Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, John
Radcliffe Hospital, Oxford, UK
| | | | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge,
Cambridge, UK
| | | |
Collapse
|
6
|
Rothman DL, de Graaf RA, Hyder F, Mason GF, Behar KL, De Feyter HM. In vivo 13 C and 1 H-[ 13 C] MRS studies of neuroenergetics and neurotransmitter cycling, applications to neurological and psychiatric disease and brain cancer. NMR IN BIOMEDICINE 2019; 32:e4172. [PMID: 31478594 DOI: 10.1002/nbm.4172] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 06/10/2023]
Abstract
In the last 25 years 13 C MRS has been established as the only noninvasive method for measuring glutamate neurotransmission and cell specific neuroenergetics. Although technically and experimentally challenging 13 C MRS has already provided important new information on the relationship between neuroenergetics and neuronal function, the high energy cost of brain function in the resting state and the role of altered neuroenergetics and neurotransmitter cycling in disease. In this paper we review the metabolic and neurotransmitter pathways that can be measured by 13 C MRS and key findings on the linkage between neuroenergetics, neurotransmitter cycling, and brain function. Applications of 13 C MRS to neurological and psychiatric disease as well as brain cancer are reviewed. Recent technological developments that may help to overcome spatial resolution and brain coverage limitations of 13 C MRS are discussed.
Collapse
Affiliation(s)
- Douglas L Rothman
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Departments of Radiology and Biomedical Imaging, and Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, 300 Cedar Street, P.O. Box 208043, New Haven, CT, USA
| | - Robin A de Graaf
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fahmeed Hyder
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Graeme F Mason
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kevin L Behar
- Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Henk M De Feyter
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Abdallah CG, De Feyter HM, Averill LA, Jiang L, Averill CL, Chowdhury GMI, Purohit P, de Graaf RA, Esterlis I, Juchem C, Pittman BP, Krystal JH, Rothman DL, Sanacora G, Mason GF. The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology 2018; 43:2154-2160. [PMID: 29977074 PMCID: PMC6098048 DOI: 10.1038/s41386-018-0136-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022]
Abstract
The ability of ketamine administration to activate prefrontal glutamate neurotransmission is thought to be a key mechanism contributing to its transient psychotomimetic effects and its delayed and sustained antidepressant effects. Rodent studies employing carbon-13 magnetic resonance spectroscopy (13C MRS) methods have shown ketamine and other N-methyl-D-aspartate (NMDA) receptor antagonists to transiently increase measures reflecting glutamate-glutamine cycling and glutamate neurotransmission in the frontal cortex. However, there are not yet direct measures of glutamate neurotransmission in vivo in humans to support these hypotheses. The current first-level pilot study employed a novel prefrontal 13C MRS approach similar to that used in the rodent studies for direct measurement of ketamine effects on glutamate-glutamine cycling. Twenty-one participants (14 healthy and 7 depressed) completed two 13C MRS scans during infusion of normal saline or subanesthetic doses of ketamine. Compared to placebo, ketamine increased prefrontal glutamate-glutamine cycling, as indicated by a 13% increase in 13C glutamine enrichment (t = 2.4, p = 0.02). We found no evidence of ketamine effects on oxidative energy production, as reflected by 13C glutamate enrichment. During ketamine infusion, the ratio of 13C glutamate/glutamine enrichments, a putative measure of neurotransmission strength, was correlated with the Clinician-Administered Dissociative States Scale (r = -0.54, p = 0.048). These findings provide the most direct evidence in humans to date that ketamine increases glutamate release in the prefrontal cortex, a mechanism previously linked to schizophrenia pathophysiology and implicated in the induction of rapid antidepressant effects.
