1
|
Bakaeva Z, Goncharov M, Frolov F, Krasilnikova I, Sorokina E, Zgodova A, Smolyarchuk E, Zavadskiy S, Andreeva L, Myasoedov N, Fisenko A, Savostyanov K. Regulatory Peptide Pro-Gly-Pro Accelerates Neuroregeneration of Primary Neuroglial Culture after Mechanical Injury in Scratch Test. Int J Mol Sci 2024; 25:10886. [PMID: 39456669 PMCID: PMC11507231 DOI: 10.3390/ijms252010886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The scratch test is used as an experimental in vitro model of mechanical damage to primary neuronal cultures to study the mechanisms of cell death in damaged areas. The involvement of NMDA receptors in processes leading to delayed neuronal death, due to calcium dysregulation and synchronous mitochondrial depolarization, has been previously demonstrated. In this study, we explored the neuroregenerative potential of Pro-Gly-Pro (PGP)-an endogenous regulatory peptide with neuroprotective and anti-inflammatory properties and a mild chemoattractant effect. Mechanical injury to the primary neuroglial culture in the form of a scratch caused acute disruption of calcium homeostasis and mitochondrial functions. This was accompanied by neuronal death alongside changes in the profile of neuronal markers (BDNF, NSE and GFAP). In another series of experiments, under subtoxic doses of glutamate (Glu, 33 μM), delayed changes in [Ca2+]i and ΔΨm, i.e., several days after scratch application, were more pronounced in cells in damaged neuroglial cultures. The percentage of cells that restored the initial level of [Ca2+]i (p < 0.05) and the rate of recovery of ΔΨm (p < 0.01) were decreased compared with undamaged cells. Prophylactic application of PGP (100 μM, once) prevented the increase in [Ca2+]i and the sharp drop in mitochondrial potential [ΔΨm] at the time of scratching. Treatment with PGP (30 μM, three or six days) reduced the delayed Glu-induced disturbances in calcium homeostasis and cell death. In the post-glutamate period, the surviving neurons more effectively restored the initial levels of [Ca2+]i (p < 0.001) and Ψm (p < 0.0001). PGP also increased intracellular levels of BDNF and reduced extracellular NSE. In the context of the peptide's therapeutic effect, the recovery of the damaged neuronal network occurred faster due to reduced astrogliosis and increased migration of neurons to the scratch area. Thus, the peptide PGP has a neuroprotective effect, increasing the survival of neuroglial cells after mechanical trauma in vitro by reducing cellular calcium overload and preventing mitochondrial dysfunction. Additionally, the tripeptide limits the post-traumatic consequences of mechanical damage: it reduces astrogliosis and promotes neuronal regeneration.
Collapse
Affiliation(s)
- Zanda Bakaeva
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (I.K.); (E.S.)
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (F.F.); (E.S.)
- Kalmyk State University Named after B.B. Gorodovikov, 358000 Elista, Russia
| | - Mikhail Goncharov
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany;
| | - Fyodor Frolov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (F.F.); (E.S.)
| | - Irina Krasilnikova
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (I.K.); (E.S.)
| | - Elena Sorokina
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (I.K.); (E.S.)
| | - Arina Zgodova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (F.F.); (E.S.)
| | - Elena Smolyarchuk
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (F.F.); (E.S.)
| | - Sergey Zavadskiy
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (F.F.); (E.S.)
| | - Liudmila Andreeva
- National Research Centre «Kurchatov Institute» (NRC «Kurchatov Institute»), 123182 Moscow, Russia; (L.A.); (N.M.)
| | - Nikolai Myasoedov
- National Research Centre «Kurchatov Institute» (NRC «Kurchatov Institute»), 123182 Moscow, Russia; (L.A.); (N.M.)
| | - Andrey Fisenko
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (I.K.); (E.S.)
| | - Kirill Savostyanov
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (I.K.); (E.S.)
| |
Collapse
|
2
|
Galkina SI, Fedorova NV, Golenkina EA, Ksenofontov AL, Serebryakova MV, Kordyukova LV, Stadnichuk VI, Baratova LA, Sud'ina GF. Differential effects of angiotensin II and aldosterone on human neutrophil adhesion and concomitant secretion of proteins, free amino acids and reactive oxygen and nitrogen species. Int Immunopharmacol 2024; 139:112687. [PMID: 39018693 DOI: 10.1016/j.intimp.2024.112687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Invasion and adhesion of neutrophils into tissues and their concomitant secretion play an important role in the development of vascular pathologies, including abdominal aortic aneurysm (AAA). Chronic administration of angiotensin II is used to initiate AAA formation in mice. The role of aldosterone in this process is being studied. We conducted for the first time a complex comparative study of the effects of angiotensin II and aldosterone on the adhesion of human neutrophils to fibronectin and the concomitant secretion of proteins, free amino acids as well as reactive oxygen (ROS) and nitrogen (NO) species. Neither angiotensin II nor aldosterone affected the attachment of neutrophils to fibronectin and the concomitant production of ROS. We showed for the first time that aldosterone stimulated the release of amino acid hydroxylysine, a product of lysyl hydroxylase, the activity of which is positively correlated with cell invasiveness. Aldosterone also initiates the secretion of matrix metalloproteinase 9 (MMP-9) and cathepsin G, which may reorganize the extracellular matrix and stimulate the recruitment and adhesion of neutrophils to the aortic walls. Angiotensin II did not affect protein secretion. It may contribute to neutrophil-induced vascular injury by inhibiting the production of NO or by increasing the secretion of isoleucine. Our results suggest that it is aldosterone-induced neutrophil secretion that may play a significant role in neutrophil-induced vascular wall destruction in angiotensin II-induced AAA or other vascular complications.
Collapse
Affiliation(s)
- Svetlana I Galkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Natalia V Fedorova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina A Golenkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander L Ksenofontov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Marina V Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Larisa V Kordyukova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Ludmila A Baratova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Galina F Sud'ina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
3
|
Mincham KT, Akthar S, Patel DF, Meyer GF, Lloyd CM, Gaggar A, Blalock JE, Snelgrove RJ. Airway extracellular LTA 4H concentrations are governed by release from liver hepatocytes and changes in lung vascular permeability. Cell Rep 2024; 43:114630. [PMID: 39146180 DOI: 10.1016/j.celrep.2024.114630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/04/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
Leukotriene A4 hydrolase (LTA4H) is a bifunctional enzyme, with dual activities critical in defining the scale of tissue inflammation and pathology. LTA4H classically operates intracellularly, primarily within myeloid cells, to generate pro-inflammatory leukotriene B4. However, LTA4H also operates extracellularly to degrade the bioactive collagen fragment proline-glycine-proline to limit neutrophilic inflammation and pathological tissue remodeling. While the dichotomous functions of LTA4H are dictated by location, the cellular source of extracellular enzyme remains unknown. We demonstrate that airway extracellular LTA4H concentrations are governed by the level of pulmonary vascular permeability and influx of an abundant repository of blood-borne enzyme. In turn, blood LTA4H originates from liver hepatocytes, being released constitutively but further upregulated during an acute phase response. These findings have implications for our understanding of how inflammation and repair are regulated and how perturbations to the LTA4H axis may manifest in pathologies of chronic diseases.
Collapse
Affiliation(s)
- Kyle T Mincham
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Samia Akthar
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Dhiren F Patel
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK; Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Garance F Meyer
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Clare M Lloyd
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Amit Gaggar
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Lung Health Center and Gregory Fleming James CF Center, University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham VA Medical Center, Birmingham, AL, USA
| | - James E Blalock
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Lung Health Center and Gregory Fleming James CF Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert J Snelgrove
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
4
|
Cucinotta L, Mannino D, Casili G, Repici A, Crupi L, Paterniti I, Esposito E, Campolo M. Prolyl oligopeptidase inhibition ameliorates experimental pulmonary fibrosis both in vivo and in vitro. Respir Res 2023; 24:211. [PMID: 37626373 PMCID: PMC10463606 DOI: 10.1186/s12931-023-02519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Pulmonary fibrosis is a progressive disease characterized by lung remodeling due to excessive deposition of extracellular matrix. Although the etiology remains unknown, aberrant angiogenesis and inflammation play an important role in the development of this pathology. In this context, recent scientific research has identified new molecules involved in angiogenesis and inflammation, such as the prolyl oligopeptidase (PREP), a proteolytic enzyme belonging to the serine protease family, linked to the pathology of many lung diseases such as pulmonary fibrosis. Therefore, the aim of this study was to investigate the effect of a selective inhibitor of PREP, known as KYP-2047, in an in vitro and in an in vivo model of pulmonary fibrosis. METHODS The in vitro model was performed using human alveolar A549 cells. Cells were exposed to lipopolysaccharide (LPS) 10 μg/ml and then, cells were treated with KYP-2047 at the concentrations of 1 μM, 10 μM and 50 μM. Cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) bromide colorimetric assay, while inflammatory protein expression was assessed by western blots analysis. The in vivo model was induced in mice by intra-tracheal administration of bleomycin (1 mg/kg) and then treated intraperitoneally with KYP-2047 at doses of 1, 2.5 and 5 mg/kg once daily for 12 days and then mice were sacrificed, and lung tissues were collected for analyses. RESULTS The in vitro results demonstrated that KYP-2047 preserved cell viability, reduced inflammatory process by decreasing IL-18 and TNF-α, and modulated lipid peroxidation as well as nitrosative stress. The in vivo pulmonary fibrosis has demonstrated that KYP-2047 was able to restore histological alterations reducing lung injury. Our data demonstrated that KYP-2047 significantly reduced angiogenesis process and the fibrotic damage modulating the expression of fibrotic markers. Furthermore, KYP-2047 treatment modulated the IκBα/NF-κB pathway and reduced the expression of related pro-inflammatory enzymes and cytokines. Moreover, KYP-2047 was able to modulate the JAK2/STAT3 pathway, highly involved in pulmonary fibrosis. CONCLUSION In conclusion, this study demonstrated the involvement of PREP in the pathogenesis of pulmonary fibrosis and that its inhibition by KYP-2047 has a protective role in lung injury induced by BLM, suggesting PREP as a potential target therapy for pulmonary fibrosis. These results speculate the potential protective mechanism of KYP-2047 through the modulation of JAK2/STAT3 and NF-κB pathways.
Collapse
Affiliation(s)
- Laura Cucinotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Lelio Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy.
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| |
Collapse
|
5
|
Zhao Z, Deng J, Fan D. Green biomanufacturing in recombinant collagen biosynthesis: trends and selection in various expression systems. Biomater Sci 2023; 11:5439-5461. [PMID: 37401335 DOI: 10.1039/d3bm00724c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Collagen, classically derived from animal tissue, is an all-important protein material widely used in biomedical materials, cosmetics, fodder, food, etc. The production of recombinant collagen through different biological expression systems using bioengineering techniques has attracted significant interest in consideration of increasing market demand and the process complexity of extraction. Green biomanufacturing of recombinant collagen has become one of the focus topics. While the bioproduction of recombinant collagens (type I, II, III, etc.) has been commercialized in recent years, the biosynthesis of recombinant collagen is extremely challenging due to protein immunogenicity, yield, degradation, and other issues. The rapid development of synthetic biology allows us to perform a heterologous expression of proteins in diverse expression systems, thus optimizing the production and bioactivities of recombinant collagen. This review describes the research progress in the bioproduction of recombinant collagen over the past two decades, focusing on different expression systems (prokaryotic organisms, yeasts, plants, insects, mammalian and human cells, etc.). We also discuss the challenges and future trends in developing market-competitive recombinant collagens.
Collapse
Affiliation(s)
- Zilong Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| |
Collapse
|
6
|
Toppila M, Hytti M, Korhonen E, Ranta-Aho S, Harju N, Forsberg MM, Kaarniranta K, Jalkanen A, Kauppinen A. The Prolyl Oligopeptidase Inhibitor KYP-2047 Is Cytoprotective and Anti-Inflammatory in Human Retinal Pigment Epithelial Cells with Defective Proteasomal Clearance. Antioxidants (Basel) 2023; 12:1279. [PMID: 37372009 DOI: 10.3390/antiox12061279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Increased oxidative stress, dysfunctional cellular clearance, and chronic inflammation are associated with age-related macular degeneration (AMD). Prolyl oligopeptidase (PREP) is a serine protease that has numerous cellular functions, including the regulation of oxidative stress, protein aggregation, and inflammation. PREP inhibition by KYP-2047 (4-phenylbutanoyl-L-prolyl1(S)-cyanopyrrolidine) has been associated with clearance of cellular protein aggregates and reduced oxidative stress and inflammation. Here, we studied the effects of KYP-2047 on inflammation, oxidative stress, cell viability, and autophagy in human retinal pigment epithelium (RPE) cells with reduced proteasomal clearance. MG-132-mediated proteasomal inhibition in ARPE-19 cells was used to model declined proteasomal clearance in the RPEs of AMD patients. Cell viability was assessed using LDH and MTT assays. The amounts of reactive oxygen species (ROS) were measured using 2',7'-dichlorofluorescin diacetate (H2DCFDA). ELISA was used to determine the levels of cytokines and activated mitogen-activated protein kinases. The autophagy markers p62/SQSTM1 and LC3 were measured with the western blot method. MG-132 induced LDH leakage and increased ROS production in the ARPE-19 cells, and KYP-2047 reduced MG-132-induced LDH leakage. Production of the proinflammatory cytokine IL-6 was concurrently alleviated by KYP-2047 when compared with cells treated only with MG-132. KYP-2047 had no effect on autophagy in the RPE cells, but the phosphorylation levels of p38 and ERK1/2 were elevated upon KYP-2047 exposure, and the inhibition of p38 prevented the anti-inflammatory actions of KYP-2047. KYP-2047 showed cytoprotective and anti-inflammatory effects on RPE cells suffering from MG-132-induced proteasomal inhibition.
