1
|
Altenhof AR, Yang Q, Kern M, Newman SG, Anders J, Malone MW. A high-volume resonator for L-band DNP-NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 368:107788. [PMID: 39442474 DOI: 10.1016/j.jmr.2024.107788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
DNP-NMR and EPR experiments that operate at or greater than L-band (i.e., ν0(e-) = 1-2 GHz) are typically limited to maximum sample volumes of several hundred µL. These experiments rely on well-known resonator designs for DNP/EPR irradiation such as the loop-gap resonator and Alderman-Grant coil, where their maximum volumes limit further application to imaging experiments and high-throughput screening beyond L-band. Herein, we demonstrate a birdcage (BC) resonator design that can accommodate several mL of sample while operating around 1.5 GHz. The sample volume is maximized by using two identical BC resonators in a stacked configuration. Simulations are used to optimize the BC design and the performance is validated experimentally with liquid-state Overhauser-DNP-NMR experiments. This BC design exploits just the parasitic capacitance of conductive rings and features no fixed tuning capacitors. An enhancement of -77 is achieved on a 10 mM 4-Amino-TEMPO in H2O sample for a 5 mL sample volume. The associated sample heating is minimal due to the low-E-fields generated and the large sample mass with +3.4 K when driving 100 W for several seconds.
Collapse
Affiliation(s)
- Adam R Altenhof
- MPA-Q, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Qing Yang
- Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, Stuttgart 70569, Germany
| | - Michal Kern
- Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, Stuttgart 70569, Germany
| | - Shaun G Newman
- MPA-Q, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jens Anders
- Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, Stuttgart 70569, Germany; Institute for Microelectronics Stuttgart (IMS CHIPS), Allmandring 30A, Stuttgart 70569, Baden-Wuerttemberg, Germany; Center for Integrated Quantum Science and Technology (IQST), Stuttgart 70569, Baden-Wuerttemberg, Germany
| | - Michael W Malone
- MPA-Q, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
2
|
Silva Terra AI, Taylor DA, Halse ME. Hyperpolarised benchtop NMR spectroscopy for analytical applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:153-178. [PMID: 39645349 DOI: 10.1016/j.pnmrs.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 12/09/2024]
Abstract
Benchtop NMR spectrometers, with moderate magnetic field strengths (B0=1-2.4T) and sub-ppm chemical shift resolution, are an affordable and portable alternative to standard laboratory NMR (B0≥7T). However, in moving to lower magnetic field instruments, sensitivity and chemical shift resolution are significantly reduced. The sensitivity limitation can be overcome by using hyperpolarisation to boost benchtop NMR signals by orders of magnitude. Of the wide range of hyperpolarisation methods currently available, dynamic nuclear polarisation (DNP), parahydrogen-induced polarisation (PHIP) and photochemically-induced dynamic nuclear polarisation (photo-CIDNP) have, to date, shown the most promise for integration with benchtop NMR for analytical applications. In this review we provide a summary of the theory of each of these techniques and discuss examples of how they have been integrated with benchtop NMR detection. Progress towards the use of hyperpolarised benchtop NMR for analytical applications, ranging from reaction monitoring to probing biomolecular interactions, is discussed, along with perspectives for the future.
Collapse
Affiliation(s)
| | - Daniel A Taylor
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Meghan E Halse
- Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
3
|
Perras FA, Matsuki Y, Southern SA, Dubroca T, Flesariu DF, Van Tol J, Constantinides CP, Koutentis PA. Erratum: "Mechanistic origins of methyl-driven Overhauser DNP" [J. Chem. Phys. 158, 154201 (2023)]. J Chem Phys 2023; 159:209901. [PMID: 37991163 DOI: 10.1063/5.0185520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023] Open
Affiliation(s)
- Frédéric A Perras
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, USA
| | - Yoh Matsuki
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Scott A Southern
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, USA
| | - Thierry Dubroca
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Dragos F Flesariu
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Johan Van Tol
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | | | | |
Collapse
|
4
|
Okuno Y, Clore GM. Extending the Experimentally Accessible Range of Spin Dipole-Dipole Spectral Densities for Protein-Cosolute Interactions by Temperature-Dependent Solvent Paramagnetic Relaxation Enhancement Measurements. J Phys Chem B 2023; 127:7887-7898. [PMID: 37681752 PMCID: PMC11345855 DOI: 10.1021/acs.jpcb.3c05301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Longitudinal (Γ1) and transverse (Γ2) solvent paramagnetic relaxation enhancement (sPRE) yields field-dependent information in the form of spectral densities that provides unique information related to cosolute-protein interactions and electrostatics. A typical protein sPRE data set can only sample a few points on the spectral density curve, J(ω), within a narrow frequency window (500 MHz to ∼1 GHz). However, complex interactions and dynamics of paramagnetic cosolutes around a protein make it difficult to directly interpret the few experimentally accessible points of J(ω). In this paper, we show that it is possible to significantly extend the experimentally accessible frequency range (corresponding to a range from ∼270 MHz to 1.8 GHz) by acquiring a series of sPRE experiments at different temperatures. This approach is based on the scaling property of J(ω) originally proposed by Melchior and Fries for small molecules. Here, we demonstrate that the same scaling property also holds for geometrically far more complex systems such as proteins. Using the extended spectral densities derived from the scaling property as the reference dataset, we demonstrate that our previous approach that makes use of a non-Lorentzian Ansatz spectral density function to fit only J(0) and one to two J(ω) points allows one to obtain accurate values for the concentration-normalized equilibrium average of the electron-proton interspin separation ⟨r-6⟩norm and the correlation time τC, which provide quantitative information on the energetics and timescale, respectively, of local cosolute-protein interactions. We also show that effective near-surface potentials, ϕENS, obtained from ⟨r-6⟩norm provide a reliable and quantitative measure of intermolecular interactions including electrostatics, while ϕENS values obtained from only Γ1 or Γ2 sPRE rates can have significant artifacts as a consequence of potential variations and changes in the diffusive properties of the cosolute around the protein surface. Finally, we discuss the experimental feasibility and limitations of extracting the high-frequency limit of J(ω) that is related to ⟨r-8⟩norm and report on the extremely local intermolecular potential.