Collapse
Affiliation(s)
- Chadi G Abdallah
- Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Henk M De Feyter
- Department of Radiology and Biomedical Imaging, Yale Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Lynnette A Averill
- Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lihong Jiang
- Department of Radiology and Biomedical Imaging, Yale Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher L Averill
- Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Golam M I Chowdhury
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Prerana Purohit
- Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Yale Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Christoph Juchem
- Department of Radiology and Biomedical Imaging, Yale Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Brian P Pittman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - John H Krystal
- Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Yale Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Gerard Sanacora
- Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Graeme F Mason
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
De Feyter HM, Herzog RI, Steensma BR, Klomp DWJ, Brown PB, Mason GF, Rothman DL, de Graaf RA. Selective proton-observed, carbon-edited (selPOCE) MRS method for measurement of glutamate and glutamine 13 C-labeling in the human frontal cortex. Magn Reson Med 2017; 80:11-20. [PMID: 29134686 DOI: 10.1002/mrm.27003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/02/2017] [Accepted: 10/20/2017] [Indexed: 11/10/2022]
Abstract
PURPOSE 13 C magnetic resonance spectroscopy (MRS) in combination with infusion of 13 C-labeled substrates has led to unique insights into human brain metabolism and neurotransmitter cycling. However, the low sensitivity of direct 13 C MRS and high radiofrequency power requirements has limited 13 C MRS studies to predominantly data acquisition in large volumes of the occipital cortex. The purpose of this study is to develop an MRS technique for localized detection of 13 C-labeling of glutamate and glutamine in the human frontal lobe. METHODS We used an indirect (1 H-[13 C]), proton-observed, carbon-edited MRS sequence (selPOCE) for detection of 13 C-labeled metabolites in relatively small volumes located in the frontal lobe at 4 T. The SelPOCE method allows for selective and separate detection of glutamate and glutamine resonances, which significantly overlap at magnetic field strengths used for clinical MRI. RESULTS Phantom data illustrate how selPOCE can be tuned to selectively detect 13 C labeling in different metabolites. Three-dimensional specific absorption rate simulations of radiofrequency power deposition show that the selPOCE method operates comfortably within the global and local Food and Drug Administration specific absorption rate guidelines. In vivo selPOCE data are presented, which were acquired from a 45-mL volume in the frontal lobe of healthy subjects. The in vivo data show the time-dependent 13 C-labeling of glutamate and glutamine during intravenous infusion of [1-13 C]-glucose. Metrics describing spectral fitting quality of the glutamate and glutamine resonances are reported. CONCLUSIONS The SelPOCE sequence allows the detection of 13 C-labeling in glutamate and glutamine from a relatively small volume in the human frontal lobe at low radiofrequency power requirements. Magn Reson Med 80:11-20, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Henk M De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Raimund I Herzog
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bart R Steensma
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dennis W J Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Peter B Brown
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Graeme F Mason
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Abstract
Metabolic imaging is a field of molecular imaging that focuses and targets changes in metabolic pathways for the evaluation of different clinical conditions. Targeting and quantifying metabolic changes noninvasively is a powerful approach to facilitate diagnosis and evaluate therapeutic response. This review addresses only techniques targeting metabolic pathways. Other molecular imaging strategies, such as affinity or receptor imaging or microenvironment-dependent methods are beyond the scope of this review. Here we describe the current state of the art in clinically translatable metabolic imaging modalities. Specifically, we focus on PET and MR spectroscopy, including conventional (1)H- and (13)C-MR spectroscopy at thermal equilibrium and hyperpolarized MRI. In this article, we first provide an overview of metabolic pathways that are altered in many pathologic conditions and the corresponding probes and techniques used to study those alterations. We then describe the application of metabolic imaging to several common diseases, including cancer, neurodegeneration, cardiac ischemia, and infection or inflammation.
Collapse
Affiliation(s)
- Valentina Di Gialleonardo
- Department of Radiology and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY
| | - David M Wilson
- Department of Radiology and Biomedical Imaging University of California San Francisco (UCSF), San Francisco, CA
| | - Kayvan R Keshari
- Department of Radiology and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY.
