1
|
Mesleh A, Ehtewish H, Lennard K, Abdesselem HB, Al-Shaban F, Decock J, Alajez NM, Arredouani A, Emara MM, Albagha O, Stanton LW, Abdulla SA, Blackburnand JM, El-Agnaf OMA. High-throughput autoantibody screening identifies differentially abundant autoantibodies in autism spectrum disorder. Front Mol Neurosci 2023; 16:1222506. [PMID: 37908488 PMCID: PMC10613655 DOI: 10.3389/fnmol.2023.1222506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by defects in two core domains, social/communication skills and restricted/repetitive behaviors or interests. There is no approved biomarker for ASD diagnosis, and the current diagnostic method is based on clinical manifestation, which tends to vary vastly between the affected individuals due to the heterogeneous nature of ASD. There is emerging evidence that supports the implication of the immune system in ASD, specifically autoimmunity; however, the role of autoantibodies in ASD children is not yet fully understood. Materials and methods In this study, we screened serum samples from 93 cases with ASD and 28 healthy controls utilizing high-throughput KoRectly Expressed (KREX) i-Ome protein-array technology. Our goal was to identify autoantibodies with differential expressions in ASD and to gain insights into the biological significance of these autoantibodies in the context of ASD pathogenesis. Result Our autoantibody expression analysis identified 29 differential autoantibodies in ASD, 4 of which were upregulated and 25 downregulated. Subsequently, gene ontology (GO) and network analysis showed that the proteins of these autoantibodies are expressed in the brain and involved in axonal guidance, chromatin binding, and multiple metabolic pathways. Correlation analysis revealed that these autoantibodies negatively correlate with the age of ASD subjects. Conclusion This study explored autoantibody reactivity against self-antigens in ASD individuals' serum using a high-throughput assay. The identified autoantibodies were reactive against proteins involved in axonal guidance, synaptic function, amino acid metabolism, fatty acid metabolism, and chromatin binding.
Collapse
Affiliation(s)
- Areej Mesleh
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Hanan Ehtewish
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Katie Lennard
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
| | - Houari B. Abdesselem
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Fouad Al-Shaban
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Julie Decock
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nehad M. Alajez
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Abdelilah Arredouani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Mohamed M. Emara
- Basic Medical Sciences Department, College of Medicine, Qatar University Health, Qatar University, Doha, Qatar
| | - Omar Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Lawrence W. Stanton
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Jonathan M. Blackburnand
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Omar M. A. El-Agnaf
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
2
|
Lubarski K, Mania A, Michalak S, Osztynowicz K, Mazur-Melewska K, Figlerowicz M. The Coexistence of Antibodies to Neuronal Cell and Synaptic Receptor Proteins, Gangliosides and Selected Neurotropic Pathogens in Neurologic Disorders in Children. Diagnostics (Basel) 2023; 13:diagnostics13071274. [PMID: 37046492 PMCID: PMC10093427 DOI: 10.3390/diagnostics13071274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Various primarily non-autoimmune neurological disorders occur synchronously with autoantibodies against tissues in the nervous system. We aimed to assess serum and cerebrospinal fluid (CSF) autoantibodies in children with neurologic disorders. To find new diagnostic tools, we compared the laboratory and clinical findings between the distinguished groups. Retrospectively, 508 patients were divided into six subgroups: neuroinfections, pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections, neurologic autoimmune and demyelinating diseases, epilepsy, pervasive developmental disorders and other patients. We analysed serum anti-aquaporin-4, antiganglioside, neuronal antinuclear and cytoplasmic antibodies, as well as antibodies against surface neuronal and synaptic antigens in the CSF and serum. We involved available demographic and clinical data. Autoantibodies appeared in 165 (32.3%) children, with 24 showing multiple types of them. The most common were anti-neuroendothelium (anti-NET), anti-N-Methyl-D-Aspartate receptor (anti-NMDAr), anti-glial fibrillary acidic protein and anti-myelin antibodies bothering 46/463 (9.9%), 32/343 (9.4%), 27/463 (5.8%) and 27/463 (5.8%), respectively. Anti-NET and anti-NMDAr antibodies appeared more frequently in children with autoimmunity (p = 0.017; p < 0.001, respectively), increasing the autoimmune disease risk (OR = 2.18, 95% CI 1.13–13.97; OR = 3.91, 95% CI 1.86–8.22, respectively). Similar pathomechanisms appeared in diseases of different aetiology with clinical spectrums mimicking each other, so we proposed the model helping to diagnose autoimmune disease. We proved the influence of age, living place and medical history on the final diagnosis.