Collapse
Affiliation(s)
- Maija Toppila
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Maria Hytti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Eveliina Korhonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - Sofia Ranta-Aho
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Niina Harju
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Markus M Forsberg
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Aaro Jalkanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
7
|
Taraszkiewicz A, Sinkiewicz I, Sommer A, Staroszczyk H. The biological role of prolyl oligopeptidase and the procognitive potential of its peptidic inhibitors from food proteins. Crit Rev Food Sci Nutr 2023; 64:6567-6580. [PMID: 36798052 DOI: 10.1080/10408398.2023.2170973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Prolyl oligopeptidase (POP) is a conserved serine protease belonging to proline-specific peptidases. It has both enzymatic and non-enzymatic activity and is involved in numerous biological processes in the human body, playing a role in e.g., cellular growth and differentiation, inflammation, as well as the development of some neurodegenerative and neuropsychiatric disorders. This article describes the physiological and pathological aspects of POP activity and the state-of-art of its peptidic inhibitors originating from food proteins, with a particular focus on their potential as cognition-enhancing agents. Although some milk, meat, fish, and plant protein-derived peptides have the potential to be applied as natural, procognitive nutraceuticals, their effectiveness requires further evaluation, especially in clinical trials. We demonstrated that the important features of the most promising POP-inhibiting peptides are very short sequence, high content of hydrophobic amino acids, and usually the presence of proline residue.
Collapse
Affiliation(s)
- Antoni Taraszkiewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Izabela Sinkiewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Agata Sommer
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Hanna Staroszczyk
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
8
|
Tang F, Brune JE, Chang MY, Reeves SR, Altemeier WA, Frevert CW. Defining the versican interactome in lung health and disease. Am J Physiol Cell Physiol 2022; 323:C249-C276. [PMID: 35649251 PMCID: PMC9291419 DOI: 10.1152/ajpcell.00162.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM) imparts critical mechanical and biochemical information to cells in the lungs. Proteoglycans are essential constituents of the ECM and play a crucial role in controlling numerous biological processes, including regulating cellular phenotype and function. Versican, a chondroitin sulfate proteoglycan required for embryonic development, is almost absent from mature, healthy lungs and is reexpressed and accumulates in acute and chronic lung disease. Studies using genetically engineered mice show that the versican-enriched matrix can be pro- or anti-inflammatory depending on the cellular source or disease process studied. The mechanisms whereby versican develops a contextual ECM remain largely unknown. The primary goal of this review is to provide an overview of the interaction of versican with its many binding partners, the "versican interactome," and how through these interactions, versican is an integrator of complex extracellular information. Hopefully, the information provided in this review will be used to develop future studies to determine how versican and its binding partners can develop contextual ECMs that control select biological processes. Although this review focuses on versican and the lungs, what is described can be extended to other proteoglycans, tissues, and organs.
Collapse
Affiliation(s)
- Fengying Tang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jourdan E Brune
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Mary Y Chang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - William A Altemeier
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Charles W Frevert
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
9
|
Lee KH, Ali NF, Lee SH, Zhang Z, Burdick M, Beaulac ZJ, Petruncio G, Li L, Xiang J, Chung EM, Foreman KW, Noble SM, Shim YM, Paige M. Substrate-dependent modulation of the leukotriene A 4 hydrolase aminopeptidase activity and effect in a murine model of acute lung inflammation. Sci Rep 2022; 12:9443. [PMID: 35676292 PMCID: PMC9177663 DOI: 10.1038/s41598-022-13238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
The aminopeptidase activity (AP) of the leukotriene A4 hydrolase (LTA4H) enzyme has emerged as a therapeutic target to modulate host immunity. Initial reports focused on the benefits of augmenting the LTA4H AP activity and clearing its putative pro-inflammatory substrate Pro-Gly-Pro (PGP). However, recent reports have introduced substantial complexity disconnecting the LTA4H modulator 4-methoxydiphenylmethane (4MDM) from PGP as follows: (1) 4MDM inhibits PGP hydrolysis and subsequently inhibition of LTA4H AP activity, and (2) 4MDM activates the same enzyme target in the presence of alternative substrates. Differential modulation of LTA4H by 4MDM was probed in a murine model of acute lung inflammation, which showed that 4MDM modulates the host neutrophilic response independent of clearing PGP. X-ray crystallography showed that 4MDM and PGP bind at the zinc binding pocket and no allosteric binding was observed. We then determined that 4MDM modulation is not dependent on the allosteric binding of the ligand, but on the N-terminal side chain of the peptide. In conclusion, our study revealed that a peptidase therapeutic target can interact with its substrate and ligand in complex biochemical mechanisms. This raises an important consideration when ligands are designed to explain some of the unpredictable outcomes observed in therapeutic discovery targeting LTA4H.
Collapse
Affiliation(s)
- Kyung Hyeon Lee
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, USA
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Nadia Fazal Ali
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, USA
| | - Soo Hyeon Lee
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Zhimin Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, PO Box 800546, Charlottesville, VA, 22908, USA
| | - Marie Burdick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, PO Box 800546, Charlottesville, VA, 22908, USA
| | - Zachary J Beaulac
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, USA
| | - Greg Petruncio
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, USA
| | - Linxia Li
- Department of Obstetrics and Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Shanghai, 200137, China
| | - Jiangdong Xiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ezra M Chung
- STCube Pharmaceutical, Inc., 401 Professional Dr, Gaithersburg, MD, 20879, USA
| | - Kenneth W Foreman
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, USA
| | - Schroeder M Noble
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.
| | - Yun M Shim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, PO Box 800546, Charlottesville, VA, 22908, USA.
| | - Mikell Paige
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, USA.
| |
Collapse
|
10
|
Proline-specific peptidase activities (DPP4, PRCP, FAP and PREP) in plasma of hospitalized COVID-19 patients. Clin Chim Acta 2022; 531:4-11. [PMID: 35283094 PMCID: PMC8920094 DOI: 10.1016/j.cca.2022.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/18/2022] [Accepted: 03/06/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND COVID-19 patients experience several features of dysregulated immune system observed in sepsis. We previously showed a dysregulation of several proline-selective peptidases such as dipeptidyl peptidase 4 (DPP4), fibroblast activation protein alpha (FAP), prolyl oligopeptidase (PREP) and prolylcarboxypeptidase (PRCP) in sepsis. In this study, we investigated whether these peptidases are similarly dysregulated in hospitalized COVID-19 patients. METHODS Fifty-six hospitalized COVID-19 patients and 32 healthy controls were included. Enzymatic activities of DPP4, FAP, PREP and PRCP were measured in samples collected shortly after hospital admission and in longitudinal follow-up samples. RESULTS Compared to healthy controls, both DPP4 and FAP activities were significantly lower in COVID-19 patients at hospital admission and FAP activity further decreased significantly in the first week of hospitalization. While PRCP activity remained unchanged, PREP activity was significantly increased in COVID-19 patients at hospitalization and further increased during hospital stay and stayed elevated until the day of discharge. CONCLUSION The changes in activities of proline-selective peptidases in plasma are very similar in COVID-19 and septic shock patients. The pronounced decrease in FAP activity deserves further investigation, both from a pathophysiological viewpoint and as its utility as a part of a biomarker panel.
Collapse
|
11
|
Qian XK, Zhang J, Li XD, Song PF, Zou LW. Research Progress on Dipeptidyl Peptidase Family: Structure, Function and Xenobiotic Metabolism. Curr Med Chem 2021; 29:2167-2188. [PMID: 34525910 DOI: 10.2174/0929867328666210915103431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/22/2022]
Abstract
Prolyl-specific peptidases or proteases, including Dipeptidyl Peptidase 2, 4, 6, 8, 9, 10, Fibroblast Activation Protein, prolyl endopeptidase and prolyl carboxypeptidase, belong to the dipeptidyl peptidase family. In human physiology and anatomy, they have homology amino acid sequences, similarities in structure, but play distinct functions and roles. Some of them also play important roles in the metabolism of drugs containing endogenous peptides, xenobiotics containing peptides, and exogenous peptides. The major functions of these peptidases in both the metabolism of human health and bioactive peptides are of significant importance in the development of effective inhibitors to control the metabolism of endogenous bioactive peptides. The structural characteristics, distribution of tissue, endogenous substrates, and biological functions were summarized in this review. Furthermore, the xenobiotics metabolism of the dipeptidyl peptidase family is illustrated. All the evidence and information summarized in this review would be very useful for researchers to extend the understanding of the proteins of these families and offer advice and assistance in physiology and pathology studies.
Collapse
Affiliation(s)
- Xing-Kai Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Jing Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Xiao-Dong Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Pei-Fang Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| |
Collapse
|
12
|
ACE2, the Counter-Regulatory Renin-Angiotensin System Axis and COVID-19 Severity. J Clin Med 2021; 10:jcm10173885. [PMID: 34501332 PMCID: PMC8432177 DOI: 10.3390/jcm10173885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Angiotensin (ANG)-converting enzyme (ACE2) is an entry receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19). ACE2 also contributes to a deviation of the lung renin-angiotensin system (RAS) towards its counter-regulatory axis, thus transforming harmful ANG II to protective ANG (1-7). Based on this purported ACE2 double function, it has been put forward that the benefit from ACE2 upregulation with renin-angiotensin-aldosterone system inhibitors (RAASi) counterbalances COVID-19 risks due to counter-regulatory RAS axis amplification. In this manuscript we discuss the relationship between ACE2 expression and function in the lungs and other organs and COVID-19 severity. Recent data suggested that the involvement of ACE2 in the lung counter-regulatory RAS axis is limited. In this setting, an augmentation of ACE2 expression and/or a dissociation of ACE2 from the ANG (1-7)/Mas pathways that leaves unopposed the ACE2 function, the SARS-CoV-2 entry receptor, predisposes to more severe disease and it appears to often occur in the relevant risk factors. Further, the effect of RAASi on ACE2 expression and on COVID-19 severity and the overall clinical implications are discussed.
Collapse
|
13
|
Casili G, Scuderi SA, Lanza M, Filippone A, Basilotta R, Mannino D, Campolo M, Esposito E, Paterniti I. The protective role of prolyl oligopeptidase (POP) inhibition in acute lung injury induced by intestinal ischemia-reperfusion. Oncotarget 2021; 12:1663-1676. [PMID: 34434495 PMCID: PMC8378771 DOI: 10.18632/oncotarget.28041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Intestinal ischemia-reperfusion (II/R) develops when the blood flow to the intestines decreases, followed by the reestablishment of the blood supply to the ischemic tissue, resulting in intestinal mucosal barrier dysfunction, with consequent severe local and systemic inflammation. Acute lung injury (ALI) represents the most serious complication after II/R. KYP-2047 is a selective inhibitor of prolyl oligopeptidase (POP), a serine protease involved in the release of pro-angiogenic and inflammatory molecules. The aim of the present study is to assess the effects of POP-inhibition mediated by KYP-2047 treatment in the pathophysiology of ALI following II/R. An in vivo model of II/R was performed and mice were subjected to KYP-2047 treatment (intraperitoneal, 1, 2.5 and 5 mg/kg). Histological analysis, Masson’s trichrome staining, immunohistochemical, immunofluorescence, biochemical and western blots analysis were performed on ileum and lung samples. KYP-2047 treatment ameliorated histological alteration in ileum and lung, reduced collagen amount and lowered inflammatory protein levels. Moreover, TGF-β1, eNOS, VEGF and CD34 positive staining has been modulated; also, a reduction in apoptosis expression was confirmed. This research revealed the strong anti-inflammatory potential of KYP-2047 associated to its modulatory role on angiogenesis and apoptosis, suggesting POP as a novel therapeutic target for ALI after II/R.
