1
|
Zhu Z, Chen G, He J, Xu Y. The protective effects of orexin B in neuropathic pain by suppressing inflammatory response. Neuropeptides 2024; 108:102458. [PMID: 39255695 DOI: 10.1016/j.npep.2024.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 09/12/2024]
Abstract
Chronic pain induced by pathological insults to the sensorimotor system is a typical form of neuropathic pain (NP), and the underlying mechanism is complex. Currently, there are no successful therapeutic interventions for NP. Orexin B is a neuropeptide with a wide range of biological functions. However, the pharmacological function of orexin B in chronic neuropathic pain has been less studied. Here, we aim to examine the neuroprotective effects of orexin B in chronic constriction injury (CCI)- induced NP. Firstly, we found that orexin type 2 receptor (OX2R) but not orexin type 1 receptor (OX1R) was reduced in the spinal cord (SC) of CCI-treated rats. Mechanical withdrawal threshold and thermal withdrawal latency assays display that administration of orexin B clearly ameliorated CCI-evoked neuropathic pain dose-dependently. Notably, orexin B treatment also effectively prevented microglia activation by reducing the levels of IBA1. Additionally, orexin B was also found to suppress the inflammatory response in the SC tissue by reducing the levels of IL-6, TNF-α, iNOS, and COX-2 as well as the production of NO and PGE2 in CCI-treated rats. Furthermore, orexin B administration attenuated oxidative stress (OS) by increasing the activity of SOD and the levels of GSH. Mechanically, orexin B prevented activation of JNK/NF-κB signaling in the SC of CCI-treated rats. Based on these findings, we conclude that orexin B might have a promising role in ameliorating CCI-evoked neuropathic pain through the inhibition of microglial activation and inflammatory response.
Collapse
Affiliation(s)
- Zuqing Zhu
- Department of Anesthesiology, the First People's Hospital of Linping District, Hangzhou, Zhejiang 311100, China
| | - Gang Chen
- Department of Anesthesiology, Shaoyifu Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang 310018, China
| | - Jiangtao He
- Department of Anesthesiology, the First People's Hospital of Linping District, Hangzhou, Zhejiang 311100, China
| | - Yuanting Xu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 311100, China.
| |
Collapse
|
2
|
Ciapała K, Pawlik K, Ciechanowska A, Makuch W, Mika J. Astaxanthin has a beneficial influence on pain-related symptoms and opioid-induced hyperalgesia in mice with diabetic neuropathy-evidence from behavioral studies. Pharmacol Rep 2024; 76:1346-1362. [PMID: 39528765 PMCID: PMC11582234 DOI: 10.1007/s43440-024-00671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The treatment of painful diabetic neuropathy is still a clinical problem. The aim of this study was to determine whether astaxanthin, a substance that inhibits mitogen-activated protein kinases, activates nuclear factor erythroid 2-related factor 2 and influences N-methyl-D-aspartate receptor, affects nociceptive transmission in mice with diabetic neuropathy. METHODS The studies were performed on streptozotocin-induced mouse diabetic neuropathic pain model. Single intrathecal and intraperitoneal administrations of astaxanthin at various doses were conducted in both males and females. Additionally, repeated twice-daily treatment with astaxanthin (25 mg/kg) and morphine (30 mg/kg) were performed. Hypersensitivity was evaluated with von Frey and cold plate tests. RESULTS This behavioral study provides the first evidence that in a mouse model of diabetic neuropathy, single injections of astaxanthin similarly reduce tactile and thermal hypersensitivity in both male and female mice, regardless of the route of administration. Moreover, repeated administration of astaxanthin slightly delays the development of morphine tolerance and significantly suppresses the occurrence of opioid-induced hyperalgesia, although it does not affect blood glucose levels, body weight, or motor coordination. Surprisingly, astaxanthin administered repeatedly produces a better analgesic effect when administered alone than in combination with morphine, and its potency becomes even more pronounced over time. CONCLUSIONS These behavioral results provide a basis for further evaluation of the potential use of astaxanthin in the clinical treatment of diabetic neuropathy and suggest that the multidirectional action of this substance may have positive effects on relieving neuropathic pain in diabetes.
Collapse
Affiliation(s)
- Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| |
Collapse
|
3
|
O'Brien JA, Austin PJ. Minocycline Abrogates Individual Differences in Nerve Injury-Evoked Affective Disturbances in Male Rats and Prevents Associated Supraspinal Neuroinflammation. J Neuroimmune Pharmacol 2024; 19:30. [PMID: 38878098 PMCID: PMC11180027 DOI: 10.1007/s11481-024-10132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/08/2024] [Indexed: 06/19/2024]
Abstract
Chronic neuropathic pain precipitates a complex range of affective and behavioural disturbances that differ markedly between individuals. While the reasons for differences in pain-related disability are not well understood, supraspinal neuroimmune interactions are implicated. Minocycline has antidepressant effects in humans and attenuates affective disturbances in rodent models of pain, and acts by reducing neuroinflammation in both the spinal cord and brain. Previous studies, however, tend not to investigate how minocycline modulates individual affective responses to nerve injury, or rely on non-naturalistic behavioural paradigms that fail to capture the complexity of rodent behaviour. We investigated the development and resolution of pain-related affective disturbances in nerve-injured male rats by measuring multiple spontaneous ethological endpoints on a longitudinal naturalistic foraging paradigm, and the effect of chronic oral minocycline administration on these changes. Disrupted foraging behaviours appeared in 22% of nerve-injured rats - termed 'affected' rats - and were present at day 14 but partially resolved by day 21 post-injury. Minocycline completely prevented the emergence of an affected subgroup while only partly attenuating mechanical allodynia, dissociating the relationship between pain and affect. This was associated with a lasting downregulation of ΔFosB expression in ventral hippocampal neurons at day 21 post-injury. Markers of microglia-mediated neuroinflammation were not present by day 21, however proinflammatory microglial polarisation was apparent in the medial prefrontal cortex of affected rats and not in CCI minocycline rats. Individual differences in affective disturbances following nerve injury are therefore temporally related to altered microglial morphology and hippocampal neuronal activation, and are abrogated by minocycline.
Collapse
Affiliation(s)
- Jayden A O'Brien
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Paul J Austin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Ciapała K, Mika J. Advances in Neuropathic Pain Research: Selected Intracellular Factors as Potential Targets for Multidirectional Analgesics. Pharmaceuticals (Basel) 2023; 16:1624. [PMID: 38004489 PMCID: PMC10675751 DOI: 10.3390/ph16111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Neuropathic pain is a complex and debilitating condition that affects millions of people worldwide. Unlike acute pain, which is short-term and starts suddenly in response to an injury, neuropathic pain arises from somatosensory nervous system damage or disease, is usually chronic, and makes every day functioning difficult, substantially reducing quality of life. The main reason for the lack of effective pharmacotherapies for neuropathic pain is its diverse etiology and the complex, still poorly understood, pathophysiological mechanism of its progression. Numerous experimental studies, including ours, conducted over the last several decades have shown that the development of neuropathic pain is based on disturbances in cell activity, imbalances in the production of pronociceptive factors, and changes in signaling pathways such as p38MAPK, ERK, JNK, NF-κB, PI3K, and NRF2, which could become important targets for pharmacotherapy in the future. Despite the availability of many different analgesics, relieving neuropathic pain is still extremely difficult and requires a multidirectional, individual approach. We would like to point out that an increasing amount of data indicates that nonselective compounds directed at more than one molecular target exert promising analgesic effects. In our review, we characterize four substances (minocycline, astaxanthin, fisetin, and peimine) with analgesic properties that result from a wide spectrum of actions, including the modulation of MAPKs and other factors. We would like to draw attention to these selected substances since, in preclinical studies, they show suitable analgesic properties in models of neuropathy of various etiologies, and, importantly, some are already used as dietary supplements; for example, astaxanthin and fisetin protect against oxidative stress and have anti-inflammatory properties. It is worth emphasizing that the results of behavioral tests also indicate their usefulness when combined with opioids, the effectiveness of which decreases when neuropathy develops. Moreover, these substances appear to have additional, beneficial properties for the treatment of diseases that frequently co-occur with neuropathic pain. Therefore, these substances provide hope for the development of modern pharmacological tools to not only treat symptoms but also restore the proper functioning of the human body.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343 Kraków, Poland;
| |
Collapse
|
5
|
Zajączkowska R, Pawlik K, Ciapała K, Piotrowska A, Ciechanowska A, Rojewska E, Kocot-Kępska M, Makuch W, Wordliczek J, Mika J. Mirogabalin Decreases Pain-like Behaviors by Inhibiting the Microglial/Macrophage Activation, p38MAPK Signaling, and Pronociceptive CCL2 and CCL5 Release in a Mouse Model of Neuropathic Pain. Pharmaceuticals (Basel) 2023; 16:1023. [PMID: 37513935 PMCID: PMC10384153 DOI: 10.3390/ph16071023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Neuropathic pain is a chronic condition that significantly reduces the quality of life of many patients as a result of ineffective pain relief therapy. For that reason, looking for new analgesics remains an important issue. Mirogabalin is a new gabapentinoid that is a specific ligand for the α2σ-1 and α2σ-2 subunits of voltage-gated calcium channels. In the present study, we compared the analgesic effect of pregabalin and mirogabalin in a neuropathic pain chronic constriction injury (CCI) of the sciatic nerve in a mouse model. The main purpose of our study was to determine the effectiveness of mirogabalin administered both once and repeatedly and to explain how the drug influences highly activated cells at the spinal cord level in neuropathy. We also sought to understand whether mirogabalin modulates the selected intracellular pathways (p38MAPK, ERK, JNK) and chemokines (CCL2, CCL5) important for nociceptive transmission, which is crucial information from a clinical perspective. First, our study provides evidence that a single mirogabalin administration diminishes tactile hypersensitivity more effectively than pregabalin. Second, research shows that several indirect mechanisms may be responsible for the beneficial analgesic effect of mirogabalin. This study reports that repeated intraperitoneally (i.p.) mirogabalin administration strongly prevents spinal microglia/macrophage activation evoked by nerve injury, slightly suppresses astroglia and neutrophil infiltration, and reduces the p38MAPK levels associated with neuropathic pain, as measured on Day 7. Moreover, mirogabalin strongly diminished the levels of the pronociceptive chemokines CCL2 and CCL5. Our results indicate that mirogabalin may represent a new strategy for the effective pharmacotherapy of neuropathic pain.
Collapse
Affiliation(s)
- Renata Zajączkowska
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Magdalena Kocot-Kępska
- Department of Pain Research and Treatment, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Jerzy Wordliczek
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| |
Collapse
|
6
|
Kocot-Kępska M, Pawlik K, Ciapała K, Makuch W, Zajączkowska R, Dobrogowski J, Przeklasa-Muszyńska A, Mika J. Phenytoin Decreases Pain-like Behaviors and Improves Opioid Analgesia in a Rat Model of Neuropathic Pain. Brain Sci 2023; 13:858. [PMID: 37371338 DOI: 10.3390/brainsci13060858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Neuropathic pain remains a clinical challenge due to its complex and not yet fully understood pathomechanism, which result in limited analgesic effectiveness of the management offered, particularly for patients with acute, refractory neuropathic pain states. In addition to the introduction of several modern therapeutic approaches, such as neuromodulation or novel anti-neuropathic drugs, significant efforts have been made in the repurposing of well-known substances such as phenytoin. Although its main mechanism of action occurs at sodium channels in excitable and non-excitable cells and is well documented, how the drug affects the disturbed neuropathic interactions at the spinal cord level and how it influences morphine-induced analgesia have not been clarified, both being crucial from a clinical perspective. We demonstrated that single and repeated systemic administrations of phenytoin decreased tactile and thermal hypersensitivity in an animal model of neuropathic pain. Importantly, we observed an increase in the antinociceptive effect on thermal stimuli with repeated administrations of phenytoin. This is the first study to report that phenytoin improves morphine-induced antinociceptive effects and influences microglia/macrophage activity at the spinal cord and dorsal root ganglion levels in a neuropathic pain model. Our findings support the hypothesis that phenytoin may represent an effective strategy for neuropathic pain management in clinical practice, particularly when combination with opioids is needed.