Collapse
Affiliation(s)
- Karol Lubarski
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, 27/33 Szpitalna St., 60-572 Poznan, Poland
| | - Anna Mania
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, 27/33 Szpitalna St., 60-572 Poznan, Poland
| | - Sławomir Michalak
- Department of Neurology, Division of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland
| | - Krystyna Osztynowicz
- Department of Neurology, Division of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland
| | - Katarzyna Mazur-Melewska
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, 27/33 Szpitalna St., 60-572 Poznan, Poland
| | - Magdalena Figlerowicz
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, 27/33 Szpitalna St., 60-572 Poznan, Poland
- Correspondence:
| |
Collapse
|
3
|
Altered meningeal immunity contributing to the autism-like behavior of BTBR T Itpr3/J mice. Brain Behav Immun Health 2022; 26:100563. [DOI: 10.1016/j.bbih.2022.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
|
4
|
Immune Dysregulation in Autism Spectrum Disorder: What Do We Know about It? Int J Mol Sci 2022; 23:ijms23063033. [PMID: 35328471 PMCID: PMC8955336 DOI: 10.3390/ijms23063033] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex multifactorial neurodevelopmental disorders characterized by a wide and variable set of neuropsychiatric symptoms, including deficits in social communication, narrow and restricted interests, and repetitive behavior. The immune hypothesis is considered to be a major factor contributing to autism pathogenesis, as well as a way to explain the differences of the clinical phenotypes and comorbidities influencing disease course and severity. Evidence highlights a link between immune dysfunction and behavioral traits in autism from several types of evidence found in both cerebrospinal fluid and peripheral blood and their utility to identify autistic subgroups with specific immunophenotypes; underlying behavioral symptoms are also shown. This review summarizes current insights into immune dysfunction in ASD, with particular reference to the impact of immunological factors related to the maternal influence of autism development; comorbidities influencing autism disease course and severity; and others factors with particular relevance, including obesity. Finally, we described main elements of similarities between immunopathology overlapping neurodevelopmental and neurodegenerative disorders, taking as examples autism and Parkinson Disease, respectively.
Collapse
|
5
|
Elshahawi HH, Taha GRA, Azzam HME, El Ghamry RH, Abdelgawad AAM, Elshiekh MAAA. N-Methyl-d-aspartate (NMDA) receptor antibody in relation to autism spectrum disorder (ASD): presence and association with symptom profile. MIDDLE EAST CURRENT PSYCHIATRY 2021. [PMCID: PMC8557968 DOI: 10.1186/s43045-021-00141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Several studies pointed to immune dysregulation abnormalities linked to autism spectrum disorders (ASD). Of those, several autoantibodies had been identified. Recent findings of N-methyl d-aspartate (NMDA) antibodies in autoimmune encephalitis suggested that it caused symptoms like autistic regression. Thus, the purpose of the study was to test for the presence of anti-NMDAR antibodies in the ASD disorder population and to correlate this with the clinical findings. Results Eighty-seven autistic children, 4–12 years old, were enrolled in the study and were matched with sixty typically developing children used as controls. The diagnosis of cases was confirmed by ADOS-2 and clinical evaluation. None of the control children had positive anti-NMDAR antibodies, while 26.4% (23 children) of the patients’ group were positive for serum anti-NMDA receptor antibodies (> 200 pg/ml, p = 0.0157). The positive anti-NMDAR antibody was statistically correlated with better speech stage (p = 0.017), more severe stereotyped behavior (p ≤ 0.001), and abnormal EEG findings (p = 0.025). Conclusions There is a possibility of the presence of anti-NMDAR antibodies in the autism spectrum disorder population with certain characteristics, especially the severity of the stereotyped behaviors.