Collapse
Affiliation(s)
- Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossella Basilotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
14
|
Triposkiadis F, Starling RC, Xanthopoulos A, Butler J, Boudoulas H. The Counter Regulatory Axis of the Lung Renin-Angiotensin System in Severe COVID-19: Pathophysiology and Clinical Implications. Heart Lung Circ 2021; 30:786-794. [PMID: 33454213 PMCID: PMC7831862 DOI: 10.1016/j.hlc.2020.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/17/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV)-2, which is responsible for coronavirus disease 2019 (COVID-19), uses angiotensin (ANG)-converting enzyme 2 (ACE2) as the entrance receptor. Although most COVID-19 cases are mild, some are severe or critical, predominantly due to acute lung injury. It has been widely accepted that a counter regulatory renin-angiotensin system (RAS) axis including the ACE2/ANG [1-7]/Mas protects the lungs from acute lung injury. However, recent evidence suggests that the generation of protective ANG [1-7] in the lungs is predominantly mediated by proinflammatory prolyl oligopeptidase (POP), which has been repeatedly demonstrated to be involved in lung pathology. This review contends that acute lung injury in severe COVID-19 is characterised by a) ACE2 downregulation and malfunction (inflammatory signalling) due to viral occupation, and b) dysregulation of the protective RAS axis, predominantly due to increased activity of proinflammatory POP. It follows that a reasonable treatment strategy in COVID-19-related acute lung injury would be delivering functional recombinant (r) ACE2 forms to trap the virus. Additionally, or alternatively to rACE2 delivery, the potential benefits resulting from lowering POP activity should also be explored. These treatment strategies deserve further investigation.
Collapse
Affiliation(s)
| | - Randall C Starling
- Kaufman Center for Heart Failure and Recovery, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew Xanthopoulos
- Department of Cardiology, Larissa University General Hospital, Larissa, Greece
| | - Javed Butler
- Department of Medicine, University of Mississippi, Jackson, MS, USA
| | - Harisios Boudoulas
- Department of Medicine/Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
15
|
Payne GA, Sharma NS, Lal CV, Song C, Guo L, Margaroli C, Viera L, Kumar S, Li J, Xing D, Bosley M, Xu X, Wells JM, George JF, Tallaj J, Leesar M, Blalock JE, Gaggar A. Prolyl endopeptidase contributes to early neutrophilic inflammation in acute myocardial transplant rejection. JCI Insight 2021; 6:139687. [PMID: 33571164 PMCID: PMC8026194 DOI: 10.1172/jci.insight.139687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 02/04/2021] [Indexed: 11/21/2022] Open
Abstract
Altered inflammation and tissue remodeling are cardinal features of cardiovascular disease and cardiac transplant rejection. Neutrophils have increasingly been understood to play a critical role in acute rejection and early allograft failure; however, discrete mechanisms that drive this damage remain poorly understood. Herein, we demonstrate that early acute cardiac rejection increases allograft prolyl endopeptidase (PE) in association with de novo production of the neutrophil proinflammatory matrikine proline-glycine-proline (PGP). In a heterotopic murine heart transplant model, PGP production and PE activity were associated with early neutrophil allograft invasion and allograft failure. Pharmacologic inhibition of PE with Z-Pro-prolinal reduced PGP, attenuated early neutrophil graft invasion, and reduced proinflammatory cytokine expression. Importantly, these changes helped preserve allograft rejection-free survival and function. Notably, within 2 independent patient cohorts, both PGP and PE activity were increased among patients with biopsy-proven rejection. The observed induction of PE and matrikine generation provide a link between neutrophilic inflammation and cardiovascular injury, represent a potential target to reduce allogenic immune responses, and uncover a mechanism of cardiovascular disease that has been previously unrecognized to our knowledge.
Collapse
Affiliation(s)
- Gregory A Payne
- Division of Cardiovascular Disease, Department of Medicine.,Vascular Biology and Hypertension Program.,Comprehensive Cardiovascular Center, and.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Medical Service at Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Nirmal S Sharma
- Department of Internal Medicine, University of South Florida, Tampa, Florida, USA.,Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Charitharth V Lal
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Neonatology, Department of Pediatrics
| | - Chunyan Song
- Division of Cardiovascular Disease, Department of Medicine
| | - Lingling Guo
- Department of Surgery.,Nephrology Research & Training Center, Division of Nephrology, Department of Medicine
| | - Camilla Margaroli
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Liliana Viera
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and.,Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Siva Kumar
- Department of Internal Medicine, University of South Florida, Tampa, Florida, USA.,Tampa General Hospital, Tampa, Florida, USA
| | - Jindong Li
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Dongqi Xing
- Vascular Biology and Hypertension Program.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | | | - Xin Xu
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - J Michael Wells
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Medical Service at Birmingham VA Medical Center, Birmingham, Alabama, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and.,Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James F George
- Department of Surgery.,Nephrology Research & Training Center, Division of Nephrology, Department of Medicine
| | - Jose Tallaj
- Division of Cardiovascular Disease, Department of Medicine.,Comprehensive Cardiovascular Center, and
| | - Massoud Leesar
- Division of Cardiovascular Disease, Department of Medicine.,Comprehensive Cardiovascular Center, and
| | - J Edwin Blalock
- Vascular Biology and Hypertension Program.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and.,Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amit Gaggar
- Vascular Biology and Hypertension Program.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Medical Service at Birmingham VA Medical Center, Birmingham, Alabama, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and.,Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
16
|
Bekes K, Mitulović G, Meißner N, Resch U, Gruber R. Saliva proteomic patterns in patients with molar incisor hypomineralization. Sci Rep 2020; 10:7560. [PMID: 32371984 PMCID: PMC7200701 DOI: 10.1038/s41598-020-64614-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Molar incisor hypomineralization (MIH) is an endemic pediatric disease with an unclear pathogenesis. Considering that saliva controls enamel remineralization and that MIH is associated with higher saliva flow rate, we hypothesized that the protein composition of saliva is linked to disease. To test this, we enrolled 5 children aged 6-14 years with MIH showing at least one hypersensitive molar and 5 caries-free children without hypomineralization. Saliva samples were subjected to proteomic analysis followed by protein classification in to biological pathways. Among 618 salivary proteins identified with high confidence, 88 proteins were identified exclusively in MIH patients and 16 proteins in healthy controls only. Biological pathway analysis classified these 88 patient-only proteins to neutrophil-mediated adaptive immunity, the activation of the classical pathway of complement activation, extracellular matrix degradation, heme scavenging as well as glutathione -and drug metabolism. The 16 controls-only proteins were associated with adaptive immunity related to platelet degranulation and the lysosome. This report suggests that the proteaneous composition of saliva is affected in MIH patients, reflecting a catabolic environment which is linked to inflammation.
Collapse
Affiliation(s)
- K Bekes
- Department of Paediatric Dentistry, School of Dentistry, Medical University of Vienna, Vienna, Austria.
| | - G Mitulović
- Proteomics Core Facility, Clinical Institute of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - U Resch
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - R Gruber
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
17
|
Ivanova EA, Zolotov NN, Pozdnev VF, Voronina TA. The Effect of Cyanopyrrolidine Derivatives on the Activity of Prolyl Endopeptidase, Acute Exudative Inflammation and Visceral Pain in Mice. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2020. [DOI: 10.1134/s1990750820020055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
18
|
Ivanova EA, Zolotov NN, Pozdnev VF, Voronina TA. [Effect of cyanopyrrolidine derivatives on the activity of prolylendopeptidase, acute exudative inflammation and visceral pain in mice]. BIOMEDITSINSKAIA KHIMIIA 2020; 66:77-82. [PMID: 32116229 DOI: 10.18097/pbmc20206601077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cyanopyrrolidine derivatives benzyloxycarbonyl-methionyl-cyanopyrrolidine (ZMetPrdN), benzyloxycarbonylphenylalanyl- cyanopyrrolidine (ZPhePrdN), tert-butyl-hydroxycarbonyl-glycyl-cyanopyrrolidine (BocGlyPrdN), tert-butyl-hydroxycarbonyl-methionyl-cyanopyrrolidine (BocMetPrdN) are inhibitors of prolylendopeptidase (PREP; EC 3.4.21.26) with an IC50 of 2 nM to 12 nM. ZMetPrdN, ZPhePrdN and BocMetPrdN additionally inhibited dipeptidyl peptidase IV (DPP-4; EC 3.4.14.5) with an IC50 of 1100 nM to 3200 nM. All the compounds have antinociceptive properties in the acetic acid writhing test in mice. But only cyanopyrrolidine derivatives with aromatic substituents decrease exudative inflammation. The cyanopyrrolidine derivatives also increase PREP activity and compensatorily reduce DPP-4 activity in the serum of mice three hours after the induction of inflammation. Thus, cyanopyrrolidine derivatives exhibit antinociceptive and antiexudative properties in part via their effect on PREP.
Collapse
Affiliation(s)
- E A Ivanova
- Zakusov Institute of Pharmacology, Moscow, Russia
| | - N N Zolotov
- Zakusov Institute of Pharmacology, Moscow, Russia
| | - V F Pozdnev
- Institute of Biomedical Chemistry, Moscow, Russia
| | - T A Voronina
- Zakusov Institute of Pharmacology, Moscow, Russia
| |
Collapse
|
19
|
Haines SR, McCann MJ, Grosvenor AJ, Thomas A, Noble A, Clerens S. ACE inhibitory peptides in standard and fermented deer velvet: an in silico and in vitro investigation. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:350. [PMID: 31806003 PMCID: PMC6896680 DOI: 10.1186/s12906-019-2758-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/19/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND The use of deer velvet antler (DVA) as a potent traditional medicine ingredient goes back for over 2000 years in Asia. Increasingly, though, DVA is being included as a high protein functional food ingredient in convenient, ready to consume products in Korea and China. As such, it is a potential source of endogenous bioactive peptides and of 'cryptides', i.e. bioactive peptides enzymatically released by endogenous proteases, by processing and/or by gastrointestinal digestion. Fermentation is an example of a processing step known to release bioactive peptides from food proteins. In this study, we aimed to identify in silico bioactive peptides and cryptides in DVA, before and after fermentation, and subsequently to validate the major predicted bioactivity by in vitro analysis. METHODS Peptides that were either free or located within proteins were identified in the DVA samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by database searching. Bioactive peptides and cryptides were identified in silico by sequence matching against a database of known bioactive peptides. Angiotensin-converting enzyme (ACE) inhibitory activity was measured by a colorimetric method. RESULTS Three free bioactive peptides (LVVYPW, LVVYPWTQ and VVYPWTQ) were solely found in fermented DVA, the latter two of which are known ACE inhibitors. However matches to multiple ACE inhibitor cryptides were obtained within protein and peptide sequences of both unfermented and fermented DVA. In vitro analysis showed that the ACE inhibitory activity of DVA was more pronounced in the fermented sample, but both unfermented and fermented DVA had similar activity following release of cryptides by simulated gastrointestinal digestion. CONCLUSIONS DVA contains multiple ACE inhibitory peptide sequences that may be released by fermentation or following oral consumption, and which may provide a health benefit through positive effects on the cardiovascular system. The study illustrates the power of in silico combined with in vitro methods for analysis of the effects of processing on bioactive peptides in complex functional ingredients like DVA.
Collapse
|
20
|
Serfozo P, Wysocki J, Gulua G, Schulze A, Ye M, Liu P, Jin J, Bader M, Myöhänen T, García-Horsman JA, Batlle D. Ang II (Angiotensin II) Conversion to Angiotensin-(1-7) in the Circulation Is POP (Prolyloligopeptidase)-Dependent and ACE2 (Angiotensin-Converting Enzyme 2)-Independent. Hypertension 2019; 75:173-182. [PMID: 31786979 DOI: 10.1161/hypertensionaha.119.14071] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Ang II (Angiotensin II)-Angiotensin-(1-7) axis of the Renin Angiotensin System encompasses 3 enzymes that form Angiotensin-(1-7) [Ang-(1-7)] directly from Ang II: ACE2 (angiotensin-converting enzyme 2), PRCP (prolylcarboxypeptidase), and POP (prolyloligopeptidase). We investigated their relative contribution to Ang-(1-7) formation in vivo and also ex vivo in serum, lungs, and kidneys using models of genetic ablation coupled with pharmacological inhibitors. In wild-type (WT) mice, infusion of Ang II resulted in a rapid increase of plasma Ang-(1-7). In ACE2-/-/PRCP-/- mice, Ang II infusion resulted in a similar increase in Ang-(1-7) as in WT (563±48 versus 537±70 fmol/mL, respectively), showing that the bulk of Ang-(1-7) formation in circulation is essentially independent of ACE2 and PRCP. By contrast, a POP inhibitor, Z-Pro-Prolinal reduced the rise in plasma Ang-(1-7) after infusing Ang II to control WT mice. In POP-/- mice, the increase in Ang-(1-7) was also blunted as compared with WT mice (309±46 and 472±28 fmol/mL, respectively P=0.01), and moreover, the rate of recovery from acute Ang II-induced hypertension was delayed (P=0.016). In ex vivo studies, POP inhibition with ZZP reduced Ang-(1-7) formation from Ang II markedly in serum and in lung lysates. By contrast, in kidney lysates, the absence of ACE2, but not POP, obliterated Ang-(1-7) formation from added Ang II. We conclude that POP is the main enzyme responsible for Ang II conversion to Ang-(1-7) in the circulation and in the lungs, whereas Ang-(1-7) formation in the kidney is mainly ACE2-dependent.
