1
|
Sharma R, Dey Das K, Srinivasula SM. EGF-mediated Golgi dynamics and cell migration require CARP2. Cell Rep 2024; 43:114896. [PMID: 39441718 DOI: 10.1016/j.celrep.2024.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/21/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
In mammalian cells, the Golgi exists in ribbon architecture-individual stacks laterally linked to each other by tubular structures. Golgi architecture changes dynamically to cater to cellular needs. Loss of architecture is linked with pathological conditions like cancer and neurodegeneration. Not much is known about the regulators of Golgi dynamics. Here, we demonstrate that CARP2 (caspase-8- and caspase-10-associated RING-containing protein 2), an endosomal ubiquitin ligase and a known regulator of cell migration, modulates Golgi dynamics. Epidermal growth factor (EGF) treatment modestly increases CARP2 protein and disperses Golgi. An exogenous supply of CARP2 also leads to Golgi dispersal. Conversely, Golgi remains intact in CARP2 knockout (KO) cells upon EGF treatment. CARP2 variants defective in either endosomal association or ligase activity are unable to affect Golgi dispersal. Importantly, CARP2 targets Golgin45 for ubiquitination and degradation in EGF-stimulated cells. Collectively, our findings unravel the existence of crosstalk between endosomal ubiquitin signaling and Golgi dynamics.
Collapse
Affiliation(s)
- Rahul Sharma
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - Krishanu Dey Das
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - Srinivasa M Srinivasula
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India.
| |
Collapse
|
2
|
Chai GS, Gong J, Mao YM, Wu JJ, Bi SG, Wang F, Zhang YQ, Shen MT, Lei ZY, Nie YJ, Yu H. H3K4 Trimethylation Mediate Hyperhomocysteinemia Induced Neurodegeneration via Suppressing Histone Acetylation by ANP32A. Mol Neurobiol 2024; 61:6788-6804. [PMID: 38351418 DOI: 10.1007/s12035-024-03995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 08/22/2024]
Abstract
Homocysteine (Hcy) is an independent and serious risk factor for dementia, including Alzheimer's disease (AD), but the precise mechanisms are still poorly understood. In the current study, we observed that the permissive histone mark trimethyl histone H3 lysine 4 (H3K4me3) and its methyltransferase KMT2B were significantly elevated in hyperhomocysteinemia (HHcy) rats, with impairment of synaptic plasticity and cognitive function. Further research found that histone methylation inhibited synapse-associated protein expression, by suppressing histone acetylation. Inhibiting H3K4me3 by downregulating KMT2B could effectively restore Hcy-inhibited H3K14ace in N2a cells. Moreover, chromatin immunoprecipitation revealed that Hcy-induced H3K4me3 resulted in ANP32A mRNA and protein overexpression in the hippocampus, which was regulated by increased transcription Factor c-fos and inhibited histone acetylation and synapse-associated protein expression, and downregulating ANP32A could reverse these changes in Hcy-treated N2a cells. Additionally, the knockdown of KMT2B restored histone acetylation and synapse-associated proteins in Hcy-treated primary hippocampal neurons. These data have revealed a novel crosstalk mechanism between KMT2B-H3K4me3-ANP32A-H3K14ace, shedding light on its role in Hcy-related neurogenerative disorders.
Collapse
Affiliation(s)
- Gao-Shang Chai
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Juan Gong
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yu-Ming Mao
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Jia-Jun Wu
- Department of Electrophysiology, Wuhan Children's Hospital (Wuhan Maternal and Children's Healthcare Center), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430010, People's Republic of China
| | - Shu-Guang Bi
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Fangzhou Wang
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yu-Qi Zhang
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Meng-Ting Shen
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Zhuo-Ya Lei
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yun-Juan Nie
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Haitao Yu
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
3
|
Chengcheng M, Panpan A, Yalong Y, Mingyu S, Wei X, Jing C, Chuanxi T. GDNF improves the cognitive ability of PD mice by promoting glycosylation and membrane distribution of DAT. Sci Rep 2024; 14:17845. [PMID: 39090173 PMCID: PMC11294596 DOI: 10.1038/s41598-024-68609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
The core of clinic treatment of Parkinson's disease (PD) is to enhance dopamine (DA) signaling within the brain. The regulation of dopamine transporter (DAT) is integral to this process. This study aims to explore the regulatory mechanism of glial cell line-derived neurotrophic factor (GDNF) on DAT, thereby gaining a profound understanding its potential value in treating PD. In this study, we investigated the effects of GDNF on both cellular and mouse models of PD, including the glycosylation and membrane transport of DAT detected by immunofluorescence and immunoblotting, DA signal measured by neurotransmitter fiber imaging technology, Golgi morphology observed by electron microscopic, as well as cognitive ability assessed by behavior tests. This study revealed that in animal trials, MPTP-induced Parkinson's Disease (PD) mice exhibited a marked decline in cognitive function. Utilizing ELISA and neurotransmitter fiber imaging techniques, we observed a decrease in dopamine levels and a significant reduction in the intensity of dopamine signal release in the Prefrontal Cortex (PFC) of PD mice induced by MPTP. Intriguingly, these alterations were reversed by Glial Cell Line-Derived Neurotrophic Factor (GDNF). In cellular experiments, following MPP + intervention, there was a decrease in Gly-DAT modification in both the cell membrane and cytoplasm, coupled with an increase in Nongly-DAT expression and aggregation of DAT within the cytoplasm. Conversely, GDNF augmented DAT glycosylation and facilitated its membrane transport in damaged dopaminergic neurons, concurrently reversing the effects of GRASP65 depletion and Golgi fragmentation, thereby reducing the accumulation of DAT in the Golgi apparatus. Furthermore, overexpression of GRASP65 enhanced DAT transport in PD cells and mice, while suppression of GRASP65 attenuated the efficacy of GDNF on DAT. Additionally, GDNF potentiated the reutilization of neurotransmitters by the PFC presynaptic membrane, boosting the effective release of dopamine following a single electrical stimulation, ultimately ameliorating the cognitive impairments in PD mice.Therefore, we propose that GDNF enhances the glycosylation and membrane trafficking of DAT by facilitating the re-aggregation of the Golgi apparatus, thereby amplifying the utilization of DA signals. This ultimately leads to the improvement of cognitive abilities in PD mouse models. Our study illuminates, from a novel angle, the beneficial role of GDNF in augmenting DA utilization and cognitive function in PD, providing fresh insights into its therapeutic potential.
Collapse
Affiliation(s)
- Ma Chengcheng
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - An Panpan
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yan Yalong
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Su Mingyu
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xu Wei
- Jinhu County People's Hospital, 160 Shenhua Avenue, Jinhu County, Huai'an City, Jiangsu, China
| | - Chen Jing
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Tang Chuanxi
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
4
|
Bhojwani-Cabrera AM, Bautista-García A, Neubrand VE, Membrive-Jiménez FA, Bramini M, Martin-Oliva D, Cuadros MA, Marín-Teva JL, Navascués J, Vangheluwe P, Sepúlveda MR. Upregulation of the secretory pathway Ca 2+/Mn 2+-ATPase isoform 1 in LPS-stimulated microglia and its involvement in Mn 2+-induced Golgi fragmentation. Glia 2024; 72:1201-1214. [PMID: 38482950 DOI: 10.1002/glia.24528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/16/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
Microglia play an important protective role in the healthy nervous tissue, being able to react to a variety of stimuli that induce different intracellular cascades for specific tasks. Ca2+ signaling can modulate these pathways, and we recently reported that microglial functions depend on the endoplasmic reticulum as a Ca2+ store, which involves the Ca2+ transporter SERCA2b. Here, we investigated whether microglial functions may also rely on the Golgi, another intracellular Ca2+ store that depends on the secretory pathway Ca2+/Mn2+-transport ATPase isoform 1 (SPCA1). We found upregulation of SPCA1 upon lipopolysaccharide stimulation of microglia BV2 cells and primary microglia, where alterations of the Golgi ribbon were also observed. Silencing and overexpression experiments revealed that SPCA1 affects cell morphology, Golgi apparatus integrity, and phagocytic functions. Since SPCA1 is also an efficient Mn2+ transporter and considering that Mn2+ excess causes manganism in the brain, we addressed the role of microglial SPCA1 in Mn2+ toxicity. Our results revealed a clear effect of Mn2+ excess on the viability and morphology of microglia. Subcellular analysis showed Golgi fragmentation and subsequent alteration of SPCA1 distribution from early stages of toxicity. Removal of Mn2+ by washing improved the culture viability, although it did not effectively reverse Golgi fragmentation. Interestingly, pretreatment with curcumin maintained microglia cultures viable, prevented Mn2+-induced Golgi fragmentation, and preserved SPCA Ca2+-dependent activity, suggesting curcumin as a potential protective agent against Mn2+-induced Golgi alterations in microglia.
Collapse
Affiliation(s)
| | | | - Veronika E Neubrand
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | | | - Mattia Bramini
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - David Martin-Oliva
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Miguel A Cuadros
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - José Luis Marín-Teva
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Julio Navascués
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - M Rosario Sepúlveda
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
5
|
Liu M, Duan Y, Dong J, Zhang K, Jin X, Gao M, Jia H, Chen J, Liu M, Wei M, Zhong X. Early signs of neurodegenerative diseases: Possible mechanisms and targets for Golgi stress. Biomed Pharmacother 2024; 175:116646. [PMID: 38692058 DOI: 10.1016/j.biopha.2024.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
The Golgi apparatus plays a crucial role in mediating the modification, transport, and sorting of intracellular proteins and lipids. The morphological changes occurring in the Golgi apparatus are exceptionally important for maintaining its function. When exposed to external pressure or environmental stimulation, the Golgi apparatus undergoes adaptive changes in both structure and function, which are known as Golgi stress. Although certain signal pathway responses or post-translational modifications have been observed following Golgi stress, further research is needed to comprehensively summarize and understand the related mechanisms. Currently, there is evidence linking Golgi stress to neurodegenerative diseases; however, the role of Golgi stress in the progression of neurodegenerative diseases such as Alzheimer's disease remains largely unexplored. This review focuses on the structural and functional alterations of the Golgi apparatus during stress, elucidating potential mechanisms underlying the involvement of Golgi stress in regulating immunity, autophagy, and metabolic processes. Additionally, it highlights the pivotal role of Golgi stress as an early signaling event implicated in the pathogenesis and progression of neurodegenerative diseases. Furthermore, this study summarizes prospective targets that can be therapeutically exploited to mitigate neurodegenerative diseases by targeting Golgi stress. These findings provide a theoretical foundation for identifying novel breakthroughs in preventing and treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Mengyu Liu
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Ying Duan
- Liaoning Maternal and Child Health Hospital, Shayang, Liaoning 110005, China
| | - Jianru Dong
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Kaisong Zhang
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xin Jin
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Menglin Gao
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Huachao Jia
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Ju Chen
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Mingyan Liu
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, Liaoning 110167, China.