Collapse
Affiliation(s)
- Magdalena Kocot-Kępska
- Department of Pain Research and Treatment, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Renata Zajączkowska
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Jan Dobrogowski
- Department of Pain Research and Treatment, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | - Anna Przeklasa-Muszyńska
- Department of Pain Research and Treatment, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| |
Collapse
|
7
|
Ciapała K, Rojewska E, Pawlik K, Ciechanowska A, Mika J. Analgesic Effects of Fisetin, Peimine, Astaxanthin, Artemisinin, Bardoxolone Methyl and 740 Y-P and Their Influence on Opioid Analgesia in a Mouse Model of Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24109000. [PMID: 37240346 DOI: 10.3390/ijms24109000] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Treatment of neuropathic pain remains a challenge for modern medicine due to the insufficiently understood molecular mechanisms of its development and maintenance. One of the most important cascades that modulate the nociceptive response is the family of mitogen-activated protein (MAP) kinases and phosphatidylinositol-3-kinase (PI3K), as well as nuclear factor erythroid 2-related factor 2 (Nrf2). The aim of this study was to determine the effect of nonselective modulators of MAP kinases-fisetin (ERK1/2 and NFκB inhibitor, PI3K activator), peimine (MAPK inhibitor), astaxanthin (MAPK inhibitor, Nrf2 activator) and artemisinin (MAPK inhibitor, NFκB activator), as well as bardoxolone methyl (selective activator of Nrf2) and 740 Y-P (selective activator of PI3K)-in mice with peripheral neuropathy and to compare their antinociceptive potency and examine their effect on analgesia induced by opioids. The study was performed using albino Swiss male mice that were exposed to chronic constriction injury of the sciatic nerve (CCI model). Tactile and thermal hypersensitivity was measured using von Frey and cold plate tests, respectively. Single doses of substances were administered intrathecally on day 7 after CCI. Among the tested substances, fisetin, peimine, and astaxanthin effectively diminished tactile and thermal hypersensitivity in mice after CCI, while artemisinin did not exhibit analgesic potency in this model of neuropathic pain. Additionally, both of the activators tested, bardoxolone methyl and 740 Y-P, also showed analgesic effects after intrathecal administration in mice exposed to CCI. In the case of astaxanthin and bardoxolone methyl, an increase in analgesia after combined administration with morphine, buprenorphine, and/or oxycodone was observed. Fisetin and peimine induced a similar effect on tactile hypersensitivity, where analgesia was enhanced after administration of morphine or oxycodone. In the case of 740 Y-P, the effects of combined administration with each opioid were observed only in the case of thermal hypersensitivity. The results of our research clearly indicate that substances that inhibit all three MAPKs provide pain relief and improve opioid effectiveness, especially if they additionally block NF-κB, such as peimine, inhibit NF-κB and activate PI3K, such as fisetin, or activate Nrf2, such as astaxanthin. In light of our research, Nrf2 activation appears to be particularly beneficial. The abovementioned substances bring promising results, and further research on them will broaden our knowledge regarding the mechanisms of neuropathy and perhaps contribute to the development of more effective therapy in the future.
Collapse
Affiliation(s)
- Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| |
Collapse
|
8
|
Zhang L, Li X, Feng X, Berkman T, Ma R, Du S, Wu S, Huang C, Amponsah A, Bekker A, Tao YX. E74-like factor 1 contributes to nerve trauma-induced nociceptive hypersensitivity through transcriptionally activating matrix metalloprotein-9 in dorsal root ganglion neurons. Pain 2023; 164:119-131. [PMID: 35507368 PMCID: PMC9633582 DOI: 10.1097/j.pain.0000000000002673] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/20/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Nerve trauma-induced alternations of gene expression in the neurons of dorsal root ganglion (DRG) participate in nerve trauma-caused nociceptive hypersensitivity. Transcription factors regulate gene expression. Whether the transcription factor E74-like factor 1 (ELF1) in the DRG contributes to neuropathic pain is unknown. We report here that peripheral nerve trauma caused by chronic constriction injury (CCI) of unilateral sciatic nerve or unilateral fourth lumbar spinal nerve ligation led to the time-dependent increases in the levels of Elf1 mRNA and ELF1 protein in injured DRG, but not in the spinal cord. Preventing this increase through DRG microinjection of adeno-associated virus 5 expressing Elf1 shRNA attenuated the CCI-induced upregulation of matrix metallopeptidase 9 (MMP9) in injured DRG and induction and maintenance of nociceptive hypersensitivities, without changing locomotor functions and basal responses to acute mechanical, heat, and cold stimuli. Mimicking this increase through DRG microinjection of AAV5 expressing full-length Elf1 upregulated DRG MMP9 and produced enhanced responses to mechanical, heat, and cold stimuli in naive mice. Mechanistically, more ELF1 directly bond to and activated Mmp9 promoter in injured DRG neurons after CCI. Our data indicate that ELF1 participates in nerve trauma-caused nociceptive hypersensitivity likely through upregulating MMP9 in injured DRG. E74-like factor 1 may be a new target for management of neuropathic pain.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Xiang Li
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Xiaozhou Feng
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Tolga Berkman
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Ruining Ma
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Shibin Du
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Congcong Huang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Akwasi Amponsah
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Departments of Cell Biology & Molecular Medicine and Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
9
|
Ciechanowska A, Rojewska E, Piotrowska A, Barut J, Pawlik K, Ciapała K, Kreiner G, Mika J. New insights into the analgesic properties of the XCL1/XCR1 and XCL1/ITGA9 axes modulation under neuropathic pain conditions - evidence from animal studies. Front Immunol 2022; 13:1058204. [PMID: 36618360 PMCID: PMC9814969 DOI: 10.3389/fimmu.2022.1058204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Recent studies have indicated the involvement of chemokine-C-motif ligand 1 (XCL1) in nociceptive transmission; however, the participation of its two receptors, canonical chemokine-C-motif receptor 1 (XCR1) and integrin alpha-9 (ITGA9), recently recognized as a second receptor, has not been clarified to date. The aim was to explore by which of these receptors XCL1 reveals its pronociceptive properties and how the XCL1-XCR1 and XCL1-ITGA9 axes blockade/neutralization influence on pain-related behavior and opioid analgesia in the model of neuropathic pain. In our studies we used Albino Swiss mice which were exposed to the unilateral sciatic nerve chronic constriction injury (CCI) as a neuropathic pain model. Animals received single intrathecal (i.t.) injection of XCL1, XCL1 neutralizing antibodies, antagonist of XCR1 (vMIP-II) and neutralizing antibodies of ITGA9 (YA4), using lumbar puncture technique. Additionally we performed i.t. co-administration of abovementioned neutralizing antibodies and antagonists with single dose of morphine/buprenorphine. To assess pain-related behavior the von Frey and cold plate tests were used. To measure mRNA and protein level the RT-qPCR and Western Blot/Elisa/immunofluorescence techniques were performed, respectively. Statistical analysis was conducted using ANOVA with a Bonferroni correction. Presented studies have shown time-dependent upregulation of the mRNA and/or protein expression of XCL1 in the spinal cord after nerve injury as measured on day 1, 4, 7, 14, and 35. Our immunofluorescence study showed that XCL1 is released by astroglial cells located in the spinal cord, despite the neural localization of its receptors. Our results also provided the first evidence that the blockade/neutralization of both receptors, XCR1 and ITGA9, reversed hypersensitivity after intrathecal XCL1 administration in naive mice; however, neutralization of ITGA9 was more effective. In addition, the results proved that the XCL1 neutralizing antibody and, similarly, the blockade of XCR1 and neutralization of ITGA9 diminished thermal and mechanical hypersensitivity in nerve injury-exposed mice after 7 days. Additionally, neutralization of XCL1 improves morphine analgesia. Moreover, blockade of XCR1 positively influences buprenorphine effectiveness, and neutralization of ITGA9 enhances not only buprenorphine but also morphine analgesia. Therefore, blockade of the XCL1-ITGA9 interaction may serve as an innovative strategy for the polypharmacotherapy of neuropathic pain in combination with opioids.
Collapse
Affiliation(s)
- Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Justyna Barut
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland,*Correspondence: Joanna Mika, ,
| |
Collapse
|
10
|
Ferrari LF, Rey C, Ramirez A, Dziuba A, Zickella J, Zickella M, Raff H, Taylor NE. Characterization of the Dahl salt-sensitive rat as a rodent model of inherited, widespread, persistent pain. Sci Rep 2022; 12:19348. [PMID: 36369350 PMCID: PMC9652451 DOI: 10.1038/s41598-022-24094-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Animal models are essential for studying the pathophysiology of chronic pain disorders and as screening tools for new therapies. However, most models available do not reproduce key characteristics of clinical persistent pain. This has limited their ability to accurately predict which new medicines will be clinically effective. Here, we characterize the Dahl salt-sensitive (SS) rat strain as the first rodent model of inherited widespread hyperalgesia. We show that this strain exhibits physiological phenotypes known to contribute to chronic pain, such as neuroinflammation, defective endogenous pain modulation, dysfunctional hypothalamic-pituitary-adrenal axis, increased oxidative stress and immune cell activation. When compared with Sprague Dawley and Brown Norway rats, SS rats have lower nociceptive thresholds due to increased inflammatory mediator concentrations, lower corticosterone levels, and high oxidative stress. Treatment with dexamethasone, the reactive oxygen species scavenger tempol, or the glial inhibitor minocycline attenuated the pain sensitivity in SS rats without affecting the other strains while indomethacin and gabapentin provided less robust pain relief. Moreover, SS rats presented impaired diffuse noxious inhibitory controls and an exacerbated response to the proalgesic mediator PGE2, features of generalized pain conditions. These data establish this strain as a novel model of spontaneous, widespread hyperalgesia that can be used to identify biomarkers for chronic pain diagnosis and treatment.
Collapse
Affiliation(s)
- Luiz F. Ferrari
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| | - Charles Rey
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| | - Anna Ramirez
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| | - Adam Dziuba
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| | - Jacqueline Zickella
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| | - Michael Zickella
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| | - Hershel Raff
- grid.427152.7Endocrine Research Laboratory, Aurora St. Luke’s Medical Center, Advocate Aurora Research Institute, Milwaukee, WI 53215 USA ,grid.30760.320000 0001 2111 8460Department of Medicine (Endocrinology and Molecular Medicine), Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Norman E. Taylor
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| |
Collapse
|
11
|
Mirogabalin Decreases Pain-like Behaviours and Improves Opioid and Ketamine Antinociception in a Mouse Model of Neuropathic Pain. Pharmaceuticals (Basel) 2022; 15:ph15010088. [PMID: 35056145 PMCID: PMC8780738 DOI: 10.3390/ph15010088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Neuropathic pain remains a difficult clinical challenge due to its diverse aetiology and complex pathomechanisms, which are yet to be fully understood. Despite the variety of available therapies, many patients suffer from ineffective pain relief; hence, the search for more efficacious treatments continues. The new gabapentinoid, mirogabalin has recently been approved for clinical use. Although its main mechanism of action occurs at the α2σ-1 and α2σ-2 subunits of calcium channels and is well documented, how the drug affects the disturbed neuropathic interactions at the spinal cord level has not been clarified, which is crucial information from a clinical perspective. The findings of our study suggest that several indirect mechanisms may be responsible for the beneficial analgesic effect of mirogabalin. This is the first study to report that mirogabalin enhances the mRNA expression of spinal antinociceptive factors, such as IL-10 and IL-18BP, and reduces the concentration of the pronociceptive substance P. Importantly, mirogabalin improves the morphine-, buprenorphine-, oxycodone-, and ketamine-induced antinociceptive effects in a neuropathic pain model. Our findings support the hypothesis that enhancing opioid and ketamine analgesia by combining these drugs with mirogabalin may represent a new strategy for the effective pharmacotherapy of neuropathic pain.
Collapse
|
12
|
Pawlik K, Ciechanowska A, Ciapała K, Rojewska E, Makuch W, Mika J. Blockade of CC Chemokine Receptor Type 3 Diminishes Pain and Enhances Opioid Analgesic Potency in a Model of Neuropathic Pain. Front Immunol 2021; 12:781310. [PMID: 34795678 PMCID: PMC8593225 DOI: 10.3389/fimmu.2021.781310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022] Open
Abstract
Neuropathic pain is a serious clinical issue, and its treatment remains a challenge in contemporary medicine. Thus, dynamic development in the area of animal and clinical studies has been observed. The mechanisms of neuropathic pain are still not fully understood; therefore, studies investigating these mechanisms are extremely important. However, much evidence indicates that changes in the activation and infiltration of immune cells cause the release of pronociceptive cytokines and contribute to neuropathic pain development and maintenance. Moreover, these changes are associated with low efficacy of opioids used to treat neuropathy. To date, the role of CC chemokine receptor type 3 (CCR3) in nociception has not been studied. Similarly, little is known about its endogenous ligands (C-C motif ligand; CCL), namely, CCL5, CCL7, CCL11, CCL24, CCL26, and CCL28. Our research showed that the development of hypersensitivity in rats following chronic constriction injury (CCI) of the sciatic nerve is associated with upregulation of CCL7 and CCL11 in the spinal cord and dorsal root ganglia (DRG). Moreover, our results provide the first evidence that single and repeated intrathecal administration of the CCR3 antagonist SB328437 diminishes mechanical and thermal hypersensitivity. Additionally, repeated administration enhances the analgesic properties of morphine and buprenorphine following nerve injury. Simultaneously, the injection of SB328437 reduces the protein levels of some pronociceptive cytokines, such as IL-6, CCL7, and CCL11, in parallel with a reduction in the activation and influx of GFAP-, CD4- and MPO-positive cells in the spinal cord and/or DRG. Moreover, we have shown for the first time that an inhibitor of myeloperoxidase-4-aminobenzoic hydrazide may relieve pain and simultaneously enhance morphine and buprenorphine efficacy. The obtained results indicate the important role of CCR3 and its modulation in neuropathic pain treatment and suggest that it represents an interesting target for future investigations.