Collapse
Affiliation(s)
- Peter Serfozo
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.).,Charité-Universitätsmedizin Berlin, Germany (P.S., G.G., A.S., M.B.)
| | - Jan Wysocki
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.)
| | - Gvantca Gulua
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.).,Charité-Universitätsmedizin Berlin, Germany (P.S., G.G., A.S., M.B.)
| | - Arndt Schulze
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.).,Charité-Universitätsmedizin Berlin, Germany (P.S., G.G., A.S., M.B.)
| | - Minghao Ye
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.)
| | - Pan Liu
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.)
| | - Jing Jin
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.)
| | - Michael Bader
- Charité-Universitätsmedizin Berlin, Germany (P.S., G.G., A.S., M.B.).,Max-Delbrueck Center for Molecular Medicine Berlin, Germany (M.B.)
| | - Timo Myöhänen
- Division of Pharmacology and Pharmacotherapy (T.M.), University of Helsinki, Finland
| | | | - Daniel Batlle
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.)
| |
Collapse
|
21
|
The matrikine acetyl-proline-glycine-proline and clinical features of COPD: findings from SPIROMICS. Respir Res 2019; 20:254. [PMID: 31718676 PMCID: PMC6852714 DOI: 10.1186/s12931-019-1230-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/01/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Pulmonary and systemic inflammation are central features of chronic obstructive pulmonary disease (COPD). Previous studies have demonstrated relationships between biologically active extracellular matrix components, or matrikines, and COPD pathogenesis. We studied the relationships between the matrikine acetyl-proline-glycine-proline (AcPGP) in sputum and plasma and clinical features of COPD. METHODS Sputum and plasma samples were obtained from COPD participants in the SPIROMICS cohort at enrollment. AcPGP was isolated using solid phase extraction and measured by mass spectrometry. Demographics, spirometry, quality of life questionnaires, and quantitative computed tomography (CT) imaging with parametric response mapping (PRM) were obtained at baseline. Severe COPD exacerbations were recorded at 1-year of prospective follow-up. We used linear and logistic regression models to measure associations between AcPGP and features of COPD, and Kaplan-Meier analyses to measure time-to-first severe exacerbation. RESULTS The 182 COPD participants in the analysis were 66 ± 8 years old, 62% male, 84% White race, and 39% were current smokers. AcPGP concentrations were 0.61 ± 1.89 ng/mL (mean ± SD) in sputum and 0.60 ± 1.13 ng/mL in plasma. In adjusted linear regression models, sputum AcPGP was associated with FEV1/FVC, spirometric GOLD stage, PRM-small airways disease, and PRM-emphysema. Sputum AcPGP also correlated with severe AECOPD, and elevated sputum AcPGP was associated with shorter time-to-first severe COPD exacerbation. In contrast, plasma AcPGP was not associated with symptoms, pulmonary function, or severe exacerbation risk. CONCLUSIONS In COPD, sputum but not plasma AcPGP concentrations are associated with the severity of airflow limitation, small airways disease, emphysema, and risk for severe AECOPD at 1-year of follow-up. TRIAL REGISTRATION ClinicalTrials.gov: NCT01969344 (SPIROMICS).
Collapse
|
22
|
Sivasami P, Poudel N, Munteanu MC, Hudson J, Lovern P, Liu L, Griffin T, Hinsdale ME. Adipose tissue loss and lipodystrophy in xylosyltransferase II deficient mice. Int J Obes (Lond) 2019; 43:1783-1794. [PMID: 30778123 PMCID: PMC7067554 DOI: 10.1038/s41366-019-0324-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/21/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND/OBJECTIVES The cellular and extracellular matrix (ECM) interactions that regulate adipose tissue homeostasis are incompletely understood. Proteoglycans (PGs) and their sulfated glycosaminoglycans (GAGs) provide spatial and temporal signals for ECM organization and interactions with resident cells by impacting growth factor and cytokine activity. Therefore, PGs and their GAGs could be significant to adipose tissue homeostasis. The purpose of this study was to determine the role of ECM sulfated GAGs in adipose tissue homeostasis. METHODS Adipose tissue and metabolic homeostasis in mice deficient in xylosyltransferase 2 (Xylt2-/-) were examined by histologic analyses, gene expression analyses, whole body fat composition measurements, and glucose tolerance test. Adipose tissue inflammation and adipocyte precursors were characterized by flow cytometry and in vitro culture of mesenchymal stem cells. RESULTS Xylt2-/- mice have low body weight due to overall reductions in abdominal fat deposition. Histologically, the adipocytes are reduced in size and number in both gonadal and mesenteric fat depots of Xylt2-/- mice. In addition, these mice are glucose intolerant, insulin resistant, and have increased serum triglycerides as compared to Xylt2 + / + control mice. Furthermore, the adipose tissue niche has increased inflammatory cells and enrichment of proinflammatory factors IL6 and IL1β, and these mice also have a loss of adipose tissue vascular endothelial cells. Lastly, xylosyltransferease-2 (XylT2) deficient mesenchymal stem cells from gonadal adipose tissue and bone marrow exhibit impaired adipogenic differentiation in vitro. CONCLUSIONS Decreased GAGs due to the loss of the key GAG assembly enzyme XylT2 causes reduced steady state adipose tissue stores leading to a unique lipodystrophic model. Accumulation of an adipocytic precursor pool of cells is discovered indicating an interruption in differentiation. Therefore, adipose tissue GAGs are important in the homeostasis of adipose tissue by mediating control of adipose precursor development, tissue inflammation, and vascular development.
Collapse
Affiliation(s)
- Pulavendran Sivasami
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Nabin Poudel
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | - Joanna Hudson
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Pamela Lovern
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Lin Liu
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Tim Griffin
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Myron E Hinsdale
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
23
|
Benzyloxycarbonyl-proline-prolinal (ZPP): Dual complementary roles for neutrophil inhibition. Biochem Biophys Res Commun 2019; 517:691-696. [PMID: 31400851 DOI: 10.1016/j.bbrc.2019.07.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/28/2019] [Indexed: 12/22/2022]
Abstract
Neutrophil influx and activation contributes to organ damage in several major lung diseases. This inflammatory influx is initiated and propagated by both classical chemokines such as interleukin-8 and by downstream mediators such as the collagen fragment cum neutrophil chemokine Pro-Gly-Pro (PGP), which share use of the ELR + CXC receptor family. Benzyloxycarbonyl-proline-prolinal (ZPP) is known to suppress the PGP pathway via inhibition of prolyl endopeptidase (PE), the terminal enzyme in the generation of PGP from collagen. However, the structural homology of ZPP and PGP suggests that ZPP might also directly affect classical glutamate-leucine-arginine positive (ELR+) CXC chemokine signaling. In this investigation, we confirm that ZPP inhibits PE in vitro, demonstrate that ZPP inhibits both ELR + CXC and PGP-mediated chemotaxis in human and murine neutrophils, abrogates neutrophil influx induced by murine intratracheal challenge with LPS, and attenuates human neutrophil chemotaxis to sputum samples of human subjects with cystic fibrosis. Cumulatively, these data demonstrate that ZPP has dual, complementary inhibitory effects upon neutrophil chemokine/matrikine signaling which make it an attractive compound for clinical study of neutrophil inhibition in conditions (such as cystic fibrosis and chronic obstructive pulmonary disease) which evidence concurrent harmful increases of both chemokine and matrikine signaling.
Collapse
|
24
|
Ali I, Van Eetveldt A, Van Elzen R, Kalathil Raju T, Van Der Veken P, Lambeir A, Dedeurwaerdere S. Spatiotemporal expression and inhibition of prolyl oligopeptidase contradict its involvement in key pathologic mechanisms of kainic acid-induced temporal lobe epilepsy in rats. Epilepsia Open 2019; 4:92-101. [PMID: 30868119 PMCID: PMC6398098 DOI: 10.1002/epi4.12293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/04/2018] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Prolyl oligopeptidase (PREP) has been implicated in neuroinflammatory processes and neuroplasticity and has been suggested as a target for the treatment of neurodegenerative disease. The aim of this investigation was to explore the involvement of PREP in the neuropathologic mechanisms relevant to temporal lobe epilepsy (TLE) using a PREP inhibitor in a well-established rat model. METHODS PREP activity and expression was studied in Sprague-Dawley rats 2 and 12 weeks following kainic acid-induced status epilepticus (KASE). Continuous video-electroencephalography monitoring was performed for 2 weeks in the 12-week cohort to identify a relationship of PREP expression/activity with epileptic seizures. In addition, the animals included in the 2-week time point were treated with a specific inhibitor of PREP, KYP-2047, or saline continuously, starting immediately after SE. PREP activity and its expression were analyzed in rat brain by using enzyme kinetics and western blot. In addition, markers for microglial activation, astrogliosis, cell loss, and cell proliferation were evaluated. RESULTS Enzymatic activity of PREP was unchanged following induction of SE after 2 and 12 weeks in rats. PREP activity in epileptic rats did not relate to the number of seizures/day at the 12-week time point. Moreover, continuous inhibition of PREP for 2 weeks after KASE did not alter the SE-mediated neuroinflammatory response, cell loss, or cell proliferation in the hippocampal subgranule zone measured at the 2-week time point. SIGNIFICANCE PREP inhibition does not affect key pathologic mechanisms, including activation of glial cells, cell loss, and neural progenitor cell proliferation, in this KASE model of TLE. The results do not support a direct role of PREP in seizure burden during the chronic epilepsy period in this model.
Collapse
Affiliation(s)
- Idrish Ali
- Department of Translational NeurosciencesUniversity of AntwerpWilrijkBelgium
- Present address:
Department of MedicineUniversity of MelbourneMelbourneAustralia
| | | | - Roos Van Elzen
- Laboratory of Medical BiochemistryUniversity of AntwerpWilrijkBelgium
| | - Tom Kalathil Raju
- Laboratory of Medical BiochemistryUniversity of AntwerpWilrijkBelgium
| | | | | | - Stefanie Dedeurwaerdere
- Laboratory of Experimental Hematology, VaxinfectioUniversity of AntwerpAntwerpBelgium
- Present address:
UCB PharmaBraine‐l'AlleudBelgium
| |
Collapse
|
25
|
Sharma NS, Lal CV, Li JD, Lou XY, Viera L, Abdallah T, King RW, Sethi J, Kanagarajah P, Restrepo-Jaramillo R, Sales-Conniff A, Wei S, Jackson PL, Blalock JE, Gaggar A, Xu X. The neutrophil chemoattractant peptide proline-glycine-proline is associated with acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2018; 315:L653-L661. [PMID: 30091378 PMCID: PMC6295514 DOI: 10.1152/ajplung.00308.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/24/2018] [Accepted: 08/07/2018] [Indexed: 12/26/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by unrelenting polymorphonuclear neutrophil (PMN) inflammation and vascular permeability. The matrikine proline-glycine-proline (PGP) and acetylated PGP (Ac-PGP) have been shown to induce PMN inflammation and endothelial permeability in vitro and in vivo. In this study, we investigated the presence and role of airway PGP peptides in acute lung injury (ALI)/ARDS. Pseudomonas aeruginosa-derived lipopolysaccharide (LPS) was instilled intratracheally in mice to induce ALI, and increased Ac-PGP with neutrophil inflammation was noted. The PGP inhibitory peptide, arginine-threonine-arginine (RTR), was administered (it) 30 min before or 6 h after LPS injection. Lung injury was evaluated by detecting neutrophil infiltration and permeability changes in the lung. Pre- and posttreatment with RTR significantly inhibited LPS-induced ALI by attenuating lung neutrophil infiltration, pulmonary permeability, and parenchymal inflammation. To evaluate the role of PGP levels in ARDS, minibronchoalveolar lavage was collected from nine ARDS, four cardiogenic edema, and five nonlung disease ventilated patients. PGP levels were measured and correlated with Acute Physiology and Chronic Health Evaluation (APACHE) score, P a O 2 to F I O 2 (P/F), and ventilator days. PGP levels in subjects with ARDS were significantly higher than cardiogenic edema and nonlung disease ventilated patients. Preliminary examination in both ARDS and non-ARDS populations demonstrated PGP levels significantly correlated with P/F ratio, APACHE score, and duration on ventilator. These results demonstrate an increased burden of PGP peptides in ARDS and suggest the need for future studies in ARDS cohorts to examine correlation with key clinical parameters.