| | - Xin Zhong
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
6
|
Wiśniewska K, Gaffke L, Żabińska M, Węgrzyn G, Pierzynowska K. Cellular Organelle-Related Transcriptomic Profile Abnormalities in Neuronopathic Types of Mucopolysaccharidosis: A Comparison with Other Neurodegenerative Diseases. Curr Issues Mol Biol 2024; 46:2678-2700. [PMID: 38534785 DOI: 10.3390/cimb46030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of diseases caused by mutations in genes encoding lysosomal enzymes that catalyze reactions of glycosaminoglycan (GAG) degradation. As a result, GAGs accumulate in lysosomes, impairing the proper functioning of entire cells and tissues. There are 14 types/subtypes of MPS, which are differentiated by the kind(s) of accumulated GAG(s) and the type of a non-functional lysosomal enzyme. Some of these types (severe forms of MPS types I and II, MPS III, and MPS VII) are characterized by extensive central nervous system disorders. The aim of this work was to identify, using transcriptomic methods, organelle-related genes whose expression levels are changed in neuronopathic types of MPS compared to healthy cells while remaining unchanged in non-neuronopathic types of MPS. The study was conducted with fibroblast lines derived from patients with neuronopathic and non-neuronopathic types of MPS and control (healthy) fibroblasts. Transcriptomic analysis has identified genes related to cellular organelles whose expression is altered. Then, using fluorescence and electron microscopy, we assessed the morphology of selected structures. Our analyses indicated that the genes whose expression is affected in neuronopathic MPS are often associated with the structures or functions of the cell nucleus, endoplasmic reticulum, or Golgi apparatus. Electron microscopic studies confirmed disruptions in the structures of these organelles. Special attention was paid to up-regulated genes, such as PDIA3 and MFGE8, and down-regulated genes, such as ARL6IP6, ABHD5, PDE4DIP, YIPF5, and CLDN11. Of particular interest is also the GM130 (GOLGA2) gene, which encodes golgin A2, which revealed an increased expression in neuronopathic MPS types. We propose to consider the levels of mRNAs of these genes as candidates for biomarkers of neurodegeneration in MPS. These genes may also become potential targets for therapies under development for neurological disorders associated with MPS and candidates for markers of the effectiveness of these therapies. Although fibroblasts rather than nerve cells were used in this study, it is worth noting that potential genetic markers characteristic solely of neurons would be impractical in testing patients, contrary to somatic cells that can be relatively easily obtained from assessed persons.
Collapse
Affiliation(s)
- Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
7
|
Kandouz M. Cell Death, by Any Other Name…. Cells 2024; 13:325. [PMID: 38391938 PMCID: PMC10886887 DOI: 10.3390/cells13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Studies trying to understand cell death, this ultimate biological process, can be traced back to a century ago. Yet, unlike many other fashionable research interests, research on cell death is more alive than ever. New modes of cell death are discovered in specific contexts, as are new molecular pathways. But what is "cell death", really? This question has not found a definitive answer yet. Nevertheless, part of the answer is irreversibility, whereby cells can no longer recover from stress or injury. Here, we identify the most distinctive features of different modes of cell death, focusing on the executive final stages. In addition to the final stages, these modes can differ in their triggering stimulus, thus referring to the initial stages. Within this framework, we use a few illustrative examples to examine how intercellular communication factors in the demise of cells. First, we discuss the interplay between cell-cell communication and cell death during a few steps in the early development of multicellular organisms. Next, we will discuss this interplay in a fully developed and functional tissue, the gut, which is among the most rapidly renewing tissues in the body and, therefore, makes extensive use of cell death. Furthermore, we will discuss how the balance between cell death and communication is modified during a pathological condition, i.e., colon tumorigenesis, and how it could shed light on resistance to cancer therapy. Finally, we briefly review data on the role of cell-cell communication modes in the propagation of cell death signals and how this has been considered as a potential therapeutic approach. Far from vainly trying to provide a comprehensive review, we launch an invitation to ponder over the significance of cell death diversity and how it provides multiple opportunities for the contribution of various modes of intercellular communication.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA;
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Cara-Esteban M, Marín MP, Martínez-Alonso E, Martínez-Bellver S, Teruel-Martí V, Martínez-Menárguez JA, Tomás M. The Golgi complex of dopaminergic enteric neurons is fragmented in a hemiparkinsonian rat model. Microsc Res Tech 2024; 87:373-386. [PMID: 37855309 DOI: 10.1002/jemt.24442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/14/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Since gastrointestinal disorders are early consequences of Parkinson's disease (PD), this disease is clearly not restricted to the central nervous system (CNS), but also significantly affects the enteric nervous system (ENS). Large aggregates of the protein α-synuclein forming Lewy bodies, the prototypical cytopathological marker of this disease, have been observed in enteric nervous plexuses. However, their value in early prognosis is controversial. The Golgi complex (GC) of nigral neurons appears fragmented in Parkinson's disease, a characteristic common in most neurodegenerative diseases. In addition, the distribution and levels of regulatory proteins such as Rabs and SNAREs are altered, suggesting that PD is a membrane traffic-related pathology. Whether the GC of enteric dopaminergic neurons is affected by the disease has not yet been analyzed. In the present study, dopaminergic neurons in colon nervous plexuses behave as nigral neurons in a hemiparkinsonian rat model based on the injection of the toxin 6-OHDA. Their GCs are fragmented, and some regulatory proteins' distribution and expression levels are altered. The putative mechanisms of the transmission of the neurotoxin to the ENS are discussed. Our results support the possibility that GC structure and the level of some proteins, especially syntaxin 5, could be helpful as early indicators of the disease. RESEARCH HIGHLIGHTS: The Golgi complexes of enteric dopaminergic neurons appear fragmented in a Parkinson's disease rat model. Our results support the hypothesis that the Golgi complex structure and levels of Rab1 and syntaxin 5 could be helpful as early indicators of the disease.
Collapse
Affiliation(s)
- Mireia Cara-Esteban
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain
- Cell Biology Platform, Health Research Institute La Fe, Valencia, Spain
| | - María Pilar Marín
- Cell Biology Platform, Health Research Institute La Fe, Valencia, Spain
| | - Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, University of Murcia, Murcia, Spain
| | - Sergio Martínez-Bellver
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain
| | - Vicent Teruel-Martí
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain
| | | | - Mónica Tomás
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
9
|
Martín-Oliva D, Martín-Guerrero SM, Carrasco MC, Neubrand VE, Martín-Estebané M, Marín-Teva JL, Navascués J, Cuadros MA, Vangheluwe P, Sepúlveda MR. Distribution of intracellular Ca 2+-ATPases in the mouse retina and their involvement in light-induced cone degeneration. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119612. [PMID: 37884226 DOI: 10.1016/j.bbamcr.2023.119612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Calcium signalling is involved in many processes in mammalian retina, from development to mature functions and neurodegeneration. Although proteins involved in Ca2+ entry in retinal cells have been well studied, less is known about Ca2+-clearance. Among the Ca2+ pumps, plasma membrane Ca2+-ATPases (PMCAs) have been identified as key proteins extruding Ca2+ across the plasma membrane with specific distribution in developing and adult retina. However, the two main isoforms of intracellular Ca2+-ATPases in the central nervous system, the sarco(endo)plasmic reticulum (ER) Ca2+-ATPase 2b (SERCA2b) and the secretory pathway Ca2+-ATPase 1 (SPCA1), which remove cytosolic Ca2+ into intracellular stores, have been less or not at all analysed, respectively. In this study, we described for the first time the SPCA1 localisation in adult mouse retina and we report differential distributions of SERCA2b and SPCA1 transporters within various classes of retinal neurons and distinct subcellular localisations. In addition, we studied the expression and localisation of both Ca2+ pumps in 661W cells, a cone photoreceptor-derived cell line. Since continuous exposure to high light intensity induces photodegeneration, we analysed the effect of LED light exposure on these cells and SERCA2b and SPCA1 distribution. We found that continuous mild LED-light exposure compromised cell survival and produced stress in the ER and Golgi, the Ca2+ stores where the two pumps are localised. These effects were reversed after halting light exposure and washing. This study demonstrates that Ca2+ signalling may be involved in light-induced photoreceptor cell damage and points to previously unrecognised functions of intracellular Ca2+-ATPases in retina physiology.
Collapse
Affiliation(s)
- David Martín-Oliva
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | | | - M Carmen Carrasco
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Veronika E Neubrand
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - María Martín-Estebané
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - José L Marín-Teva
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Julio Navascués
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Miguel A Cuadros
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - M Rosario Sepúlveda
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
10
|
Dumitru AV, Stoica EE, Covache-Busuioc RA, Bratu BG, Cirstoiu MM. Unraveling the Intricate Link: Deciphering the Role of the Golgi Apparatus in Breast Cancer Progression. Int J Mol Sci 2023; 24:14073. [PMID: 37762375 PMCID: PMC10531533 DOI: 10.3390/ijms241814073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer represents a paramount global health challenge, warranting intensified exploration of the molecular underpinnings influencing its progression to facilitate the development of precise diagnostic instruments and customized therapeutic regimens. Historically, the Golgi apparatus has been acknowledged for its primary role in protein sorting and trafficking within cellular contexts. However, recent findings suggest a potential link between modifications in Golgi apparatus function and organization and the pathogenesis of breast cancer. This review delivers an exhaustive analysis of this correlation. Specifically, we examine the consequences of disrupted protein glycosylation, compromised protein transport, and inappropriate oncoprotein processing on breast cancer cell dynamics. Furthermore, we delve into the impacts of Golgi-mediated secretory routes on the release of pro-tumorigenic factors during the course of breast cancer evolution. Elucidating the nuanced interplay between the Golgi apparatus and breast cancer can pave the way for innovative therapeutic interventions and the discovery of biomarkers, potentially enhancing the diagnostic, prognostic, and therapeutic paradigms for afflicted patients. The advancement of such research could substantially expedite the realization of these objectives.