Collapse
Affiliation(s)
- Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
13
|
König S, Engl C, Bayer M, Escolano-Lozano F, Rittner H, Rebhorn C, Birklein F. Substance P Serum Degradation in Complex Regional Pain Syndrome - Another Piece of the Puzzle? THE JOURNAL OF PAIN 2021; 23:501-507. [PMID: 34678467 DOI: 10.1016/j.jpain.2021.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/27/2022]
Abstract
In a previous study, we demonstrated that the serum peptidase system might be less efficient in complex regional pain syndrome (CRPS). Since the neuropeptide substanc P (SP) contributes to inflammation in CRPS, we now investigated the metabolism of SP in CRPS specifically. An SP metabolism assay was performed in 24 CRPS patients, which constitute a subgroup of our previous investigation on BK degradation. In addition, we included 26 healthy controls (24 newly recruited plus 2 from our previous investigation), and 13 patients after limb trauma, who did not fulfil the CRPS diagnostic criteria (trauma controls, TC) were included. We adapted a thin layer chromatography assay (TLC) to quantify SP disappearance after incubation with 7.5 µL of serum. These results were compared with bradykinin (BK) metabolization to BK1-8 and BK1-5 fragments from our previous study. In addition, TC were clinically and quantitative sensory testing (QST) phenotyped; the phenotyping of CRPS patients was retrieved from our existing database. SP metabolism was less efficient in CRPS and TC patient serum vs human control (HC) serum (P < .03) suggesting reduced activity of the neutral endopeptidase (NEP) and/or the angiotensin converting enzyme (ACE). Together with the decreased occurrence of BK1-5 fragment in CRPS and TC, this suggests a reduced activation of the angiotensin converting enzyme (ACE). There was no clear clinical phenotype related to impaired SP degradation; duration of disease and gender were also not associated. Most importantly, results in TC did not differ from CRPS. Collectively, our current and previous experimental results suggest that limb trauma reduces serum peptidase metabolism of SP ex vivo, specifically serum ACE activity. However, this finding is not CRPS-specific and seems to be rather a long-term consequence of the trauma itself. PERSPECTIVE: The experimental data from this study further support the hypothesis that impaired metabolism of inflammatory peptides potentially contribute to the development of posttraumatic pain in CRPS or limb trauma patients.
Collapse
Affiliation(s)
- Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | - Christian Engl
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | - Malte Bayer
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | - Fabiola Escolano-Lozano
- Department of Neurology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heike Rittner
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | - Cora Rebhorn
- Department of Neurology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frank Birklein
- Department of Neurology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
14
|
Piotrowska A, Ciapała K, Pawlik K, Kwiatkowski K, Rojewska E, Mika J. Comparison of the Effects of Chemokine Receptors CXCR2 and CXCR3 Pharmacological Modulation in Neuropathic Pain Model- In Vivo and In Vitro Study. Int J Mol Sci 2021; 22:ijms222011074. [PMID: 34681732 PMCID: PMC8538855 DOI: 10.3390/ijms222011074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Recent findings have highlighted the roles of CXC chemokine family in the mechanisms of neuropathic pain. Our studies provide evidence that single/repeated intrathecal administration of CXCR2 (NVP-CXCR2-20) and CXCR3 ((±)-NBI-74330) antagonists explicitly attenuated mechanical/thermal hypersensitivity in rats after chronic constriction injury of the sciatic nerve. After repeated administration, both antagonists showed strong analgesic activity toward thermal hypersensitivity; however, (±)-NBI-74330 was more effective at reducing mechanical hypersensitivity. Interestingly, repeated intrathecal administration of both antagonists decreased the mRNA and/or protein levels of pronociceptive interleukins (i.e., IL-1beta, IL-6, IL-18) in the spinal cord, but only (±)-NBI-74330 decreased their levels in the dorsal root ganglia after nerve injury. Furthermore, only the CXCR3 antagonist influenced the spinal mRNA levels of antinociceptive factors (i.e., IL-1RA, IL-10). Additionally, antagonists effectively reduced the mRNA levels of pronociceptive chemokines; NVP-CXCR2-20 decreased the levels of CCL2, CCL6, CCL7, and CXCL4, while (±)-NBI-74330 reduced the levels of CCL3, CCL6, CXCL4, and CXCL9. Importantly, the results obtained from the primary microglial and astroglial cell cultures clearly suggest that both antagonists can directly affect the release of these ligands, mainly in microglia. Interestingly, NVP-CXCR2-20 induced analgesic effects after intraperitoneal administration. Our research revealed important roles for CXCR2 and CXCR3 in nociceptive transmission, especially in neuropathic pain.
Collapse
MESH Headings
- Acetamides/pharmacology
- Acetamides/therapeutic use
- Analgesics/pharmacology
- Analgesics/therapeutic use
- Animals
- Astrocytes/cytology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Behavior, Animal/drug effects
- Cells, Cultured
- Chemokine CCL3/genetics
- Chemokine CCL3/metabolism
- Down-Regulation/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Male
- Microglia/cytology
- Microglia/drug effects
- Microglia/metabolism
- Neuralgia/chemically induced
- Neuralgia/drug therapy
- Neuralgia/pathology
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Rats
- Rats, Wistar
- Receptors, CXCR3/antagonists & inhibitors
- Receptors, CXCR3/metabolism
- Receptors, Interleukin-8B/antagonists & inhibitors
- Receptors, Interleukin-8B/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Stress, Mechanical
Collapse
|
15
|
Chen L, Zheng J, Yang Z, Chen W, Wang Y, Wei P. Identification of key candidate genes in local dorsal root ganglion inflammation by integrated bioinformatics analysis. Exp Ther Med 2021; 22:821. [PMID: 34131444 PMCID: PMC8193217 DOI: 10.3892/etm.2021.10253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
The purpose of the present study was to identify potential markers of local dorsal root ganglion (DRG) inflammation to aid diagnosis, treatment and prognosis evaluation of DRG pain. A localized inflammation of the DRG (LID) rat model was used to study the contribution of inflammation to pain. The dataset GSE38859 was obtained from the Gene Expression Omnibus database. Pre-treatment standardization of gene expression data for each experiment was performed using the R/Bioconductor Limma package. Differentially expressed genes (DEGs) were identified between a LID model and a sham surgery control group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of DEGs and gene set enrichment analysis (GSEA) were carried out using the ‘clusterProfiler’ package in R. Using the Search Tool for Retrieval of Interacting Genes, a protein-protein interaction network was constructed and visualized. Candidate genes with the highest potential validity were validated using reverse transcription-quantitative PCR and western blotting. In total, 66 DEGs were enriched in GO terms related to inflammation and the immune response processes. KEGG analysis revealed 14 associated signaling pathway terms. Protein-protein interaction network analysis revealed 9 node genes, 3 of which were among the top 10 DEGs. Matrix metallopeptidase 9, chemokine CXCL9, and complement component 3 were identified as key regulators of DRG inflammatory pain progression.
Collapse
Affiliation(s)
- Linhai Chen
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, P.R. China
| | - Junshui Zheng
- Medical College, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zhuan Yang
- Medical College, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Weiwei Chen
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, P.R. China
| | - Yangjian Wang
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, P.R. China
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
16
|
Campos RM, Barbosa-Silva MC, Ribeiro-Resende VT. Comparison of effect of crush or transection peripheral nerve lesion on lumbar spinal cord synaptic plasticity and microglial dynamics. IBRO Neurosci Rep 2021; 10:225-235. [PMID: 34179871 PMCID: PMC8211924 DOI: 10.1016/j.ibneur.2021.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022] Open
Abstract
In an injury to the peripheral nervous system, the spinal cord and brain structure reorganize connections to optimize the function of the remaining parts. Many cell events are triggered in the spinal cord to support changes in the synaptic connections around motoneurons, where old connections are removed, and new ones created. Microglial cells are primitive macrophages that invade the central nervous system in early stages of neurodevelopment and have several functions, such as eliminating synapses. We investigated the synaptic plasticity after different types of peripheral (sciatic) nerve injury (crush or total transection), as well as the behavior of microglial cells for 2 weeks after a peripheral lesion. As expected, sciatic-nerve injury reduced motor performance in mice, but crushed animals regained partial motor control. Because of sciatic-nerve injury, pre-synaptic inputs decreased around the motoneurons in the ventro-lateral horn, while microglial cells increased around these cells. Microglial cells also exhibited altered morphology in both types of peripheral lesion, indicating a similar underlying mechanism of plasticity. To investigate the involvement of microglia in this scenario, microglial activation was modulated by daily administration of minocycline. The minocycline treatment directly affected the microglial response and impacted the synapse rearrangement in the spinal cord. Together, these results demonstrate that microglia cells are involved in synaptic plasticity in the lumbar spinal cord in both nerve-injury scenarios. SUMMARY OF STATEMENT Here, we demonstrated that acute plasticity in the lumbar spinal cord (LSC) did not differ between crush and transection of peripheral nerve, and that microglial reactivity in the LSC was important after both injury types.
Collapse
Affiliation(s)
- Raquel M.P. Campos
- Instituto de Biofísica Carlos Chagas Filho, Laboratório de Neuroquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Maria Carolina Barbosa-Silva
- Instituto de Biofísica Carlos Chagas Filho, Laboratório de Neuroquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Victor T. Ribeiro-Resende
- Instituto de Biofísica Carlos Chagas Filho, Laboratório de Neuroquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Guerra Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ 25255-030, Brazil
| |
Collapse
|
17
|
Matsui T, Hitomi S, Hayashi Y, Shibuta I, Otsuji J, Ando M, Inada T, Soma K, Iwata K, Shirakawa T, Shinoda M. Microglial activation in the trigeminal spinal subnucleus interpolaris/caudalis modulates orofacial incisional mechanical pain hypersensitivity associated with orofacial injury in infancy. J Oral Sci 2021; 63:170-173. [PMID: 33731507 DOI: 10.2334/josnusd.20-0648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE Infantile tissue injury induces sensory deficits in adulthood. Infantile facial incision (IFI) was reported to cause an enhancement of incision-induced mechanical hypersensitivity in adulthood due to acceleration of the trigeminal ganglion neuronal excitability. However, the effects of IFI on activation of microglia in the spinal trigeminal nucleus and its involvement in facial pain sensitivity is not well known. METHODS A facial skin incision was made in the left whisker pad in infant (IFI) and/or adult rats (AFI). Mechanical head withdrawal threshold and microglial activation in the trigeminal spinal nucleus were analyzed. RESULTS Mechanical pain hypersensitivity induced by AFI was significantly exacerbated and prolonged by IFI. The number of Iba1-immunoreactive cells in the trigeminal spinal nucleus following AFI was increased by IFI, suggesting that IFI facilitates microglial hyperactivation following AFI. Intraperitoneal administration of minocycline, a microglial activation inhibitor, suppressed the facial incision-induced microglial hyperactivation in the trigeminal spinal nucleus and the exacerbation of the facial mechanical pain hypersensitivity induced by IFI. CONCLUSION These results suggest that facial trauma in infants causes hyperactivation of microglia in the trigeminal spinal nucleus following AFI, leading to the prolongation of the facial mechanical pain hypersensitivity.
Collapse
Affiliation(s)
- Tomoyuki Matsui
- Department of Pediatric Dentistry, Nihon University School of Dentistry
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry
| | | | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry
| | - Jo Otsuji
- Department of Pediatric Dentistry, Nihon University School of Dentistry
| | - Masatoshi Ando
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
| | - Takanobu Inada
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry
| | - Kumi Soma
- Department of Pediatric Dentistry, Nihon University School of Dentistry
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| | - Tetsuo Shirakawa
- Department of Pediatric Dentistry, Nihon University School of Dentistry
| | | |
Collapse
|
18
|
Kim J, Kim JH, Do JY, Lee JY, Yanai R, Lee IK, Suk K, Park DH. Key Role of Microglial Matrix Metalloproteinases in Choroidal Neovascularization. Front Cell Neurosci 2021; 15:638098. [PMID: 33716674 PMCID: PMC7954091 DOI: 10.3389/fncel.2021.638098] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration (AMD), especially neovascular AMD with choroidal neovascularization (CNV), is the leading cause of blindness in the elderly. Although matrix metalloproteinases (MMPs) are involved in pathological ocular angiogenesis, including CNV, the cellular origin of MMPs in AMD remains unknown. The present study investigated the role of microglial MMPs in CNV. MMP activities were analyzed by gelatin zymography in aqueous humor samples from patients with CNV and laser-induced CNV mice. Active MMP-9 was increased in the aqueous humor samples from neovascular AMD patients compared with control subjects. In the retinal pigment epithelium (RPE)/choroid from CNV mice, active MMP-9 increased, beginning 1 h post-CNV induction, and remained upregulated until Day 7. In RPE/choroid from CNV mice, active MMP-9 was suppressed by minocycline, a known microglial inhibitor, at 6 h and 1-day post-CNV induction. Flow cytometry revealed that the proportion of activated microglia increased very early, beginning at 1 h post-CNV induction, and was maintained until Day 7. Similarly, immunohistochemistry revealed increased microglial activation and MMP-9 expression on CNV lesions at 6 h and 1-day post-CNV induction. SB-3CT, an MMP inhibitor, decreased vascular leakage and lesion size in laser-induced CNV mice. These findings indicated nearly immediate recruitment of activated microglia and very early MMP-9 activation in the RPE/choroid. The present study newly identified a potential role for early microglial MMP-9 expression in CNV, and furthermore that modulating microglial MMP expression is a novel putative therapeutic for CNV.