| |
Collapse
|
10
|
Compartmental Analysis of Metabolism by 13C Magnetic Resonance Spectroscopy. BRAIN ENERGY METABOLISM 2014. [DOI: 10.1007/978-1-4939-1059-5_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Befroy DE, Perry RJ, Jain N, Dufour S, Cline GW, Trimmer JK, Brosnan J, Rothman DL, Petersen KF, Shulman GI. Direct assessment of hepatic mitochondrial oxidative and anaplerotic fluxes in humans using dynamic 13C magnetic resonance spectroscopy. Nat Med 2014; 20:98-102. [PMID: 24317120 PMCID: PMC3947269 DOI: 10.1038/nm.3415] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/29/2013] [Indexed: 12/11/2022]
Abstract
Despite the central role of the liver in the regulation of glucose and lipid metabolism, there are currently no methods to directly assess hepatic oxidative metabolism in humans in vivo. By using a new (13)C-labeling strategy in combination with (13)C magnetic resonance spectroscopy, we show that rates of mitochondrial oxidation and anaplerosis in human liver can be directly determined noninvasively. Using this approach, we found the mean rates of hepatic tricarboxylic acid (TCA) cycle flux (VTCA) and anaplerotic flux (VANA) to be 0.43 ± 0.04 μmol g(-1) min(-1) and 0.60 ± 0.11 μmol g(-1) min(-1), respectively, in twelve healthy, lean individuals. We also found the VANA/VTCA ratio to be 1.39 ± 0.22, which is severalfold lower than recently published estimates using an indirect approach. This method will be useful for understanding the pathogenesis of nonalcoholic fatty liver disease and type 2 diabetes, as well as for assessing the effectiveness of new therapies targeting these pathways in humans.
Collapse
Affiliation(s)
- Douglas E Befroy
- 1] Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA. [3]
| | - Rachel J Perry
- 1] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA. [3]
| | - Nimit Jain
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sylvie Dufour
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gary W Cline
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | - Douglas L Rothman
- 1] Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Department of Biomedical Engineering, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kitt Falk Petersen
- 1] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Gerald I Shulman
- 1] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA. [3] Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA. [4] Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| |
Collapse
|
12
|
Sailasuta N, Harris KC, Tran TT, Abulseoud O, Ross BD. Impact of fasting on human brain acid-base homeostasis using natural abundance (13) C and (31) P MRS. J Magn Reson Imaging 2013; 39:398-401. [PMID: 23733582 DOI: 10.1002/jmri.24166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 03/13/2013] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To use (13) C magnetic resonance spectroscopy (MRS) and (31) P MRS to develop a direct assay for regional [HCO3-] in the human brain and to define brain pH and physiological response of [HCO3-] to fasting. MATERIALS AND METHODS Seven healthy subjects underwent MRS examinations on a 1.5T MRI scanner. Subjects were well fed with repeated examinations performed after 4 and 12 hours of fasting. Proton noise decoupling (13) C MRS were acquired using pulse and acquired acquisition while (31) P MRS were acquired using a 2D chemical shift imaging method with relaxation time (TR) of 2 seconds. RESULTS Fasting brain bicarbonate concentrations (6.7 ± 2.5 mM for 12-hour fasting, P = 0.002 and 8.3 ± 2.1 mM for 4-hour fasting, P = 0.015) are significantly reduced compared to fed state (11.6 ± 1.3 mM). However, no significant difference in brain pH was observed, confirming the critical role of pCO2 in intracerebral pH homeostasis. CONCLUSION We demonstrated that the intracellular HCO3- in human brain is readily modified by diet but appears to have no measurable effect on cerebral pH. Natural abundance (13) C can provide useful information relevant to human brain pH homeostasis by providing information for HCO3-.
Collapse
|
13
|
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a technique with an increasing importance in the study of metabolic diseases. Its initial important role in the determination of chemical structures (1, 2) has been considerably overcome by its potential for the in vivo study of metabolism (3-5). The main characteristic that makes this technique so attractive is its noninvasiveness. Only nuclei capable of transitioning between energy states, in the presence of an intense and constant magnetic field, are studied. This includes abundant nuclei such as proton ((1)H) and phosphorous ((31)P), as well as stable isotopes such as deuterium ((2)H) and carbon 13 ((13)C). This allows a wide range of applications that vary from the determination of water distribution in tissues (as obtained in a magnetic resonance imaging scan) to the calculation of metabolic fluxes under ex vivo and in vivo conditions without the need to use radioactive tracers or tissue biopsies (as in a magnetic resonance spectroscopy (MRS) scan). In this chapter, some technical aspects of the methodology of an NMR/MRS experiment as well as how it can be used to study mitochondrial bioenergetics are overviewed. Advantages and disadvantages of in vivo MRS versus high-resolution NMR using proton high rotation magic angle spinning (HRMAS) of tissue biopsies and tissue extracts are also discussed.