Collapse
Affiliation(s)
- Yusuke Okuno
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
5
|
Ribay V, Praud C, Letertre MPM, Dumez JN, Giraudeau P. Hyperpolarized NMR metabolomics. Curr Opin Chem Biol 2023; 74:102307. [PMID: 37094508 DOI: 10.1016/j.cbpa.2023.102307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023]
Abstract
Hyperpolarized NMR is a promising approach to address the sensitivity limits of conventional NMR metabolomics approaches, which currently fails to detect minute metabolite concentrations in biological samples. This review describes how tremendous signal enhancement offered by dissolution-dynamic nuclear polarization and parahydrogen-based techniques can be fully exploited for molecular omics sciences. Recent developments, including the combination of hyperpolarization techniques with fast multi-dimensional NMR implementation and quantitative workflows are described, and a comprehensive comparison of existing hyperpolarization techniques is proposed. High-throughput, sensitivity, resolution and other relevant challenges that should be tackled for a general application of hyperpolarized NMR in metabolomics are discussed.
Collapse
Affiliation(s)
- Victor Ribay
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Clément Praud
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | | | | | | |
Collapse
|
6
|
Concilio MG, Frydman L. Microwave-free J-driven dynamic nuclear polarization: A proposal for enhancing the sensitivity of solution-state NMR. Phys Rev E 2023; 107:035303. [PMID: 37073023 DOI: 10.1103/physreve.107.035303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
J-driven dynamic nuclear polarization (JDNP) was recently proposed for enhancing the sensitivity of solution-state nuclear magnetic resonance (NMR), while bypassing the limitations faced by conventional (Overhauser) DNP at magnetic fields of interest in analytical applications. Like Overhauser DNP, JDNP also requires saturating the electronic polarization using high-frequency microwaves known to have poor penetration and associated heating effects in most liquids. The present microwave-free JDNP (MF-JDNP) proposal seeks to enhance solution NMR's sensitivity by shuttling the sample between higher and lower magnetic fields, with one of these fields providing an electron Larmor frequency that matches the interelectron exchange coupling J_{ex}. If spins cross this so-called JDNP condition sufficiently fast, we predict that a sizable nuclear polarization will be created without microwave irradiation. This MF-JDNP proposal requires radicals whose singlet-triplet self-relaxation rates are dominated by dipolar hyperfine relaxation, and shuttling times that can compete with these electron relaxation processes. This paper discusses the theory behind the MF-JDNP, as well as proposals for radicals and conditions that could enable this new approach to NMR sensitivity enhancement.
Collapse
Affiliation(s)
- Maria Grazia Concilio
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Milani J, Saenz F, Roussel C, Ansermet JP. Heterogeneous Overhauser-DNP on 1 H dominated by scalar coupling in aqueous solution. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:180-183. [PMID: 36269065 DOI: 10.1002/mrc.5321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/01/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The Overhauser Dynamic Nuclear Polarization (O-DNP) of 1 H nuclei usually involves a dipolar coupling with the polarizing agent, whereas scalar coupling via hyperfine interactions are more common with 13 C nuclei. Here, we show a scalar-coupling dominated 1 H O-DNP, using polyaniline as a heterogeneous polarizing agent in an aqueous solution.
Collapse
Affiliation(s)
- Jonas Milani
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Felipe Saenz
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Christophe Roussel
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
- Section of Chemistry and Chemical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Jean-Philippe Ansermet
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
8
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
9
|
Reinhard M, Levien M, Bennati M, Orlando T. Large 31P-NMR enhancements in liquid state dynamic nuclear polarization through radical/target molecule non-covalent interaction. Phys Chem Chem Phys 2022; 25:822-828. [PMID: 36511338 PMCID: PMC9768845 DOI: 10.1039/d2cp04092a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamic nuclear polarization (DNP) is a method to enhance the low sensitivity of nuclear magnetic resonance (NMR) via spin polarization transfer from electron spins to nuclear spins. In the liquid state, this process is mediated by fast modulations of the electron-nuclear hyperfine coupling and its efficiency depends strongly on the applied magnetic field. A peculiar case study is triphenylphosphine (PPh3) dissolved in benzene and doped with BDPA radical because it gives 31P-NMR signal enhancements of two orders of magnitude up to a magnetic field of 14.1 T. Here we show that the large 31P enhancements of BDPA/PPh3 in benzene at 1.2 T (i) decrease when the moieties are dissolved in other organic solvents, (ii) are strongly reduced when using a nitroxide radical, and (iii) vanish with pentavalent 31P triphenylphosphine oxide. Those experimental observations are rationalized with numerical calculations based on density functional theory that show the tendency of BDPA and PPh3 to form a weak complex via non-covalent interaction that leads to large hyperfine couplings to 31P (ΔAiso ≥ 13 MHz). This mechanism is hampered in other investigated systems. The case study of 31P-DNP in PPh3 is an important example that extends the current understanding of DNP in the liquids state: non-covalent interactions between radical and target can be particularly effective to obtain large NMR signal enhancements.