Collapse
Affiliation(s)
- Juhee Kim
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea
| | - Jong-Heon Kim
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Ji Yeon Do
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea
| | - Jung Yi Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea.,R&D Center, JD Bioscience Inc., Gwangju, South Korea
| | - Ryoji Yanai
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - In-Kyu Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea.,Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea.,Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Dong Ho Park
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea.,Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, South Korea.,Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| |
Collapse
|
19
|
Santos Passos FR, Pereira EWM, Heimfarth L, Monteiro BS, Barbosa Gomes de Carvalho YM, Siqueira-Lima PS, Melo Coutinho HD, Antunes de Souza Araújo A, Guedes da Silva Almeida JR, Barreto RSS, Picot L, Quintans-Júnior LJ, Quintans JSS. Role of peripheral and central sensitization in the anti-hyperalgesic effect of hecogenin acetate, an acetylated sapogenin, complexed with β-cyclodextrin: Involvement of NFκB and p38 MAPK pathways. Neuropharmacology 2021; 186:108395. [PMID: 33516738 DOI: 10.1016/j.neuropharm.2020.108395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022]
Abstract
Neuropathic pain develops due to injury to the somatosensory system, affecting the patient's quality of life. In view of the ineffectiveness of the current pharmacotherapy, substances obtained from natural products (NPs) are a promising alternative. One NP that has been discussed in the literature is hecogenin acetate (HA), a steroidal sapogenin with anti-inflammatory and antinociceptive activity. However, HA has low water solubility, which affects its bioavailability. Thus, the objective of this study was to evaluate the anti-hyperalgesic activity of pure and complexed hecogenin acetate (HA/βCD) in an animal model of chronic neuropathic and inflammatory pain. The inclusion complex was prepared at a molar ratio of 1:2 (HA:βCD) by the lyophilization method. For the induction of chronic inflammatory pain, the mice received an intraplantar injection of CFA (complete Freund's adjuvant), and were evaluated for mechanical hyperalgesia and for the levels of myeloperoxidase (MPO) in the skin of the paw after eight days of treatment. HA and HA/βCD reduced mechanical hyperalgesia in relation to the vehicle group until the fourth and fifth hours, respectively, in the acute evaluation, with a superior effect of the complexed form over the pure form in the second and third hour after treatment (p < 0.001). In the chronic evaluation, HA and HA/βCD reduced hyperalgesia in relation to the vehicle in the eight days of treatment (p < 0.001). Both pure (p < 0.01) and complexed (p < 0.001) forms reduced myeloperoxidase activity in the skin of the animals' paw. Groups of animals subjected to the same pharmacological protocol were submitted to the partial sciatic nerve ligation (PSNL) model and evaluated for mechanical and thermal hyperalgesia, and cold allodynia. HA and HA/βCD reduced mechanical hyperalgesia until the fourth and sixth hours, respectively, and both reduced hyperalgesia in relation to the vehicle in the chronic evaluation (p < 0.001). HA and HA/βCD also reduced thermal hyperalgesia and cold allodynia (p < 0.05 and p < 0.001, respectively). The analysis of the spinal cord of these animals showed a decrease in the levels of the pro-inflammatory cytokines TNF-α, IL-1β and IL-6 and a reduction in the phosphorylation of NFκB and p38MAPK, as well as a decrease in microglioses compared to the vehicle group. In addition, HA/βCD reduced the nociception induced by intraplantar injection of agonist TRPA1 (p < 0.01) and TRPM8 (p < 0.05). Treatment for eight days with HA and HA/βCD showed no signs of gastric or liver damage. HA and HA/βCD were, therefore, shown to have antinociceptive effects in chronic pain models. Based on our exploration of the mechanisms of the action of HA, these effects are likely to be related to inhibited leukocyte migration, interaction with the TRPA1 and TRPM8 receptors, reduced pro-inflammatory cytokines levels, microglial expression and suppression of NF-κB p65 and p38 MAPK pathway signaling. Therefore, HA/βCD has great potential for use in the treatment of chronic pain.
Collapse
Affiliation(s)
- Fabiolla Rocha Santos Passos
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil
| | - Erik W M Pereira
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil
| | - Luana Heimfarth
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Brenda S Monteiro
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Yasmim Maria Barbosa Gomes de Carvalho
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | | | | | - Rosana S S Barreto
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Laurent Picot
- La Rochelle Université, UMRi CNRS 7266 LIENSs, 17042, La Rochelle, France
| | - Lucindo J Quintans-Júnior
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil
| | - Jullyana S S Quintans
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil.
| |
Collapse
|
20
|
Kwiatkowski K, Pawlik K, Ciapała K, Piotrowska A, Makuch W, Mika J. Bidirectional Action of Cenicriviroc, a CCR2/CCR5 Antagonist, Results in Alleviation of Pain-Related Behaviors and Potentiation of Opioid Analgesia in Rats With Peripheral Neuropathy. Front Immunol 2021; 11:615327. [PMID: 33408720 PMCID: PMC7779470 DOI: 10.3389/fimmu.2020.615327] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/19/2020] [Indexed: 12/25/2022] Open
Abstract
Clinical management of neuropathic pain is unsatisfactory, mainly due to its resistance to the effects of available analgesics, including opioids. Converging evidence indicates the functional interactions between chemokine and opioid receptors and their influence on nociceptive processes. Recent studies highlight that the CC chemokine receptors type 2 (CCR2) and 5 (CCR5) seem to be of particular interest. Therefore, in this study, we investigated the effects of the dual CCR2/CCR5 antagonist, cenicriviroc, on pain-related behaviors, neuroimmune processes, and the efficacy of opioids in rats after chronic constriction injury (CCI) of the sciatic nerve. To define the mechanisms of action of cenicriviroc, we studied changes in the activation/influx of glial and immune cells and, simultaneously, the expression level of CCR2, CCR5, and important pronociceptive cytokines in the spinal cord and dorsal root ganglia (DRG). We demonstrated that repeated intrathecal injections of cenicriviroc, in a dose-dependent manner, alleviated hypersensitivity to mechanical and thermal stimuli in rats after sciatic nerve injury, as measured by von Frey and cold plate tests. Behavioral effects were associated with the beneficial impact of cenicriviroc on the activation/influx level of C1q/IBA-1-positive cells in the spinal cord and/or DRG and GFAP-positive cells in DRG. In parallel, administration of cenicriviroc decreased the expression of CCR2 in the spinal cord and CCR5 in DRG. Concomitantly, we observed that the level of important pronociceptive factors (e.g., IL-1beta, IL-6, IL-18, and CCL3) were increased in the lumbar spinal cord and/or DRG 7 days following injury, and cenicriviroc was able to prevent these changes. Additionally, repeated administration of this dual CCR2/CCR5 antagonist enhanced the analgesic effects of morphine and buprenorphine in neuropathic rats, which can be associated with the ability of cenicriviroc to prevent nerve injury-induced downregulation of all opioid receptors at the DRG level. Overall, our results suggest that pharmacological modulation based on the simultaneous blockade of CCR2 and CCR5 may serve as an innovative strategy for the treatment of neuropathic pain, as well as in combination with opioids.
Collapse
Affiliation(s)
- Klaudia Kwiatkowski
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
21
|
Redondo A, Riego G, Pol O. The Antinociceptive, Antioxidant and Anti-Inflammatory Effects of 5-Fluoro-2-Oxindole during Inflammatory Pain. Antioxidants (Basel) 2020; 9:antiox9121249. [PMID: 33316895 PMCID: PMC7763029 DOI: 10.3390/antiox9121249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 01/14/2023] Open
Abstract
Recent studies demonstrate that 5-fluoro-2-oxindole inhibits neuropathic pain but the antinociceptive actions of this drug and its effects on the plasticity, oxidative and inflammatory changes induced by peripheral inflammation as well as on the effects and expression of µ-opioid receptors (MOR) have not been evaluated. In C57BL/6 male mice with inflammatory pain provoked by the subplantar administration of complete Freund’s adjuvant (CFA), we evaluated: (1) the antinociceptive actions of 5-fluoro-2-oxindole and its reversion with the HO-1 inhibitor, tin protoporphyrin IX (SnPP); (2) the effects of 5-fluoro-2-oxindole in the protein levels of mitogen-activated protein kinase (MAPK), Nrf2, NADPH quinone oxidoreductase1 (NQO1), heme oxygenase 1 (HO-1), oxidative stress marker (4-hydroxy-2-nonenal; 4-HNE), inducible nitric oxide synthase (NOS2), microglial markers (CD11b/c and IBA-1), and MOR in the spinal cord and/or paw of animals with inflammatory pain; (3) the antinociceptive effects of morphine in 5-fluoro-2-oxindole pre-treated animals. Treatment with 5 and 10 mg/kg of 5-fluoro-2-oxindole inhibited the allodynia and hyperalgesia induced by CFA in a different, time-dependent manner. These effects were reversed by SnPP. Treatment with 5-fluoro-2-oxindole increased the expression of NQO1, HO-1 and MOR and inhibited the CFA-induced upregulation of phosphorylated MAPK, 4-HNE, NOS2, CD11b/c and IBA-1 in spinal cords and/or paws. The local effects of morphine were improved with 5-fluoro-2-oxindole. This work reveals that 5-fluoro-2-oxindole inhibits the plasticity, oxidative and inflammatory responses provoked by peripheral inflammation and potentiates the antinociceptive effects of morphine. Thus, treatment with 5-fluoro-2-oxindole alone and/or combined with morphine are two remarkable new procedures for chronic inflammatory pain management.
Collapse
Affiliation(s)
- Alejandro Redondo
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.R.); (G.R.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gabriela Riego
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.R.); (G.R.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.R.); (G.R.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-619-757-054
| |
Collapse
|
22
|
Analysis of Crucial Genes and Pathways Associated with Spared Nerve Injury-Induced Neuropathic Pain. Neural Plast 2020. [DOI: 10.1155/2020/8822001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose. The study was aimed at elucidating the molecular mechanism underlying neuropathic pain induced by spared nerve injury (SNI). Methods. The microarray data of GSE30691 were downloaded from the Gene Expression Omnibus database, including sciatic nerve lesion samples at 3, 7, 21, and 40 days after SNI and sham control samples at 3, 7, and 21 days. Differential analysis along with Mfuzz clustering analysis was performed to screen crucial clusters and cluster genes. Subsequently, comprehensive bioinformatic analyses were performed, including functional enrichment analysis, protein-protein interaction (PPI) network and module analysis, and transcription factor- (TF-) gene and miRNA-target interaction predictions. Moreover, the screened differentially expressed genes (DEGs) were corroborated using two other microarray datasets. Results. Three clusters with different change trends over time after SNI were obtained. Protein kinase CAMP-activated catalytic subunit beta (Prkacb), complement C3 (C3), and activating transcription factor 3 (Atf3) were hub nodes in the PPI network, and fibroblast growth factor 9 (Fgf9) was found to interact with more TFs. Prkacb and Fgf9 were significantly enriched in the MAPK signaling pathway. Moreover, rno-miR-3583-5p was targeted by Fgf9, and rno-miR-1912-3p was targeted by neuregulin 1 (Nrg1). Key genes like Nrg1 and Fgf9 in cluster 1, Timp1 in cluster 2, and Atf3 and C3 in cluster 3 were screened out after corroborating microarray data with other microarray data. Conclusions. Key pathways like the MAPK signaling pathway and crucial genes like Prkacb, Nrg1, Fgf9, Timp1, C3, and Atf3 may contribute to SNI-induced neuropathic pain development in rats.
Collapse
|
23
|
Tu H, Chu H, Guan S, Hao F, Xu N, Zhao Z, Liang Y. The role of the M1/M2 microglia in the process from cancer pain to morphine tolerance. Tissue Cell 2020; 68:101438. [PMID: 33220596 DOI: 10.1016/j.tice.2020.101438] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022]
Abstract
Cancer pain, especially bone cancer pain, is a pain state often caused by inflammation or dysfunctional nerves. Moreover, in the management of cancer pain, opioid especially morphine is widely used, however, it also brings severe side effects such as morphine tolerance to the patient (Deandrea et al., 2008). A growing body of literatures demonstrated that neuroinflammation is mediated by microglia. As the macrophages like immune cells, microglia play an important role in the pathogenesis of cancer pain and morphine tolerance. Microglia acquire different activation states to regulate the function of these cells. As to M1 phenotype, microglia release pro-inflammatory cytokines and neurotoxic molecules that promote inflammation and cytotoxic reactions. Conversely, when microglia represent M2 phenotypes secreting anti-inflammatory cytokines and nutrient factors that promote the function of repair, regeneration and restore homeostasis. A better understanding of microglia activation in cancer pain and morphine tolerance is crucial for the development of hypothesized neuroprotective drugs. Targeting microglia different polarization states by the inhibition of their deleterious pro-inflammatory neurotoxicity and/or enhancing their beneficial anti-inflammatory protective function seems to be an effective treatment for cancer pain and morphine tolerance.