Collapse
Affiliation(s)
- Adrian Vasile Dumitru
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Evelina-Elena Stoica
- Department of Obstetrics and Gynaecology, University Emergency Hospital, 050098 Bucharest, Romania;
| | | | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Monica-Mihaela Cirstoiu
- Department of Obstetrics and Gynaecology, University Emergency Hospital, 050098 Bucharest, Romania;
- Department of Obstetrics and Gynaecology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
11
|
Mohan AG, Calenic B, Ghiurau NA, Duncea-Borca RM, Constantinescu AE, Constantinescu I. The Golgi Apparatus: A Voyage through Time, Structure, Function and Implication in Neurodegenerative Disorders. Cells 2023; 12:1972. [PMID: 37566051 PMCID: PMC10417163 DOI: 10.3390/cells12151972] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
This comprehensive review article dives deep into the Golgi apparatus, an essential organelle in cellular biology. Beginning with its discovery during the 19th century until today's recognition as an important contributor to cell function. We explore its unique organization and structure as well as its roles in protein processing, sorting, and lipid biogenesis, which play key roles in maintaining homeostasis in cellular biology. This article further explores Golgi biogenesis, exploring its intricate processes and dynamics that contribute to its formation and function. One key focus is its role in neurodegenerative diseases like Parkinson's, where changes to the structure or function of the Golgi apparatus may lead to their onset or progression, emphasizing its key importance in neuronal health. At the same time, we examine the intriguing relationship between Golgi stress and endoplasmic reticulum (ER) stress, providing insights into their interplay as two major cellular stress response pathways. Such interdependence provides a greater understanding of cellular reactions to protein misfolding and accumulation, hallmark features of many neurodegenerative diseases. In summary, this review offers an exhaustive examination of the Golgi apparatus, from its historical background to its role in health and disease. Additionally, this examination emphasizes the necessity of further research in this field in order to develop targeted therapeutic approaches for Golgi dysfunction-associated conditions. Furthermore, its exploration is an example of scientific progress while simultaneously offering hope for developing innovative treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Aurel George Mohan
- Department of Neurosurgery, Bihor County Emergency Clinical Hospital, 410167 Oradea, Romania;
- Faculty of Medicine, Oradea University, 410610 Oradea, Romania
| | - Bogdan Calenic
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Nicu Adrian Ghiurau
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410610 Oradea, Romania;
| | | | | | - Ileana Constantinescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
12
|
Nishino M, Imaizumi H, Yokoyama Y, Katahira J, Kimura H, Matsuura N, Matsumura M. Histone methyltransferase SUV39H1 regulates the Golgi complex via the nuclear envelope-spanning LINC complex. PLoS One 2023; 18:e0283490. [PMID: 37437070 DOI: 10.1371/journal.pone.0283490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Cell motility is related to the higher-order structure of chromatin. Stimuli that induce cell migration change chromatin organization; such stimuli include elevated histone H3 lysine 9 trimethylation (H3K9me3). We previously showed that depletion of histone H3 lysine 9 methyltransferase, SUV39H1, suppresses directional cell migration. However, the molecular mechanism underlying this association between chromatin and cell migration remains elusive. The Golgi apparatus is a cell organelle essential for cell motility. In this study, we show that loss of H3K9 methyltransferase SUV39H1 but not SETDB1 or SETDB2 causes dispersion of the Golgi apparatus throughout the cytoplasm. The Golgi dispersion triggered by SUV39H1 depletion is independent of transcription, centrosomes, and microtubule organization, but is suppressed by depletion of any of the following three proteins: LINC complex components SUN2, nesprin-2, or microtubule plus-end-directed kinesin-like protein KIF20A. In addition, SUN2 is closely localized to H3K9me3, and SUV39H1 affects the mobility of SUN2 in the nuclear envelope. Further, inhibition of cell motility caused by SUV39H1 depletion is restored by suppression of SUN2, nesprin-2, or KIF20A. In summary, these results show the functional association between chromatin organization and cell motility via the Golgi organization regulated by the LINC complex.
Collapse
Affiliation(s)
- Miyu Nishino
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
| | - Hiromasa Imaizumi
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
- Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Yuhki Yokoyama
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
| | - Jun Katahira
- Laboratories of Cellular Molecular Biology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Osaka, Japan
| | - Hiroshi Kimura
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Nariaki Matsuura
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
- Osaka International Cancer Institute, Osaka, Japan
| | - Miki Matsumura
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Rajanala K, Wedegaertner PB. Gβγ signaling regulates microtubule-dependent control of Golgi integrity. Cell Signal 2023; 106:110630. [PMID: 36805843 PMCID: PMC10079639 DOI: 10.1016/j.cellsig.2023.110630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Gβγ subunits regulate several non-canonical functions at distinct intracellular organelles. Previous studies have shown that Gβγ signaling at the Golgi is necessary to mediate vesicular protein transport function and to regulate mitotic Golgi fragmentation. Disruption of Golgi structure also occurs in response to microtubule depolymerizing agents, such as nocodazole. In this study, we use siRNA against Gβ1/2 or specific Gγ subunits to deplete their expression, and show that their knockdown causes a significant reduction in nocodazole-induced Golgi fragmentation. We establish that knockdown of Gβγ or inhibition of Gβγ with gallein resulted in decreased activation of protein kinase D (PKD) in response to nocodazole treatment. We demonstrate that restricting the amount of free Gβγ available for signaling by either inhibiting Gαi activation using pertussis toxin or by knockdown of the non-GPCR GEF, Girdin/GIV protein, results in a substantial decrease in nocodazole-induced Golgi fragmentation and PKD phosphorylation. Our results also indicate that depletion of Gβγ or inhibition with gallein or pertussis toxin significantly reduces the microtubule disruption-dependent Golgi fragmentation phenotype observed in cells transfected with mutant SOD1, a major causative protein in familial amyotrophic lateral sclerosis (ALS). These results provide compelling evidence that Gβγ signaling is critical for the regulation of Golgi integrity.
Collapse
Affiliation(s)
- Kalpana Rajanala
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA 19107, United States of America
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA 19107, United States of America.
| |
Collapse
|
14
|
Impact of Hypermannosylation on the Structure and Functionality of the ER and the Golgi Complex. Biomedicines 2023; 11:biomedicines11010146. [PMID: 36672654 PMCID: PMC9856158 DOI: 10.3390/biomedicines11010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023] Open
Abstract
Proteins of the secretory pathway undergo glycosylation in the endoplasmic reticulum (ER) and the Golgi apparatus. Altered protein glycosylation can manifest in serious, sometimes fatal malfunctions. We recently showed that mutations in GDP-mannose pyrophosphorylase A (GMPPA) can cause a syndrome characterized by alacrima, achalasia, mental retardation, and myopathic alterations (AAMR syndrome). GMPPA acts as a feedback inhibitor of GDP-mannose pyrophosphorylase B (GMPPB), which provides GDP-mannose as a substrate for protein glycosylation. Loss of GMPPA thus enhances the incorporation of mannose into glycochains of various proteins, including α-dystroglycan (α-DG), a protein that links the extracellular matrix with the cytoskeleton. Here, we further characterized the consequences of loss of GMPPA for the secretory pathway. This includes a fragmentation of the Golgi apparatus, which comes along with a regulation of the abundance of several ER- and Golgi-resident proteins. We further show that the activity of the Golgi-associated endoprotease furin is reduced. Moreover, the fraction of α-DG, which is retained in the ER, is increased. Notably, WT cells cultured at a high mannose concentration display similar changes with increased retention of α-DG, altered structure of the Golgi apparatus, and a decrease in furin activity. In summary, our data underline the importance of a balanced mannose homeostasis for the secretory pathway.
Collapse
|
15
|
Wei Y, Awan MUN, Bai L, Bai J. The function of Golgi apparatus in LRRK2-associated Parkinson's disease. Front Mol Neurosci 2023; 16:1097633. [PMID: 36896008 PMCID: PMC9989030 DOI: 10.3389/fnmol.2023.1097633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease associated with the intracellular organelles. Leucine-rich repeat kinase 2 (LRRK2) is a large multi-structural domain protein, and mutation in LRRK2 is associated with PD. LRRK2 regulates intracellular vesicle transport and function of organelles, including Golgi and lysosome. LRRK2 phosphorylates a group of Rab GTPases, including Rab29, Rab8, and Rab10. Rab29 acts in a common pathway with LRRK2. Rab29 has been shown to recruit LRRK2 to the Golgi complex (GC) to stimulate LRRK2 activity and alter the Golgi apparatus (GA). Interaction between LRRK2 and Vacuolar protein sorting protein 52 (VPS52), a subunit of the Golgi-associated retrograde protein (GARP) complex, mediates the function of intracellular soma trans-Golgi network (TGN) transport. VPS52 also interacts with Rab29. Knockdown of VPS52 leads to the loss of LRRK2/Rab29 transported to the TGN. Rab29, LRRK2, and VPS52 work together to regulate functions of the GA, which is associated with PD. We highlight recent advances in the roles of LRRK2, Rabs, VPS52, and other molecules, such as Cyclin-dependent kinase 5 (CDK5) and protein kinase C (PKC) in the GA, and discuss their possible association with the pathological mechanisms of PD.
Collapse
Affiliation(s)
- Yonghang Wei
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Maher Un Nisa Awan
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Liping Bai
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
16
|
Li RS, Wen C, Huang CZ, Li N. Functional molecules and nano-materials for the Golgi apparatus-targeted imaging and therapy. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Choi W, Kang S, Kim J. New insights into the role of the Golgi apparatus in the pathogenesis and therapeutics of human diseases. Arch Pharm Res 2022; 45:671-692. [PMID: 36178581 DOI: 10.1007/s12272-022-01408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022]
Abstract
The Golgi apparatus is an essential cellular organelle that mediates homeostatic functions, including vesicle trafficking and the post-translational modification of macromolecules. Its unique stacked structure and dynamic functions are tightly regulated, and several Golgi proteins play key roles in the functioning of unconventional protein secretory pathways triggered by cellular stress responses. Recently, an increasing number of studies have implicated defects in Golgi functioning in human diseases such as cancer, neurodegenerative, and immunological disorders. Understanding the extraordinary characteristics of Golgi proteins is important for elucidating its associated intracellular signaling mechanisms and has important ramifications for human health. Therefore, analyzing the mechanisms by which the Golgi participates in disease pathogenesis may be useful for developing novel therapeutic strategies. This review articulates the structural features and abnormalities of the Golgi apparatus reported in various diseases and the suspected mechanisms underlying the Golgi-associated pathologies. Furthermore, we review the potential therapeutic strategies based on Golgi function.
Collapse
Affiliation(s)
- Wooseon Choi
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Shinwon Kang
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Jiyoon Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
18
|
Sou YS, Yamaguchi J, Kameda H, Masuda K, Maeda Y, Uchiyama Y, Koike M. GPHR-mediated acidification of the Golgi lumen is essential for cholesterol biosynthesis in the brain. FEBS Lett 2022; 596:2873-2888. [PMID: 36056653 DOI: 10.1002/1873-3468.14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/06/2022]
Abstract
The Golgi pH regulator (GPHR) is essential for maintaining the function and morphology of the Golgi apparatus through the regulation of luminal acidic pH. Abnormal morphology of the Golgi apparatus is associated with neurodegenerative diseases. Here, we found that knockout of GPHR in the mouse brain led to morphological changes in the Golgi apparatus and neurodegeneration, which included brain atrophy, neuronal cell death, and gliosis. Furthermore, in the GPHR knockout mouse brain, transcriptional activity of sterol regulatory element-binding protein 2 (SREBP2) decreased, resulting in a reduction in cholesterol levels. GPHR-deficient cells exhibited suppressed neurite outgrowth, which was recovered by exogenous expression of the active form of SREBP2. Our results show that GPHR-mediated luminal acidification of the Golgi apparatus maintains proper cholesterol levels and, thereby, neuronal morphology.
