1
|
Schmidt JA, Hjorth CF, Farkas DK, Damkier P, Feddersen S, Hamilton-Dutoit S, Ejlertsen B, Lash TL, Ahern TP, Cronin-Fenton D. Genetic variants and social benefit receipt in premenopausal women with breast cancer treated with docetaxel: a Danish population-based cohort study. Breast Cancer Res Treat 2025; 209:73-84. [PMID: 39302578 PMCID: PMC11785639 DOI: 10.1007/s10549-024-07474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/25/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE Breast cancer patients' need for social benefits may increase following taxane-based chemotherapy, due to long-lasting side effects. Specific single nucleotide polymorphisms (SNPs) may mediate such side effects. We investigated the association between SNPs related to taxane metabolism, transport, toxicity, or DNA and neural repair, and receipt of social benefits. METHODS From the Danish Breast Cancer Group, we identified premenopausal women diagnosed with stage I-III breast cancer during 2007-2011 and treated with docetaxel-based chemotherapy. We genotyped 21 SNPs from archived breast tumors using TaqMan assays. We ascertained social benefit payments from 1 year before to 5 years after diagnosis, using nationwide, administrative registry data. For each week, we categorized women as receiving health-related benefits (including sick leave and disability pension), labor market-related benefits (including unemployment benefits), or as being self-supporting. We computed rate ratios (RRs) of social benefit receipt for variant carriers (heterozygotes plus homozygotes) vs. non-carriers, using negative binominal regression with robust variance estimation. RESULTS Among 2430 women, 12% received health-related benefits before diagnosis, 80% at diagnosis, and ~ 24% 2 to 5 years after diagnosis. Labor market-related benefits were uncommon (3-6%). All RRs were near-null and/or imprecise. CONCLUSION We found no clinically meaningful impact of the selected SNPs on social benefit receipt among premenopausal breast cancer survivors treated with docetaxel.
Collapse
Affiliation(s)
- Julie A Schmidt
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Olof Palmes Allé 43-45, 8200, Aarhus N, Denmark.
| | - Cathrine F Hjorth
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Olof Palmes Allé 43-45, 8200, Aarhus N, Denmark
| | - Dóra K Farkas
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Olof Palmes Allé 43-45, 8200, Aarhus N, Denmark
| | - Per Damkier
- Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Søren Feddersen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Stephen Hamilton-Dutoit
- Department of Clinical Medicine and Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Bent Ejlertsen
- Danish Breast Cancer Group, Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Timothy L Lash
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Olof Palmes Allé 43-45, 8200, Aarhus N, Denmark
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Thomas P Ahern
- Department of Surgery, The Robert Larner, M.D. College of Medicine, The University of Vermont, Burlington, VT, USA
| | - Deirdre Cronin-Fenton
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Olof Palmes Allé 43-45, 8200, Aarhus N, Denmark
| |
Collapse
|
2
|
Schneider BP, Zhao F, Ballinger TJ, Garcia SF, Shen F, Virani S, Cella D, Bales C, Jiang G, Hayes L, Miller N, Srinivasiah J, Stringer-Reasor EM, Chitalia A, Davis AA, Makower DF, Incorvati J, Simon MA, Mitchell EP, DeMichele A, Miller KD, Sparano JA, Wagner LI, Wolff AC. ECOG-ACRIN EAZ171: Prospective Validation Trial of Germline Predictors of Taxane-Induced Peripheral Neuropathy in Black Women With Early-Stage Breast Cancer. J Clin Oncol 2024; 42:2899-2907. [PMID: 38828938 PMCID: PMC11670807 DOI: 10.1200/jco.24.00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