Collapse
Affiliation(s)
- Tiago C Alves
- Faculty of Sciences and Technology, Department of Life Sciences, University of Coimbra, R. Larga 6, 3030 Coimbra, Portugal
| | | | | |
Collapse
|
14
|
|
15
|
Sailasuta N, Harris K, Tran T, Ross B. Minimally invasive biomarker confirms glial activation present in Alzheimer's disease: a preliminary study. Neuropsychiatr Dis Treat 2011; 7:495-9. [PMID: 21931491 PMCID: PMC3173032 DOI: 10.2147/ndt.s23721] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We applied (13)C magnetic resonance spectroscopy (MRS), a nonradioactive, noninvasive brain imaging technique, to quantify the oxidation of [1-(13)C] acetate in a conventional clinical magnetic resonance imaging (MRI) scanner in five consecutive elderly subjects at various clinical stages of Alzheimer's disease (AD) progression. [1-(13)C] acetate entered the brain and was metabolized to [5-(13)C] glutamate and glutamine, as well as [1-(13)C] glutamate and glutamine, and the final glial oxidation product, (13)C bicarbonate, at a linear rate. Calculation of the initial slope was similar in a single subject, examined twice, 1 month apart (test-re-test 8%). Mean rate of cerebral bicarbonate production in this elderly group was 0.040 ± 0.01 (n = 5). Assuming that the rate of conversion of acetate to bicarbonate is a reflection of glial metabolic rate and that glial metabolic rate is a surrogate marker for 'neuroinflammation', our preliminary results suggest that [1-(13)C] MRS may provide biomarkers for diseases, believed to involve microglia and other cells of the astrocyte series. Among these is AD, for which novel drugs which ameliorate the damaging effects of neuroinflammation before symptoms of dementia appear, are in advanced development. The value of (13)C MRS as an early, noninvasive biomarker may lie in the conduct of cost-effective clinical trials.
Collapse
Affiliation(s)
- Napapon Sailasuta
- Clinical MR Unit, Huntington Medical Research Institutes, Pasadena, CA, USA
| | | | | | | |
Collapse
|
16
|
Sailasuta N, Tran TT, Harris KC, Ross BD. Swift Acetate Glial Assay (SAGA): an accelerated human ¹³C MRS brain exam for clinical diagnostic use. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 207:352-5. [PMID: 20934362 PMCID: PMC2993807 DOI: 10.1016/j.jmr.2010.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 05/22/2023]
Abstract
We demonstrate a robust procedure for the quantitative characterization of glial metabolism in human brain. In the past, the slope of the uptake and production of enriched label at steady state were used to determine metabolic rates, requiring the patient to be in the magnet for 120-160 min. In the present method, (13)C cerebral metabolite profiles were acquired at steady state alone on a routine clinical MR scanner in 25.6 min. Results obtained from the new short method (SAGA) were comparable to those achieved in a conventional, long method and effective for determination of glial metabolic rate in posterior-parietal and frontal brain regions.
Collapse
Affiliation(s)
- Napapon Sailasuta
- Huntington Medical Research Institutes, Pasadena, CA, United States.