Collapse
Affiliation(s)
- Yu-Shin Sou
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Junji Yamaguchi
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan.,Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Hiroshi Kameda
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Keisuke Masuda
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Yusuke Maeda
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| |
Collapse
|
19
|
Sharma K, Verma R, Kumar D, Nepovimova E, Kuča K, Kumar A, Raghuvanshi D, Dhalaria R, Puri S. Ethnomedicinal plants used for the treatment of neurodegenerative diseases in Himachal Pradesh, India in Western Himalaya. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115318. [PMID: 35469830 DOI: 10.1016/j.jep.2022.115318] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants are considered as a healthcare resource and widely used by rural people in their traditional medicine system for curing neurodegenerative diseases. Neurodegenerative diseases refer to incurable and debilitating conditions that result in progressive degeneration/death of nerve cells or neurons in the human brain. This review is mainly focused on the usage of different ethnomedicinal plants in the treatment of different neurodegenerative diseases in Himachal Pradesh. Study reveals total of 73 ethnomedicinal plants, which are used for treating different neurological disorders in different areas of Himachal Pradesh. The data is compiled from the different sources that described the detailed information of plants in tabular form and highlights the significance of different phytochemicals on neuroprotective function. The present study also provides the scientific data and clinical (in-vivo and in-vitro) studies in support of ethnomedicinal use. AIM OF THE STUDY This review aims to provide information of ethnomedicinal plants which are used for the treatment of neurodegenerative diseases in Himachal Pradesh. MATERIALS AND METHODS Information on the use of ethnomedicinal plants to treat various neurological disorders has been gathered from a variety of sources, including various types of literature, books, and relevant publications in Google Scholar, Research Gate, Science Direct, Scopus, and Pub Med, among others. The collected data is tabulated, including the botanical names of plants, mode of use and the disease for which it is used for curing, etc. RESULTS: There are 73 ethnomedicinal plants that are used to cure various neurological disorders, with the most plants being used to treat epilepsy problem in Himachal Pradesh. CONCLUSION Numerous phytochemicals and extracts from diverse plants were found to have a protective effect against neurodegenerative diseases. Antioxidant activity is known to exist in a variety of herbal plants. The most common bioactive antioxidant chemicals having their significant impacts include flavonoids, flavones, coumarins, lignans, isoflavones, catechins, anthocyanins, and isocatechins.
Collapse
Affiliation(s)
- Kiran Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Dinesh Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec, Kralove, 50003, Czech Republic.
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec, Kralove, 50003, Czech Republic; Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, 50005, Hradec, Kralove, Czech Republic.
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India.
| | - Disha Raghuvanshi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| |
Collapse
|
20
|
Suga K, Yamamoto-Hijikata S, Terao Y, Akagawa K, Ushimaru M. Golgi stress induces upregulation of the ER-Golgi SNARE Syntaxin-5, altered βAPP processing, and Caspase-3-dependent apoptosis in NG108-15 cells. Mol Cell Neurosci 2022; 121:103754. [PMID: 35842170 DOI: 10.1016/j.mcn.2022.103754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/29/2022] [Accepted: 07/07/2022] [Indexed: 01/06/2023] Open
Abstract
The involvement of secretory pathways and Golgi dysfunction in neuronal cells during Alzheimer's disease progression is poorly understood. Our previous overexpression and knockdown studies revealed that the intracellular protein level of Syntaxin-5, an endoplasmic reticulum-Golgi soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE), modulates beta-amyloid precursor protein processing in neuronal cells. We recently showed that changes in endogenous Syntaxin-5 protein expression occur under stress induction. Syntaxin-5 was upregulated by endoplasmic reticulum stress but was degraded by Caspase-3 during apoptosis in neuronal cells. In addition, we showed that sustained endoplasmic reticulum stress promotes Caspase-3-dependent apoptosis during the later phase of the endoplasmic reticulum stress response in NG108-15 cells. In this study, to elucidate the consequences of secretory pathway dysfunction in beta-amyloid precursor protein processing that lead to neuronal cell death, we examined the effect of various stresses on endoplasmic reticulum-Golgi SNARE expression and beta-amyloid precursor protein processing. By using compounds to disrupt Golgi function, we show that Golgi stress promotes upregulation of the endoplasmic reticulum-Golgi SNARE Syntaxin-5, and prolonged stress causes Caspase-3-dependent apoptosis. Golgi stress induced intracellular beta-amyloid precursor protein accumulation and a concomitant decrease in total amyloid-beta production. We also examined the protective effect of the chemical chaperone 4-phenylbutylate on changes in amyloid-beta production and the activation of Caspase-3 induced by endoplasmic reticulum and Golgi stress. The compound alleviated the increase in the amyloid-beta 1-42/amyloid-beta 1-40 ratio induced by endoplasmic reticulum and Golgi stress. Furthermore, 4-phenylbutylate could rescue Caspase-3-dependent apoptosis induced by prolonged organelle stress. These results suggest that organelle stress originating from the endoplasmic reticulum and Golgi has a substantial impact on the amyloidogenic processing of beta-amyloid precursor protein and Caspase-3-dependent apoptosis, leading to neuronal cell death.
Collapse
Affiliation(s)
- Kei Suga
- Department of Chemistry, Kyorin University, Faculty of Medicine, Mitaka, Tokyo 181-8611, Japan; Department of Medical Physiology, Kyorin University, Faculty of Medicine, Mitaka, Tokyo 181-8611, Japan.
| | | | - Yasuo Terao
- Department of Medical Physiology, Kyorin University, Faculty of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Kimio Akagawa
- Department of Medical Physiology, Kyorin University, Faculty of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Makoto Ushimaru
- Department of Chemistry, Kyorin University, Faculty of Medicine, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
21
|
Lambert-Smith IA, Saunders DN, Yerbury JJ. Progress in biophysics and molecular biology proteostasis impairment and ALS. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:3-27. [PMID: 35716729 DOI: 10.1016/j.pbiomolbio.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disease that results from the loss of both upper and lower motor neurons. It is the most common motor neuron disease and currently has no effective treatment. There is mounting evidence to suggest that disturbances in proteostasis play a significant role in ALS pathogenesis. Proteostasis is the maintenance of the proteome at the right level, conformation and location to allow a cell to perform its intended function. In this review, we present a thorough synthesis of the literature that provides evidence that genetic mutations associated with ALS cause imbalance to a proteome that is vulnerable to such pressure due to its metastable nature. We propose that the mechanism underlying motor neuron death caused by defects in mRNA metabolism and protein degradation pathways converges on proteostasis dysfunction. We propose that the proteostasis network may provide an effective target for therapeutic development in ALS.
Collapse
Affiliation(s)
- Isabella A Lambert-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Darren N Saunders
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
22
|
Sevoflurane inhibits histone acetylation and contributes to cognitive dysfunction by enhancing the expression of ANP32A in aging mice. Behav Brain Res 2022; 431:113949. [DOI: 10.1016/j.bbr.2022.113949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
|
23
|
TREX1 Deficiency Induces ER Stress-Mediated Neuronal Cell Death by Disrupting Ca 2+ Homeostasis. Mol Neurobiol 2022; 59:1398-1418. [PMID: 34997539 PMCID: PMC8882114 DOI: 10.1007/s12035-021-02631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022]
Abstract
TREX1 is an exonuclease that degrades extranuclear DNA species in mammalian cells. Herein, we show a novel mechanism by which TREX1 interacts with the BiP/GRP78 and TREX1 deficiency triggers ER stress through the accumulation of single-stranded DNA and activates unfolded protein response (UPR) signaling via the disruption of the TREX1-BiP/GRP78 interaction. In TREX1 knockdown cells, the activation of ER stress signaling disrupted ER Ca2+ homeostasis via the ERO1α-IP3R1-CaMKII pathway, leading to neuronal cell death. Moreover, TREX1 knockdown dysregulated the Golgi-microtubule network through Golgi fragmentation and decreased Ac-α-tubulin levels, contributing to neuronal injury. These alterations were also observed in neuronal cells harboring a TREX1 mutation (V91M) that has been identified in hereditary spastic paraplegia (HSP) patients in Korea. Notably, this mutation leads to defects in the TREX1-BiP/GRP78 interaction and mislocalization of TREX1 from the ER and possible disruption of the Golgi-microtubule network. In summary, the current study reveals TREX1 as a novel regulator of the BiP/GRP78 interaction and shows that TREX1 deficiency promotes ER stress-mediated neuronal cell death, which indicates that TREX1 may hold promise as a therapeutic target for neurodegenerative diseases such as HSP.
Collapse
|
24
|
Smith BJ, Carregari VC. Post-Translational Modifications During Brain Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:29-38. [DOI: 10.1007/978-3-031-05460-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Sanyal C, Pietsch N, Ramirez Rios S, Peris L, Carrier L, Moutin MJ. The detyrosination/re-tyrosination cycle of tubulin and its role and dysfunction in neurons and cardiomyocytes. Semin Cell Dev Biol 2021; 137:46-62. [PMID: 34924330 DOI: 10.1016/j.semcdb.2021.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022]
Abstract
Among the variety of post-translational modifications to which microtubules are subjected, the detyrosination/re-tyrosination cycle is specific to tubulin. It is conserved by evolution and characterized by the enzymatic removal and re-addition of a gene-encoded tyrosine residue at the C-terminus of α-tubulin. Detyrosinated tubulin can be further converted to Δ2-tubulin by the removal of an additional C-terminal glutamate residue. Detyrosinated and Δ2-tubulin are carried by stable microtubules whereas tyrosinated microtubules are present on dynamic polymers. The cycle regulates trafficking of many cargo transporting molecular motors and is linked to the microtubule dynamics via regulation of microtubule interactions with specific cellular effectors such as kinesin-13. Here, we give an historical overview of the general features discovered for the cycle. We highlight the recent progress toward structure and functioning of the enzymes that keep the levels of tyrosinated and detyrosinated tubulin in cells, the long-known tubulin tyrosine ligase and the recently discovered vasohibin-SVBP complexes. We further describe how the cycle controls microtubule functions in healthy neurons and cardiomyocytes and how deregulations of the cycle are involved in dysfunctions of these highly differentiated cells, leading to neurodegeneration and heart failure in humans.