Collapse
|
6
|
Al-Beltagi M. Autism medical comorbidities. World J Clin Pediatr 2021; 10:15-28. [PMID: 33972922 PMCID: PMC8085719 DOI: 10.5409/wjcp.v10.i3.15] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/12/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Medical comorbidities are more common in children with autism spectrum disorders (ASD) than in the general population. Some genetic disorders are more common in children with ASD such as Fragile X syndrome, Down syndrome, Duchenne muscular dystrophy, neurofibromatosis type I, and tuberous sclerosis complex. Children with autism are also more prone to a variety of neurological disorders, including epilepsy, macrocephaly, hydrocephalus, cerebral palsy, migraine/headaches, and congenital abnormalities of the nervous system. Besides, sleep disorders are a significant problem in individuals with autism, occurring in about 80% of them. Gastrointestinal (GI) disorders are significantly more common in children with ASD; they occur in 46% to 84% of them. The most common GI problems observed in children with ASD are chronic constipation, chronic diarrhoea, gastroesophageal reflux and/or disease, nausea and/or vomiting, flatulence, chronic bloating, abdominal discomfort, ulcers, colitis, inflammatory bowel disease, food intolerance, and/or failure to thrive. Several categories of inborn-errors of metabolism have been observed in some patients with autism including mitochondrial disorders, disorders of creatine metabolism, selected amino acid disorders, disorders of folate or B12 metabolism, and selected lysosomal storage disorders. A significant proportion of children with ASD have evidence of persistent neuroinflammation, altered inflammatory responses, and immune abnormalities. Anti-brain antibodies may play an important pathoplastic mechanism in autism. Allergic disorders are significantly more common in individuals with ASD from all age groups. They influence the development and severity of symptoms. They could cause problematic behaviours in at least a significant subset of affected children. Therefore, it is important to consider the child with autism as a whole and not overlook possible symptoms as part of autism. The physician should rule out the presence of a medical condition before moving on to other interventions or therapies. Children who enjoy good health have a better chance of learning. This can apply to all children including those with autism.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama P.O. Box 26671, Bahrain, Bahrain
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 0000000, Al Gharbia, Egypt
| |
Collapse
|
7
|
Al-Beltagi M. Autism medical comorbidities. World J Clin Pediatr 2021. [PMID: 33972922 DOI: 10.5409/wjcp.v10.i3.15.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Medical comorbidities are more common in children with autism spectrum disorders (ASD) than in the general population. Some genetic disorders are more common in children with ASD such as Fragile X syndrome, Down syndrome, Duchenne muscular dystrophy, neurofibromatosis type I, and tuberous sclerosis complex. Children with autism are also more prone to a variety of neurological disorders, including epilepsy, macrocephaly, hydrocephalus, cerebral palsy, migraine/headaches, and congenital abnormalities of the nervous system. Besides, sleep disorders are a significant problem in individuals with autism, occurring in about 80% of them. Gastrointestinal (GI) disorders are significantly more common in children with ASD; they occur in 46% to 84% of them. The most common GI problems observed in children with ASD are chronic constipation, chronic diarrhoea, gastroesophageal reflux and/or disease, nausea and/or vomiting, flatulence, chronic bloating, abdominal discomfort, ulcers, colitis, inflammatory bowel disease, food intolerance, and/or failure to thrive. Several categories of inborn-errors of metabolism have been observed in some patients with autism including mitochondrial disorders, disorders of creatine metabolism, selected amino acid disorders, disorders of folate or B12 metabolism, and selected lysosomal storage disorders. A significant proportion of children with ASD have evidence of persistent neuroinflammation, altered inflammatory responses, and immune abnormalities. Anti-brain antibodies may play an important pathoplastic mechanism in autism. Allergic disorders are significantly more common in individuals with ASD from all age groups. They influence the development and severity of symptoms. They could cause problematic behaviours in at least a significant subset of affected children. Therefore, it is important to consider the child with autism as a whole and not overlook possible symptoms as part of autism. The physician should rule out the presence of a medical condition before moving on to other interventions or therapies. Children who enjoy good health have a better chance of learning. This can apply to all children including those with autism.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama P.O. Box 26671, Bahrain, Bahrain
| |
Collapse
|
8
|
Sala R, Amet L, Blagojevic-Stokic N, Shattock P, Whiteley P. Bridging the Gap Between Physical Health and Autism Spectrum Disorder. Neuropsychiatr Dis Treat 2020; 16:1605-1618. [PMID: 32636630 PMCID: PMC7335278 DOI: 10.2147/ndt.s251394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly complex and heterogeneous developmental disorder that affects how individuals communicate with other people and relate to the world around them. Research and clinical focus on the behavioural and cognitive manifestations of ASD, whilst important, have obscured the recognition that ASD is also commonly associated with a range of physical and mental health conditions. Many physical conditions appear with greater frequency in individuals with ASD compared to non-ASD populations. These can contribute to a worsening of social communication and behaviour, lower quality of life, higher morbidity and premature mortality. We highlight some of the key physical comorbidities affecting the immune and the gastrointestinal systems, metabolism and brain function in ASD. We discuss how healthcare professionals working with individuals with ASD and parents/carers have a duty to recognise their needs in order to improve their overall health and wellbeing, deliver equality in their healthcare experiences and reduce the likelihood of morbidity and early mortality associated with the condition.