| | | | | | | |
Collapse
|
17
|
Sailasuta N, Abulseoud O, Harris KC, Ross BD. Glial dysfunction in abstinent methamphetamine abusers. J Cereb Blood Flow Metab 2010; 30:950-60. [PMID: 20040926 PMCID: PMC2949186 DOI: 10.1038/jcbfm.2009.261] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Persistent neurochemical abnormalities in frontal brain structures are believed to result from methamphetamine use. We developed a localized (13)C magnetic resonance spectroscopy (MRS) assay on a conventional MR scanner, to quantify selectively glial metabolic flux rate in frontal brain of normal subjects and a cohort of recovering abstinent methamphetamine abusers. Steady-state bicarbonate concentrations were similar, between 11 and 15 mmol/L in mixed gray-white matter of frontal brain of normal volunteers and recovering methamphetamine-abusing subjects (P>0.1). However, glial (13)C-bicarbonate production rate from [1-(13)C]acetate, equating with glial tricarboxylic acid (TCA) cycle rate, was significantly reduced in frontal brain of abstinent methamphetamine-addicted women (methamphetamine 0.04 micromol/g per min (N=5) versus controls 0.11 micromol/g per min (N=5), P=0.001). This is equivalent to 36% of the normal glial TCA cycle rate. Severe reduction in glial TCA cycle rate that normally comprises 10% of total cerebral metabolic rate may impact operation of the neuronal glial glutamate cycle and result in accumulation of frontal brain glutamate, as observed in these recovering methamphetamine abusers. Although these are the first studies to define directly an abnormality in glial metabolism in human methamphetamine abuse, sequential studies using analogous (13)C MRS methods may determine 'cause and effect' between glial failure and neuronal injury.
Collapse
Affiliation(s)
- Napapon Sailasuta
- Clinical Spectroscopy Unit, Huntington Medical Research Institutes, Pasadena, California 91105, USA.
| | | | | | | |
Collapse
|
18
|
Ross BD, Bhattacharya P, Wagner S, Tran T, Sailasuta N. Hyperpolarized MR imaging: neurologic applications of hyperpolarized metabolism. AJNR Am J Neuroradiol 2010; 31:24-33. [PMID: 19875468 PMCID: PMC7964072 DOI: 10.3174/ajnr.a1790] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hyperpolarization is the general term for a method of enhancing the spin-polarization difference of populations of nuclei in a magnetic field. No less than 5 distinct techniques (dynamic nuclear polarization [DNP]; parahydrogen-induced polarization-parahydrogen and synthesis allow dramatically enhanced nuclear alignment [PHIP-PASADENA]; xenon/helium polarization transfer; Brute Force; (1)H hyperpolarized water) are currently under exhaustive investigation as means of amplifying the intrinsically (a few parts per million) weak signal intensity used in conventional MR neuroimaging and spectroscopy. HD-MR imaging in vivo is a metabolic imaging tool causing much of the interest in HD-MR imaging. The most successful to date has been DNP, in which carbon-13 ((13)C) pyruvic acid has shown many. PHIP-PASADENA with (13)C succinate has shown HD-MR metabolism in vivo in tumor-bearing mice of several types, entering the Krebs-tricarboxylic acid cycle for ultrafast detection with (13)C MR imaging, MR spectroscopy, and chemical shift imaging. We will discuss 5 promising preclinical studies: (13)C succinate PHIP in brain tumor; (13)C ethylpyruvate DNP and (13)C acetate; DNP in rodent brain; (13)C succinate PHIP versus gadolinium imaging of stroke; and (1)H hyperpolarized imaging. Recent developments in clinical (13)C neurospectroscopy encourage us to overcome the remaining barriers to clinical HD-MR imaging.
Collapse
Affiliation(s)
- B D Ross
- Huntington Medical Research Institutes, Pasadena, California, USA.