Collapse
Affiliation(s)
- Chadni Sanyal
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Niels Pietsch
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sacnicte Ramirez Rios
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Leticia Peris
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Marie-Jo Moutin
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| |
Collapse
|
26
|
Serratos IN, Hernández-Pérez E, Campos C, Aschner M, Santamaría A. An Update on the Critical Role of α-Synuclein in Parkinson's Disease and Other Synucleinopathies: from Tissue to Cellular and Molecular Levels. Mol Neurobiol 2021; 59:620-642. [PMID: 34750787 DOI: 10.1007/s12035-021-02596-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
The aggregation of alpha-synuclein (α-Syn) plays a critical role in the development of Parkinson's disease (PD) and other synucleinopathies. α-Syn, which is encoded by the SNCA gene, is a lysine-rich soluble amphipathic protein normally expressed in neurons. Located in the cytosolic domain, this protein has the ability to remodel itself in plasma membranes, where it assumes an alpha-helix conformation. However, the protein can also adopt another conformation rich in cross-beta sheets, undergoing mutations and post-translational modifications, then leading the protein to an unusual aggregation in the form of Lewy bodies (LB), which are cytoplasmic inclusions constituted predominantly by α-Syn. Pathogenic mechanisms affecting the structural and functional stability of α-Syn - such as endoplasmic reticulum stress, Golgi complex fragmentation, disfunctional protein degradation systems, aberrant interactions with mitochondrial membranes and nuclear DNA, altered cytoskeleton dynamics, disrupted neuronal plasmatic membrane, dysfunctional vesicular transport, and formation of extracellular toxic aggregates - contribute all to the pathogenic progression of PD and synucleinopathies. In this review, we describe the collective knowledge on this topic and provide an update on the critical role of α-Syn aggregates, both at the cellular and molecular levels, in the deregulation of organelles affecting the cellular homeostasis and leading to neuronal cell death in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Iris N Serratos
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico
| | - Elizabeth Hernández-Pérez
- Departamento de Ciencias de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico
| | - Carolina Campos
- Departamento de Ciencias de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, SSA, 14269, Mexico City, Mexico.
| |
Collapse
|
27
|
Paul BD. Signaling Overlap between the Golgi Stress Response and Cysteine Metabolism in Huntington's Disease. Antioxidants (Basel) 2021; 10:antiox10091468. [PMID: 34573100 PMCID: PMC8465517 DOI: 10.3390/antiox10091468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022] Open
Abstract
Huntington's disease (HD) is caused by expansion of polyglutamine repeats in the protein huntingtin, which affects the corpus striatum of the brain. The polyglutamine repeats in mutant huntingtin cause its aggregation and elicit toxicity by affecting several cellular processes, which include dysregulated organellar stress responses. The Golgi apparatus not only plays key roles in the transport, processing, and targeting of proteins, but also functions as a sensor of stress, signaling through the Golgi stress response. Unlike the endoplasmic reticulum (ER) stress response, the Golgi stress response is relatively unexplored. This review focuses on the molecular mechanisms underlying the Golgi stress response and its intersection with cysteine metabolism in HD.
Collapse
Affiliation(s)
- Bindu D. Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
28
|
Mohamed Asik R, Suganthy N, Aarifa MA, Kumar A, Szigeti K, Mathe D, Gulyás B, Archunan G, Padmanabhan P. Alzheimer's Disease: A Molecular View of β-Amyloid Induced Morbific Events. Biomedicines 2021; 9:biomedicines9091126. [PMID: 34572312 PMCID: PMC8468668 DOI: 10.3390/biomedicines9091126] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Amyloid-β (Aβ) is a dynamic peptide of Alzheimer’s disease (AD) which accelerates the disease progression. At the cell membrane and cell compartments, the amyloid precursor protein (APP) undergoes amyloidogenic cleavage by β- and γ-secretases and engenders the Aβ. In addition, externally produced Aβ gets inside the cells by receptors mediated internalization. An elevated amount of Aβ yields spontaneous aggregation which causes organelles impairment. Aβ stimulates the hyperphosphorylation of tau protein via acceleration by several kinases. Aβ travels to the mitochondria and interacts with its functional complexes, which impairs the mitochondrial function leading to the activation of apoptotic signaling cascade. Aβ disrupts the Ca2+ and protein homeostasis of the endoplasmic reticulum (ER) and Golgi complex (GC) that promotes the organelle stress and inhibits its stress recovery machinery such as unfolded protein response (UPR) and ER-associated degradation (ERAD). At lysosome, Aβ precedes autophagy dysfunction upon interacting with autophagy molecules. Interestingly, Aβ act as a transcription regulator as well as inhibits telomerase activity. Both Aβ and p-tau interaction with neuronal and glial receptors elevate the inflammatory molecules and persuade inflammation. Here, we have expounded the Aβ mediated events in the cells and its cosmopolitan role on neurodegeneration, and the current clinical status of anti-amyloid therapy.
Collapse
Affiliation(s)
- Rajmohamed Mohamed Asik
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Mohamed Asik Aarifa
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Arvind Kumar
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India;
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
| | - Domokos Mathe
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), 1094 Budapest, Hungary
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
- Marudupandiyar College, Thanjavur 613403, Tamil Nadu, India
- Correspondence: (G.A.); (P.P.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Correspondence: (G.A.); (P.P.)
| |
Collapse
|
29
|
Zhang M, Xu N, Xu W, Ling G, Zhang P. Potential therapies and diagnosis based on Golgi-targeted nano drug delivery systems. Pharmacol Res 2021; 175:105861. [PMID: 34464677 DOI: 10.1016/j.phrs.2021.105861] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
With the rapid development of nanotechnology, organelle-targeted nano drug delivery systems (NDDSs) have emerged as a potential method which can transport drugs specifically to the subcellular compartments like nucleus, mitochondrion, lysosome, endoplasmic reticulum (ER) and Golgi apparatus (GA). GA not only plays a key role in receiving, modifying, packaging and transporting proteins and lipids, but also contributes to a set of cellular processes. Golgi-targeted NDDSs can alter the morphology of GA and will become a promising strategy with high specificity, low-dose administration and decreased occurrence of side effects. In this review, Golgi-targeted NDDSs and their applications in disease therapies and diagnosis such as cancer, metastasis, fibrosis and neurological diseases are introduced. Meanwhile, modifications of NDDSs to achieve targeting strategies, Golgi-disturbing agents to change the morphology of GA, special endocytosis to achieve endosomal/lysosomal escape strategies are also involved.
Collapse
Affiliation(s)
- Manyue Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Na Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Wenxin Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
30
|
Rajanala K, Klayman LM, Wedegaertner PB. Gβγ regulates mitotic Golgi fragmentation and G2/M cell cycle progression. Mol Biol Cell 2021; 32:br2. [PMID: 34260268 PMCID: PMC8684744 DOI: 10.1091/mbc.e21-04-0175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins (αβγ) function at the cytoplasmic surface of a cell’s plasma membrane to transduce extracellular signals into cellular responses. However, numerous studies indicate that G proteins also play noncanonical roles at unique intracellular locations. Previous work has established that G protein βγ subunits (Gβγ) regulate a signaling pathway on the cytoplasmic surface of Golgi membranes that controls the exit of select protein cargo. Now, we demonstrate a novel role for Gβγ in regulating mitotic Golgi fragmentation, a key checkpoint of the cell cycle that occurs in the late G2 phase. We show that small interfering RNA–mediated depletion of Gβ1 and Gβ2 in synchronized cells causes a decrease in the number of cells with fragmented Golgi in late G2 and a delay of entry into mitosis and progression through G2/M. We also demonstrate that during G2/M Gβγ acts upstream of protein kinase D and regulates the phosphorylation of the Golgi structural protein GRASP55. Expression of Golgi-targeted GRK2ct, a Gβγ-sequestering protein used to inhibit Gβγ signaling, also causes a decrease in Golgi fragmentation and a delay in mitotic progression. These results highlight a novel role for Gβγ in regulation of Golgi structure.
Collapse
Affiliation(s)
- Kalpana Rajanala
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA 19107
| | - Lauren M Klayman
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA 19107
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA 19107
| |
Collapse
|
31
|
Fourriere L, Gleeson PA. Amyloid β production along the neuronal secretory pathway: Dangerous liaisons in the Golgi? Traffic 2021; 22:319-327. [PMID: 34189821 DOI: 10.1111/tra.12808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/24/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022]
Abstract
β-amyloid peptides (Aβ) are generated in intracellular compartments of neurons and secreted to form cytotoxic fibrils and plaques. Dysfunctional membrane trafficking contributes to aberrant Aβ production and Alzheimer's disease. Endosomes represent one of the major sites for Aβ production and recently the Golgi has re-emerged also as a major location for amyloid precursor protein (APP) processing and Aβ production. Based on recent findings, here we propose that APP processing in the Golgi is finely tuned by segregating newly-synthesised APP and the β-secretase BACE1 within the Golgi and into distinct trans-Golgi network transport pathways. We hypothesise that there are multiple mechanisms responsible for segregating APP and BACE1 during transit through the Golgi, and that perturbation in Golgi morphology associated with Alzheimer's disease, and or changes in cholesterol metabolism associated with Alzheimer's disease risk factors, may lead to a loss of partitioning and enhanced Aβ production.
Collapse
Affiliation(s)
- Lou Fourriere
- The Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Pesaola F, Quassollo G, Venier AC, De Paul AL, Noher I, Bisbal M. The neuronal ceroid lipofuscinosis-related protein CLN8 regulates endo-lysosomal dynamics and dendritic morphology. Biol Cell 2021; 113:419-437. [PMID: 34021618 DOI: 10.1111/boc.202000016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND INFORMATION The endo-lysosomal system (ELS) comprises a set of membranous organelles responsible for transporting intracellular and extracellular components within cells. Defects in lysosomal proteins usually affect a large variety of processes and underlie many diseases, most of them with a strong neuronal impact. Mutations in the endoplasmic reticulum-resident CLN8 protein cause CLN8 disease. This condition is one of the 14 known neuronal ceroid lipofuscinoses (NCLs), a group of inherited diseases characterised by accumulation of lipofuscin-like pigments within lysosomes. Besides mediating the transport of soluble lysosomal proteins, recent research suggested a role for CLN8 in the transport of vesicles and lipids, and autophagy. However, the consequences of CLN8 deficiency on ELS structure and activity, as well as the potential impact on neuronal development, remain poorly characterised. Therefore, we performed CLN8 knockdown in neuronal and non-neuronal cell models to analyse structural, dynamic and functional changes in the ELS and to assess the impact of CLN8 deficiency on axodendritic development. RESULTS CLN8 knockdown increased the size of the Golgi apparatus, the number of mobile vesicles and the speed of endo-lysosomes. Using the fluorescent fusion protein mApple-LAMP1-pHluorin, we detected significant lysosomal alkalisation in CLN8-deficient cells. In turn, experiments in primary rat hippocampal neurons showed that CLN8 deficiency decreased the complexity and size of the somatodendritic compartment. CONCLUSIONS Our results suggest the participation of CLN8 in vesicular distribution, lysosomal pH and normal development of the dendritic tree. We speculate that the defects triggered by CLN8 deficiency on ELS structure and dynamics underlie morphological alterations in neurons, which ultimately lead to the characteristic neurodegeneration observed in this NCL. SIGNIFICANCE This is, to our knowledge, the first characterisation of the effects of CLN8 dysfunction on the structure and dynamics of the ELS. Moreover, our findings suggest a novel role for CLN8 in somatodendritic development, which may account at least in part for the neuropathological manifestations associated with CLN8 disease.