Collapse
Affiliation(s)
- Maik Reinhard
- ESR Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11GöttingenGermany,Department of Chemistry, Georg-August-University, Tammannstraße 4GöttingenGermany
| | - Marcel Levien
- ESR Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11GöttingenGermany,Department of Chemistry, Georg-August-University, Tammannstraße 4GöttingenGermany
| | - Marina Bennati
- ESR Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11GöttingenGermany,Department of Chemistry, Georg-August-University, Tammannstraße 4GöttingenGermany
| | - Tomas Orlando
- ESR Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11GöttingenGermany
| |
Collapse
|
10
|
Kircher R, Mross S, Hasse H, Münnemann K. Functionalized Controlled Porous Glasses for Producing Radical-Free Hyperpolarized Liquids by Overhauser DNP. Molecules 2022; 27:molecules27196402. [PMID: 36234939 PMCID: PMC9572983 DOI: 10.3390/molecules27196402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022] Open
Abstract
Overhauser dynamic nuclear polarization (ODNP) can be used as a tool for NMR signal enhancement and happens on very short time scales. Therefore, ODNP is well suited for the measurement of fast-flowing samples, even in compact magnets, which is beneficial for the real-time monitoring of chemical reactions or processes. ODNP requires the presence of unpaired electrons in the sample, which is usually accomplished by the addition of stable radicals. However, radicals affect the nuclear relaxation times and can hamper the NMR detection. This is circumvented by immobilizing radicals in a packed bed allowing for the measurement of radical-free samples when using ex situ DNP techniques (DNP build-up and NMR detection happen at different places) and flow-induced separation of the hyperpolarized liquid from the radicals. Therefore, the synthesis of robust and chemically inert immobilized radical matrices is mandatory. In the present work, this is accomplished by immobilizing the radical glycidyloxy-tetramethylpiperidinyloxyl with a polyethyleneimine (PEI) linker on the surface of controlled porous glasses (CPG). Both the porosity of the CPGs and also the size of the PEI-linker were varied, resulting in a set of distinct radical matrices for continuous-flow ODNP. The study shows that CPGs with PEI-linkers provide robust, inert and efficient ODNP matrices.
Collapse
|
11
|
Cheney DJ, Wedge CJ. Sample volume effects in optical overhauser dynamic nuclear polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 337:107170. [PMID: 35240365 DOI: 10.1016/j.jmr.2022.107170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The optical dynamic nuclear polarization (DNP) method has been proposed as an alternative to microwave pumping as a hyperpolarization method for solution-state NMR studies. Using continuous laser illumination to photogenerate triplet states in the presence of a persistent radical produces chemically-induced dynamic electron polarization (CIDEP) via the radical-triplet pair mechanism (RTPM), with cross-relaxation transferring this to nuclear hyperpolarization via an Overhauser mechanism. Numerical simulations have previously indicated that reducing the sample volume while maintaining a constant optical density can significantly increase the NMR signal enhancement, due to the larger steady-state concentration of triplets obtained. Here we provide the first experimental confirmation of these effects, producing a nearly five-fold increase in the optical DNP enhancement factor just by reducing the sample volume with optimal dye and radical concentrations adjusted for each optical path length. The results are supported with an in depth analysis of volume effects in the numerical model, with which they are in good qualitative agreement. These important observations will impact on the future development of the technique, with particular significance for attempts to apply DNP methods to increase sensitivity for volume-limited biological samples.
Collapse
Affiliation(s)
- Daniel J Cheney
- Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Christopher J Wedge
- Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom.
| |
Collapse
|
12
|
Eills J, Hale W, Utz M. Synergies between Hyperpolarized NMR and Microfluidics: A Review. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:44-69. [PMID: 35282869 DOI: 10.1016/j.pnmrs.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
Hyperpolarized nuclear magnetic resonance and lab-on-a-chip microfluidics are two dynamic, but until recently quite distinct, fields of research. Recent developments in both areas increased their synergistic overlap. By microfluidic integration, many complex experimental steps can be brought together onto a single platform. Microfluidic devices are therefore increasingly finding applications in medical diagnostics, forensic analysis, and biomedical research. In particular, they provide novel and powerful ways to culture cells, cell aggregates, and even functional models of entire organs. Nuclear magnetic resonance is a non-invasive, high-resolution spectroscopic technique which allows real-time process monitoring with chemical specificity. It is ideally suited for observing metabolic and other biological and chemical processes in microfluidic systems. However, its intrinsically low sensitivity has limited its application. Recent advances in nuclear hyperpolarization techniques may change this: under special circumstances, it is possible to enhance NMR signals by up to 5 orders of magnitude, which dramatically extends the utility of NMR in the context of microfluidic systems. Hyperpolarization requires complex chemical and/or physical manipulations, which in turn may benefit from microfluidic implementation. In fact, many hyperpolarization methodologies rely on processes that are more efficient at the micro-scale, such as molecular diffusion, penetration of electromagnetic radiation into a sample, or restricted molecular mobility on a surface. In this review we examine the confluence between the fields of hyperpolarization-enhanced NMR and microfluidics, and assess how these areas of research have mutually benefited one another, and will continue to do so.