Collapse
Affiliation(s)
- Nirmal S Sharma
- Center for Advanced Lung Disease and Lung Transplantation, University of South Florida/Tampa General Hospital , Tampa, Florida
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Division of Pulmonary and Critical Care, University of South Florida , Tampa, Florida
| | - Charitharth Vivek Lal
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Pediatrics, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jin-Dong Li
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Medical Service at Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| | - Xiang-Yang Lou
- Biostatistics Program, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Liliana Viera
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Tarek Abdallah
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Robert W King
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jaskaran Sethi
- Division of Pulmonary and Critical Care, University of South Florida , Tampa, Florida
| | - Prashanth Kanagarajah
- Division of Pulmonary and Critical Care, University of South Florida , Tampa, Florida
| | | | - Amanda Sales-Conniff
- Division of Pulmonary and Critical Care, University of South Florida , Tampa, Florida
| | - Shi Wei
- Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Patricia L Jackson
- Lung Health Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - J Edwin Blalock
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
- Lung Health Center, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Amit Gaggar
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
- Lung Health Center, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
- Medical Service at Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| | - Xin Xu
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
- Lung Health Center, University of Alabama at Birmingham , Birmingham, Alabama
- Medical Service at Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| |
Collapse
|
26
|
Gu BH, Madison MC, Corry D, Kheradmand F. Matrix remodeling in chronic lung diseases. Matrix Biol 2018; 73:52-63. [PMID: 29559389 PMCID: PMC6141350 DOI: 10.1016/j.matbio.2018.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/08/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022]
Abstract
Multicellular organisms synthesize and renew components of their subcellular and scaffolding proteins, collectively known as the extracellular matrix molecules (ECMs). In the lung, ECMs maintain tensile strength, elasticity, and dictate the specialized function of multiple cell lineages. These functions are critical in lung homeostatic processes including cellular migration and proliferation during morphogenesis or in response to repair. Alterations in lung ECMs that expose cells to new cryptic fragments, generated in response to endogenous proteinases or exogenous toxins, are associated with the development of several common respiratory diseases. How lung ECMs provide or relay vital signals to epithelial and mesenchymal cells has shed new light on development and progression of several common chronic respiratory diseases. This review will consider how ECMs regulate lung homeostasis and their reorganization under pathological conditions that can modulate the inflammatory diseases asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Better understanding of changes in the distribution of lung ECM could provide novel therapeutic approaches to treat chronic lung diseases.
Collapse
Affiliation(s)
- Bon-Hee Gu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C Madison
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Program in Translational Biology and Molecular Medicine Houston, TX 77030, USA
| | - David Corry
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Program in Translational Biology and Molecular Medicine Houston, TX 77030, USA; Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Farrah Kheradmand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Program in Translational Biology and Molecular Medicine Houston, TX 77030, USA; Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Natunen TA, Gynther M, Rostalski H, Jaako K, Jalkanen AJ. Extracellular prolyl oligopeptidase derived from activated microglia is a potential neuroprotection target. Basic Clin Pharmacol Toxicol 2018; 124:40-49. [DOI: 10.1111/bcpt.13094] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/08/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Teemu A. Natunen
- Institute of Biomedicine; University of Eastern Finland; Kuopio Finland
| | - Mikko Gynther
- School of Pharmacy; University of Eastern Finland; Kuopio Finland
| | - Hannah Rostalski
- A.I. Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio Finland
| | - Külli Jaako
- Department of Pharmacology; Institute of Biomedicine and Translational Medicine; University of Tartu; Tartu Estonia
| | - Aaro J. Jalkanen
- School of Pharmacy; University of Eastern Finland; Kuopio Finland
| |
Collapse
|
28
|
Vo TTL, Jang WJ, Jeong CH. Leukotriene A4 hydrolase: an emerging target of natural products for cancer chemoprevention and chemotherapy. Ann N Y Acad Sci 2018; 1431:3-13. [PMID: 30058075 DOI: 10.1111/nyas.13929] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/10/2018] [Accepted: 06/20/2018] [Indexed: 12/27/2022]
Abstract
Cancer is the second leading cause of death worldwide and has become a global burden. It has long been known that inflammation is related to cancer, as inflammatory components have been identified in the tumor microenvironment and support tumor progression. Among the key inflammatory mediators, leukotrienes were found to be involved in cancer development. In particular, leukotriene B4, which is converted from leukotriene A4 by leukotriene A4 hydrolase (LTA4H), has been implicated in several types of cancer. In addition, LTA4H has attracted attention because of purported roles in inflammation and cancer development. Herein, we review the history of LTA4H, its emerging roles in cancer development, and the development of LTA4H inhibitors in cancer prevention and therapy.
Collapse
Affiliation(s)
- Tam Thuy Lu Vo
- College of Pharmacy, Keimyung University, Daegu, the Republic of Korea
| | - Won-Jun Jang
- College of Pharmacy, Keimyung University, Daegu, the Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu, the Republic of Korea
| |
Collapse
|
29
|
Bekaert S, Fillet M, Detry B, Pichavant M, Marée R, Noel A, Rocks N, Cataldo D. Inflammation-Generated Extracellular Matrix Fragments Drive Lung Metastasis. CANCER GROWTH AND METASTASIS 2017; 10:1179064417745539. [PMID: 29308014 PMCID: PMC5751907 DOI: 10.1177/1179064417745539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/30/2017] [Indexed: 01/28/2023]
Abstract
Mechanisms explaining the propensity of a primary tumor to metastasize to a specific site still need to be unveiled, and clinical studies support a link between chronic inflammation and cancer dissemination to specific tissues. Using different mouse models, we demonstrate the role of inflammation-generated extracellular matrix fragments ac-PGP (N-acetyl-proline-glycine-proline) on tumor cells dissemination to lung parenchyma. In mice exposed to cigarette smoke or lipopolysaccharide, lung neutrophilic inflammation produces increased levels of MMP-9 (matrix metalloproteinase 9) that contributes to collagen breakdown and allows the release of ac-PGP tripeptides. By silencing CXCR2 gene expression in tumor cells, we show that these generated ac-PGP tripeptides exert a chemotactic activity on tumor cells in vivo by binding CXCR2.
Collapse
Affiliation(s)
- Sandrine Bekaert
- Laboratory of Tumor and Development Biology, GIGA-Research (Groupe Interdisciplinaire de Génoprotéomique Appliquée-Recherche)-GIGA-Cancer, University of Liège and CHU of Liège, Liège, Belgium
| | - Marianne Fillet
- Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmacy, CIRM, University of Liège, Liège, Belgium.,Laboratory of Clinical Chemistry, GIGA-Research, University of Liège, Liège, Belgium
| | - Benoit Detry
- Laboratory of Tumor and Development Biology, GIGA-Research (Groupe Interdisciplinaire de Génoprotéomique Appliquée-Recherche)-GIGA-Cancer, University of Liège and CHU of Liège, Liège, Belgium
| | - Muriel Pichavant
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Raphael Marée
- GIGA Bioinformatics Platform, University of Liège, Liège, Belgium
| | - Agnes Noel
- Laboratory of Tumor and Development Biology, GIGA-Research (Groupe Interdisciplinaire de Génoprotéomique Appliquée-Recherche)-GIGA-Cancer, University of Liège and CHU of Liège, Liège, Belgium
| | - Natacha Rocks
- Laboratory of Tumor and Development Biology, GIGA-Research (Groupe Interdisciplinaire de Génoprotéomique Appliquée-Recherche)-GIGA-Cancer, University of Liège and CHU of Liège, Liège, Belgium
| | - Didier Cataldo
- Laboratory of Tumor and Development Biology, GIGA-Research (Groupe Interdisciplinaire de Génoprotéomique Appliquée-Recherche)-GIGA-Cancer, University of Liège and CHU of Liège, Liège, Belgium
| |
Collapse
|
30
|
O'Reilly PJ, Ding Q, Akthar S, Cai G, Genschmer KR, Patel DF, Jackson PL, Viera L, Roda M, Locy ML, Bernstein EA, Lloyd CM, Bernstein KE, Snelgrove RJ, Blalock JE. Angiotensin-converting enzyme defines matrikine-regulated inflammation and fibrosis. JCI Insight 2017; 2:91923. [PMID: 29202450 PMCID: PMC5752376 DOI: 10.1172/jci.insight.91923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 10/11/2017] [Indexed: 12/11/2022] Open
Abstract
The neutrophil chemoattractant proline-glycine-proline (PGP) is generated from collagen by matrix metalloproteinase-8/9 (MMP-8/9) and prolyl endopeptidase (PE), and it is concomitantly degraded by extracellular leukotriene A4 hydrolase (LTA4H) to limit neutrophilia. Components of cigarette smoke can acetylate PGP, yielding a species (AcPGP) that is resistant to LTA4H-mediated degradation and can, thus, support a sustained neutrophilia. In this study, we sought to elucidate if an antiinflammatory system existed to degrade AcPGP that is analogous to the PGP-LTA4H axis. We demonstrate that AcPGP is degraded through a previously unidentified action of the enzyme angiotensin-converting enzyme (ACE). Pulmonary ACE is elevated during episodes of acute inflammation, as a consequence of enhanced vascular permeability, to ensure the efficient degradation of AcPGP. Conversely, we suggest that this pathway is aberrant in chronic obstructive pulmonary disease (COPD) enabling the accumulation of AcPGP. Consequently, we identify a potentially novel protective role for AcPGP in limiting pulmonary fibrosis and suggest the pathogenic function attributed to ACE in idiopathic pulmonary fibrosis (IPF) to be a consequence of overzealous AcPGP degradation. Thus, AcPGP seemingly has very divergent roles: it is pathogenic in its capacity to drive neutrophilic inflammation and matrix degradation in the context of COPD, but it is protective in its capacity to limit fibrosis in IPF. ACE degrades the collagen-derived matrikine, acetylate proline–glycine–proline, to limit pulmonary inflammation and promote repair.
Collapse
Affiliation(s)
- Philip J O'Reilly
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qiang Ding
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia Akthar
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Guoqiang Cai
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kristopher R Genschmer
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dhiren F Patel
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Patricia L Jackson
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Birmingham V.A. Medical Center, Birmingham, Alabama, USA
| | - Liliana Viera
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mojtaba Roda
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Morgan L Locy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences and Department of Pathology, Cedars-Sinai Medical Centre, Los Angeles, California, USA
| | - Clare M Lloyd
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kenneth E Bernstein
- Department of Biomedical Sciences and Department of Pathology, Cedars-Sinai Medical Centre, Los Angeles, California, USA
| | - Robert J Snelgrove
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - J Edwin Blalock
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
31
|
Amar S, Smith L, Fields GB. Matrix metalloproteinase collagenolysis in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2017; 1864:1940-1951. [PMID: 28456643 PMCID: PMC5605394 DOI: 10.1016/j.bbamcr.2017.04.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 01/08/2023]
Abstract
The proteolytic processing of collagen (collagenolysis) is critical in development and homeostasis, but also contributes to numerous pathologies. Mammalian interstitial collagenolytic enzymes include members of the matrix metalloproteinase (MMP) family and cathepsin K. While MMPs have long been recognized for their ability to catalyze the hydrolysis of collagen, the roles of individual MMPs in physiological and pathological collagenolysis are less defined. The use of knockout and mutant animal models, which reflect human diseases, has revealed distinct collagenolytic roles for MT1-MMP and MMP-13. A better understanding of temporal and spatial collagen processing, along with the knowledge of the specific MMP involved, will ultimately lead to more effective treatments for cancer, arthritis, cardiovascular conditions, and infectious diseases. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Sabrina Amar
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Lyndsay Smith
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
32
|
Numao S, Hasler F, Laguerre C, Srinivas H, Wack N, Jäger P, Schmid A, Osmont A, Röthlisberger P, Houguenade J, Bergsdorf C, Dawson J, Carte N, Hofmann A, Markert C, Hardaker L, Billich A, Wolf RM, Penno CA, Bollbuck B, Miltz W, Röhn TA. Feasibility and physiological relevance of designing highly potent aminopeptidase-sparing leukotriene A4 hydrolase inhibitors. Sci Rep 2017; 7:13591. [PMID: 29051536 PMCID: PMC5648829 DOI: 10.1038/s41598-017-13490-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/25/2017] [Indexed: 01/01/2023] Open
Abstract
Leukotriene A4 Hydrolase (LTA4H) is a bifunctional zinc metalloenzyme that comprises both epoxide hydrolase and aminopeptidase activity, exerted by two overlapping catalytic sites. The epoxide hydrolase function of the enzyme catalyzes the biosynthesis of the pro-inflammatory lipid mediator leukotriene (LT) B4. Recent literature suggests that the aminopeptidase function of LTA4H is responsible for degradation of the tripeptide Pro-Gly-Pro (PGP) for which neutrophil chemotactic activity has been postulated. It has been speculated that the design of epoxide hydrolase selective LTA4H inhibitors that spare the aminopeptidase pocket may therefore lead to more efficacious anti-inflammatory drugs. In this study, we conducted a high throughput screen (HTS) for LTA4H inhibitors and attempted to rationally design compounds that would spare the PGP degrading function. While we were able to identify compounds with preference for the epoxide hydrolase function, absolute selectivity was not achievable for highly potent compounds. In order to assess the relevance of designing such aminopeptidase-sparing LTA4H inhibitors, we studied the role of PGP in inducing inflammation in different settings in wild type and LTA4H deficient (LTA4H KO) animals but could not confirm its chemotactic potential. Attempting to design highly potent epoxide hydrolase selective LTA4H inhibitors, therefore seems to be neither feasible nor relevant.