Collapse
Affiliation(s)
- Houan Tu
- Department of Anesthesiology, Women's and Children's Hospital Affiliated to Qingdao University, 6 Tongfu Road, Qingdao, Shandong 266034, China
| | - Haichen Chu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, 59 Hai Er Road, Qingdao, Shandong 266061, China
| | - Sen Guan
- Department of Anesthesiology, Women's and Children's Hospital Affiliated to Qingdao University, 6 Tongfu Road, Qingdao, Shandong 266034, China
| | - Fengxi Hao
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, 59 Hai Er Road, Qingdao, Shandong 266061, China
| | - Na Xu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, 59 Hai Er Road, Qingdao, Shandong 266061, China
| | - Zhiping Zhao
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, 59 Hai Er Road, Qingdao, Shandong 266061, China
| | - Yongxin Liang
- Department of Anesthesiology, Women's and Children's Hospital Affiliated to Qingdao University, 6 Tongfu Road, Qingdao, Shandong 266034, China.
| |
Collapse
|
24
|
Metamizole relieves pain by influencing cytokine levels in dorsal root ganglia in a rat model of neuropathic pain. Pharmacol Rep 2020; 72:1310-1322. [PMID: 32691345 PMCID: PMC7550285 DOI: 10.1007/s43440-020-00137-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/03/2023]
Abstract
Background Treatment of neuropathic pain is still challenging. Recent studies have suggested that dorsal root ganglia (DRG), which carry sensory neural signals from the peripheral nervous system to the central nervous system, are important for pathological nociception. A proper understanding of the significance and function of DRG and their role in pharmacotherapy can help to improve the treatment of neuropathic pain. Metamizole, also known as sulpyrine or dipyrone, is a non-opioid analgesic commonly used in clinical practice, but it is not used for neuropathic pain treatment. Methods Chronic constriction injury (CCI) of the sciatic nerve was induced in Wistar rats. Metamizole was administered intraperitoneally (ip) preemptively at 16 and 1 h before CCI and then twice a day for 7 days. To evaluate tactile and thermal hypersensitivity, von Frey and cold plate tests were conducted, respectively. Results Our behavioral results provide evidence that repeated intraperitoneal administration of metamizole diminishes the development of neuropathic pain symptoms in rats. Simultaneously, our findings provide evidence that metamizole diminishes the expression of pronociceptive interleukins (IL-1beta, IL-6, and IL-18) and chemokines (CCL2, CCL4, and CCL7) in DRG measured 7 days after sciatic nerve injury. These assays indicate, for the first time, that metamizole exerts antinociceptive effects on nerve injury-induced neuropathic pain at the DRG level. Conclusions Finally, we indicate that metamizole-induced analgesia in neuropathy is associated with silencing of a broad spectrum of cytokines in DRG. Our results also suggest that metamizole is likely to be an effective medication for neuropathic pain. Graphic abstract ![]()
Collapse
|
25
|
Ho IHT, Chan MTV, Wu WKK, Liu X. Spinal microglia-neuron interactions in chronic pain. J Leukoc Biol 2020; 108:1575-1592. [PMID: 32573822 DOI: 10.1002/jlb.3mr0520-695r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/23/2020] [Indexed: 12/15/2022] Open
Abstract
Current deficiency in our understanding of acute-to-chronic pain transition remains a hurdle for developing effective treatments against chronic pain. Whereas neurocentric mechanisms alone are insufficient to provide satisfactory explanation for such transition, neuro-immune crosstalk has attracted attention in recent pain research. In contrast to brain microglia, spinal microglia are activated immediately in various pain states. The fast-responsive enrichment and activation of spinal microglia among different pain conditions have highlighted the crucial role of neuroinflammation caused by microglia-neuron crosstalk in pain initiation. Recent studies have revealed spinal microglia-neuron interactions are also involved in chronic pain maintenance, albeit, with different anatomic distribution, cellular and molecular mechanisms, and biologic functions. Delineating the exact temporal discrepancies of spinal microglia distribution and functions along acute-to-chronic pain transition may provide additional mechanistic insights for drug development to prevent deterioration of acute pain into the chronic state. This narrative review summerizes the longitudinal alterations of spinal microglia-neuron interactions in the initiation of pain hypersensitivity, acute-to-chronic pain progression, and chronic pain maintenance, followed by an overview of current clinical translation of preclinical studies on spinal microglia. This review highlights the crucial role of the interaction between spinal microglia and neighboring neurons in the initiation and maintenance of pain hypersensitivity, in relation to the release of cytokines, chemokines, and neuroactive substances, as well as the modulation of synaptic plasticity. Further exploration of the uncharted functions of spinal microglia-neuron crosstalk may lead to the design of novel drugs for preventing acute-to-chronic pain transition.
Collapse
Affiliation(s)
- Idy H T Ho
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| |
Collapse
|
26
|
Comparison of the beneficial effects of RS504393, maraviroc and cenicriviroc on neuropathic pain-related symptoms in rodents: behavioral and biochemical analyses. Int Immunopharmacol 2020; 84:106540. [PMID: 32402949 DOI: 10.1016/j.intimp.2020.106540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 01/01/2023]
Abstract
The latest research highlights the role of chemokine signaling pathways in the development of nerve injury-induced pain. Recent studies have provided evidence for the involvement of CCR2 and CCR5 in the pathomechanism underlying neuropathy. Thus, the aim of our study was to compare the effects of a selective CCR2 antagonist (RS504393), selective CCR5 antagonist (maraviroc) and dual CCR2/CCR5 antagonist (cenicriviroc) and determine whether the simultaneous blockade of both receptors is better than blocking only one of them selectively. All experiments were performed using Wistar rats/Swiss albino mice subjected to chronic constriction injury (CCI) of the sciatic nerve. To assess pain-related reactions, the von Frey and cold plate tests were used. The mRNA analysis was performed using RT-qPCR. We demonstrated that repeated intrathecal administration of the examined antagonists attenuated neuropathic pain in rats 7 days post-CCI. mRNA analysis showed that RS504393 did not modulate the spinal expression of the examined chemokines, whereas maraviroc reduced the CCI-induced elevation of CCL4 level. Cenicriviroc significantly lowered the spinal levels of CCL2-4 and CCL7. At the dorsal root ganglia, strong impacts of RS504393 and cenicriviroc on chemokine expression were observed; both reduced the CCI-induced elevation of CCL2-5 and CCL7 levels, whereas maraviroc decreased only the CCL5 level. Importantly, we demonstrated that a single intrathecal/intraperitoneal injection of cenicriviroc had greater analgesic properties than RS504393 or maraviroc in neuropathic mice. Additionally, we demonstrated that cenicriviroc enhanced opioid-induced analgesia. Based on our results, we suggest that targeting CCR2 and CCR5 simultaneously, is an interesting alternative for neuropathic pain pharmacotherapy.
Collapse
|
27
|
Bogacka J, Popiolek-Barczyk K, Pawlik K, Ciechanowska A, Makuch W, Rojewska E, Dobrogowski J, Przeklasa-Muszynska A, Mika J. CCR4 antagonist (C021) influences the level of nociceptive factors and enhances the analgesic potency of morphine in a rat model of neuropathic pain. Eur J Pharmacol 2020; 880:173166. [PMID: 32407723 DOI: 10.1016/j.ejphar.2020.173166] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
Neuropathic pain is a chronic condition which significantly reduces the quality of life and serious clinical issue that is in general resistant to available therapies. Therefore looking for new analgesics is still critical issue. Recent, studies have indicated that chemokine signaling pathways are crucial for the development of neuropathy; however, the role of CC chemokine receptor 4 (CCR4) in this process has not yet been studied. Therefore, the aim of our research was to investigate the influence of C021 (a CCR4 antagonist) and CCR4 CC chemokine ligands 17 and 22 (CCL17 and CCL22) on the development of hypersensitivity and the effectiveness of morphine induced analgesia in naive animals and/or animals exposed to chronic constriction injury (CCI) of the sciatic nerve. Firstly, we demonstrated that the intrathecal administration of CCL17 and CCL22 induced pain-related behavior in naive mice. Secondly, we revealed that the intrathecal injection of C021 significantly reduced CCI-induced hypersensitivity after nerve injury. In parallel, C021 reduced microglia/macrophages activation and the level of some pronociceptive interleukins (IL-1beta; IL-18) in the spinal cord 8 days after CCI. Moreover, C021 not only attenuated mechanical and thermal hypersensitivity but also enhanced the analgesic properties of morphine. Our research indicates that CCR4 ligands might be important factors in the early stages of neuropathy, when we observe intense microglia/macrophages activation. Moreover, pharmacological blockade of CCR4 may serve as a potential new target for better understanding the mechanisms of neuropathic pain development.
Collapse
Affiliation(s)
- Joanna Bogacka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Katarzyna Popiolek-Barczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Katarzyna Pawlik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Agata Ciechanowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Wioletta Makuch
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Ewelina Rojewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Jan Dobrogowski
- Department of Pain Research and Treatment, Chair of Anesthesiology and Intensive Therapy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Przeklasa-Muszynska
- Department of Pain Research and Treatment, Chair of Anesthesiology and Intensive Therapy, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland.
| |
Collapse
|
28
|
Ni H, Xu M, Xie K, Fei Y, Deng H, He Q, Wang T, Liu S, Zhu J, Xu L, Yao M. Liquiritin Alleviates Pain Through Inhibiting CXCL1/CXCR2 Signaling Pathway in Bone Cancer Pain Rat. Front Pharmacol 2020; 11:436. [PMID: 32390832 PMCID: PMC7193085 DOI: 10.3389/fphar.2020.00436] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/20/2020] [Indexed: 01/06/2023] Open
Abstract
Bone cancer pain (BCP) is an intractable clinical problem, and lacked effective drugs for treating it. Recent research showed that several chemokines in the spinal cord are involved in the pathogenesis of BCP. In this study, the antinociceptive effects of liquiritin, which is an active component extracted from Glycyrrhizae Radix, were tested and the underlying mechanisms targeting spinal dorsal horn (SDH) were investigated. The BCP group displayed a significant decrease in the mechanical withdrawal threshold on days 6, 12, and 18 when compared with sham groups. Intrathecal administration of different doses of liquiritin alleviated mechanical allodynia in BCP rats. The results of immunofluorescent staining and western blotting showed that liquiritin inhibited BCP-induced activation of astrocytes in the spinal cord. Moreover, intrathecal administration of liquiritin effectively inhibited the activation of CXCL1/CXCR2 signaling pathway and production of IL-1β and IL-17 in BCP rats. In astroglial-enriched cultures, Lipopolysaccharides (LPS) elicited the release of chemokine CXCL1, and the release was decreased in a dose-dependent manner by liquiritin. In primary neurons, liquiritin indirectly reduced the increase of CXCR2 by astroglial-enriched-conditioned medium but not directly on the CXCR2 target site. These results suggested that liquiritin effectively attenuated BCP in rats by inhibiting the activation of spinal astrocytic CXCL1 and neuronal CXCR2 pathway. These findings provided evidence regarding the the antinociceptive effect of liquiritin on BCP.
Collapse
Affiliation(s)
- Huadong Ni
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Miao Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Keyue Xie
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yong Fei
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Housheng Deng
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qiuli He
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Tingting Wang
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Songlei Liu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jianjun Zhu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
29
|
Pawlik K, Piotrowska A, Kwiatkowski K, Ciapała K, Popiolek‐Barczyk K, Makuch W, Mika J. The blockade of CC chemokine receptor type 1 influences the level of nociceptive factors and enhances opioid analgesic potency in a rat model of neuropathic pain. Immunology 2020; 159:413-428. [PMID: 31919846 PMCID: PMC7078003 DOI: 10.1111/imm.13172] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
A growing body of evidence has indicated that the release of nociceptive factors, such as interleukins and chemokines, by activated immune and glial cells has crucial significance for neuropathic pain generation and maintenance. Moreover, changes in the production of nociceptive immune factors are associated with low opioid efficacy in the treatment of neuropathy. Recently, it has been suggested that CC chemokine receptor type 1 (CCR1) signaling is important for nociception. Our study provides evidence that the development of hypersensitivity in rats following chronic constriction injury (CCI) of the sciatic nerve is associated with significant up-regulation of endogenous CCR1 ligands, namely, CCL2, CCL3, CCL4, CCL6, CCL7 and CCL9 in the spinal cord and CCL2, CCL6, CCL7 and CCL9 in dorsal root ganglia (DRG). We showed that single and repeated intrathecal administration of J113863 (an antagonist of CCR1) attenuated mechanical and thermal hypersensitivity. Moreover, repeated administration of a CCR1 antagonist enhanced the analgesic properties of morphine and buprenorphine after CCI. Simultaneously, repeated administration of J113863 reduced the protein levels of IBA-1 in the spinal cord and MPO and CD4 in the DRG and, as a consequence, the level of pronociceptive factors, such as interleukin-1β (IL-1β), IL-6 and IL-18. The data obtained provide evidence that CCR1 blockade reduces hypersensitivity and increases opioid-induced analgesia through the modulation of neuroimmune interactions.