Collapse
Affiliation(s)
- Regina Sala
- Centre for Psychiatry, Wolfson Institute, Barts & The London School of Medicine & Dentistry Queen Mary University of London, London, UK
| | | | | | - Paul Shattock
- Education & Services for People with Autism, Sunderland, UK
| | - Paul Whiteley
- Education & Services for People with Autism Research, Sunderland, UK
| |
Collapse
|
9
|
Mazón-Cabrera R, Vandormael P, Somers V. Antigenic Targets of Patient and Maternal Autoantibodies in Autism Spectrum Disorder. Front Immunol 2019; 10:1474. [PMID: 31379804 PMCID: PMC6659315 DOI: 10.3389/fimmu.2019.01474] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose behavioral symptoms become apparent in early childhood. The underlying pathophysiological mechanisms are only partially understood and the clinical manifestations are heterogeneous in nature, which poses a major challenge for diagnosis, prognosis and intervention. In the last years, an important role of a dysregulated immune system in ASD has emerged, but the mechanisms connecting this to a disruption of brain development are still largely unknown. Although ASD is not considered as a typical autoimmune disease, self-reactive antibodies or autoantibodies against a wide variety of targets have been found in a subset of ASD patients. In addition, autoantibodies reactive to fetal brain proteins have also been described in the prenatal stage of neurodevelopment, where they can be transferred from the mother to the fetus by transplacental transport. In this review, we give an extensive overview of the antibodies described in ASD according to their target antigens, their different origins, and timing of exposure during neurodevelopment.
Collapse
Affiliation(s)
| | | | - Veerle Somers
- Biomedical Research Institute, Faculty of Medicine and Life Science, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
10
|
Gata-Garcia A, Diamond B. Maternal Antibody and ASD: Clinical Data and Animal Models. Front Immunol 2019; 10:1129. [PMID: 31191521 PMCID: PMC6547809 DOI: 10.3389/fimmu.2019.01129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/03/2019] [Indexed: 12/26/2022] Open
Abstract
Over the past several decades there has been an increasing interest in the role of environmental factors in the etiology of neuropsychiatric and neurodevelopmental disorders. Epidemiologic studies have shifted from an exclusive focus on the identification of genetic risk alleles for such disorders to recognizing and understanding the contribution of xenobiotic exposures, infections, and the maternal immune system during the prenatal and early post-natal periods. In this review we discuss the growing literature regarding the effects of maternal brain-reactive antibodies on fetal brain development and their contribution to the development of neuropsychiatric and neurodevelopmental disorders. Autoimmune diseases primarily affect women and are more prevalent in mothers of children with neurodevelopmental disorders. For example, mothers of children with Autism Spectrum Disorder (ASD) are significantly more likely to have an autoimmune disease than women of neurotypically developing children. Moreover, they are four to five times more likely to harbor brain-reactive antibodies than unselected women of childbearing age. Many of these women exhibit no apparent clinical consequence of harboring these antibodies, presumably because the antibodies never access brain tissue. Nevertheless, these maternal brain-reactive antibodies can access the fetal brain, and some may be capable of altering brain development when present during pregnancy. Several animal models have provided evidence that in utero exposure to maternal brain-reactive antibodies can permanently alter brain anatomy and cause persistent behavioral or cognitive phenotypes. Although this evidence supports a contribution of maternal brain-reactive antibodies to neurodevelopmental disorders, an interplay between antibodies, genetics, and other environmental factors is likely to determine the specific neurodevelopmental phenotypes and their severity. Additional modulating factors likely also include the microbiome, sex chromosomes, and gonadal hormones. These interactions may help to explain the sex-bias observed in neurodevelopmental disorders. Studies on this topic provide a unique opportunity to learn how to identify and protect at risk pregnancies while also deciphering critical pathways in neurodevelopment.
Collapse
Affiliation(s)
- Adriana Gata-Garcia
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
11
|
Marchezan J. Editorial: Autism Spectrum Disorder and Autoimmune Diseases: A Pathway in Common? J Am Acad Child Adolesc Psychiatry 2019; 58:481-483. [PMID: 30902666 DOI: 10.1016/j.jaac.2019.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
The diagnosis of autism spectrum disorder (ASD) has increased significantly in the past decade. A rare condition at the time Kanner (1942) initially described it, ASD has become a public health issue with great social and financial burdens. In 2018, the Centers for Disease Control and Prevention estimated the prevalence of autism at 16.8 for every 1,000 (1:59) children by 8 years of age, affecting 26.6 of 1,000 boys and 6.6 of 1,000 girls. These numbers represent an increase of approximately 150% from 2000 to 2014.1.