Collapse
Affiliation(s)
- James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany.
| | - William Hale
- Department of Chemistry, University of Florida, 32611, USA
| | - Marcel Utz
- School of Chemistry, University of Southampton, SO17 1BJ, UK.
| |
Collapse
|
13
|
Concilio MG, Kuprov I, Frydman L. J-Driven dynamic nuclear polarization for sensitizing high field solution state NMR. Phys Chem Chem Phys 2022; 24:2118-2125. [PMID: 35024715 DOI: 10.1039/d1cp04186j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dynamic nuclear polarization (DNP) is widely used to enhance solid state nuclear magnetic resonance (NMR) sensitivity. Its efficiency as a generic signal-enhancing approach for liquid state NMR, however, decays rapidly with magnetic field B0, unless mediated by scalar interactions arising only in exceptional cases. This has prevented a more widespread use of DNP in structural and dynamical solution NMR analyses. This study introduces a potential solution to this problem, relying on biradicals with exchange couplings Jex of the order of the electron Larmor frequency ωE. Numerical and analytical calculations show that in such Jex ≈ ±ωE cases a phenomenon akin to that occurring in chemically induced DNP (CIDNP) happens, leading to different relaxation rates for the biradical singlet and triplet states which are hyperfine-coupled to the nuclear α or β states. Microwave irradiation can then generate a transient nuclear polarization build-up with high efficiency, at all magnetic fields that are relevant in contemporary NMR, and for all rotational diffusion correlation times that occur in small- and medium-sized molecules in conventional solvents.
Collapse
Affiliation(s)
- Maria Grazia Concilio
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Southampton, UK
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel. .,National High Magnetic Field Laboratory, Tallahassee, Florida, USA
| |
Collapse
|
14
|
Kircher R, Hasse H, Münnemann K. High Flow-Rate Benchtop NMR Spectroscopy Enabled by Continuous Overhauser DNP. Anal Chem 2021; 93:8897-8905. [PMID: 34137586 DOI: 10.1021/acs.analchem.1c01118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Analysis of a fast-flowing liquid with NMR spectroscopy is challenging because short residence times in the magnetic field of the spectrometer result in inefficient polarization buildup and thus poor signal intensity. This is particularly problematic for benchtop NMR spectrometers because of their compact design. Therefore, in the present work, different methods to counteract this prepolarization problem in benchtop NMR spectroscopy were studied experimentally. The tests were carried out with an equimolar acetonitrile + water mixture flowing through a capillary with a 0.25 mm inner diameter at flow rates up to 2.00 mL min-1, corresponding to mean velocities of up to 0.7 m s-1. Established approaches gave only poor results at high flow rates, namely, using a prepolarization magnet, using a loopy flow cell, and using a T1 relaxation agent. To overcome this, signal enhancement by Overhauser dynamic nuclear polarization (ODNP) was used, which is based on polarization transfer from unpaired electron spins to nuclear spins and happens on very short time scales, resulting in high signal enhancements, also in fast-flowing liquids. A corresponding setup was developed and used for the studies: the line leading to the 1 T benchtop NMR spectrometer first passes through a fixed bed with a radical matrix placed in a Halbach magnet equipped with a microwave cavity to facilitate the spin transfer. With this ODNP setup, excellent results were obtained even for the highest studied flow rates. This shows that ODNP is an enabler for fast-flow benchtop NMR spectroscopy.
Collapse
Affiliation(s)
- Raphael Kircher
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Hans Hasse
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Kerstin Münnemann
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| |
Collapse
|
15
|
Gizatullin B, Gafurov M, Murzakhanov F, Vakhin A, Mattea C, Stapf S. Molecular Dynamics and Proton Hyperpolarization via Synthetic and Crude Oil Porphyrin Complexes in Solid and Solution States. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6783-6791. [PMID: 34041909 DOI: 10.1021/acs.langmuir.1c00882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The use of vanadyl porphyrins either in synthetic compounds or naturally occurring in asphaltenes is investigated as a source of proton hyperpolarization via dynamic nuclear polarization (DNP) in nuclear magnetic resonance (NMR) experiments. The features of dynamics and location of the vanadyl VO2+ complex in aggregates within the oil asphaltene molecules are studied by means of DNP, electron paramagnetic resonance (EPR), and NMR field cycling relaxometry. Both the solid effect and Overhauser DNP were observed for the asphaltene solution in benzene, as well as in the solution and solid states for synthetic compounds. By comparison with a solution of synthetic vanadyl porphyrins, it is shown that vanadyl porphyrins in asphaltene aggregates are localized outside of the interface of the asphaltene aggregates and more exposed to the maltene molecules than "free" carbon-centered radicals associated with the core of asphaltene molecules. The perceptible contribution of scalar interaction is observed in solutions for both synthetic and asphaltene vanadyl porphyrins.
Collapse
Affiliation(s)
- Bulat Gizatullin
- Institute of Physics, Technische Universität Ilmenau, Ilmenau 98693, Germany
| | - Marat Gafurov
- Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia
| | | | - Alexey Vakhin
- Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia
| | - Carlos Mattea
- Institute of Physics, Technische Universität Ilmenau, Ilmenau 98693, Germany
| | - Siegfried Stapf
- Institute of Physics, Technische Universität Ilmenau, Ilmenau 98693, Germany
| |
Collapse
|
16
|
Abhyankar N, Szalai V. Challenges and Advances in the Application of Dynamic Nuclear Polarization to Liquid-State NMR Spectroscopy. J Phys Chem B 2021; 125:5171-5190. [PMID: 33960784 PMCID: PMC9871957 DOI: 10.1021/acs.jpcb.0c10937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful method to study the molecular structure and dynamics of materials. The inherently low sensitivity of NMR spectroscopy is a consequence of low spin polarization. Hyperpolarization of a spin ensemble is defined as a population difference between spin states that far exceeds what is expected from the Boltzmann distribution for a given temperature. Dynamic nuclear polarization (DNP) can overcome the relatively low sensitivity of NMR spectroscopy by using a paramagnetic matrix to hyperpolarize a nuclear spin ensemble. Application of DNP to NMR can result in sensitivity gains of up to four orders of magnitude compared to NMR without DNP. Although DNP NMR is now more routinely utilized for solid-state (ss) NMR spectroscopy, it has not been exploited to the same degree for liquid-state samples. This Review will consider challenges and advances in the application of DNP NMR to liquid-state samples. The Review is organized into four sections: (i) mechanisms of DNP NMR relevant to hyperpolarization of liquid samples; (ii) applications of liquid-state DNP NMR; (iii) available detection schemes for liquid-state samples; and (iv) instrumental challenges and outlook for liquid-state DNP NMR.