Collapse
Affiliation(s)
- Katarzyna Pawlik
- Department of Pain PharmacologyMaj Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| | - Anna Piotrowska
- Department of Pain PharmacologyMaj Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| | - Klaudia Kwiatkowski
- Department of Pain PharmacologyMaj Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| | - Katarzyna Ciapała
- Department of Pain PharmacologyMaj Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| | | | - Wioletta Makuch
- Department of Pain PharmacologyMaj Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| | - Joanna Mika
- Department of Pain PharmacologyMaj Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| |
Collapse
|
30
|
Neuropathic Pain Dysregulates Gene Expression of the Forebrain Opioid and Dopamine Systems. Neurotox Res 2020; 37:800-814. [PMID: 32026358 PMCID: PMC7085470 DOI: 10.1007/s12640-020-00166-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/23/2022]
Abstract
Disturbances in the function of the mesostriatal dopamine system may contribute to the development and maintenance of chronic pain, including its sensory and emotional/cognitive aspects. In the present study, we assessed the influence of chronic constriction injury (CCI) of the sciatic nerve on the expression of genes coding for dopamine and opioid receptors as well as opioid propeptides in the mouse mesostriatal system, particularly in the nucleus accumbens. We demonstrated bilateral increases in mRNA levels of the dopamine D1 and D2 receptors (the latter accompanied by elevated protein level), opioid propeptides proenkephalin and prodynorphin, as well as delta and kappa (but not mu) opioid receptors in the nucleus accumbens at 7 to 14 days after CCI. These results show that CCI-induced neuropathic pain is accompanied by a major transcriptional dysregulation of molecules involved in dopaminergic and opioidergic signaling in the striatum/nucleus accumbens. Possible functional consequences of these changes include opposite effects of upregulated enkephalin/delta opioid receptor signaling vs. dynorphin/kappa opioid receptor signaling, with the former most likely having an analgesic effect and the latter exacerbating pain and contributing to pain-related negative emotional states.
Collapse
|
31
|
Liu M, Gao L, Zhang N. Berberine reduces neuroglia activation and inflammation in streptozotocin-induced diabetic mice. Int J Immunopathol Pharmacol 2020; 33:2058738419866379. [PMID: 31337260 PMCID: PMC6657114 DOI: 10.1177/2058738419866379] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We aimed to analyze the action of berberine on the neuropathic pain and neuroglia activation in experimental diabetes mellitus (DM) model. Diabetes in mice was induced by intraperitoneal injection of streptozotocin (STZ) followed by the administration of berberine. Mechanical allodynia and thermal hyperalgesia and activations of microglia and astrocytes were evaluated. The levels of pro-inflammatory cytokines and protein expressions of inflammatory proteins were assessed by enzyme-linked immunosorbent assay (ELISA) and western blot, respectively. Our results revealed the anti-nociceptive effects of berberine in DM mice, supported by the improved mechanical threshold and thermal latency. In addition, berberine suppressed the activations of microglia and astrocytes in the spinal cords of diabetic mice. Berberine inhibited the expression of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin-6 (IL-6), and interleukin-1β (IL-1β), along with inflammatory proteins including iNOS and COX-2. Berberine suppressed neuropathic pain in STZ-induced diabetic mice, and this effect is related to the reduction on the neuroglia activation and inflammation associated with DM.
Collapse
Affiliation(s)
- Mei Liu
- Department of Internal Medicine, Jinan Second People's Hospital, Jinan, China
| | - Linlin Gao
- Department of Internal Medicine, Jinan Second People's Hospital, Jinan, China
| | - Na Zhang
- Department of Internal Medicine, Jinan Second People's Hospital, Jinan, China
| |
Collapse
|
32
|
Kudla L, Bugno R, Skupio U, Wiktorowska L, Solecki W, Wojtas A, Golembiowska K, Zádor F, Benyhe S, Buda S, Makuch W, Przewlocka B, Bojarski AJ, Przewlocki R. Functional characterization of a novel opioid, PZM21, and its effects on the behavioural responses to morphine. Br J Pharmacol 2019; 176:4434-4445. [PMID: 31347704 DOI: 10.1111/bph.14805] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE The concept of opioid ligands biased towards the G protein pathway with minimal recruitment of β-arrestin-2 is a promising approach for the development of novel, efficient, and potentially nonaddictive opioid therapeutics. A recently discovered biased μ-opioid receptor agonist, PZM21, showed analgesic effects with reduced side effects. Here, we aimed to further investigate the behavioural and biochemical properties of PZM21. EXPERIMENT APPROACH We evaluated antinociceptive effects of systemic and intrathecal PZM21 administration. Its addiction-like properties were determined using several behavioural approaches: conditioned place preference, locomotor sensitization, precipitated withdrawal, and self-administration. Also, effects of PZM21 on morphine-induced antinociception, tolerance, and reward were assessed. Effects of PZM21 on striatal release of monoamines were evaluated using brain microdialysis. KEY RESULTS PZM21 caused long-lasting dose-dependent antinociception. It did not induce reward- and reinforcement-related behaviour; however, its repeated administration led to antinociceptive tolerance and naloxone-precipitated withdrawal symptoms. Pretreatment with PZM21 enhanced morphine-induced antinociception and attenuated the expression of morphine reward. In comparison to morphine, PZM21 administration induced a moderate release of dopamine and a robust release of 5-HT in the striatum. CONCLUSIONS AND IMPLICATIONS PZM21 exhibited antinociceptive efficacy, without rewarding or reinforcing properties. However, its clinical application may be restricted, as it induces tolerance and withdrawal symptoms. Notably, its ability to diminish morphine reward implies that PZM21 may be useful in treatment of opioid use disorders.
Collapse
Affiliation(s)
- Lucja Kudla
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ryszard Bugno
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Urszula Skupio
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Lucja Wiktorowska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech Solecki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Adam Wojtas
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Krystyna Golembiowska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Szymon Buda
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
33
|
Chen H, Zhou C, Xie K, Meng X, Wang Y, Yu Y. Hydrogen-rich Saline Alleviated the Hyperpathia and Microglia Activation via Autophagy Mediated Inflammasome Inactivation in Neuropathic Pain Rats. Neuroscience 2019; 421:17-30. [PMID: 31689487 DOI: 10.1016/j.neuroscience.2019.10.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/20/2023]
Abstract
Neuropathic pain is a complication after a spinal nerve injury. The inflammasomes are now identified to be responsible for triggering inflammation in neuropathic pain. Autophagy participates in the process of neuropathic pain and can regulate the inflammasome activation in different diseases. Our previous research reported that hydrogen exerted a protective effect against neuropathic pain. Therefore, we focused on the mechanism and role of autophagy and inflammasome, by which hydrogen alleviated the hyperpathia induced by neuropathic pain. The results showed that neuropathic pain stimulated activation of inflammasome NLRP3 and autophagy pathway in the microglial cells of the spinal cord. The inhibition of NLRP3 inhibited the hyperpathia induced by spinal nerve litigation surgery. The absence of autophagy aggravated the inflammasome activity and hyperpathia. Hydrogen promoted autophagy related protein expression, inhibited the inflammasome NLRP3 pathway activation, and relieved the hyperpathia induced by neuropathic pain. Hydrogen treatment could alleviate hyperpathia by autophagy-mediated NLRP3 inactivation.
Collapse
Affiliation(s)
- Hongguang Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Chunjing Zhou
- Department of Anesthesiology, Tianjin 4th Center Hospital, Tianjin 300140, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Xiaoyin Meng
- Department of Gynaecology and Obstetrics, Tianjin Hospital, Tianjin 300211, China
| | - Yaoqi Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|
34
|
Akhmetzyanova E, Kletenkov K, Mukhamedshina Y, Rizvanov A. Different Approaches to Modulation of Microglia Phenotypes After Spinal Cord Injury. Front Syst Neurosci 2019; 13:37. [PMID: 31507384 PMCID: PMC6718713 DOI: 10.3389/fnsys.2019.00037] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/29/2019] [Indexed: 01/04/2023] Open
Abstract
Microglial cells, which are highly plastic, immediately respond to any change in the microenvironment by becoming activated and shifting the phenotype toward neurotoxicity or neuroprotection. The polarization of microglia/macrophages after spinal cord injury (SCI) seems to be a dynamic process and can change depending on the microenvironment, stage, course, and severity of the posttraumatic process. Effective methods to modulate microglia toward a neuroprotective phenotype in order to stimulate neuroregeneration are actively sought for. In this context, available approaches that can selectively impact the polarization of microglia/macrophages regulate synthesis of trophic factors and cytokines/chemokines in them, and their phagocytic function and effects on the course and outcome of SCI are discussed in this review.
Collapse
Affiliation(s)
- Elvira Akhmetzyanova
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Konstantin Kletenkov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yana Mukhamedshina
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Albert Rizvanov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
35
|
Chemokines CCL2 and CCL7, but not CCL12, play a significant role in the development of pain-related behavior and opioid-induced analgesia. Cytokine 2019; 119:202-213. [DOI: 10.1016/j.cyto.2019.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 12/28/2022]
|
36
|
CGRP Induces Differential Regulation of Cytokines from Satellite Glial Cells in Trigeminal Ganglia and Orofacial Nociception. Int J Mol Sci 2019; 20:ijms20030711. [PMID: 30736422 PMCID: PMC6386987 DOI: 10.3390/ijms20030711] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 01/29/2023] Open
Abstract
Neuron-glia interactions contribute to pain initiation and sustainment. Intra-ganglionic (IG) secretion of calcitonin gene-related peptide (CGRP) in the trigeminal ganglion (TG) modulates pain transmission through neuron-glia signaling, contributing to various orofacial pain conditions. The present study aimed to investigate the role of satellite glial cells (SGC) in TG in causing cytokine-related orofacial nociception in response to IG administration of CGRP. For that purpose, CGRP alone (10 μL of 10−5 M), Minocycline (5 μL containing 10 μg) followed by CGRP with one hour gap (Min + CGRP) were administered directly inside the TG in independent experiments. Rats were evaluated for thermal hyperalgesia at 6 and 24 h post-injection using an operant orofacial pain assessment device (OPAD) at three temperatures (37, 45 and 10 °C). Quantitative real-time PCR was performed to evaluate the mRNA expression of IL-1β, IL-6, TNF-α, IL-1 receptor antagonist (IL-1RA), sodium channel 1.7 (NaV 1.7, for assessment of neuronal activation) and glial fibrillary acidic protein (GFAP, a marker of glial activation). The cytokines released in culture media from purified glial cells were evaluated using antibody cytokine array. IG CGRP caused heat hyperalgesia between 6–24 h (paired-t test, p < 0.05). Between 1 to 6 h the mRNA and protein expressions of GFAP was increased in parallel with an increase in the mRNA expression of pro-inflammatory cytokines IL-1β and anti-inflammatory cytokine IL-1RA and NaV1.7 (one-way ANOVA followed by Dunnett’s post hoc test, p < 0.05). To investigate whether glial inhibition is useful to prevent nociception symptoms, Minocycline (glial inhibitor) was administered IG 1 h before CGRP injection. Minocycline reversed CGRP-induced thermal nociception, glial activity, and down-regulated IL-1β and IL-6 cytokines significantly at 6 h (t-test, p < 0.05). Purified glial cells in culture showed an increase in release of 20 cytokines after stimulation with CGRP. Our findings demonstrate that SGCs in the sensory ganglia contribute to the occurrence of pain via cytokine expression and that glial inhibition can effectively control the development of nociception.