Collapse
Affiliation(s)
- Josemar Marchezan
- School of Medicine, Universidade do Vale do Taquari (UNIVATES), Lajeado, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Porto Alegre, Brazil; Translational Research Group in Autism Spectrum Disorders GETTEA, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
12
|
De novo Blood Biomarkers in Autism: Autoantibodies against Neuronal and Glial Proteins. Behav Sci (Basel) 2019; 9:bs9050047. [PMID: 31035713 PMCID: PMC6563083 DOI: 10.3390/bs9050047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASDs) are the most common neurodevelopmental disorders with unidentified etiology. The behavioral manifestations of ASD may be a consequence of genetic and/or environmental pathology in neurodevelopmental processes. In this limited study, we assayed autoantibodies to a panel of vital neuronal and glial proteins in the sera of 40 subjects (10 children with ASD and their mothers along with 10 healthy controls, age-matched children and their mothers). Serum samples were screened using Western Blot analysis to measure immunoglobulin (IgG) reactivity against a panel of 9 neuronal proteins commonly associated with neuronal degeneration: neurofilament triplet proteins (NFP), tubulin, microtubule-associated proteins (tau), microtubule-associated protein-2 (MAP-2), myelin basic protein (MBP), myelin-associated glycoprotein (MAG), α-synuclein (SNCA) and astrocytes proteins such as glial fibrillary acidic protein (GFAP) and S100B protein. Our data show that the levels of circulating IgG class autoantibodies against the nine proteins were significantly elevated in ASD children. Mothers of ASD children exhibited increased levels of autoantibodies against all panel of tested proteins except for S100B and tubulin compared to age-matched healthy control children and their mothers. Control children and their mothers showed low and insignificant levels of autoantibodies to neuronal and glial proteins. These results strongly support the importance of anti-neuronal and glial protein autoantibodies biomarker in screening for ASD children and further confirm the importance of the involvement of the maternal immune system as an index that should be considered in fetal in utero environmental exposures. More studies are needed using larger cohort to verify these results and understand the importance of the presence of such autoantibodies in children with autism and their mothers, both as biomarkers and their role in the mechanism of action of autism and perhaps in its treatment.
Collapse
|
13
|
Tzang RF, Chang CH, Chang YC, Lane HY. Autism Associated With Anti-NMDAR Encephalitis: Glutamate-Related Therapy. Front Psychiatry 2019; 10:440. [PMID: 31293459 PMCID: PMC6598425 DOI: 10.3389/fpsyt.2019.00440] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
The purpose of this review is to correlate autism with autoimmune dysfunction in the absence of an explanation for the etiology of autism spectrum disorder. The anti-N-methyl-D-aspartate receptor (anti-NMDAR) autoantibody is a typical synaptic protein that can bind to synaptic NMDA glutamate receptors, leading to dysfunctional glutamate neurotransmission in the brain that manifests as psychiatric symptoms (psychosis, hallucinations, and personality changes). Detection of autoantibodies, cytokines, decreased lymphocytes, serum immunoglobulin level imbalance, T-cell mediated immune profile, maternal infection history, and children's infection history can all be vital biological markers of autoimmune autism. Diagnosing autoimmune encephalitis sooner can increase the effectiveness of curative treatments-such as immune therapy or immune modulatory therapy-that may prevent the long-term consequence of being misdiagnosed with autism spectrum disorder. Glutamate therapy primarily normalizes glutamate neurotransmission and can be a new add-on intervention alongside antipsychotics for treating autoimmune autism.
Collapse
Affiliation(s)
- Ruu-Fen Tzang
- Department of Psychiatry, Mackay Memorial Hospital, Taipei, Taiwan.,Mackay Medicine, Nursing and Management College, Taipei, Taiwan
| | - Chuan-Hsin Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yue-Cune Chang
- Department of Mathematics, Tamkang University, Taipei, Taiwan
| | - Hsien-Yuan Lane
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| |
Collapse
|
14
|
Hughes HK, Mills Ko E, Rose D, Ashwood P. Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Front Cell Neurosci 2018; 12:405. [PMID: 30483058 PMCID: PMC6242891 DOI: 10.3389/fncel.2018.00405] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of heterogeneous neurological disorders that are highly variable and are clinically characterized by deficits in social interactions, communication, and stereotypical behaviors. Prevalence has risen from 1 in 10,000 in 1972 to 1 in 59 children in the United States in 2014. This rise in prevalence could be due in part to better diagnoses and awareness, however, these together cannot solely account for such a significant rise. While causative connections have not been proven in the majority of cases, many current studies focus on the combined effects of genetics and environment. Strikingly, a distinct picture of immune dysfunction has emerged and been supported by many independent studies over the past decade. Many players in the immune-ASD puzzle may be mechanistically contributing to pathogenesis of these disorders, including skewed cytokine responses, differences in total numbers and frequencies of immune cells and their subsets, neuroinflammation, and adaptive and innate immune dysfunction, as well as altered levels of immunoglobulin and the presence of autoantibodies which have been found in a substantial number of individuals with ASD. This review summarizes the latest research linking ASD, autoimmunity and immune dysfunction, and discusses evidence of a potential autoimmune component of ASD.