Collapse
Affiliation(s)
- Favio Pesaola
- Programa de Investigación Translacional de Lipofuscinosis Ceroidea Neuronal, Hospital de Niños de Córdoba, Córdoba, 5014, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Médicas "Mercedes y Martin Ferreyra"- IMMF-UNC-CONICET, Laboratorio de Neurobiología, Av. Friuli 2434, 5016 Córdoba, Argentina, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Gonzalo Quassollo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Médicas "Mercedes y Martin Ferreyra"- IMMF-UNC-CONICET, Laboratorio de Neurobiología, Av. Friuli 2434, 5016 Córdoba, Argentina, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Ana Clara Venier
- Programa de Investigación Translacional de Lipofuscinosis Ceroidea Neuronal, Hospital de Niños de Córdoba, Córdoba, 5014, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigación en Ciencias de la Salud (INICSA), Bv. de la Reforma y Enfermera Gordillo, Ciudad Universitaria, Córdoba, 5016, Argentina
| | - Ana Lucía De Paul
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigación en Ciencias de la Salud (INICSA), Bv. de la Reforma y Enfermera Gordillo, Ciudad Universitaria, Córdoba, 5016, Argentina.,Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Bv. de la Reforma y Enfermera Gordillo, Ciudad Universitaria, Córdoba, 5016, Argentina
| | - Ines Noher
- Programa de Investigación Translacional de Lipofuscinosis Ceroidea Neuronal, Hospital de Niños de Córdoba, Córdoba, 5014, Argentina
| | - Mariano Bisbal
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Médicas "Mercedes y Martin Ferreyra"- IMMF-UNC-CONICET, Laboratorio de Neurobiología, Av. Friuli 2434, 5016 Córdoba, Argentina, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.,Instituto Universitario de Ciencias Biomédicas Córdoba, Córdoba, 5016, Argentina
| |
Collapse
|
33
|
Nthiga TM, Shrestha BK, Bruun JA, Larsen KB, Lamark T, Johansen T. Regulation of Golgi turnover by CALCOCO1-mediated selective autophagy. J Cell Biol 2021; 220:212004. [PMID: 33871553 PMCID: PMC8059076 DOI: 10.1083/jcb.202006128] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/29/2021] [Accepted: 03/03/2021] [Indexed: 12/20/2022] Open
Abstract
The Golgi complex is essential for the processing, sorting, and trafficking of newly synthesized proteins and lipids. Golgi turnover is regulated to meet different cellular physiological demands. The role of autophagy in the turnover of Golgi, however, has not been clarified. Here we show that CALCOCO1 binds the Golgi-resident palmitoyltransferase ZDHHC17 to facilitate Golgi degradation by autophagy during starvation. Depletion of CALCOCO1 in cells causes expansion of the Golgi and accumulation of its structural and membrane proteins. ZDHHC17 itself is degraded by autophagy together with other Golgi membrane proteins such as TMEM165. Taken together, our data suggest a model in which CALCOCO1 mediates selective Golgiphagy to control Golgi size and morphology in eukaryotic cells via its interaction with ZDHHC17.
Collapse
Affiliation(s)
- Thaddaeus Mutugi Nthiga
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Birendra Kumar Shrestha
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Jack-Ansgar Bruun
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Kenneth Bowitz Larsen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Trond Lamark
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
34
|
Liu J, Huang Y, Li T, Jiang Z, Zeng L, Hu Z. The role of the Golgi apparatus in disease (Review). Int J Mol Med 2021; 47:38. [PMID: 33537825 PMCID: PMC7891830 DOI: 10.3892/ijmm.2021.4871] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
The Golgi apparatus is known to underpin many important cellular homeostatic functions, including trafficking, sorting and modifications of proteins or lipids. These functions are dysregulated in neurodegenerative diseases, cancer, infectious diseases and cardiovascular diseases, and the number of disease-related genes associated with Golgi apparatus is on the increase. Recently, many studies have suggested that the mutations in the genes encoding Golgi resident proteins can trigger the occurrence of diseases. By summarizing the pathogenesis of these genetic diseases, it was found that most of these diseases have defects in membrane trafficking. Such defects typically result in mislocalization of proteins, impaired glycosylation of proteins, and the accumulation of undegraded proteins. In the present review, we aim to understand the patterns of mutations in the genes encoding Golgi resident proteins and decipher the interplay between Golgi resident proteins and membrane trafficking pathway in cells. Furthermore, the detection of Golgi resident protein in human serum samples has the potential to be used as a diagnostic tool for diseases, and its central role in membrane trafficking pathways provides possible targets for disease therapy. Thus, we also introduced the clinical value of Golgi apparatus in the present review.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yan Huang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ting Li
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zheng Jiang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
35
|
Pokusa M, Hajdúchová D, Menichová V, Evinová A, Hatoková Z, Kráľová-Trančíková A. Vulnerability of subcellular structures to pathogenesis induced by rotenone in SH-SY5Y cells. Physiol Res 2021; 70:89-99. [PMID: 33453717 DOI: 10.33549/physiolres.934477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Numerous pathological changes of subcellular structures are characteristic hallmarks of neurodegeneration. The main research has focused to mitochondria, endoplasmic reticulum, Golgi apparatus, lysosomal networks as well as microtubular system of the cell. The sequence of specific organelle damage during pathogenesis has not been answered yet. Exposition to rotenone is used for simulation of neurodegenerative changes in SH-SY5Y cells, which are widely used for in vitro modelling of Parkinson´s disease pathogenesis. Intracellular effects were investigated in time points from 0 to 24 h by confocal microscopy and biochemical analyses. Analysis of fluorescent images identified the sensitivity of organelles towards rotenone in this order: microtubular cytoskeleton, mitochondrial network, endoplasmic reticulum, Golgi apparatus and lysosomal network. All observed morphological changes of intracellular compartments were identified before alphaS protein accumulation. Therefore, their potential as an early diagnostic marker is of interest. Understanding of subcellular sensitivity in initial stages of neurodegeneration is crucial for designing new approaches and a management of neurodegenerative disorders.
Collapse
Affiliation(s)
- M Pokusa
- Biomedical Center Martin, Martin, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
36
|
Tomás M, Martínez-Alonso E, Martínez-Martínez N, Cara-Esteban M, Martínez-Menárguez JA. Fragmentation of the Golgi complex of dopaminergic neurons in human substantia nigra: New cytopathological findings in Parkinson's disease. Histol Histopathol 2020; 36:47-60. [PMID: 33078843 DOI: 10.14670/hh-18-270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fragmentation of the Golgi ribbon is a common feature of Parkinson´s disease and other neurodegenerative diseases. This alteration could be the consequence of the anterograde and retrograde transport imbalance, α-synuclein aggregates, and/or cytoskeleton alterations. Most information on this process has been obtained from cellular and animal experimental models, and as such, there is little information available on human tissue. If the information on human tissue was available, it may help to understand the cytopathological mechanisms of this disease. In the present study, we analyzed the morphological characteristics of the Golgi complex of dopaminergic neurons in human samples of substantia nigra of control and Parkinson's disease patients. We measured the expression levels of putative molecules involved in Golgi fragmentation, including α-synuclein, tubulin, and Golgi-associated regulatory and structural proteins. We show that, as a consequence of the disease, the Golgi complex is fragmented into small stacks without vesiculation. We found that only a limited number of regulatory proteins are altered. Rab1, a small GTPase regulating endoplasmic reticulum-to-Golgi transport, is the most dramatically affected, being highly overexpressed in the surviving neurons. We found that the SNARE protein syntaxin 5 forms extracellular aggregates resembling the amyloid plaques characteristic of Alzheimer's disease. These findings may help to understand the cytopathology of Parkinson's disease.
Collapse
Affiliation(s)
- Mónica Tomás
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain.
| | - Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, University of Murcia, Murcia, Spain
| | | | - Mireia Cara-Esteban
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain
| | | |
Collapse
|
37
|
Halloran M, Ragagnin AMG, Vidal M, Parakh S, Yang S, Heng B, Grima N, Shahheydari H, Soo KY, Blair I, Guillemin GJ, Sundaramoorthy V, Atkin JD. Amyotrophic lateral sclerosis-linked UBQLN2 mutants inhibit endoplasmic reticulum to Golgi transport, leading to Golgi fragmentation and ER stress. Cell Mol Life Sci 2020; 77:3859-3873. [PMID: 31802140 PMCID: PMC11105036 DOI: 10.1007/s00018-019-03394-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/28/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative diseases that are related genetically and pathologically. Mutations in the UBQLN2 gene, encoding the ubiquitin-like protein ubiquilin2, are associated with familial ALS/FTD, but the pathophysiological mechanisms remain unclear. Here, we demonstrate that ALS/FTD UBQLN2 mutants P497H and P506T inhibit protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus in neuronal cells. In addition, we observed that Sec31-positive ER exit sites are clustered in UBQLN2T487I patient spinal cord tissues. Both the ER-Golgi intermediate (ERGIC) compartment and the Golgi become disorganised and fragmented. This activates ER stress and inhibits ER-associated degradation. Hence, this study highlights perturbations in secretory protein trafficking and ER homeostasis as pathogenic mechanisms associated with ALS/FTD-associated forms of UBQLN2.
Collapse
Affiliation(s)
- Mark Halloran
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Audrey M G Ragagnin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Marta Vidal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Sonam Parakh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Shu Yang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Benjamin Heng
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Natalie Grima
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Hamideh Shahheydari
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Kai-Ying Soo
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Ian Blair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Vinod Sundaramoorthy
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, Australia.
| |
Collapse
|
38
|
Park JH, Chung CG, Seo J, Lee BH, Lee YS, Kweon JH, Lee SB. C9orf72-Associated Arginine-Rich Dipeptide Repeat Proteins Reduce the Number of Golgi Outposts and Dendritic Branches in Drosophila Neurons. Mol Cells 2020; 43:821-830. [PMID: 32975212 PMCID: PMC7528685 DOI: 10.14348/molcells.2020.0130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/13/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022] Open
Abstract
Altered dendritic morphology is frequently observed in various neurological disorders including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the cellular and molecular basis underlying these pathogenic dendritic abnormalities remains largely unclear. In this study, we investigated dendritic morphological defects caused by dipeptide repeat protein (DPR) toxicity associated with G4C2 expansion mutation of C9orf72 (the leading genetic cause of ALS and FTD) in Drosophila neurons and characterized the underlying pathogenic mechanisms. Among the five DPRs produced by repeat-associated non-ATG translation of G4C2 repeats, we found that arginine-rich DPRs (PR and GR) led to the most significant reduction in dendritic branches and plasma membrane (PM) supply in Class IV dendritic arborization (C4 da) neurons. Furthermore, expression of PR and GR reduced the number of Golgi outposts (GOPs) in dendrites. In Drosophila brains, expression of PR, but not GR, led to a significant reduction in the mRNA level of CrebA, a transcription factor regulating the formation of GOPs. Overexpressing CrebA in PR-expressing C4 da neurons mitigated PM supply defects and restored the number of GOPs, but the number of dendritic branches remained unchanged, suggesting that other molecules besides CrebA may be involved in dendritic branching. Taken together, our results provide valuable insight into the understanding of dendritic pathology associated with C9-ALS/FTD.