Collapse
Affiliation(s)
- Shin Numao
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Franziska Hasler
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Claire Laguerre
- Analytical Sciences & Imaging, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Honnappa Srinivas
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Nathalie Wack
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Petra Jäger
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Andres Schmid
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Arnaud Osmont
- Analytical Sciences & Imaging, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Patrik Röthlisberger
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Jeremy Houguenade
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Christian Bergsdorf
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Janet Dawson
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Nathalie Carte
- Analytical Sciences & Imaging, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Andreas Hofmann
- Analytical Sciences & Imaging, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Christian Markert
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Liz Hardaker
- Respiratory Research, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Andreas Billich
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Romain M Wolf
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Carlos A Penno
- Analytical Sciences & Imaging, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Birgit Bollbuck
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Wolfgang Miltz
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Till A Röhn
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
33
|
Kulkarni T, O'Reilly P, Antony VB, Gaggar A, Thannickal VJ. Matrix Remodeling in Pulmonary Fibrosis and Emphysema. Am J Respir Cell Mol Biol 2017; 54:751-60. [PMID: 26741177 DOI: 10.1165/rcmb.2015-0166ps] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pulmonary fibrosis and emphysema are chronic lung diseases characterized by a progressive decline in lung function, resulting in significant morbidity and mortality. A hallmark of these diseases is recurrent or persistent alveolar epithelial injury, typically caused by common environmental exposures such as cigarette smoke. We propose that critical determinants of the outcome of the injury-repair processes that result in fibrosis versus emphysema are mesenchymal cell fate and associated extracellular matrix dynamics. In this review, we explore the concept that regulation of mesenchymal cells under the influence of soluble factors, in particular transforming growth factor-β1, and the extracellular matrix determine the divergent tissue remodeling responses seen in pulmonary fibrosis and emphysema.
Collapse
Affiliation(s)
- Tejaswini Kulkarni
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,2 Program in Protease and Matrix Biology Center, Birmingham, Alabama; and
| | - Philip O'Reilly
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,2 Program in Protease and Matrix Biology Center, Birmingham, Alabama; and
| | - Veena B Antony
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,2 Program in Protease and Matrix Biology Center, Birmingham, Alabama; and
| | - Amit Gaggar
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,2 Program in Protease and Matrix Biology Center, Birmingham, Alabama; and.,3 Birmingham VA Medical Center, Birmingham, Alabama
| | - Victor J Thannickal
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,2 Program in Protease and Matrix Biology Center, Birmingham, Alabama; and.,3 Birmingham VA Medical Center, Birmingham, Alabama
| |
Collapse
|
34
|
Vliegen G, Raju TK, Adriaensen D, Lambeir AM, De Meester I. The expression of proline-specific enzymes in the human lung. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:130. [PMID: 28462210 DOI: 10.21037/atm.2017.03.36] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathophysiology of lung diseases is very complex and proteolytic enzymes may play a role or could be used as biomarkers. In this review, the literature was searched to make an overview of what is known on the expression of the proline-specific peptidases dipeptidyl peptidase (DPP) 4, 8, 9, prolyl oligopeptidase (PREP) and fibroblast activation protein α (FAP) in the healthy and diseased lung. Search terms included asthma, chronic obstructive pulmonary disease (COPD), lung cancer, fibrosis, ischemia reperfusion injury and pneumonia. Knowledge on the loss or gain of protein expression and activity during disease might tie these enzymes to certain cell types, substrates or interaction partners that are involved in the pathophysiology of the disease, ultimately leading to the elucidation of their functional roles and a potential therapeutic target. Most data could be found on DPP4, while the other enzymes are less explored. Published data however often appear to be conflicting, the applied methods divers and the specificity of the assays used questionable. In conclusion, information on the expression of the proline-specific peptidases in the healthy and diseased lung is lacking, begging for further well-designed research.
Collapse
Affiliation(s)
- Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tom K Raju
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
35
|
Portugal B, Motta FN, Correa AF, Nolasco DO, de Almeida H, Magalhães KG, Atta ALV, Vieira FD, Bastos IMD, Santana JM. Mycobacterium tuberculosis Prolyl Oligopeptidase Induces In vitro Secretion of Proinflammatory Cytokines by Peritoneal Macrophages. Front Microbiol 2017; 8:155. [PMID: 28223969 PMCID: PMC5293833 DOI: 10.3389/fmicb.2017.00155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) is a disease that leads to death over 1 million people per year worldwide and the biological mediators of this pathology are poorly established, preventing the implementation of effective therapies to improve outcomes in TB. Host-bacterium interaction is a key step to TB establishment and the proteases produced by these microorganisms seem to facilitate bacteria invasion, migration and host immune response evasion. We presented, for the first time, the identification, biochemical characterization, molecular dynamics (MDs) and immunomodulatory properties of a prolyl oligopeptidase (POP) from Mycobacterium tuberculosis (POPMt). POP is a serine protease that hydrolyzes substrates with high specificity for proline residues and has already been characterized as virulence factor in infectious diseases. POPMt reveals catalytic activity upon N-Suc-Gly-Pro-Leu-Gly-Pro-AMC, a recognized POP substrate, with optimal activity at pH 7.5 and 37°C. The enzyme presents KM and Kcat/KM values of 108 μM and 21.838 mM-1 s-1, respectively. MDs showed that POPMt structure is similar to that of others POPs, which consists of a cylindrical architecture divided into an α/β hydrolase catalytic domain and a β-propeller domain. Finally, POPMt was capable of triggering in vitro secretion of proinflammatory cytokines by peritoneal macrophages, an event dependent on POPMt intact structure. Our data suggests that POPMt may contribute to an inflammatory response during M. tuberculosis infection.
Collapse
Affiliation(s)
- Brina Portugal
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, Brasília Brazil
| | - Flávia N Motta
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, BrasíliaBrazil; Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de GoiásGoiânia, Brazil
| | - Andre F Correa
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, BrasíliaBrazil; Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de GoiásGoiânia, Brazil
| | - Diego O Nolasco
- Physics Course and Postgraduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília Brasília, Brazil
| | - Hugo de Almeida
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, Brasília Brazil
| | - Kelly G Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, The University of Brasília Brasília, Brazil
| | - Ana L V Atta
- Laboratório Central de Saúde Pública do Distrito Federal Brasília, Brazil
| | - Francisco D Vieira
- Laboratório Central de Saúde Pública do Distrito Federal Brasília, Brazil
| | - Izabela M D Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, Brasília Brazil
| | - Jaime M Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, Brasília Brazil
| |
Collapse
|
36
|
Wada Y, Phinney BS, Weber D, Lönnerdal B. In vivo digestomics of milk proteins in human milk and infant formula using a suckling rat pup model. Peptides 2017; 88:18-31. [PMID: 27979737 DOI: 10.1016/j.peptides.2016.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/09/2016] [Accepted: 11/23/2016] [Indexed: 12/19/2022]
Abstract
Human milk is the optimal mode of infant feeding for the first several months of life, and infant formulas serve as an alternative when breast-feeding is not possible. Milk proteins have a balanced amino acid composition and some of them provide beneficial bioactivities in their intact forms. They also encrypt a variety of bioactive peptides, possibly contributing to infant health and growth. However, there is limited knowledge of how milk proteins are digested in the gastrointestinal tract and bioactive peptides are released in infants. A peptidomic analysis was conducted to identify peptides released from milk proteins in human milk and infant formula, using a suckling rat pup model. Among the major milk proteins targeted, α-lactalbumin and β-casein in human milk, and β-lactoglobulin and β-casein in infant formula were the main sources of peptides, and these peptides covered large parts of the parental proteins' sequences. Release of peptides was concentrated to specific regions, such as residues 70-92 of β-casein in human milk, residues 39-55 of β-lactoglobulin in infant formula, and residues 57-96 and 145-161 of β-CN in infant formula, where resistance to gastrointestinal digestion was suggested. In the context of bioactive peptides, release of fragments containing known bioactive peptides was confirmed, such as β-CN-derived opioid and antihypertensive peptides. It is therefore likely that these fragments are of biological significance in neonatal health and development.
Collapse
Affiliation(s)
- Yasuaki Wada
- Department of Nutrition, University of California, Davis, One Shields Ave., Davis, CA 95616, USA; Nutritional Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa-Pref. 252-8583, Japan
| | - Brett S Phinney
- Genome Center Proteomics Core Facility, University of California, Davis, 451 E. Health Sciences Dr., Davis, CA 95616, USA
| | - Darren Weber
- Genome Center Proteomics Core Facility, University of California, Davis, 451 E. Health Sciences Dr., Davis, CA 95616, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
37
|
Lal CV, Xu X, Jackson P, Atkinson TP, Faye-Petersen OM, Kandasamy J, Waites K, Biggio JR, Gaggar A, Ambalavanan N. Ureaplasma infection-mediated release of matrix metalloproteinase-9 and PGP: a novel mechanism of preterm rupture of membranes and chorioamnionitis. Pediatr Res 2017; 81:75-79. [PMID: 27632777 PMCID: PMC5235960 DOI: 10.1038/pr.2016.176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/07/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Premature rupture of membranes and preterm delivery are associated with Ureaplasma infection. We hypothesized that Ureaplasma induced extracellular collagen fragmentation results in production of the tripeptide PGP (proline-glycine-proline), a neutrophil chemoattractant. PGP release from collagen requires matrix metalloproteases (MMP-8/MMP-9) along with a serine protease, prolyl endopeptidase (PE). METHODS Ureaplasma culture negative amniotic fluid (indicated preterm birth, n = 8; spontaneous preterm birth, n = 8) and Ureaplasma positive amniotic fluid (spontaneous preterm birth, n = 8) were analyzed by electro-spray ionization-liquid chromatography tandem mass spectrometry for PGP, and for MMP-9 by zymography. PE was evaluated in lysates of U. parvum serovar 3 (Up3) and U. urealyticum serovar 10 (Uu10) by western blotting and activity assay. RESULTS PGP and MMP-9 were increased in amniotic fluid from spontaneous preterm birth with positive Ureaplasma cultures, but not with indicated preterm birth or spontaneous preterm birth with negative Ureaplasma cultures. Human neutrophils cocultured with Ureaplasma strains showed increased MMP-9 activity. PE presence and activity were noted with both Ureaplasma strains. CONCLUSION Ureaplasma spp. carry the protease necessary for PGP release, and PGP and MMP-9 are increased in amniotic fluid during Ureaplasma infection, suggesting Ureaplasma spp. induced collagen fragmentation contributes to preterm rupture of membranes and neutrophil influx causing chorioamnionitis.
Collapse
Affiliation(s)
- Charitharth V. Lal
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xin Xu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patricia Jackson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas P. Atkinson
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ona M. Faye-Petersen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jegen Kandasamy
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ken Waites
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joseph R. Biggio
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
38
|
Szul T, Bratcher PE, Fraser KB, Kong M, Tirouvanziam R, Ingersoll S, Sztul E, Rangarajan S, Blalock JE, Xu X, Gaggar A. Toll-Like Receptor 4 Engagement Mediates Prolyl Endopeptidase Release from Airway Epithelia via Exosomes. Am J Respir Cell Mol Biol 2016. [PMID: 26222144 DOI: 10.1165/rcmb.2015-0108oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Proteases are important regulators of pulmonary remodeling and airway inflammation. Recently, we have characterized the enzyme prolyl endopeptidase (PE), a serine peptidase, as a critical protease in the generation of the neutrophil chemoattractant tripeptide Pro-Gly-Pro (PGP) from collagen. However, PE has been characterized as a cytosolic enzyme, and the mechanism mediating PE release extracellularly remains unknown. We examined the role of exosomes derived from airway epithelia as a mechanism for PE release and the potential extracellular signals that regulate the release of these exosomes. We demonstrate a specific regulatory pathway of exosome release from airway epithelia and identify PE as novel exosome cargo. LPS stimulation of airway epithelial cells induces release of PE-containing exosomes, which is significantly attenuated by small interfering RNA depletion of Toll-like receptor 4 (TLR4). These differences were recapitulated upon intratracheal LPS administration in mice competent versus deficient for TLR4 signaling. Finally, sputum samples from subjects with cystic fibrosis colonized with Pseudomonas aeruginosa demonstrate elevated exosome content and increased PE levels. This TLR4-based mechanism highlights the first report of nonstochastic release of exosomes in the lung and couples TLR4 activation with matrikine generation. The increased quantity of these proteolytic exosomes in the airways of subjects with chronic lung disease highlights a new mechanism of injury and inflammation in the pathogenesis of pulmonary disorders.