Collapse
Affiliation(s)
- Heather K. Hughes
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Emily Mills Ko
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Destanie Rose
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
15
|
Nadeem A, Ahmad SF, El-Sherbeeny AM, Al-Harbi NO, Bakheet SA, Attia SM. Systemic inflammation in asocial BTBR T + tf/J mice predisposes them to increased psoriatic inflammation. Prog Neuropsychopharmacol Biol Psychiatry 2018; 83:8-17. [PMID: 29287831 DOI: 10.1016/j.pnpbp.2017.12.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/12/2017] [Accepted: 12/24/2017] [Indexed: 01/09/2023]
Abstract
Autistic Spectrum disorder (ASD) is a neurobehavioral disorder characterized by defects in communication skills leading to restricted sociability. ASD has immense dysregulation in immune responses which is thought to affect neuronal system and thus behavior. ASD patients and BTBR T+ tf/J (BTBR) autistic mice have increased systemic inflammation due to dysfunction in innate and adaptive immune responses. Recent studies suggest that ASD patients are associated with several co-morbid autoimmune disorders including psoriasis. However underlying mechanisms for this phenomenon have not been explored. In this study, we used imiquimod (IMQ)-induced psoriatic inflammation in social C57BL/6 (C57) mice and asocial BTBR mice to investigate whether systemic inflammation in BTBR is associated with increased susceptibility to psoriatic inflammation. Our data shows that BTBR mice have increased expression of TLR7/IL-6/IL-23 in systemic DCs but not in skin as compared to C57 mice at baseline. This leads to much greater psoriatic inflammation in BTBR mice upon IMQ application than C57 mice. Consequently, BTBR mice also have higher Th17 related immune responses in the skin and systemic compartment. Overall our study suggests that systemic innate (TLR7/IL-23/IL-6 in DCs) and adaptive (Th17 related signaling) immune responses are heightened in BTBR mice at baseline which predisposes them for greater psoriatic inflammation than C57 mice upon IMQ application. This could be one of the reasons for increased psoriatic inflammation in patients with ASD. Therapies that aim to decrease immune activation may not only benefit ASD-associated neurobehavioral abnormalities but also comorbid disorders such as psoriasis.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Ahmed M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Sanchez JJ, Noor S, Davies S, Savage D, Milligan ED. Prenatal alcohol exposure is a risk factor for adult neuropathic pain via aberrant neuroimmune function. J Neuroinflammation 2017; 14:254. [PMID: 29258553 PMCID: PMC5738192 DOI: 10.1186/s12974-017-1030-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Clinical studies show that prenatal alcohol exposure (PAE) results in effects that persist into adulthood. Experimental animal models of moderate PAE demonstrate that young adults with PAE display potentiated sensitivity to light touch, clinically termed allodynia, following sciatic nerve chronic constriction injury (CCI) that coincides with heightened spinal glial, spinal macrophage, and peripheral immune responses. However, basal touch sensitivity and corresponding glial and leukocyte activation are unaltered. Therefore, the current study explored whether the enduring pathological consequences of moderate PAE on sensory processing are unmasked only following secondary neural insult. METHODS In middle-aged (1 year) Long Evans rats that underwent either prenatal saccharin exposure (control) or moderate PAE, we modified the well-characterized model of sciatic neuropathy, CCI, to study the effects of PAE on neuro-immune responses in adult offspring. Standard CCI manipulation required 4 chromic gut sutures, while a mild version applied a single suture loosely ligated around one sciatic nerve. Spinal glial immunoreactivity was examined using immunohistochemistry. The characterization and functional responses of leukocyte populations were studied using flow cytometry and cell stimulation assays followed by quantification of the proinflammatory cytokines interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). Data were statistically analyzed by ANOVA and unpaired t tests. RESULTS The current report demonstrates that mild CCI generates robust allodynia only in PAE rats, while the pathological effects of PAE following the application of a standard CCI are revealed by enhanced allodynia and elevated spinal glial activation. Additionally, mild CCI increases spinal astrocyte activation but not microglia, suggesting astrocytes play a larger role in PAE-induced susceptibility to aberrant sensory processing. Leukocyte populations from PAE are altered under basal conditions (i.e., prior to secondary insult), as the distribution of leukocyte populations in lymphoid organs and other regions are different from those of controls. Lastly, following in vitro leukocyte stimulation, only PAE augments the immune response to antigen stimulation as assessed by heightened production of TNF-α and IL-1β. CONCLUSIONS These studies demonstrate PAE may prime spinal astrocytes and peripheral leukocytes that contribute to enduring susceptibility to adult-onset neuropathic pain that is not apparent until a secondary insult later in life.