Collapse
Affiliation(s)
- Jeong Hyang Park
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 4988, Korea
- These authors contributed equally to this work
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 4988, Korea
- These authors contributed equally to this work
| | - Jinsoo Seo
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 4988, Korea
| | - Byung-Hoon Lee
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 4988, Korea
- Department of New Biology, DGIST, Daegu 42988, Korea
| | - Young-Sam Lee
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 4988, Korea
- Department of New Biology, DGIST, Daegu 42988, Korea
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 2988, Korea
| | - Jung Hyun Kweon
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 4988, Korea
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 2988, Korea
| |
Collapse
|
39
|
Moutin MJ, Bosc C, Peris L, Andrieux A. Tubulin post-translational modifications control neuronal development and functions. Dev Neurobiol 2020; 81:253-272. [PMID: 33325152 PMCID: PMC8246997 DOI: 10.1002/dneu.22774] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/26/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022]
Abstract
Microtubules (MTs) are an essential component of the neuronal cytoskeleton; they are involved in various aspects of neuron development, maintenance, and functions including polarization, synaptic plasticity, and transport. Neuronal MTs are highly heterogeneous due to the presence of multiple tubulin isotypes and extensive post‐translational modifications (PTMs). These PTMs—most notably detyrosination, acetylation, and polyglutamylation—have emerged as important regulators of the neuronal microtubule cytoskeleton. With this review, we summarize what is currently known about the impact of tubulin PTMs on microtubule dynamics, neuronal differentiation, plasticity, and transport as well as on brain function in normal and pathological conditions, in particular during neuro‐degeneration. The main therapeutic approaches to neuro‐diseases based on the modulation of tubulin PTMs are also summarized. Overall, the review indicates how tubulin PTMs can generate a large number of functionally specialized microtubule sub‐networks, each of which is crucial to specific neuronal features.
Collapse
Affiliation(s)
- Marie-Jo Moutin
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Christophe Bosc
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Leticia Peris
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Annie Andrieux
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| |
Collapse
|
40
|
Valenzuela A, Meservey L, Nguyen H, Fu MM. Golgi Outposts Nucleate Microtubules in Cells with Specialized Shapes. Trends Cell Biol 2020; 30:792-804. [PMID: 32863092 DOI: 10.1016/j.tcb.2020.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
Classically, animal cells nucleate or form new microtubules off the perinuclear centrosome. In recent years, the Golgi outpost has emerged as a satellite organelle that can function as an acentrosomal microtubule-organizing center (MTOC), nucleating new microtubules at distances far from the nucleus or cell body. Golgi outposts can nucleate new microtubules in specialized cells with unique cytoarchitectures, including Drosophila neurons, mouse muscle cells, and rodent oligodendrocytes. This review compares and contrasts topics of functional relevance, including Golgi outpost heterogeneity, formation and transport, as well as regulation of microtubule polarity and branching. Golgi outposts have also been implicated in the pathology of diseases including muscular dystrophy, and neurodegenerative diseases, such as Parkinson's disease (PD). Since Golgi outposts are relatively understudied, many outstanding questions regarding their function and roles in disease remain.
Collapse
Affiliation(s)
- Alex Valenzuela
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lindsey Meservey
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Huy Nguyen
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Meng-Meng Fu
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA; National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
41
|
Bräuer S, Günther R, Sterneckert J, Glaß H, Hermann A. Human Spinal Motor Neurons Are Particularly Vulnerable to Cerebrospinal Fluid of Amyotrophic Lateral Sclerosis Patients. Int J Mol Sci 2020; 21:ijms21103564. [PMID: 32443559 PMCID: PMC7278966 DOI: 10.3390/ijms21103564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common and devastating motor neuron (MN) disease. Its pathophysiological cascade is still enigmatic. More than 90% of ALS patients suffer from sporadic ALS, which makes it specifically demanding to generate appropriate model systems. One interesting aspect considering the seeding, spreading and further disease development of ALS is the cerebrospinal fluid (CSF). We therefore asked whether CSF from sporadic ALS patients is capable of causing disease typical changes in human patient-derived spinal MN cultures and thus could represent a novel model system for sporadic ALS. By using induced pluripotent stem cell (iPSC)-derived MNs from healthy controls and monogenetic forms of ALS we could demonstrate a harmful effect of ALS-CSF on healthy donor-derived human MNs. Golgi fragmentation—a typical finding in lower organism models and human postmortem tissue—was induced solely by addition of ALS-CSF, but not control-CSF. No other neurodegenerative hallmarks—including pathological protein aggregation—were found, underpinning Golgi fragmentation as early event in the neurodegenerative cascade. Of note, these changes occurred predominantly in MNs, the cell type primarily affected in ALS. We thus present a novel way to model early features of sporadic ALS.
Collapse
Affiliation(s)
- Stefan Bräuer
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (S.B.); (R.G.)
- Department of Neurology, Städtisches Klinikum Dresden, 01129 Dresden, Germany
| | - René Günther
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (S.B.); (R.G.)
- German Center for Neurodegenerative Diseases (DZNE), 01307 Dresden, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany;
| | - Hannes Glaß
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany;
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (S.B.); (R.G.)
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany;
- German Center for Neurodegenerative Diseases (DZNE) Rostock, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-(0)-381-494-9541
| |
Collapse
|
42
|
Baron DM, Matheny T, Lin YC, Leszyk JD, Kenna K, Gall KV, Santos DP, Tischbein M, Funes S, Hayward LJ, Kiskinis E, Landers JE, Parker R, Shaffer SA, Bosco DA. Quantitative proteomics identifies proteins that resist translational repression and become dysregulated in ALS-FUS. Hum Mol Genet 2020; 28:2143-2160. [PMID: 30806671 DOI: 10.1093/hmg/ddz048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
Aberrant translational repression is a feature of multiple neurodegenerative diseases. The association between disease-linked proteins and stress granules further implicates impaired stress responses in neurodegeneration. However, our knowledge of the proteins that evade translational repression is incomplete. It is also unclear whether disease-linked proteins influence the proteome under conditions of translational repression. To address these questions, a quantitative proteomics approach was used to identify proteins that evade stress-induced translational repression in arsenite-treated cells expressing either wild-type or amyotrophic lateral sclerosis (ALS)-linked mutant FUS. This study revealed hundreds of proteins that are actively synthesized during stress-induced translational repression, irrespective of FUS genotype. In addition to proteins involved in RNA- and protein-processing, proteins associated with neurodegenerative diseases such as ALS were also actively synthesized during stress. Protein synthesis under stress was largely unperturbed by mutant FUS, although several proteins were found to be differentially expressed between mutant and control cells. One protein in particular, COPBI, was downregulated in mutant FUS-expressing cells under stress. COPBI is the beta subunit of the coat protein I (COPI), which is involved in Golgi to endoplasmic reticulum (ER) retrograde transport. Further investigation revealed reduced levels of other COPI subunit proteins and defects in COPBI-relatedprocesses in cells expressing mutant FUS. Even in the absence of stress, COPBI localization was altered in primary and human stem cell-derived neurons expressing ALS-linked FUS variants. Our results suggest that Golgi to ER retrograde transport may be important under conditions of stress and is perturbed upon the expression of disease-linked proteins such as FUS.
Collapse
Affiliation(s)
- Desiree M Baron
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tyler Matheny
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - Yen-Chen Lin
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - John D Leszyk
- Department of Biochemistry and Molecular Pharmacology, Worcester, MA, USA.,Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, USA
| | - Kevin Kenna
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Katherine V Gall
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - David P Santos
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Maeve Tischbein
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Salome Funes
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lawrence J Hayward
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Scott A Shaffer
- Department of Biochemistry and Molecular Pharmacology, Worcester, MA, USA.,Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Biochemistry and Molecular Pharmacology, Worcester, MA, USA
| |
Collapse
|
43
|
Pokusa M, Hajduchova D, Budaj T, Kralova Trancikova A. Respiratory Function and Dysfunction in Parkinson-Type Neurodegeneration. Physiol Res 2020; 69:S69-S79. [DOI: 10.33549/physiolres.934405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease (PD) is most commonly manifested by the presence of motor symptoms. However, non-motor symptoms occur several years before the onset of motor symptoms themselves. Hallmarks of dysfunction of the respiratory system are still outside the main focus of interest, whether by clinicians or scientists, despite their indisputable contribution to the morbidity and mortality of patients suffering from PD. In addition, many of the respiratory symptoms are already present in the early stages of the disease and efforts to utilize these parameters in the early diagnosis of PD are now intensifying. Mechanisms that lead to the development and progression of respiratory symptoms are only partially understood. This review focuses mainly on the comparison of respiratory problems observed in clinical studies with available findings obtained from experimental animal models. It also explains pathological changes observed in non-neuronal tissues in subjects with PD.
Collapse
Affiliation(s)
| | | | | | - A. Kralova Trancikova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Martin, Slovak Republic.
| |
Collapse
|
44
|
Chen J, Sitsel A, Benoy V, Sepúlveda MR, Vangheluwe P. Primary Active Ca 2+ Transport Systems in Health and Disease. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035113. [PMID: 31501194 DOI: 10.1101/cshperspect.a035113] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium ions (Ca2+) are prominent cell signaling effectors that regulate a wide variety of cellular processes. Among the different players in Ca2+ homeostasis, primary active Ca2+ transporters are responsible for keeping low basal Ca2+ levels in the cytosol while establishing steep Ca2+ gradients across intracellular membranes or the plasma membrane. This review summarizes our current knowledge on the three types of primary active Ca2+-ATPases: the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps, the secretory pathway Ca2+- ATPase (SPCA) isoforms, and the plasma membrane Ca2+-ATPase (PMCA) Ca2+-transporters. We first discuss the Ca2+ transport mechanism of SERCA1a, which serves as a reference to describe the Ca2+ transport of other Ca2+ pumps. We further highlight the common and unique features of each isoform and review their structure-function relationship, expression pattern, regulatory mechanisms, and specific physiological roles. Finally, we discuss the increasing genetic and in vivo evidence that links the dysfunction of specific Ca2+-ATPase isoforms to a broad range of human pathologies, and highlight emerging therapeutic strategies that target Ca2+ pumps.