| | | | | | | | | |
Collapse
|
19
|
Abstract
Urea cycle disorders (UCD) represent a group of rare inborn errors of metabolism that carry a high risk of mortality and neurological morbidity resulting from the effects of accumulation of ammonia and other biochemical intermediates. These disorders result from single gene defects involved in the detoxification pathway of ammonia to urea. UCD include deficiencies in any of the six enzymes and two membrane transporters involved in urea biosynthesis. It has previously been reported that approximately half of infants who present with hyperammonemic coma in the newborn period die of cerebral edema; and those who survive 3days or more of coma invariably have intellectual disability [1]. In children with partial defects there is an association between the number and severity of recurrent hyperammonemic (HA) episodes (i.e. with or without coma) and subsequent cognitive and neurologic deficits [2]. However, the effects of milder or subclinical HA episodes on the brain are largely unknown. This review discusses the results of neuroimaging studies performed as part of the NIH funded Rare Diseases Clinical Research Center in Urea Cycle Disorders and focuses on biomarkers of brain injury in ornithine transcarbamylase deficiency (OTCD). We used anatomic imaging, functional magnetic resonance imaging (fMRI), diffusion-tensor imaging (DTI), and (1)H/(13)C magnetic resonance spectroscopy (MRS) to study clinically stable adults with partial OTCD. This allowed us to determine alterations in brain biochemistry associated with changes in cell volume and osmolarity and permitted us to identify brain biomarkers of HA. We found that white matter tracts underlying specific pathways involved in working memory and executive function are altered in subjects with OTCD (as measured by DTI), including those heterozygous women who were previously considered asymptomatic. An understanding of the pathogenesis of brain injury in UCD is likely to advance our knowledge of more common disorders of liver dysfunction.
Collapse
Affiliation(s)
- Andrea Gropman
- Department of Neurology, Children's National Medical Center, Center for Neuroscience and Behavioral Medicine, Washington, DC 20010, USA.
| |
Collapse
|
20
|
Boumezbeur F, Mason GF, de Graaf RA, Behar KL, Cline GW, Shulman GI, Rothman DL, Petersen KF. Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. J Cereb Blood Flow Metab 2010; 30:211-21. [PMID: 19794401 PMCID: PMC2949111 DOI: 10.1038/jcbfm.2009.197] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A decline in brain function is a characteristic feature of healthy aging; however, little is known about the biologic basis of this phenomenon. To determine whether there are alterations in brain mitochondrial metabolism associated with healthy aging, we combined (13)C/(1)H magnetic resonance spectroscopy with infusions of [1-(13)C]glucose and [2-(13)C]acetate to quantitatively characterize rates of neuronal and astroglial tricarboxylic acid cycles, as well as neuroglial glutamate-glutamine cycling, in healthy elderly and young volunteers. Compared with young subjects, neuronal mitochondrial metabolism and glutamate-glutamine cycle flux was approximately 30% lower in elderly subjects. The reduction in individual subjects correlated strongly with reductions in N-acetylaspartate and glutamate concentrations consistent with chronic reductions in brain mitochondrial function. In elderly subjects infused with [2-(13)C]acetate labeling of glutamine, C4 and C3 differed from that of the young subjects, indicating age-related changes in glial mitochondrial metabolism. Taken together, these studies show that healthy aging is associated with reduced neuronal mitochondrial metabolism and altered glial mitochondrial metabolism, which may in part be responsible for declines in brain function.
Collapse
Affiliation(s)
- Fawzi Boumezbeur
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, Connecticut 06520-8020, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Li S, Zhang Y, Wang S, Yang J, Ferraris Araneta M, Farris A, Johnson C, Fox S, Innis R, Shen J. In vivo 13C magnetic resonance spectroscopy of human brain on a clinical 3 T scanner using [2-13C]glucose infusion and low-power stochastic decoupling. Magn Reson Med 2009; 62:565-73. [PMID: 19526500 DOI: 10.1002/mrm.22044] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study presents the detection of [2-(13)C]glucose metabolism in the carboxylic/amide region in the human brain, and demonstrates that the cerebral metabolism of [2-(13)C]glucose can be studied in human subjects in the presence of severe hardware constraints of widely available 3 T clinical scanners and with low-power stochastic decoupling. In the carboxylic/amide region of human brain, the primary products of (13)C label incorporation from [2-(13)C]glucose into glutamate, glutamine, aspartate, gamma-aminobutyric acid, and N-acetylaspartate were detected. Unlike the commonly used alkanyl region where lipid signals spread over a broad frequency range, the carboxylic carbon signal of lipids was found to be confined to a narrow range centered at 172.5 ppm and present no spectral interference in the absence of lipid suppression. Comparison using phantoms shows that stochastic decoupling is far superior to the commonly used WALTZ sequence at very low decoupling power at 3 T. It was found that glutamine C1 and C5 can be decoupled using stochastic decoupling at 2.2 W, although glutamine protons span a frequency range of approximately 700 Hz. Detailed specific absorption rate analysis was also performed using finite difference time domain numerical simulation.