Collapse
Affiliation(s)
- Tomasz Szul
- 1 Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,2 Program in Protease and Matrix Biology
| | - Preston E Bratcher
- 1 Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,2 Program in Protease and Matrix Biology
| | | | - Michele Kong
- 4 Pediatrics.,5 Gregory Fleming James Cystic Fibrosis Research Center
| | - Rabindra Tirouvanziam
- 2 Program in Protease and Matrix Biology.,6 Department of Pediatrics and Emory+Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, Georgia; and
| | - Sarah Ingersoll
- 6 Department of Pediatrics and Emory+Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, Georgia; and
| | - Elizabeth Sztul
- 7 Department of Cell, Developmental and Integrative Biology, and
| | - Sunil Rangarajan
- 1 Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine
| | - J Edwin Blalock
- 1 Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,2 Program in Protease and Matrix Biology.,5 Gregory Fleming James Cystic Fibrosis Research Center.,8 University of Alabama at Birmingham Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xin Xu
- 1 Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,2 Program in Protease and Matrix Biology
| | - Amit Gaggar
- 1 Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,2 Program in Protease and Matrix Biology.,5 Gregory Fleming James Cystic Fibrosis Research Center.,7 Department of Cell, Developmental and Integrative Biology, and.,8 University of Alabama at Birmingham Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama.,9 Medicine Service, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
39
|
Abstract
Abstract
Cystic fibrosis (CF) lung disease is characterized by chronic infection and inflammation. Among inflammatory cells, neutrophils represent the major cell population accumulating in the airways of CF patients. While neutrophils provide the first defensive cellular shield against bacterial and fungal pathogens, in chronic disease conditions such as CF these short-lived immune cells release their toxic granule contents that cause tissue remodeling and irreversible structural damage to the host. A variety of human and murine studies have analyzed neutrophils and their products in the context of CF, yet their precise functional role and therapeutic potential remain controversial and incompletely understood. Here, we summarize the current evidence in this field to shed light on the complex and multi-faceted role of neutrophils in CF lung disease.
Collapse
|
40
|
Wells JM, Jackson PL, Viera L, Bhatt SP, Gautney J, Handley G, King RW, Xu X, Gaggar A, Bailey WC, Dransfield MT, Blalock JE. A Randomized, Placebo-controlled Trial of Roflumilast. Effect on Proline-Glycine-Proline and Neutrophilic Inflammation in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2016; 192:934-42. [PMID: 26151090 DOI: 10.1164/rccm.201503-0543oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Roflumilast is a therapeutic agent in the treatment of chronic obstructive pulmonary disease (COPD). It has antiinflammatory effects; however, it is not known whether it can affect a biologic pathway implicated in COPD pathogenesis and progression. The self-propagating acetyl-proline-glycine-proline (AcPGP) pathway is a novel means of neutrophilic inflammation that is pathologic in the development of COPD. AcPGP is produced by extracellular matrix collagen breakdown with prolyl endopeptidase and leukotriene A4 hydrolase serving as the enzymes responsible for its production and degradation, respectively. OBJECTIVES We hypothesized that roflumilast would decrease AcPGP, halting the feed-forward cycle of inflammation. METHODS We conducted a single-center, placebo-controlled, randomized study investigating 12 weeks of roflumilast treatment added to current therapy in moderate-to-severe COPD with chronic bronchitis. Subjects underwent sputum and blood analyses, pulmonary function testing, exercise tolerance, and quality-of-life assessment at 0, 4, and 12 weeks. MEASUREMENTS AND MAIN RESULTS Twenty-seven patients were enrolled in the intention-to-treat analysis. Roflumilast treatment decreased sputum AcPGP by more than 50% (P < 0.01) and prolyl endopeptidase by 46% (P = 0.02), without significant improvement in leukotriene A4 hydrolase activity compared with placebo. Roflumilast also reduces other inflammatory markers. There were no significant changes in lung function, quality of life, or exercise tolerance between roflumilast- and placebo-treated groups. CONCLUSIONS Roflumilast reduces pulmonary inflammation through decreasing prolyl endopeptidase activity and AcPGP. As expected for lower AcPGP levels, markers of neutrophilic inflammation are blunted. Inhibiting this self-propagating pathway lessens the overall inflammatory burden, which may alter the natural history of COPD, including the risk of exacerbation. Clinical trial registered with www.clinicaltrials.gov (NCT 01572948).
Collapse
Affiliation(s)
- J Michael Wells
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,2 UAB Lung Health Center.,3 UAB Program in Protease and Matrix Biology, and.,4 Department of Medicine, Birmingham VA Medical Center, Birmingham, Alabama
| | - Patricia L Jackson
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,2 UAB Lung Health Center.,3 UAB Program in Protease and Matrix Biology, and
| | - Liliana Viera
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,2 UAB Lung Health Center.,3 UAB Program in Protease and Matrix Biology, and
| | - Surya P Bhatt
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,2 UAB Lung Health Center
| | - Joshua Gautney
- 5 University of Alabama at Birmingham School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Guy Handley
- 5 University of Alabama at Birmingham School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - R Wilson King
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,3 UAB Program in Protease and Matrix Biology, and
| | - Xin Xu
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,3 UAB Program in Protease and Matrix Biology, and
| | - Amit Gaggar
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,3 UAB Program in Protease and Matrix Biology, and.,4 Department of Medicine, Birmingham VA Medical Center, Birmingham, Alabama
| | - William C Bailey
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,2 UAB Lung Health Center
| | - Mark T Dransfield
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,2 UAB Lung Health Center.,4 Department of Medicine, Birmingham VA Medical Center, Birmingham, Alabama
| | - J Edwin Blalock
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,2 UAB Lung Health Center.,3 UAB Program in Protease and Matrix Biology, and
| |
Collapse
|
41
|
Noerager BD, Xu X, Davis VA, Jones CW, Okafor S, Whitehead A, Blalock JE, Jackson PL. A Potential Role for Acrolein in Neutrophil-Mediated Chronic Inflammation. Inflammation 2015; 38:2279-87. [PMID: 26208604 DOI: 10.1007/s10753-015-0213-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophils (PMNs) are key mediators of inflammatory processes throughout the body. In this study, we investigated the role of acrolein, a highly reactive aldehyde that is ubiquitously present in the environment and produced endogenously at sites of inflammation, in mediating PMN-mediated degradation of collagen facilitating proline-glycine-proline (PGP) production. We treated peripheral blood neutrophils with acrolein and analyzed cell supernatants and lysates for matrix metalloproteinase-9 (MMP-9) and prolyl endopeptidase (PE), assessed their ability to break down collagen and release PGP, and assayed for the presence of leukotriene A4 hydrolase (LTA4H) and its ability to degrade PGP. Acrolein treatment induced elevated production and functionality of collagen-degrading enzymes and generation of PGP fragments. Meanwhile, LTA4H levels and triaminopeptidase activity declined with increasing concentrations of acrolein thereby sparing PGP from enzymatic destruction. These findings suggest that acrolein exacerbates the acute inflammatory response mediated by neutrophils and sets the stage for chronic pulmonary and systemic inflammation.
Collapse
Affiliation(s)
- Brett D Noerager
- Department of Biology, Chemistry, and Mathematics, University of Montevallo, Montevallo, AL, 35115, USA.
| | - Xin Xu
- Department of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Virginia A Davis
- Department of Biology, Chemistry, and Mathematics, University of Montevallo, Montevallo, AL, 35115, USA
| | - Caleb W Jones
- Department of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Svetlana Okafor
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Alicia Whitehead
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J Edwin Blalock
- Department of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Patricia L Jackson
- Department of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- UAB Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Birmingham VA Medical Center, Birmingham, AL, 35233, USA
| |
Collapse
|
42
|
Feng C, Zhang Y, Yang M, Huang B, Zhou Y. Collagen-DerivedN-Acetylated Proline-Glycine-Proline in Intervertebral Discs Modulates CXCR1/2 Expression and Activation in Cartilage Endplate Stem Cells to Induce Migration and Differentiation Toward a Pro-Inflammatory Phenotype. Stem Cells 2015; 33:3558-68. [PMID: 26302999 DOI: 10.1002/stem.2200] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/05/2015] [Accepted: 07/25/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital; Third Military Medical University; Chongqing People's Republic of China
| | - Yang Zhang
- Department of Orthopedics, Xinqiao Hospital; Third Military Medical University; Chongqing People's Republic of China
| | - Minghui Yang
- Department of Orthopedics, Xinqiao Hospital; Third Military Medical University; Chongqing People's Republic of China
| | - Bo Huang
- Department of Orthopedics, Xinqiao Hospital; Third Military Medical University; Chongqing People's Republic of China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital; Third Military Medical University; Chongqing People's Republic of China
| |
Collapse
|
43
|
Tenorio-Laranga J, Montoliu C, Urios A, Hernandez-Rabaza V, Ahabrach H, García-Horsman JA, Felipo V. The expression levels of prolyl oligopeptidase responds not only to neuroinflammation but also to systemic inflammation upon liver failure in rat models and cirrhotic patients. J Neuroinflammation 2015; 12:183. [PMID: 26420028 PMCID: PMC4589196 DOI: 10.1186/s12974-015-0404-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 09/23/2015] [Indexed: 12/22/2022] Open
Abstract
Background Liver failure in experimental animals or in human cirrhosis elicits neuroinflammation. Prolyl oligopeptidase (PREP) has been implicated in neuroinflammatory events in neurodegenerative diseases: PREP protein levels are increased in brain glial cells upon neuroinflammatory insults, but the circulating PREP activity levels are decreased in multiple sclerosis patients in a process probably mediated by bioactive peptides. In this work, we studied the variation of PREP levels upon liver failure and correlated it with several inflammatory markers to conclude on the relation of PREP with systemic and/or neuroinflammation. Methods PREP enzymatic activity and protein levels measured with immunological techniques were determined in the brain and plasma of rats with portacaval shunt (PCS) and after treatment with ibuprofen. Those results were compared with the levels of PREP measured in plasma from cirrhotic patients with or without minimal hepatic encephalopathy (MHE). Levels of several pro-inflammatory cytokines and those of NO/cGMP homeostasis metabolites were measured in PCS rats and cirrhotic patients to conclude on the role of PREP in inflammation. Results In PCA rats, we found that PREP levels are significantly increased in the hippocampus, striatum and cerebellum, that in the cerebellum the PREP increase was significantly found in the extracellular space and that the levels were restored to those measured in control rats after administration of an anti-inflammatory agent, ibuprofen. In cirrhotic patients, circulatory PREP activity was found to correlate to systemic and neuroinflammatory markers and had a negative correlation with the severity of the disease, although no clear relation to MHE. Conclusions These results support the idea that PREP levels could be used as indicators of cirrhosis severity in humans, and using other markers, it might contribute to assessing the level of neuroinflammation in those patients. This work reports, for the first time, that PREP is secreted to the extracellular space in the cerebellum most probably due to glial activation and supports the role of the peptidase in the inflammatory response.
Collapse
Affiliation(s)
- Jofre Tenorio-Laranga
- Real-time Imaging Laboratory, Divisions of Pharmacology and Toxicology and Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, PO Box 56, Helsinki, 00014, Finland.
| | - Carmina Montoliu
- Fundación Investigación Hospital Clínico Universitario, INCLIVA, Valencia, Spain.
| | - Amparo Urios
- Fundación Investigación Hospital Clínico Universitario, INCLIVA, Valencia, Spain.
| | - Vicente Hernandez-Rabaza
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Avd.Autopista del Saler 16, 46012, Valencia, Spain.
| | - Hanan Ahabrach
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Avd.Autopista del Saler 16, 46012, Valencia, Spain.
| | - J Arturo García-Horsman
- Real-time Imaging Laboratory, Divisions of Pharmacology and Toxicology and Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, PO Box 56, Helsinki, 00014, Finland.