Collapse
Affiliation(s)
- Jialin Chen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Aljona Sitsel
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Veronick Benoy
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - M Rosario Sepúlveda
- Department of Cell Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
45
|
Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, Akkari PA. ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? Front Neurosci 2019; 13:1310. [PMID: 31866818 PMCID: PMC6909825 DOI: 10.3389/fnins.2019.01310] [Citation(s) in RCA: 470] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
The scientific landscape surrounding amyotrophic lateral sclerosis (ALS) continues to shift as the number of genes associated with the disease risk and pathogenesis, and the cellular processes involved, continues to grow. Despite decades of intense research and over 50 potentially causative or disease-modifying genes identified, etiology remains unexplained and treatment options remain limited for the majority of ALS patients. Various factors have contributed to the slow progress in understanding and developing therapeutics for this disease. Here, we review the genetic basis of ALS, highlighting factors that have contributed to the elusiveness of genetic heritability. The most commonly mutated ALS-linked genes are reviewed with an emphasis on disease-causing mechanisms. The cellular processes involved in ALS pathogenesis are discussed, with evidence implicating their involvement in ALS summarized. Past and present therapeutic strategies and the benefits and limitations of the model systems available to ALS researchers are discussed with future directions for research that may lead to effective treatment strategies outlined.
Collapse
Affiliation(s)
- Rita Mejzini
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Loren L. Flynn
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Ianthe L. Pitout
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - P. Anthony Akkari
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
46
|
Martuscello RT, Kerridge CA, Chatterjee D, Hartstone WG, Kuo SH, Sims PA, Louis ED, Faust PL. Gene expression analysis of the cerebellar cortex in essential tremor. Neurosci Lett 2019; 721:134540. [PMID: 31707044 DOI: 10.1016/j.neulet.2019.134540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Essential tremor (ET) is one of the most common neurological diseases, with a central feature of an 8-12 Hz kinetic tremor. While previous postmortem studies have identified a cluster of morphological changes in the ET cerebellum centered in/around the Purkinje cell (PC) population, including a loss of PCs in some studies, the underlying molecular mechanisms for these changes are not clear. As genomic studies of ET patients have yet to identify major genetic contributors and animal models that fully recapitulate the human disease do not yet exist, the study of human tissue is currently the most applicable method to gain a mechanistic insight into ET disease pathogenesis. To begin exploration of an underlying molecular source of ET disease pathogenesis, we have performed the first transcriptomic analysis by direct sequencing of RNA from frozen cerebellar cortex tissue in 33 ET patients compared to 21 normal controls. Principal component analysis showed a heterogenous distribution of the expression data in ET patients that only partially overlapped with control patients. Differential expression analysis identified 231 differentially expressed gene transcripts ('top gene hits'), a subset of which has defined expression profiles in the cerebellum across neuronal and glial cell types but a largely unknown relationship to cerebellar function and/or ET pathogenesis. Gene set enrichment analysis (GSEA) identified dysregulated pathways of interest and stratified dysregulation among ET cases. By GSEA and mining curated databases, we compiled major categories of dysregulated processes and clustered string networks of known interacting proteins. Here we demonstrate that these 'top gene hits' contribute to regulation of four main biological processes, which are 1) axon guidance, 2) microtubule motor activity, 3) endoplasmic reticulum (ER) to Golgi transport and 4) calcium signaling/synaptic transmission. The results of our transcriptomic analysis suggest there is a range of different processes involved among ET cases, and draws attention to a particular set of genes and regulatory pathways that provide an initial platform to further explore the underlying biology of ET.
Collapse
Affiliation(s)
- Regina T Martuscello
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, USA; College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, New York, NY, USA.
| | - Chloë A Kerridge
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, USA; College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, New York, NY, USA.
| | - Debotri Chatterjee
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, USA; College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, New York, NY, USA.
| | - Whitney G Hartstone
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, USA; College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, New York, NY, USA.
| | - Sheng-Han Kuo
- College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, 630 W 168th Street, BB302, New York, NY, USA.
| | - Peter A Sims
- Department of Neurology, College of Physicians and Surgeons, Columbia University, 630 W 168th Street, BB302, New York, NY, USA; Department of Systems Biology, Columbia University Medical Center, 3960 Broadway, RM208, New York, NY, USA; Sulzberger Columbia Genome Center, Columbia University Medical Center, 1150 St. Nicholas Ave., New York, NY, USA; Department of Biochemistry & Molecular Biophysics, Columbia University Medical Center, 701 W 168th Street, New York, NY, USA.
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, 15 York Street, New Haven, CT, USA; Department of Chronic Disease Epidemiology, Yale School of Public Health, 15 York Street, Yale University, New Haven, CT, USA; Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, 15 York Street, New Haven, CT, USA.
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, USA; College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, New York, NY, USA.
| |
Collapse
|
47
|
Zhang X, Brachner A, Kukolj E, Slade D, Wang Y. SIRT2 deacetylates GRASP55 to facilitate post-mitotic Golgi assembly. J Cell Sci 2019; 132:jcs232389. [PMID: 31604796 PMCID: PMC6857597 DOI: 10.1242/jcs.232389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/01/2019] [Indexed: 01/25/2023] Open
Abstract
Sirtuin 2 (SIRT2) is an NAD-dependent sirtuin deacetylase that regulates microtubule and chromatin dynamics, gene expression and cell cycle progression, as well as nuclear envelope reassembly. Recent proteomic analyses have identified Golgi proteins as SIRT2 interactors, indicating that SIRT2 may also play a role in Golgi structure formation. Here, we show that SIRT2 depletion causes Golgi fragmentation and impairs Golgi reassembly at the end of mitosis. SIRT2 interacts with the Golgi reassembly stacking protein GRASP55 (also known as GORASP2) in mitosis when GRASP55 is highly acetylated on K50. Expression of wild-type and the K50R acetylation-deficient mutant of GRASP55, but not the K50Q acetylation-mimetic mutant, in GRASP55 and GRASP65 (also known as GORASP1) double-knockout cells, rescued the Golgi structure and post-mitotic Golgi reassembly. Acetylation-deficient GRASP55 exhibited a higher self-interaction efficiency, a property required for Golgi structure formation. These results demonstrate that SIRT2 regulates Golgi structure by modulating GRASP55 acetylation levels.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 4110 Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Andreas Brachner
- Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Eva Kukolj
- Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Dea Slade
- Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 4110 Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| |
Collapse
|
48
|
Rodríguez-Cruz F, Torres-Cruz FM, Monroy-Ramírez HC, Escobar-Herrera J, Basurto-Islas G, Avila J, García-Sierra F. Fragmentation of the Golgi Apparatus in Neuroblastoma Cells Is Associated with Tau-Induced Ring-Shaped Microtubule Bundles. J Alzheimers Dis 2019; 65:1185-1207. [PMID: 30124450 DOI: 10.3233/jad-180547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abnormal fibrillary aggregation of tau protein is a pathological condition observed in Alzheimer's disease and other tauopathies; however, the presence and pathological significance of early non-fibrillary aggregates of tau remain under investigation. In cell and animal models expressing normal or modified tau, toxic effects altering the structure and function of several membranous organelles have also been reported in the absence of fibrillary structures; however, how these abnormalities are produced is an issue yet to be addressed. In order to obtain more insights into the mechanisms by which tau may disturb intracellular membranous elements, we transiently overexpressed human full-length tau and several truncated tau variants in cultured neuroblastoma cells. After 48 h of transfection, either full-length or truncated tau forms produced significant fragmentation of the Golgi apparatus (GA) with no changes in cell viability. Noteworthy is that in the majority of cells exhibiting dispersion of the GA, a ring-shaped array of cortical or perinuclear microtubule (Mt) bundles was also generated under the expression of either variant of tau. In contrast, Taxol treatment of non-transfected cells increased the amount of Mt bundles but not sufficiently to produce fragmentation of the GA. Tau-induced ring-shaped Mt bundles appeared to be well-organized and stable structures because they were resistant to Nocodazole post-treatment and displayed a high level of tubulin acetylation. These results further indicate that a mechanical force generated by tau-induced Mt-bundling may be responsible for Golgi fragmentation and that the repeated domain region of tau may be the main promoter of this effect.
Collapse
Affiliation(s)
- Fanny Rodríguez-Cruz
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - Francisco Miguel Torres-Cruz
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | | | - Jaime Escobar-Herrera
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | | | - Jesús Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco García-Sierra
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
49
|
Kulkarni-Gosavi P, Makhoul C, Gleeson PA. Form and function of the Golgi apparatus: scaffolds, cytoskeleton and signalling. FEBS Lett 2019; 593:2289-2305. [PMID: 31378930 DOI: 10.1002/1873-3468.13567] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023]
Abstract
In addition to the classical functions of the Golgi in membrane transport and glycosylation, the Golgi apparatus of mammalian cells is now recognised to contribute to the regulation of a range of cellular processes, including mitosis, DNA repair, stress responses, autophagy, apoptosis and inflammation. These processes are often mediated, either directly or indirectly, by membrane scaffold molecules, such as golgins and GRASPs which are located on Golgi membranes. In many cases, these scaffold molecules also link the actin and microtubule cytoskeleton and influence Golgi morphology. An emerging theme is a strong relationship between the morphology of the Golgi and regulation of a variety of signalling pathways. Here, we review the molecular regulation of the morphology of the Golgi, especially the role of the golgins and other scaffolds in the interaction with the microtubule and actin networks. In addition, we discuss the impact of the modulation of the Golgi ribbon in various diseases, such as neurodegeneration and cancer, to the pathology of disease.
Collapse
Affiliation(s)
- Prajakta Kulkarni-Gosavi
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Christian Makhoul
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|
50
|
Golgi Fragmentation in Neurodegenerative Diseases: Is There a Common Cause? Cells 2019; 8:cells8070748. [PMID: 31331075 PMCID: PMC6679019 DOI: 10.3390/cells8070748] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
In most mammalian cells, the Golgi complex forms a continuous ribbon. In neurodegenerative diseases, the Golgi ribbon of a specific group of neurons is typically broken into isolated elements, a very early event which happens before clinical and other pathological symptoms become evident. It is not known whether this phenomenon is caused by mechanisms associated with cell death or if, conversely, it triggers apoptosis. When the phenomenon was studied in diseases such as Parkinson’s and Alzheimer’s or amyotrophic lateral sclerosis, it was attributed to a variety of causes, including the presence of cytoplasmatic protein aggregates, malfunctioning of intracellular traffic and/or alterations in the cytoskeleton. In the present review, we summarize the current findings related to these and other neurodegenerative diseases and try to search for clues on putative common causes.
Collapse
|