Collapse
Affiliation(s)
- Joshua J. Sanchez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001 USA
| | - Shahani Noor
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001 USA
| | - Suzy Davies
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001 USA
| | - Daniel Savage
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001 USA
| | - Erin D. Milligan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001 USA
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-001 USA
| |
Collapse
|
17
|
Grayson DR, Guidotti A. Merging data from genetic and epigenetic approaches to better understand autistic spectrum disorder. Epigenomics 2015; 8:85-104. [PMID: 26551091 PMCID: PMC4864049 DOI: 10.2217/epi.15.92] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is characterized by a wide range of cognitive and behavioral abnormalities. Genetic research has identified large numbers of genes that contribute to ASD phenotypes. There is compelling evidence that environmental factors contribute to ASD through influences that differentially impact the brain through epigenetic mechanisms. Both genetic mutations and epigenetic influences alter gene expression in different cell types of the brain. Mutations impact the expression of large numbers of genes and also have downstream consequences depending on specific pathways associated with the mutation. Environmental factors impact the expression of sets of genes by altering methylation/hydroxymethylation patterns, local histone modification patterns and chromatin remodeling. Herein, we discuss recent developments in the research of ASD with a focus on epigenetic pathways as a complement to current genetic screening.
Collapse
Affiliation(s)
- Dennis R Grayson
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60607, USA
| | - Alessandro Guidotti
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60607, USA
| |
Collapse
|
18
|
Gottfried C, Bambini-Junior V, Francis F, Riesgo R, Savino W. The Impact of Neuroimmune Alterations in Autism Spectrum Disorder. Front Psychiatry 2015; 6:121. [PMID: 26441683 PMCID: PMC4563148 DOI: 10.3389/fpsyt.2015.00121] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/17/2015] [Indexed: 01/27/2023] Open
Abstract
Autism spectrum disorder (ASD) involves a complex interplay of both genetic and environmental risk factors, with immune alterations and synaptic connection deficiency in early life. In the past decade, studies of ASD have substantially increased, in both humans and animal models. Immunological imbalance (including autoimmunity) has been proposed as a major etiological component in ASD, taking into account increased levels of pro-inflammatory cytokines observed in postmortem brain from patients, as well as autoantibody production. Also, epidemiological studies have established a correlation of ASD with family history of autoimmune diseases; associations with major histocompatibility complex haplotypes and abnormal levels of immunological markers in the blood. Moreover, the use of animal models to study ASD is providing increasing information on the relationship between the immune system and the pathophysiology of ASD. Herein, we will discuss the accumulating literature for ASD, giving special attention to the relevant aspects of factors that may be related to the neuroimmune interface in the development of ASD, including changes in neuroplasticity.
Collapse
Affiliation(s)
- Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Research Group in Neuroglial Plasticity, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Research Group in Neuroglial Plasticity, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fiona Francis
- Sorbonne Université, Université Pierre et Marie Curie, Paris, France
- INSERM UMR-S 839, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Rudimar Riesgo
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Child Neurology Unit, Clinical Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Haukanes BI, Hegvik TA, Eichler T, Haavik J, Vedeler C. Paraneoplastic syndrome-associated neuronal antibodies in adult ADHD. J Neuroimmunol 2015; 288:87-91. [PMID: 26531699 DOI: 10.1016/j.jneuroim.2015.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
A high seroprevalence of Yo antibodies targeting cerebellar Purkinje cells was recently reported in children with attention deficit/hyperactivity disorder (ADHD). We investigated the presence of 8 paraneoplastic neurological syndrome (PNS)-associated antibodies including anti-Yo in 169 adult ADHD patients. No associations between ADHD and serum Yo antibodies or other antibodies associated with PNS were found. However, 10 out of 48 ADHD patient sera analyzed by immunofluorescence presented antibodies targeting cerebellar Purkinje cells. This reactivity probably represents the presence of low levels of antibodies against multiple cellular hitherto unknown antigens with little to no clinical significance.
Collapse
Affiliation(s)
- Bjørn Ivar Haukanes
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Tor-Arne Hegvik
- Department of Biomedicine, University of Bergen, Bergen, Norway; K.G. Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Tilo Eichler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway; K.G. Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Christian Vedeler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
20
|
Increased production of IL-17 in children with autism spectrum disorders and co-morbid asthma. J Neuroimmunol 2015; 286:33-41. [PMID: 26298322 DOI: 10.1016/j.jneuroim.2015.07.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/18/2015] [Accepted: 07/01/2015] [Indexed: 01/08/2023]
Abstract
Inflammation and asthma have both been reported in some children with autism spectrum disorder (ASD). To further assess this connection, peripheral immune cells isolated from young children with ASD and typically developing (TD) controls and the production of cytokines IL-17, -13, and -4 assessed following ex vivo mitogen stimulation. Notably, IL-17 production was significantly higher following stimulation in ASD children compared to controls. Moreover, IL-17 was increased in ASD children with co-morbid asthma compared to controls with the same condition. In conclusion, children with ASD exhibited a differential response to T cell stimulation with elevated IL-17 production compared to controls.