Collapse
Affiliation(s)
- Nandita Abhyankar
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Veronika Szalai
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
17
|
Gizatullin B, Mattea C, Stapf S. Molecular Dynamics in Ionic Liquid/Radical Systems. J Phys Chem B 2021; 125:4850-4862. [PMID: 33930266 DOI: 10.1021/acs.jpcb.1c02118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular dynamics of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide (Emim-Tf2N) with either of the four organic stable radicals, TEMPO, 4-benzoyloxy-TEMPO, BDPA, and DPPH, is studied by using Nuclear Magnetic Resonance (NMR) and Dynamic Nuclear Polarization (DNP). In complex fluids at ambient temperature, NMR signal enhancement by DNP is frequently obtained by a combination of several mechanisms, where the Overhauser effect and solid effect are the most common. Understanding the interactions of free radicals with ionic liquid molecules is of particular significance due to their complex dynamics in these systems, influencing the properties of the ion-radical interaction. A combined analysis of EPR, DNP, and NMR relaxation dispersion is carried out for cations and anions containing, respectively, the NMR active nuclei 1H or 19F. Depending on the size and the chemical properties of the radical, different interaction processes are distinguished, namely, the Overhauser effect and solid effect, driven by dominating dipolar or scalar interactions. The resulting NMR relaxation dispersion is decomposed into rotational and translational contributions, allowing the identification of the corresponding correlation times of motion and interactions. The influence of electron relaxation time and electron-nuclear spin hyperfine coupling is discussed.
Collapse
Affiliation(s)
- Bulat Gizatullin
- FG Technische Physik II/Polymerphysik, Technische Universität Ilmenau, D-98684 Ilmenau, Germany
| | - Carlos Mattea
- FG Technische Physik II/Polymerphysik, Technische Universität Ilmenau, D-98684 Ilmenau, Germany
| | - Siegfried Stapf
- FG Technische Physik II/Polymerphysik, Technische Universität Ilmenau, D-98684 Ilmenau, Germany
| |
Collapse
|
18
|
Levien M, Reinhard M, Hiller M, Tkach I, Bennati M, Orlando T. Spin density localization and accessibility of organic radicals affect liquid-state DNP efficiency. Phys Chem Chem Phys 2021; 23:4480-4485. [PMID: 33599637 DOI: 10.1039/d0cp05796g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report a large variation in liquid DNP performance of up to a factor of about five in coupling factor among organic radicals commonly used as polarizing agents. A comparative study of 1H and 13C DNP in model systems shows the impact of the spin density distribution and accessibility of the radical site by the target molecule.
Collapse
Affiliation(s)
- Marcel Levien
- ESR Spectroscopy Group, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, Göttigen, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Keller TJ, Laut AJ, Sirigiri J, Maly T. High-resolution Overhauser dynamic nuclear polarization enhanced proton NMR spectroscopy at low magnetic fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 313:106719. [PMID: 32217425 PMCID: PMC7172445 DOI: 10.1016/j.jmr.2020.106719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 05/11/2023]
Abstract
Dynamic nuclear polarization (DNP) has gained large interest due to its ability to increase signal intensities in nuclear magnetic resonance (NMR) experiments by several orders of magnitude. Currently, DNP is typically used to enhance high-field, solid-state NMR experiments. However, the method is also capable of dramatically increasing the observed signal intensities in solution-state NMR spectroscopy. In this work, we demonstrate the application of Overhauser dynamic nuclear polarization (ODNP) spectroscopy at an NMR frequency of 14.5 MHz (0.35 T) to observe DNP-enhanced high-resolution NMR spectra of small molecules in solutions. Using a compact hybrid magnet with integrated shim coils to improve the magnetic field homogeneity we are able to routinely obtain proton linewidths of less than 4 Hz and enhancement factors >30. The excellent field resolution allows us to perform chemical-shift resolved ODNP experiments on ethyl crotonate to observe proton J-coupling. Furthermore, recording high-resolution ODNP-enhanced NMR spectra of ethylene glycol allows us to characterize the microwave induced sample heating in-situ, by measuring the separation of the OH and CH2 proton peaks.
Collapse
Affiliation(s)
| | | | | | - Thorsten Maly
- Bridge12 Technologies, 37 Loring Drive, Framingham, MA 01702, USA
| |
Collapse
|
20
|
Levien M, Hiller M, Tkach I, Bennati M, Orlando T. Nitroxide Derivatives for Dynamic Nuclear Polarization in Liquids: The Role of Rotational Diffusion. J Phys Chem Lett 2020; 11:1629-1635. [PMID: 32003568 PMCID: PMC7307959 DOI: 10.1021/acs.jpclett.0c00270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/31/2020] [Indexed: 06/07/2023]
Abstract
Polarization transfer efficiency in liquid-state dynamic nuclear polarization (DNP) depends on the interaction between polarizing agents (PAs) and target nuclei modulated by molecular motions. We show how translational and rotational diffusion differently affect the DNP efficiency. These contributions were disentangled by measuring 1H-DNP enhancements of toluene and chloroform doped with nitroxide derivatives at 0.34 T as a function of either the temperature or the size of the PA. The results were employed to analyze 13C-DNP data at higher fields, where the polarization transfer is also driven by the Fermi contact interaction. In this case, bulky nitroxide PAs perform better than the small TEMPONE radical due to structural fluctuations of the ring conformation. These findings will help in designing PAs with features specifically optimized for liquid-state DNP at various magnetic fields.