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Avd.Autopista del Saler 16, 46012, Valencia, Spain.
| |
Collapse
|
44
|
Akthar S, Patel DF, Beale RC, Peiró T, Xu X, Gaggar A, Jackson PL, Blalock JE, Lloyd CM, Snelgrove RJ. Matrikines are key regulators in modulating the amplitude of lung inflammation in acute pulmonary infection. Nat Commun 2015; 6:8423. [PMID: 26400771 PMCID: PMC4595997 DOI: 10.1038/ncomms9423] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/20/2015] [Indexed: 01/17/2023] Open
Abstract
Bioactive matrix fragments (matrikines) have been identified in a myriad of disorders, but their impact on the evolution of airway inflammation has not been demonstrated. We recently described a pathway where the matrikine and neutrophil chemoattractant proline–glycine–proline (PGP) could be degraded by the enzyme leukotriene A4 hydrolase (LTA4H). LTA4H classically functions in the generation of pro-inflammatory leukotriene B4, thus LTA4H exhibits opposing pro- and anti-inflammatory activities. The physiological significance of this secondary anti-inflammatory activity remains unknown. Here we show, using readily resolving pulmonary inflammation models, that loss of this secondary activity leads to more pronounced and sustained inflammation and illness owing to PGP accumulation. PGP elicits an exacerbated neutrophilic inflammation and protease imbalance that further degrades the extracellular matrix, generating fragments that perpetuate inflammation. This highlights a critical role for the secondary anti-inflammatory activity of LTA4H and thus has consequences for the generation of global LTA4H inhibitors currently being developed. Proteases degrade extracellular matrix during inflammation, releasing peptides that can recruit neutrophils. Here the authors show that degradation of such bioactive peptide by the enzyme leukotriene A4 hydrolase is critical to limit pulmonary inflammation during bacterial infection in mice.
Collapse
Affiliation(s)
- Samia Akthar
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Dhiren F Patel
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Rebecca C Beale
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Teresa Peiró
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Xin Xu
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham and Lung Health Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 3529, USA
| | - Amit Gaggar
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham and Lung Health Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 3529, USA.,Gregory Fleming James Cystic Fibrosis Center and Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.,Birmingham V.A. Medical Center, Birmingham, Alabama 35294, USA
| | - Patricia L Jackson
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham and Lung Health Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 3529, USA
| | - J Edwin Blalock
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham and Lung Health Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 3529, USA.,Birmingham V.A. Medical Center, Birmingham, Alabama 35294, USA
| | - Clare M Lloyd
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Robert J Snelgrove
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
45
|
Waumans Y, Baerts L, Kehoe K, Lambeir AM, De Meester I. The Dipeptidyl Peptidase Family, Prolyl Oligopeptidase, and Prolyl Carboxypeptidase in the Immune System and Inflammatory Disease, Including Atherosclerosis. Front Immunol 2015; 6:387. [PMID: 26300881 PMCID: PMC4528296 DOI: 10.3389/fimmu.2015.00387] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/13/2015] [Indexed: 12/19/2022] Open
Abstract
Research from over the past 20 years has implicated dipeptidyl peptidase (DPP) IV and its family members in many processes and different pathologies of the immune system. Most research has been focused on either DPPIV or just a few of its family members. It is, however, essential to consider the entire DPP family when discussing any one of its members. There is a substantial overlap between family members in their substrate specificity, inhibitors, and functions. In this review, we provide a comprehensive discussion on the role of prolyl-specific peptidases DPPIV, FAP, DPP8, DPP9, dipeptidyl peptidase II, prolyl carboxypeptidase, and prolyl oligopeptidase in the immune system and its diseases. We highlight possible therapeutic targets for the prevention and treatment of atherosclerosis, a condition that lies at the frontier between inflammation and cardiovascular disease.
Collapse
Affiliation(s)
- Yannick Waumans
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Lesley Baerts
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Kaat Kehoe
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| |
Collapse
|
46
|
Abstract
Matrikines originate from the fragmentation of extracellular matrix proteins and regulate cellular activities by interacting with specific receptors. Matrikines are implicated in inflammation, immune responses, organ development, wound repair, angiogenesis, atherosclerosis, tumor progression and metastasis due to their ability to alter cellular migration, chemotaxis, and mitogenesis. Matrix metalloproteinases (MMPs) degrade extracellular matrix components under normal circumstances and in disease processes. Of the 20 MMPs identified, MMP-1, MMP-2, MMP-8, MMP-9, and MMP-12 have been implicated in regulating the matrikines Val-Gly-Val-Ala-Pro-Gly (elastin peptide) and proline-glycine-proline (PGP). Elastin peptide fragments are generated by elastolytic enzymes and have implications in atherosclerosis, neovascularization, chronic obstructive pulmonary disease, skin disease, as well as tumor invasion and spread. PGP is produced through a multistep pathway that liberates the tripeptide fragment from extracellular collagen. PGP is best described for its role in neutrophil chemotaxis and is implicated in the pathogenesis of corneal ulcers and in chronic lung conditions. In chronic cigarette smoke related lung disease, the PGP pathway can become a self-propagating cycle of inflammation through cigarette-smoke mediated inhibition of leukotriene A4 hydrolase, the enzyme responsible for degrading PGP and halting acute inflammation. This review highlights the roles of MMPs in generating these important matrikines.
Collapse
|
47
|
Hahn CS, Scott DW, Xu X, Roda MA, Payne GA, Wells JM, Viera L, Winstead CJ, Bratcher P, Sparidans RW, Redegeld FA, Jackson PL, Folkerts G, Blalock JE, Patel RP, Gaggar A. The matrikine N-α-PGP couples extracellular matrix fragmentation to endothelial permeability. SCIENCE ADVANCES 2015; 1:e1500175. [PMID: 26229981 PMCID: PMC4517288 DOI: 10.1126/sciadv.1500175] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 06/04/2023]
Abstract
The compartmentalization and transport of proteins and solutes across the endothelium is a critical biologic function altered during inflammation and disease, leading to pathology in multiple disorders. The impact of tissue damage and subsequent extracellular matrix (ECM) fragmentation in regulating this process is unknown. We demonstrate that the collagen-derived matrikine acetylated proline-glycine-proline (N-α-PGP) serves as a critical regulator of endothelial permeability. N-α-PGP activates human endothelial cells via CXC-chemokine receptor 2 (CXCR2), triggering monolayer permeability through a discrete intracellular signaling pathway. In vivo, N-α-PGP induces local vascular leak after subcutaneous administration and pulmonary vascular permeability after systemic administration. Furthermore, neutralization of N-α-PGP attenuates lipopolysaccharide-induced lung leak. Finally, we demonstrate that plasma from patients with acute respiratory distress syndrome (ARDS) induces VE-cadherin phosphorylation in human endothelial cells, and this activation is attenuated by N-α-PGP blockade with a concomitant improvement in endothelial monolayer impedance. These results identify N-α-PGP as a novel ECM-derived matrikine regulating paracellular permeability during inflammatory disease and demonstrate the potential to target this ligand in various disorders characterized by excessive matrix turnover and vascular leak such as ARDS.
Collapse
Affiliation(s)
- Cornelia S. Hahn
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David W. Scott
- Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xin Xu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mojtaba Abdul Roda
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, Netherlands
| | - Gregory A. Payne
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J. Michael Wells
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Medical Service at Birmingham VA Medical Center, Birmingham, AL 35233, USA
| | - Liliana Viera
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Colleen J. Winstead
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Preston Bratcher
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rolf W. Sparidans
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, Netherlands
| | - Frank A. Redegeld
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, Netherlands
| | - Patricia L. Jackson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gert Folkerts
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, Netherlands
| | - J. Edwin Blalock
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rakesh P. Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Medical Service at Birmingham VA Medical Center, Birmingham, AL 35233, USA
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
48
|
Banerjee P, Suguna L, Shanthi C. Wound healing activity of a collagen-derived cryptic peptide. Amino Acids 2014; 47:317-28. [PMID: 25385312 DOI: 10.1007/s00726-014-1860-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 10/21/2014] [Indexed: 01/08/2023]
Abstract
Wound healing involves a well-controlled series of interactions among cells and several mediators leading to the restoration of damaged tissue. Degradation of the extracellular matrix (ECM) protein collagen during remodelling of wound tissue leads to the release of bioactive peptides that can possibly influence the healing process. The RGD-containing, antioxidative collagen peptide E1 isolated in an earlier work was screened in this study for its ability to influence multiple steps of the wound healing process. E1 was assayed for and found to be chemotactic. Excision and incision wounds were created on separate groups of rats and E1 was administered topically. The wound tissues were isolated on the 4th and 8th days post-wound and subjected to biochemical and biophysical analysis. A significant decrease in lipid peroxides in the treatment group confirmed the in vivo antioxidant capacity of E1. The treatment group also displayed significant increase in total protein, collagen and amino sugar synthesis indicating faster ECM formation. The significantly increased rate of wound contraction and reepithelialisation along with higher tensile strength of the wound tissue corroborated the results of biochemical analysis. The results confirm the significant role played by collagen peptides in accelerating the healing process and justify their possible use as a pharmaceutical agent.
Collapse
Affiliation(s)
- Pradipta Banerjee
- School of Bio Science and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | | | | |
Collapse
|
49
|
Wells JM, O'Reilly PJ, Szul T, Sullivan DI, Handley G, Garrett C, McNicholas CM, Roda MA, Miller BE, Tal-Singer R, Gaggar A, Rennard SI, Jackson PL, Blalock JE. An aberrant leukotriene A4 hydrolase-proline-glycine-proline pathway in the pathogenesis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 190:51-61. [PMID: 24874071 DOI: 10.1164/rccm.201401-0145oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RATIONALE Chronic neutrophilic inflammation is a hallmark in the pathogenesis of chronic obstructive pulmonary disease (COPD) and persists after cigarette smoking has stopped. Mechanisms involved in this ongoing inflammatory response have not been delineated. OBJECTIVES We investigated changes to the leukotriene A4 hydrolase (LTA4H)-proline-glycine-proline (PGP) pathway and chronic inflammation in the development of COPD. METHODS A/J mice were exposed to air or cigarette smoke for 22 weeks followed by bronchoalveolar lavage and lung and cardiac tissue analysis. Two human cohorts were used to analyze changes to the LTA4H-PGP pathway in never smokers, control smokers, COPD smokers, and COPD former smokers. PGP/AcPGP and LTA4H aminopeptidase activity were detected by mass spectroscopy, LTA4H amounts were detected by ELISA, and acrolein was detected by Western blot. MEASUREMENTS AND MAIN RESULTS Mice exposed to cigarette smoke developed emphysema with increased PGP, neutrophilic inflammation, and selective inhibition of LTA4H aminopeptidase, which ordinarily degrades PGP. We recapitulated these findings in smokers with and without COPD. PGP and AcPGP are closely associated with cigarette smoke use. Once chronic inflammation is established, changes to LTA4H aminopeptidase remain, even in the absence of ongoing cigarette use. Acrolein modifies LTA4H and inhibits aminopeptidase activity to the same extent as cigarette smoke. CONCLUSIONS These results demonstrate a novel pathway of aberrant regulation of PGP/AcPGP, suggesting this inflammatory pathway may be intimately involved in disease progression in the absence of ongoing cigarette smoke exposure. We highlight a mechanism by which acrolein potentiates neutrophilic inflammation through selective inhibition of LTA4H aminopeptidase activity. Clinical trial registered with www.clinicaltrials.gov (NCT 00292552).
Collapse
Affiliation(s)
- J Michael Wells
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Setlakwe EL, Lemos KR, Lavoie-Lamoureux A, Duguay JD, Lavoie JP. Airway collagen and elastic fiber content correlates with lung function in equine heaves. Am J Physiol Lung Cell Mol Physiol 2014; 307:L252-60. [PMID: 24879055 DOI: 10.1152/ajplung.00019.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The consequences on lung function and inflammation of alterations in the extracellular matrix affecting the peripheral airway wall in asthma are largely unknown. We hypothesized that remodeling of collagen and elastic fibers in the peripheral airway wall leads to airway obstruction and contributes to neutrophilic airway inflammation. Animals used were six heaves-affected horses and five controls. Large peripheral lung biopsies were obtained from horses with heaves in clinical remission (Baseline) and during disease exacerbation and from age-matched controls. The area of collagen and elastic fiber content in the lamina propria was measured by histological staining techniques and corrected for airway size. Collagen type 1 and type 3 content was further assessed from additional horses after postmortem lung samples by immunohistochemistry. The collagen breakdown products proline-glycine-proline (PGP) and N-acetylated-PGP (N-α-PGP) were also measured in bronchoalveolar lavage fluids (BALF) by mass spectrometry. Compared with controls, heaves-affected horses had an increase in collagen (P = 0.05) and elastic fiber contents (P = 0.04) at baseline. Collagen types 1 and 3 content was also significantly increased in diseased horses (P = 0.015) when both collagen types were combined. No further change in collagen content was observed after a 30-day antigenic challenge. Airway collagen at baseline was positively correlated with pulmonary resistance in asthmatic horses (r(2) = 0.78, P = 0.03) and elastic fiber content was positively associated with pulmonary elastance in controls (r(2) = 0.95, P = 0.02). No difference between groups was appreciated in PGP and N-α-PGP peptides in BALF. Increased airway wall collagen and elastic fiber content may contribute to residual obstruction in the asthmatic airways.
Collapse
Affiliation(s)
- Emilie L Setlakwe
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Karen R Lemos
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Anouk Lavoie-Lamoureux
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Jean-David Duguay
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|