Collapse
|
37
|
Zajaczkowska R, Popiolek-Barczyk K, Pilat D, Rojewska E, Makuch W, Wordliczek J, Mika J. Involvement of microglial cells in the antinociceptive effects of metamizol in a mouse model of neuropathic pain. Pharmacol Biochem Behav 2018; 175:77-88. [DOI: 10.1016/j.pbb.2018.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 02/07/2023]
|
38
|
Jurga AM, Rojewska E, Makuch W, Mika J. Lipopolysaccharide from Rhodobacter sphaeroides (TLR4 antagonist) attenuates hypersensitivity and modulates nociceptive factors. PHARMACEUTICAL BIOLOGY 2018; 56:275-286. [PMID: 29656686 PMCID: PMC6130482 DOI: 10.1080/13880209.2018.1457061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Accumulating evidence has demonstrated that Toll-like receptors (TLRs), especially TLR4 localized on microglia/macrophages, may play a significant role in nociception. OBJECTIVE We examine the role of TLR4 in a neuropathic pain model. Using behavioural/biochemical methods, we examined the influence of TLR4 antagonist on levels of hypersensitivity and nociceptive factors whose contribution to neuropathy development has been confirmed. MATERIALS AND METHODS Behavioural (von Frey's/cold plate) tests were performed with Wistar male rats after intrathecal administration of a TLR4 antagonist (LPS-RS ULTRAPURE (LPS-RSU), 20 μG: lipopolysaccharide from Rhodobacter sphaeroides, InvivoGen, San Diego, CA) 16 H and 1 h before chronic constriction injury (cci) to the sciatic nerve and then daily for 7 d. three groups were used: an intact group and two cci-exposed groups that received vehicle or LPS-RSU. tissue [spinal cord/dorsal root ganglia (DRG)] for western blot analysis was collected on day 7. RESULTS The pharmacological blockade of TLR4 diminished mechanical (from ca. 40% to 16% that in the INTACT group) and thermal (from ca. 51% to 32% that in the INTACT group) hypersensitivity despite the enhanced activation of IBA-1-positive cells in DRG. Moreover, LPS-RSU changed the ratio between IL-18/IL-18BP and MMP-9/TIMP-1 in favour of the increase of antinociceptive factors IL-18BP (25%-spinal; 96%-DRG) and TIMP-1 (15%-spinal; 50%-DRG) and additionally led to an increased IL-6 (40%-spinal; 161%-DRG), which is known to have analgesic properties in neuropathy. CONCLUSIONS Our results provide evidence that LPS-RSU influences pain through the expression of TLR4. TLR4 blockade has analgesic properties and restores the balance between nociceptive factors, which indicates its engagement in neuropathy development.
Collapse
Affiliation(s)
- Agnieszka M. Jurga
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
- CONTACT Joanna MikaDepartment of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31343Krakow, Poland
| |
Collapse
|
39
|
Cheng H, Zhang Y, Lu W, Gao X, Xu C, Bao H. Caffeic acid phenethyl ester attenuates neuropathic pain by suppressing the p38/NF-κB signal pathway in microglia. J Pain Res 2018; 11:2709-2719. [PMID: 30464588 PMCID: PMC6219427 DOI: 10.2147/jpr.s166274] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Management of neuropathic pain is still a clinical challenge. Evidence has accumulated indicating that propolis is effective in attenuating neuropathic pain; however, the mechanism is not fully understood. Our present study investigated the effects and the possible mechanism of caffeic acid phenethyl ester (CAPE), the main ingredient of propolis, in improving neuropathic pain via its inhibition on p38/NF-κB signal pathway in microglia. Materials and methods Chronic constriction injury (CCI) mice model and the microglial cell line BV-2 were used to investigate the effects and the mechanism of CAPE. Cell signaling was measured by real-time PCR, Western blotting and immunofluorescence assay. Results CAPE relieved neuropathic pain behaviors induced by CCI in mice. CAPE also inhibited CCI-induced activation of microglia. Furthermore, CAPE suppressed the phosphorylation of p38 mitogen-activated protein kinase, inhibited the translocation of NF-κB and decreased the expression of proinflammatory cytokines tumor necrosis factor-α, IL-1β and IL-6. Conclusion CAPE was found to be an effective and safe drug candidate for alleviating neuropathic pain by its powerful inhibition on the P38/NF-κB signal pathway.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China,
| | - Yong Zhang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China,
| | - Weiping Lu
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China,
| | - Xianzhong Gao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China,
| | - Chenjie Xu
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China,
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China,
| |
Collapse
|
40
|
Lee S, Shi XQ, Fan A, West B, Zhang J. Targeting macrophage and microglia activation with colony stimulating factor 1 receptor inhibitor is an effective strategy to treat injury-triggered neuropathic pain. Mol Pain 2018; 14:1744806918764979. [PMID: 29546785 PMCID: PMC5858622 DOI: 10.1177/1744806918764979] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction Neuropathic pain is a debilitating condition. The importance of neuroimmune interactions in neuropathic pain has been evidenced by the involvement of different immune cells in peripheral and central sensitization of pathological pain. Macrophages and microglia are the most abundant immune cells activated in injured nerves and spinal cord, respectively. Several lines of evidence showed that macrophage/microglia survival, activation, proliferation, and differentiation require the involvement of macrophage-colony stimulating factor. In this study, we investigated whether blocking macrophage-colony stimulating factor/colony stimulating factor 1 receptor signaling can be effective in relieving neuropathic pain. Materials and methods Partial sciatic nerve ligation was performed in mice to induce neuropathic pain behavior. Mice were orally treated with a selective colony stimulating factor 1 receptor inhibitor, PLX5622, daily in both preventive (two days prior to surgery until D14 post-partial sciatic nerve ligation) and reversal paradigms (D28-D33 post-partial sciatic nerve ligation). Animal neuropathic pain behavior was monitored using von Frey hairs and acetone application. Phenotype of macrophages in injured nerves was analyzed at D3 and D33 post-injury using flow cytometry analysis. The effect of PLX5622 on microglia activation in lumbar spinal cord was further examined by immunohistochemistry using Iba-1 antibody. Results Significant alleviation of both mechanical and cold allodynia was observed in PLX5622-treated animals, both in preventive and reversal paradigms. PLX5622 treatment reduced the total number of macrophages in injured nerves, it appears colony stimulating factor 1 receptor inhibition affected more specifically CD86+ (M1 like) macrophages. Consequently, the expression of various pro-inflammatory cytokines (TNF-α, IL-1β) was reduced. Microglia activation in dorsal horn of lumbar spinal cord following partial sciatic nerve ligation was significantly inhibited with PLX5622 treatment in both preventive and reversal paradigms. Conclusion Macrophages in peripheral nerve and microglia in the spinal cord are required in the generation and maintenance of injury-associated neuropathic pain. Blocking macrophage-colony stimulating factor/colony stimulating factor 1 receptor signaling on these myeloid cells along the pain transmission pathway is an effective strategy to alleviate neuropathic pain.
Collapse
Affiliation(s)
- SeungHwan Lee
- 1 Faculty of Dentistry, 5620 McGill University , Montreal, QC, Canada.,2 The Alan Edwards Centre for Research on Pain, 5620 McGill University , Montreal, QC, Canada
| | - Xiang Qun Shi
- 1 Faculty of Dentistry, 5620 McGill University , Montreal, QC, Canada.,2 The Alan Edwards Centre for Research on Pain, 5620 McGill University , Montreal, QC, Canada
| | - Anni Fan
- 1 Faculty of Dentistry, 5620 McGill University , Montreal, QC, Canada.,2 The Alan Edwards Centre for Research on Pain, 5620 McGill University , Montreal, QC, Canada
| | | | - Ji Zhang
- 1 Faculty of Dentistry, 5620 McGill University , Montreal, QC, Canada.,2 The Alan Edwards Centre for Research on Pain, 5620 McGill University , Montreal, QC, Canada.,4 Department of Neurology and Neurosurgery, 5620 McGill University , Montreal, QC, Canada
| |
Collapse
|
41
|
Zaprinast diminished pain and enhanced opioid analgesia in a rat neuropathic pain model. Eur J Pharmacol 2018; 839:21-32. [PMID: 30213497 DOI: 10.1016/j.ejphar.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/25/2018] [Accepted: 09/04/2018] [Indexed: 01/11/2023]
Abstract
The mechanism of neuropathic pain is complex and unclear. Based on our results, we postulate that an intensification of the kynurenine pathway occurs as a consequence of nerve injury. The G protein-coupled receptor 35 (GPR35) is important for kynurenine pathway activation. Cyclic GMP-specific phosphodiesterase inhibitors have also been shown to have beneficial effects on neuropathic pain. Therefore, the aims of our research were to elucidate how a substance that acts as both an agonist of GPR35 and an inhibitor of phosphodiesterase influences neuropathic pain in a rat model. Here, we demonstrated that preemptive and repeated intrathecal (i.t.) administration (16 h and 1 h before injury and then after nerve ligation daily for 7 days) of zaprinast (1 μg/5 μl) significantly attenuated mechanical (von Frey test) and thermal (cold plate test) hypersensitivity measured on day 7 after chronic constriction injury, and the effect of even a single injection lasted up to 24 h. Our data indicate that zaprinast diminished the number of IBA1-positive cells and consequently attenuated the levels of IL-1beta, IL-6, IL-18, and NOS2 in the lumbar spinal cord and/or dorsal root ganglia. Our results also demonstrated that zaprinast potentiated the analgesic properties of morphine and buprenorphine. In summary, in a neuropathic pain model, zaprinast significantly reduced pain symptoms and enhanced the effectiveness of opioids. Our data provide new evidence that modulation of both GPR35 and phosphodiesterase could be an important strategy for innovative pharmacological treatments designed to decrease hypersensitivity evoked by nerve injury.
Collapse
|
42
|
Piotrowska A, Rojewska E, Pawlik K, Kreiner G, Ciechanowska A, Makuch W, Zychowska M, Mika J. Pharmacological blockade of CXCR3 by (±)-NBI-74330 reduces neuropathic pain and enhances opioid effectiveness - Evidence from in vivo and in vitro studies. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3418-3437. [PMID: 30076959 DOI: 10.1016/j.bbadis.2018.07.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
Abstract
It has been suggested that CXCR3 is important for nociception. Our experiments were conducted to evaluate involvement of CXCR3 and its ligands (CXCL4, CXCL9, CXCL10, CXCL11/CCL21) in neuropathic pain. Our studies give new evidence that intrathecal administration of each CXCR3 ligand induces pain-like behaviour in naive mice that occurs shortly after injection due to its location of neurons, which is confirmed by immunofluorescent staining. Moreover, intrathecal administrations of CXCL9, CXCL10, CCL21 neutralizing antibodies diminished pain-related behaviour. RT-PCR/Western blot analysis unprecedentedly showed spinal elevated levels of CXCR3 after chronic constriction injury of the sciatic nerve in rats in parallel with different time-course changes of its endogenous ligands. Initially, on day 2 we observed spinal increased levels of CXCL10 and CXCL11 indicating that these chemokines have important roles in triggering neuropathy. Then, on day 7, we observed increased levels of CXCL4, CXCL9, CXCL10. Interestingly, changes in CXCL9 level persisted until day 28, suggesting that these chemokines are responsible for long-term, persistent neuropathy. Additionally, in DRG the CXCL4, CXCL9 were elevated. The results obtained from primary glial cultures, suggests that all CXCR3 ligands can be produced in microglia, but also, except for CXCL4, in astrocytes. We provide the first evidence that in neuropathy chronic intrathecal administration of CXCR3 antagonist, (±)-NBI-74330, attenuates hypersensitivity with concomitant occurrence of microglial and some of CXCR3 ligands activation observed in the spinal cord and/or DRG level. This paper underlies the significance of CXCR3 in neuropathic pain and shows therapeutic potential of its blockade for enhancement of morphine analgesia as the major novelty of this work.
Collapse
Affiliation(s)
- Anna Piotrowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland
| | - Ewelina Rojewska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland
| | - Katarzyna Pawlik
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland
| | - Grzegorz Kreiner
- Institute of Pharmacology, Polish Academy of Sciences, Department of Brain Biochemistry, Smetna Street 12, 31-343 Krakow, Poland
| | - Agata Ciechanowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland
| | - Wioletta Makuch
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland
| | - Magdalena Zychowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland.
| |
Collapse
|
43
|
Huang D, Yang J, Liu X, He L, Luo X, Tian H, Xu T, Zeng J. P2Y 6 receptor activation is involved in the development of neuropathic pain induced by chronic constriction injury of the sciatic nerve in rats. J Clin Neurosci 2018; 56:156-162. [PMID: 30045810 DOI: 10.1016/j.jocn.2018.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/29/2018] [Accepted: 07/08/2018] [Indexed: 12/22/2022]
Abstract
Purinergic signaling in spinal cord microglia plays an important role in the pathogenesis of neuropathic pain. Among all P2 receptors, P2Y6 receptor is expressed in rat dorsal spinal cord. However, it's not clear that the role of P2Y6 receptor in the chronic constriction injury (CCI) model of neuropathic pain rats. We evaluated the effect of repeated intrathecal administration of MRS2578 (selective P2Y6 receptor antagonist) on CCI-induced nociceptive behaviors in rats. After CCI, MRS2578 (10-11-10-4 M) was administration. The thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) were assessed. The expression of P2Y6 receptor and Iba-1 at rat dorsal spinal cord was observed by using RT-PCR. We found that intrathecal injection of MRS2578 suppressed CCI-induced mechanical allodynia and thermal hyperalgesia with a dose-dependent manner. The CCI rats presented increased expression of P2Y6 receptor and Iba-1 at the mRNA level in the ipsilateral dorsal spinal cord than that in sham group. Treatment with either minocycline or SB203580 effectively inhibited P2Y6 receptor expression compared to CCI rats. Intrathecal injection of UDP enhanced mechanical and thermal allodynia than that in CCI group. To the further study, intrathecal injection of UDP causes mechanical allodynia and thermal hyperalgesia in naive rats. The increased expression of P2Y6 receptor and Iba-1 were observed in UDP-treated rats. Intrathecal injection of MRS2578 alleviates pain response in UDP-treated rats. These observations suggested that P2Y6 receptor in dorsal spinal cord contribute to mechanical allodynia and thermal hyperalgesia in CCI-induced neuropathic pain.