Collapse
Affiliation(s)
- M. Levien
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
- Department
of Chemistry, Georg-August University, Göttingen 37077, Germany
| | - M. Hiller
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
| | - I. Tkach
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
| | - M. Bennati
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
- Department
of Chemistry, Georg-August University, Göttingen 37077, Germany
| | - T. Orlando
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
| |
Collapse
|
21
|
Abstract
Dynamic nuclear polarization (DNP) is one of the most prominent methods of sensitivity enhancement in nuclear magnetic resonance (NMR). Even though solid-state DNP under magic-angle spinning (MAS) has left the proof-of-concept phase and has become an important tool for structural investigations of biomolecules as well as materials, it is still far from mainstream applicability because of the potentially overwhelming combination of unique instrumentation, complex sample preparation, and a multitude of different mechanisms and methods available. In this review, I introduce the diverse field and history of DNP, combining aspects of NMR and electron paramagnetic resonance. I then explain the general concepts and detailed mechanisms relevant at high magnetic field, including solution-state methods based on Overhauser DNP but with a greater focus on the more established MAS DNP methods. Finally, I review practical considerations and fields of application and discuss future developments.
Collapse
Affiliation(s)
- Björn Corzilius
- Institute of Chemistry and Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany;
| |
Collapse
|
22
|
Cheney DJ, Wedge CJ. Optically-generated Overhauser dynamic nuclear polarization: A numerical analysis. J Chem Phys 2020; 152:034202. [DOI: 10.1063/1.5133408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Daniel J. Cheney
- Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom
| | - Christopher J. Wedge
- Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom
| |
Collapse
|
23
|
Gizatullin B, Mattea C, Stapf S. X-nuclei hyperpolarization for studying molecular dynamics by DNP-FFC. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 307:106583. [PMID: 31472437 DOI: 10.1016/j.jmr.2019.106583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Dynamic Nuclear Polarization methods are used for improving the quality of the NMR data, opening new possibilities by increasing both the sensitivity and the selectivity in NMR relaxation experiments. Recently, Fast Field Cycling relaxometry combined with DNP was introduced, demonstrating that molecular dynamics studies in the presence of natural or artificial radicals are indeed feasible under conditions where the signal-to-noise ratio is frequently critical. In this work, the extension of NMR relaxation dispersion beyond 1H NMR, by hyperpolarization of X-nuclei, is demonstrated. Overhauser effect via nitroxide radicals in simple (low viscous) liquids and saline solutions was observed for 2H, 7Li and 13C nuclei at ambient temperature. Substantial NMR signal enhancement up to several hundred was achieved for the studied samples. An advanced approach for reconstructing of the original relaxation dispersion of pure substances is used to eliminate the effect of the additional radical relaxivity of the X-nuclei.
Collapse
Affiliation(s)
- Bulat Gizatullin
- FG Technische Physik II/Polymerphysik, Technische Universität Ilmenau, D-98684 Ilmenau, Germany
| | - Carlos Mattea
- FG Technische Physik II/Polymerphysik, Technische Universität Ilmenau, D-98684 Ilmenau, Germany
| | - Siegfried Stapf
- FG Technische Physik II/Polymerphysik, Technische Universität Ilmenau, D-98684 Ilmenau, Germany.
| |
Collapse
|
24
|
König A, Schölzel D, Uluca B, Viennet T, Akbey Ü, Heise H. Hyperpolarized MAS NMR of unfolded and misfolded proteins. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 98:1-11. [PMID: 30641444 DOI: 10.1016/j.ssnmr.2018.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/28/2018] [Accepted: 12/30/2018] [Indexed: 05/09/2023]
Abstract
In this article we give an overview over the use of DNP-enhanced solid-state NMR spectroscopy for the investigation of unfolded, disordered and misfolded proteins. We first provide an overview over studies in which DNP spectroscopy has successfully been applied for the structural investigation of well-folded amyloid fibrils formed by short peptides as well as full-length proteins. Sample cooling to cryogenic temperatures often leads to severe line broadening of resonance signals and thus a loss in resolution. However, inhomogeneous line broadening at low temperatures provides valuable information about residual dynamics and flexibility in proteins, and, in combination with appropriate selective isotope labeling techniques, inhomogeneous linewidths in disordered proteins or protein regions may be exploited for evaluation of conformational ensembles. In the last paragraph we highlight some recent studies where DNP-enhanced MAS-NMR-spectroscopy was applied to the study of disordered proteins/protein regions and inhomogeneous sample preparations.