Collapse
Affiliation(s)
- Shizhe Li
- Magnetic Resonance Spectroscopy Core Facility, NIMH, National Institutes of Health, Bethesda, Maryland 20892-1527, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gropman AL, Sailasuta N, Harris KC, Abulseoud O, Ross BD. Ornithine transcarbamylase deficiency with persistent abnormality in cerebral glutamate metabolism in adults. Radiology 2009; 252:833-41. [PMID: 19567648 DOI: 10.1148/radiol.2523081878] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine cerebral glutamate turnover rate in partial-ornithine transcarbamylase deficiency (OTCD) patients by using carbon 13 ((13)C) magnetic resonance (MR) spectroscopy. MATERIALS AND METHODS The study was performed with approval of the institutional review board, in compliance with HIPAA regulations, and with written informed consent of the subjects. MR imaging, hydrogen 1 ((1)H) MR spectroscopy, and (13)C MR spectroscopy were performed at 1.5 T in 10 subjects, six patients with OTCD and four healthy control subjects, who were in stable condition. Each received intravenous (13)C-glucose (0.2 g/kg), C1 or C2 position, as a 15-minute bolus. Cerebral metabolites were determined with proton decoupling in a parieto-occipital region (n = 9) and without proton decoupling in a frontal region (n = 1) during 60-120 minutes. RESULTS Uptake and removal of cerebral glucose ([1-(13)C]-glucose or [2-(13)C]-glucose) were comparable in healthy control subjects and subjects with OTCD (P = .1). Glucose C1 was metabolized to glutamate C4 and glucose C2 was metabolized to glutamate C5 at comparable rates, both of which were significantly reduced in OTCD (combined, P = .04). No significant differences in glutamine formation were found in subjects with OTCD (P = .1). [2-(13)C]-glucose and its metabolic products were observed in anterior cingulate gyrus without proton decoupling in one subject with OTCD. CONCLUSION Treatments that improve cerebral glucose metabolism and glutamate neurotransmission may improve neurologic outcome in patients with OTCD, in whom prevention and treatment of hyperammonemic episodes appear to be insufficient.
Collapse
Affiliation(s)
- Andrea L Gropman
- Department of Neurology, Children's National Medical Center, Washington, DC, USA
| | | | | | | | | |
Collapse
|
23
|
Detection of reduced GABA synthesis following inhibition of GABA transaminase using in vivo magnetic resonance signal of [13C]GABA C1. J Neurosci Methods 2009; 182:236-43. [PMID: 19540876 DOI: 10.1016/j.jneumeth.2009.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/11/2009] [Accepted: 06/11/2009] [Indexed: 11/22/2022]
Abstract
Previous in vivo magnetic resonance spectroscopy (MRS) studies of gamma-aminobutyric acid (GABA) synthesis have relied on (13)C label incorporation into GABA C2 from [1-(13)C] or [1,6-(13)C(2)]glucose. In this study, the [(13)C]GABA C1 signal at 182.3 ppm in the carboxylic/amide spectral region of localized in vivo (13)C spectra was detected. GABA-transaminase of rat brain was inhibited by administration of gabaculine after pre-labeling of GABA C1 and its metabolic precursors with exogenous [2,5-(13)C(2)]glucose. A subsequent isotope chase experiment was performed by infusing unlabeled glucose, which revealed a markedly slow change in the labeling of GABA C1 accompanying the blockade of the GABA shunt. This slow labeling of GABA at elevated GABA concentration was attributed to the relatively small intercompartmental GABA-glutamine cycling flux that constitutes the main route of (13)C label loss during the isotope chase. Because this study showed that using low RF power broadband stochastic proton decoupling is feasible at very high field strength, it has important implications for the development of carboxylic/amide (13)C MRS methods to study brain metabolism and neurotransmission in human subjects at high magnetic fields.
Collapse
|