Collapse
Affiliation(s)
- Dujuan Huang
- Department of Physiology, Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou Province 563000, China
| | - Junna Yang
- Department of Physiology, Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou Province 563000, China
| | - XiaoHong Liu
- Department of Physiology, Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou Province 563000, China
| | - Li He
- Department of Physiology, Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou Province 563000, China
| | - Xiaomei Luo
- Department of Physiology, Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou Province 563000, China
| | - Hong Tian
- Department of Physiology, Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou Province 563000, China
| | - Tao Xu
- Department of Physiology, Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou Province 563000, China
| | - Junwei Zeng
- Department of Physiology, Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou Province 563000, China.
| |
Collapse
|
44
|
Rojewska E, Ciapała K, Piotrowska A, Makuch W, Mika J. Pharmacological Inhibition of Indoleamine 2,3-Dioxygenase-2 and Kynurenine 3-Monooxygenase, Enzymes of the Kynurenine Pathway, Significantly Diminishes Neuropathic Pain in a Rat Model. Front Pharmacol 2018; 9:724. [PMID: 30050435 PMCID: PMC6050382 DOI: 10.3389/fphar.2018.00724] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/15/2018] [Indexed: 01/02/2023] Open
Abstract
Neuropathic pain caused by a primary injury or dysfunction in the peripheral or central nervous system is a tremendous therapeutic challenge. Here, we have collected the first evidence from a single study on the potential contributions to neuropathic pain development by enzymes in the kynurenine pathway [tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase (IDO1/2), kynurenine 3-monooxygenase (KMO); kynureninase, 3-hydroxyanthranilate-3,4-dioxygenase (HAOO)] at the spinal cord and dorsal root ganglia (DRG) levels. At the spinal cord, mRNA levels of IDO2, KMO, and HAOO were elevated as measured on day 7 after chronic constriction injury in a rat model, parallel to the C1q-positive cell activation. According to our data obtained from primary microglial cell cultures, all enzymes of the kynurenine pathway except TDO were derived from these cells; however, the activation of microglia induced stronger changes in IDO2 and KMO. Our pharmacological studies gave evidence that the repeated intraperitoneal administration of minocycline, a microglia/macrophage inhibitor, not only attenuated tactile and thermal hypersensitivity but also diminished the levels of IDO2 and KMO mRNA. Our further pharmacological studies confirmed that IDO2 and KMO enzymes take part in the development of neuropathic pain, since we observed that the repeated administration of IDO2 (1-methyl-D-tryptophan) and KMO [UPF 648 – (1S,2S)-2-(3,4-dichlorobenzoyl)cyclopropanecarboxylic acid] inhibitors diminished hypersensitivity development as measured on days 2 and 7. The results of our studies show that the kynurenine pathway is an important mediator of neuropathic pain pathology in rats and indicate that IDO2 and KMO represent novel pharmacological targets for treating neuropathy.
Collapse
Affiliation(s)
- Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Anna Piotrowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
45
|
Neuroprotective effect of duloxetine in a mouse model of diabetic neuropathy: Role of glia suppressing mechanisms. Life Sci 2018; 205:113-124. [PMID: 29763613 DOI: 10.1016/j.lfs.2018.05.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/26/2018] [Accepted: 05/11/2018] [Indexed: 01/28/2023]
Abstract
AIMS Painful diabetic neuropathy (PDN) is one of the most frequent complications of diabetes and the current therapies have limited efficacy. This study aimed to study the neuroprotective effect of duloxetine, a serotonin noradrenaline reuptake inhibitor (SNRI), in a mouse model of diabetic neuropathy. MAIN METHODS Nine weeks after developing of PDN, mice were treated with either saline or duloxetine (15 or 30 mg/kg) for four weeks. The effect of duloxetine was assessed in terms of pain responses, histopathology of sciatic nerve and spinal cord, sciatic nerve growth factor (NGF) gene expression and on the spinal expression of astrocytes (glial fibrillary acidic protein, GFAP) and microglia (CD11b). KEY FINDINGS The present results highlighted that duloxetine (30 mg/kg) increased the withdrawal threshold in von-Frey test. In addition, both doses of duloxetine prolonged the licking time and latency to jump in the hot-plate test. Moreover, duloxetine administration downregulated the spinal expression of both CD11b and GFAP associated with enhancement in sciatic mRNA expression of NGF. SIGNIFICANCE The current results highlighted that duloxetine provided peripheral and central neuroprotective effects in neuropathic pain is, at least in part, related to its downregulation in spinal astrocytes and microglia. Further, this neuroprotective effect was accompanied by upregulation of sciatic expression of NGF.
Collapse
|
46
|
Valdes C, Bustos G, Martinez JL, Laurido C. Antinociceptive antibiotics-loaded into solid lipid nanoparticles of prolonged release: Measuring pharmacological efficiency and time span on chronic monoarthritis rats. PLoS One 2018; 13:e0187473. [PMID: 29649262 PMCID: PMC5896893 DOI: 10.1371/journal.pone.0187473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/20/2017] [Indexed: 01/02/2023] Open
Abstract
Pain is a sensory experience of a complex physiological nature in which is not only involved the nervous system. Among its many features is the development of chronic pain that is more complicated to treat because of the central somatization processes involved, becoming inefficient treatments used in other forms of pain. Among them is the role of glial cells, whose participation is such that some authors have proposed to chronic pain as a gliopathy. Because of this, the drug target of possible treatments focuses on modulating nociceptive response affecting transduction into the central nervous system through affecting synapses in the dorsal horn of the spinal cord. Solid lipid nanoparticles enter the central nervous system, protecting the drug, and in addition to the advantage of having greater absorption surface, all factors that improve drug activity. This work is based on the development and characterization of lipid nanoparticles of solid phase incorporating two antibiotics, minocycline, and ciprofloxacin with antinociceptive properties and challenged them with a rat monoarthritis model using Sprague-Dawley adult male rats. The solid lipid nanoparticles were prepared to modify the lipid, and surfactant amounts to obtain the best encapsulation capacity of the antibiotics, size and z potential. By using the Randall-Selitto test, we measured its pharmacological efficiency as an anti-inflammatory and measuring the time span the antibiotics are active. The encapsulated antibiotics were at least 50% more efficient than the antibiotic alone, and that is possible to measure anti-inflammatory activity up to seven days after the antibiotic application. The former is important for example, in the veterinary field, since a single application of the antibiotic will be necessary for the complete treatment, avoiding excessive stress for the animals. We can conclude that antinociceptive antibiotics encapsulation is a very effective, environmentally safe and inexpensive method for improving the pharmacological efficiency and time span the antibiotics are acting. Since these antibiotics are both anti-microbial and antinociceptive, his use in the field of veterinary presents the advantage of being adequate in single doses, with the saving of time and stress to the animals under treatment.
Collapse
Affiliation(s)
- Carlos Valdes
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Gonzalo Bustos
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Jose L. Martinez
- Vicerrectory of Research, Development and Innovation, University of Santiago of Chile, Santiago, Chile
- * E-mail:
| | - Claudio Laurido
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| |
Collapse
|
47
|
Botulinum Toxin Type A-A Modulator of Spinal Neuron-Glia Interactions under Neuropathic Pain Conditions. Toxins (Basel) 2018; 10:toxins10040145. [PMID: 29614835 PMCID: PMC5923311 DOI: 10.3390/toxins10040145] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 12/29/2022] Open
Abstract
Neuropathic pain represents a significant clinical problem because it is a chronic condition often refractory to available therapy. Therefore, there is still a strong need for new analgesics. Botulinum neurotoxin A (BoNT/A) is used to treat a variety of clinical diseases associated with pain. Glia are in continuous bi-directional communication with neurons to direct the formation and refinement of synaptic connectivity. This review addresses the effects of BoNT/A on the relationship between glia and neurons under neuropathic pain. The inhibitory action of BoNT/A on synaptic vesicle fusion that blocks the release of miscellaneous pain-related neurotransmitters is known. However, increasing evidence suggests that the analgesic effect of BoNT/A is mediated through neurons and glial cells, especially microglia. In vitro studies provide evidence that BoNT/A exerts its anti-inflammatory effect by diminishing NF-κB, p38 and ERK1/2 phosphorylation in microglia and directly interacts with Toll-like receptor 2 (TLR2). Furthermore, BoNT/A appears to have no more than a slight effect on astroglia. The full activation of TLR2 in astroglia appears to require the presence of functional TLR4 in microglia, emphasizing the significant interaction between those cell types. In this review, we discuss whether and how BoNT/A affects the spinal neuron–glia interaction and reduces the development of neuropathy.
Collapse
|
48
|
Rojewska E, Zychowska M, Piotrowska A, Kreiner G, Nalepa I, Mika J. Involvement of Macrophage Inflammatory Protein-1 Family Members in the Development of Diabetic Neuropathy and Their Contribution to Effectiveness of Morphine. Front Immunol 2018; 9:494. [PMID: 29593735 PMCID: PMC5857572 DOI: 10.3389/fimmu.2018.00494] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/26/2018] [Indexed: 01/05/2023] Open
Abstract
Current investigations underline the important roles of C–C motif ligands in the development of neuropathic pain; however, their participation in diabetic neuropathy is still undefined. Therefore, the goal of our study was to evaluate the participation of macrophage inflammatory protein-1 (MIP-1) family members (CCL3, CCL4, CCL9) in a streptozotocin (STZ)-induced mouse model of diabetic neuropathic pain. Single intrathecal administration of each MIP-1 member (10, 100, or 500 ng/5 μl) in naïve mice evoked hypersensitivity to mechanical (von Frey test) and thermal (cold plate test) stimuli. Concomitantly, protein analysis has shown that, 7 days following STZ injection, the levels of CCL3 and CCL9 (but not CCL4) are increased in the lumbar spinal cord. Performed additionally, immunofluorescence staining undoubtedly revealed that CCL3, CCL9, and their receptors (CCR1 and CCR5) are expressed predominantly by neurons. In vitro studies provided evidence that the observed expression of CCL3 and CCL9 may be partially of glial origin; however, this observation was only partially possible to confirm by immunohistochemical study. Single intrathecal administration of CCL3 or CCL9 neutralizing antibody (2 and 4 μg/5 μl) delayed neuropathic pain symptoms as measured at day 7 following STZ administration. Single intrathecal injection of a CCR1 antagonist (J113863; 15 and 20 μg/5 μl) also attenuated pain-related behavior as evaluated at day 7 after STZ. Both neutralizing antibodies, as well as the CCR1 antagonist, enhanced the effectiveness of morphine in STZ-induced diabetic neuropathy. These findings highlight the important roles of CCL3 and CCL9 in the pathology of diabetic neuropathic pain and suggest that they play pivotal roles in opioid analgesia.
Collapse
Affiliation(s)
- Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Zychowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Anna Piotrowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
49
|
IL-18 Contributes to Bone Cancer Pain by Regulating Glia Cells and Neuron Interaction. THE JOURNAL OF PAIN 2018; 19:186-195. [DOI: 10.1016/j.jpain.2017.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/04/2017] [Accepted: 10/12/2017] [Indexed: 12/13/2022]
|
50
|
Kwiatkowski K, Mika J. The importance of chemokines in neuropathic pain development and opioid analgesic potency. Pharmacol Rep 2018; 70:821-830. [PMID: 30122168 DOI: 10.1016/j.pharep.2018.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/22/2018] [Indexed: 12/30/2022]
Abstract
The treatment of neuropathic pain resulting from nervous system malfunction remains a challenging problem for doctors and scientists. The lower effectiveness of conventionally used analgesics in neuropathic pain is associated with complex and not fully understood mechanisms of its development. Undoubtedly, interactions between immune and nervous system are crucial for maintenance of painful neuropathy. Nerve injury induces glial cell activation and thus enhances the production of numerous pronociceptive factors by these cells, including interleukins and chemokines. Increased release of those factors reduces the analgesic efficacy of opioids, which is significantly lower in neuropathic pain than in other painful conditions. This review discusses the role of chemokines from all four subfamilies as essential mediators of neuron-glia interactions occurring under neuropathic pain conditions. Based on available data, we analyse the influence of chemokines on opioid properties. Finally, we identify new direct and indirect pharmacological targets whose modulation may result in effective therapy of neuropathic pain, possibly in combination with opioids.
Collapse
Affiliation(s)
- Klaudia Kwiatkowski
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Kraków, Poland.
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Kraków, Poland.
| |
Collapse
|