Collapse
Affiliation(s)
- Anna König
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52425, Jülich, Germany; Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Daniel Schölzel
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52425, Jülich, Germany; Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Boran Uluca
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52425, Jülich, Germany; Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thibault Viennet
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52425, Jülich, Germany; Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ümit Akbey
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52425, Jülich, Germany; Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Henrike Heise
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52425, Jülich, Germany; Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
25
|
Gizatullin B, Mattea C, Stapf S. Overhauser DNP FFC study of block copolymer diluted solution. Magn Reson Imaging 2019; 56:96-102. [DOI: 10.1016/j.mri.2018.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/08/2018] [Accepted: 09/08/2018] [Indexed: 11/26/2022]
|
26
|
Biller JR, Stupic KF, Moreland J. A table-top PXI based low-field spectrometer for solution dynamic nuclear polarization. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:153-163. [PMID: 29049871 DOI: 10.1002/mrc.4672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
We present the development of a portable dynamic nuclear polarization (DNP) instrument based on the PCI eXtensions for Instrumentation platform. The main purpose of the instrument is for study of 1 H polarization enhancements in solution through the Overhauser mechanism at low magnetic fields. A DNP probe set was constructed for use at 6.7 mT, using a modified Alderman-Grant resonator at 241 MHz for saturation of the electron transition. The solenoid for detection of the enhanced 1 H signal at 288 kHz was constructed with Litz wire. The largest observed 1 H enhancements (ε) at 6.7 mT for 14 N-CTPO radical in air saturated aqueous solution was ε~65. A concentration dependence of the enhancement is observed, with maximum ε at 5.5 mM. A low resonator efficiency for saturation of the electron paramagnetic resonance transition results in a decrease in ε for the 10.3 mM sample. At high incident powers (42 W) and long pump times, capacitor heating effects can also decrease the enhancement. The core unit and program described here could be easily adopted for multi-frequency DNP work, depending on available main magnets and selection of the "plug and play" arbitrary waveform generator, digitizer, and radiofrequency synthesizer PCI eXtensions for Instrumentatione cards.
Collapse
Affiliation(s)
- Joshua R Biller
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO, USA
| | - Karl F Stupic
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO, USA
| | - J Moreland
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO, USA
| |
Collapse
|
27
|
Biller JR, Barnes R, Han S. Perspective of Overhauser dynamic nuclear polarization for the study of soft materials. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Niedbalski P, Parish C, Wang Q, Hayati Z, Song L, Martins AF, Sherry AD, Lumata L. Transition Metal Doping Reveals Link between Electron T 1 Reduction and 13C Dynamic Nuclear Polarization Efficiency. J Phys Chem A 2017; 121:9221-9228. [PMID: 29125294 PMCID: PMC5793213 DOI: 10.1021/acs.jpca.7b09448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Optimal efficiency of dissolution dynamic nuclear polarization (DNP) is essential to provide the required high sensitivity enhancements for in vitro and in vivo hyperpolarized 13C nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI). At the nexus of the DNP process are the free electrons, which provide the high spin alignment that is transferred to the nuclear spins. Without changing DNP instrumental conditions, one way to improve 13C DNP efficiency is by adding trace amounts of paramagnetic additives such as lanthanide (e.g., Gd3+, Ho3+, Dy3+, Tb3+) complexes to the DNP sample, which has been observed to increase solid-state 13C DNP signals by 100-250%. Herein, we have investigated the effects of paramagnetic transition metal complex R-NOTA (R = Mn2+, Cu2+, Co2+) doping on the efficiency of 13C DNP using trityl OX063 as the polarizing agent. Our DNP results at 3.35 T and 1.2 K show that doping the 13C sample with 3 mM Mn2+-NOTA led to a substantial improvement of the solid-state 13C DNP signal by a factor of nearly 3. However, the other transition metal complexes Cu2+-NOTA and Co2+-NOTA complexes, despite their paramagnetic nature, had essentially no impact on solid-state 13C DNP enhancement. W-band electron paramagnetic resonance (EPR) measurements reveal that the trityl OX063 electron T1 was significantly reduced in Mn2+-doped samples but not in Cu2+- and Co2+-doped DNP samples. This work demonstrates, for the first time, that not all paramagnetic additives are beneficial to DNP. In particular, our work provides a direct evidence that electron T1 reduction of the polarizing agent by a paramagnetic additive is an essential requirement for the improvement seen in solid-state 13C DNP signal.
Collapse
Affiliation(s)
- Peter Niedbalski
- Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Christopher Parish
- Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Qing Wang
- Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Zahra Hayati
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Likai Song
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - André F. Martins
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - A. Dean Sherry
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Lloyd Lumata
- Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
29
|
Lilly Thankamony AS, Wittmann JJ, Kaushik M, Corzilius B. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:120-195. [PMID: 29157490 DOI: 10.1016/j.pnmrs.2017.06.002] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/03/2017] [Accepted: 06/08/2017] [Indexed: 05/03/2023]
Abstract
The field of dynamic nuclear polarization has undergone tremendous developments and diversification since its inception more than 6 decades ago. In this review we provide an in-depth overview of the relevant topics involved in DNP-enhanced MAS NMR spectroscopy. This includes the theoretical description of DNP mechanisms as well as of the polarization transfer pathways that can lead to a uniform or selective spreading of polarization between nuclear spins. Furthermore, we cover historical and state-of-the art aspects of dedicated instrumentation, polarizing agents, and optimization techniques for efficient MAS DNP. Finally, we present an extensive overview on applications in the fields of structural biology and materials science, which underlines that MAS DNP has moved far beyond the proof-of-concept stage and has become an important tool for research in these fields.
Collapse
Affiliation(s)
- Aany Sofia Lilly Thankamony
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Johannes J Wittmann
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Monu Kaushik
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Björn Corzilius
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany.