Collapse
|
21
|
Iqbal M, Bashir S, Al-Ayadhi L. Prevalence of antimitochondrial antibodies in autism spectrum subjects. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ABSTRACT Objective: Autism is a neurodevelopmental disorder characterized by impairment in verbal and nonverbal communication, repetitive and stereotypic behavior. Dysregulated immune system has a role in the pathogenesis of Autism. This study was designed to measure the prevalence of antimitochondrial (AM) antibodies in a group of autistic children. Methods: AM antibodies subtype 2 (AMA-M2) were evaluated by indirect solid phase enzyme immunoassay in 62 autistic children and 14 age-matched healthy controls. Autistic activity was assessed by using the Childhood Autism Rating Scale. Results: Significantly elevated levels of AMA-M2 were observed in the sera of autistic children (n = 54, 0.221 ± 0.029 IU/ml [mean ± SEM]) compared with healthy controls (n = 14, 0.111 ± 0.010 IU/ml [mean ± SEM], p = 0.0008) and there was no significant difference in patients with moderate to severe autism (p = 0.49). AM antibodies in autistic patients have no correlation with Childhood Autism Rating Scale score. Conclusion: The current study demonstrated significantly high levels of AMA-M2 in autistic subjects when compared with healthy controls. Further large-scale studies are required to dissect any pathogenic role of these antibodies in the development of autism.
Collapse
Affiliation(s)
- Muhammad Iqbal
- Aging Research Chair, Department of Physiology, Faculty of Medicine, King Saud University, PO box 2925, Riyadh 11461, Saudi Arabia
| | - Shahid Bashir
- KSU-Autism Research & Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Saud University, PO box 2925, Riyadh 11461, Saudi Arabia
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Laila Al-Ayadhi
- KSU-Autism Research & Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Saud University, PO box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
22
|
Mostafa GA, El-Khashab HY, Al-Ayadhi LY. A possible association between elevated serum levels of brain-specific auto-antibodies and reduced plasma levels of docosahexaenoic acid in autistic children. J Neuroimmunol 2015; 280:16-20. [PMID: 25773150 DOI: 10.1016/j.jneuroim.2015.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 12/05/2014] [Accepted: 01/26/2015] [Indexed: 11/19/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are not only essential for energy production, but they also exhibit a range of immunomodulatory properties that progress through T cell mediated events. Autoimmunity may have a pathogenic role in a subgroup of autistic children. This study is the first to investigate the relationship between serum levels of anti-myelin basic protein (anti-MBP) brain-specific auto-antibodies and reduced plasma levels of PUFAs in autistic children. Plasma levels of PUFAs (including linoleic, alphalinolenic, arachidonic "AA" and docosahexaenoic "DHA" acids) and serum anti-MBP were measured in 80 autistic children, aged between 4 and 12 years, and 80 healthy-matched children. Autistic patients had significantly lower plasma levels of PUFAs than healthy children. On the other hand, ω6/ω3 ratio (AA/DHA) was significantly higher in autistic patients than healthy children. Low plasma DHA, AA, linolenic and linoleic acids were found in 67.5%, 50%, 40% and 35%, respectively of autistic children. On the other hand, 70% of autistic patients had elevated ω6/ω3 ratio. Autistic patients with increased serum levels of anti-MBP auto-antibodies (75%) had significantly lower plasma DHA (P<0.5) and significantly higher ω6/ω3 ratio (P<0.5) than patients who were seronegative for these antibodies. In conclusions, some autistic children have a significant positive association between reduced levels of plasma DHA and increased serum levels of anti-MBP brain-specific auto-antibodies. However, replication studies of larger samples are recommended to validate whether reduced levels of plasma PUFAs are a mere association or have a role in the induction of the production of anti-MBP in some autistic children.
Collapse
Affiliation(s)
- Gehan A Mostafa
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Heba Y El-Khashab
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Laila Y Al-Ayadhi
- Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Abstract
Autism spectrum disorders represent a diverse and heterogeneous array of conditions unified by the variable presence of specific behaviours impacting social and communicative functions (social affect) alongside other presentation. Common overt characteristics may come about as a consequence of several different genetic and biological processes differentially manifesting across different people or groups. The concept of plural 'autisms' is evolving, strengthened by an increasingly important evidence base detailing different developmental trajectories across the autism spectrum and the appearance of comorbidity variably interacting with core symptoms and onwards influencing quality of life. Reports that dietary intervention, specifically the removal of foods containing gluten and/or casein from the diet, may impact on the presentation of autism for some, complement this plural view of autism. Evidence suggestive of differing responses to the use of a gluten- and casein-free diet, defined as best- and non-response, has combined with some progress on determining the underlying genetic and biological correlates potentially related to such dietary elements. The preliminary suggestion of a possible diet-related autism phenotype is the result. This review will highlight several pertinent aspects onwards to an effect of food in some cases of autism including research on the pharmacological activity of food metabolites, immune response, issues with gut barrier function and some contribution from the gut microbiota. These represent promising areas in need of far greater research inspection in order to potentially define such a diet-related subgroup on the autism spectrum.
Collapse
|