| |
Collapse
|
30
|
Ravera E, Parigi G, Luchinat C. Perspectives on paramagnetic NMR from a life sciences infrastructure. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 282:154-169. [PMID: 28844254 DOI: 10.1016/j.jmr.2017.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 05/17/2023]
Abstract
The effects arising in NMR spectroscopy because of the presence of unpaired electrons, collectively referred to as "paramagnetic NMR" have attracted increasing attention over the last decades. From the standpoint of the structural and mechanistic biology, paramagnetic NMR provides long range restraints that can be used to assess the accuracy of crystal structures in solution and to improve them by simultaneous refinements through NMR and X-ray data. These restraints also provide information on structure rearrangements and conformational variability in biomolecular systems. Theoretical improvements in quantum chemistry calculations can nowadays allow for accurate calculations of the paramagnetic data from a molecular structural model, thus providing a tool to refine the metal coordination environment by matching the paramagnetic effects observed far away from the metal. Furthermore, the availability of an improved technology (higher fields and faster magic angle spinning) has promoted paramagnetic NMR applications in the fast-growing area of biomolecular solid-state NMR. Major improvements in dynamic nuclear polarization have been recently achieved, especially through the exploitation of the Overhauser effect occurring through the contact-driven relaxation mechanism: the very large enhancement of the 13C signal observed in a variety of liquid organic compounds at high fields is expected to open up new perspectives for applications of solution NMR.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
31
|
Waddington DEJ, Sarracanie M, Zhang H, Salameh N, Glenn DR, Rej E, Gaebel T, Boele T, Walsworth RL, Reilly DJ, Rosen MS. Nanodiamond-enhanced MRI via in situ hyperpolarization. Nat Commun 2017; 8:15118. [PMID: 28443626 PMCID: PMC5414045 DOI: 10.1038/ncomms15118] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/01/2017] [Indexed: 11/05/2022] Open
Abstract
Nanodiamonds are of interest as nontoxic substrates for targeted drug delivery and as highly biostable fluorescent markers for cellular tracking. Beyond optical techniques, however, options for noninvasive imaging of nanodiamonds in vivo are severely limited. Here, we demonstrate that the Overhauser effect, a proton–electron polarization transfer technique, can enable high-contrast magnetic resonance imaging (MRI) of nanodiamonds in water at room temperature and ultra-low magnetic field. The technique transfers spin polarization from paramagnetic impurities at nanodiamond surfaces to 1H spins in the surrounding water solution, creating MRI contrast on-demand. We examine the conditions required for maximum enhancement as well as the ultimate sensitivity of the technique. The ability to perform continuous in situ hyperpolarization via the Overhauser mechanism, in combination with the excellent in vivo stability of nanodiamond, raises the possibility of performing noninvasive in vivo tracking of nanodiamond over indefinitely long periods of time. Hyperpolarized magnetic resonance imaging can enhance imaging contrast by orders of magnitude, but applications are limited by the thermal relaxation of hyperpolarized states. Here, Waddington et al. demonstrate the on-demand hyperpolarization of hydrogen spins through the Overhauser effect with nanodiamonds.
Collapse
Affiliation(s)
- David E J Waddington
- A.A. Martinos Center for Biomedical Imaging, Suite 2301, 149 13th Street, Charlestown, Massachusetts 02129, USA.,ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia.,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Mathieu Sarracanie
- A.A. Martinos Center for Biomedical Imaging, Suite 2301, 149 13th Street, Charlestown, Massachusetts 02129, USA.,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.,Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Huiliang Zhang
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.,Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA
| | - Najat Salameh
- A.A. Martinos Center for Biomedical Imaging, Suite 2301, 149 13th Street, Charlestown, Massachusetts 02129, USA.,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.,Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA
| | - David R Glenn
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.,Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA
| | - Ewa Rej
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Torsten Gaebel
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas Boele
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ronald L Walsworth
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.,Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA
| | - David J Reilly
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Matthew S Rosen
- A.A. Martinos Center for Biomedical Imaging, Suite 2301, 149 13th Street, Charlestown, Massachusetts 02129, USA.,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.,Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA
| |
Collapse
|
32
|
Neudert O, Mattea C, Stapf S. Molecular dynamics-based selectivity for Fast-Field-Cycling relaxometry by Overhauser and solid effect dynamic nuclear polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 276:113-121. [PMID: 28183023 DOI: 10.1016/j.jmr.2017.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
In the last decade nuclear spin hyperpolarization methods, especially Dynamic Nuclear Polarization (DNP), have provided unprecedented possibilities for various NMR techniques by increasing the sensitivity by several orders of magnitude. Recently, in-situ DNP-enhanced Fast Field Cycling (FFC) relaxometry was shown to provide appreciable NMR signal enhancements in liquids and viscous systems. In this work, a measurement protocol for DNP-enhanced NMR studies is introduced which enables the selective detection of nuclear spin hyperpolarized by either Overhauser effect or solid effect DNP. Based on field-cycled DNP and relaxation studies it is shown that these methods allow for the independent measurement of polymer and solvent nuclear spins in a concentrated solution of high molecular weight polybutadiene in benzene doped with α,γ-bisdiphenylene-β-phenylallyl radical. Appreciable NMR signal enhancements of about 10-fold were obtained for both constituents. Moreover, qualitative information about the dynamics of the radical and solvent was obtained. Selective DNP-enhanced FFC relaxometry is applied for the measurement of the 1H nuclear magnetic relaxation dispersion of both constituents with improved precision. The introduced method is expected to greatly facilitate NMR studies of complex systems with multiple overlapping signal contributions that cannot be distinguished by standard methods.
Collapse
Affiliation(s)
- Oliver Neudert
- Institute of Physics, Ilmenau University of Technology, D-98693 Ilmenau, Germany.
| | - Carlos Mattea
- Institute of Physics, Ilmenau University of Technology, D-98693 Ilmenau, Germany
| | - Siegfried Stapf
- Institute of Physics, Ilmenau University of Technology, D-98693 Ilmenau, Germany
| |
Collapse
|
33
|
Dale MW, Wedge CJ. Optically generated hyperpolarization for sensitivity enhancement in solution-state NMR spectroscopy. Chem Commun (Camb) 2016; 52:13221-13224. [DOI: 10.1039/c6cc06651h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Using optical excitation to generate radical triplet pairs the sensitivity of solution-state NMR can be enhanced without microwave pumping.
Collapse
|