PURPOSE Black women experience higher rates of taxane-induced peripheral neuropathy (TIPN) compared with White women when receiving adjuvant once weekly paclitaxel for early-stage breast cancer, leading to more dose reductions and higher recurrence rates. EAZ171 aimed to prospectively validate germline predictors of TIPN and compare rates of TIPN and dose reductions in Black women receiving (neo)adjuvant once weekly paclitaxel and once every 3 weeks docetaxel for early-stage breast cancer. METHODS Women with early-stage breast cancer who self-identified as Black and had intended to receive (neo)adjuvant once weekly paclitaxel or once every 3 weeks docetaxel were eligible, with planned accrual to 120 patients in each arm. Genotyping was performed to determine germline neuropathy risk. Grade 2-4 TIPN by Common Terminology Criteria for Adverse Events (CTCAE) v5.0 was compared between high- versus low-risk genotypes and between once weekly paclitaxel versus once every 3 weeks docetaxel within 1 year. Patient-rated TIPN and patient-reported outcomes were compared using patient-reported outcome (PRO)-CTCAE and Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity. RESULTS Two hundred and forty of 249 enrolled patients had genotype data, and 91 of 117 (77.8%) receiving once weekly paclitaxel and 87 of 118 (73.7%) receiving once every 3 weeks docetaxel were classified as high-risk. Physician-reported grade 2-4 TIPN was not significantly different in high- versus low-risk genotype groups with once weekly paclitaxel (47% v 35%; P = .27) or with once every 3 weeks docetaxel (28% v 19%; P = .47). Grade 2-4 TIPN was significantly higher in the once weekly paclitaxel versus once every 3 weeks docetaxel arm by both physician-rated CTCAE (45% v 29%; P = .02) and PRO-CTCAE (40% v 24%; P = .03). Patients receiving once weekly paclitaxel required more dose reductions because of TIPN (28% v 9%; P < .001) or any cause (39% v 25%; P = .02). CONCLUSION Germline variation did not predict risk of TIPN in Black women receiving (neo)adjuvant once weekly paclitaxel or once every 3 weeks docetaxel. Once weekly paclitaxel was associated with significantly more grade 2-4 TIPN and required more dose reductions than once every 3 weeks docetaxel.
Collapse
Affiliation(s)
| | - Fengmin Zhao
- Dana Farber Cancer Institute - ECOG-ACRIN Biostatistics Center
| | | | - Sofia F Garcia
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center
| | - Fei Shen
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
| | | | - David Cella
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center
| | - Casey Bales
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
| | - Guanglong Jiang
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
| | | | | | | | | | | | - Andrew A. Davis
- Washington University School of Medicine, St. Louis, Missouri
| | | | | | - Melissa A. Simon
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center
| | | | | | - Kathy D. Miller
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
| | | | | | | |
Collapse
|
3
|
Lingaratnam S, Shah M, Nicolazzo J, Michael M, Seymour JF, James P, Lazarakis S, Loi S, Kirkpatrick CMJ. A systematic review and meta-analysis of the impacts of germline pharmacogenomics on severe toxicity and symptom burden in adult patients with cancer. Clin Transl Sci 2024; 17:e13781. [PMID: 38700261 PMCID: PMC11067509 DOI: 10.1111/cts.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 05/05/2024] Open
Abstract
The clinical application of Pharmacogenomics (PGx) has improved patient safety. However, comprehensive PGx testing has not been widely adopted in clinical practice, and significant opportunities exist to further optimize PGx in cancer care. This systematic review and meta-analysis aim to evaluate the safety outcomes of reported PGx-guided strategies (Analysis 1) and identify well-studied emerging pharmacogenomic variants that predict severe toxicity and symptom burden (Analysis 2) in patients with cancer. We searched MEDLINE, EMBASE, CENTRAL, clinicaltrials.gov, and International Clinical Trials Registry Platform from inception to January 2023 for clinical trials or comparative studies evaluating PGx strategies or unconfirmed pharmacogenomic variants. The primary outcomes were severe adverse events (SAE; ≥ grade 3) or symptom burden with pain and vomiting as defined by trial protocols and assessed by trial investigators. We calculated pooled overall relative risk (RR) and 95% confidence interval (95%CI) using random effects models. PROSPERO, registration number CRD42023421277. Of 6811 records screened, six studies were included for Analysis 1, 55 studies for Analysis 2. Meta-analysis 1 (five trials, 1892 participants) showed a lower absolute incidence of SAEs with PGx-guided strategies compared to usual therapy, 16.1% versus 34.0% (RR = 0.72, 95%CI 0.57-0.91, p = 0.006, I2 = 34%). Meta-analyses 2 identified nine medicine(class)-variant pairs of interest across the TYMS, ABCB1, UGT1A1, HLA-DRB1, and OPRM1 genes. Application of PGx significantly reduced rates of SAEs in patients with cancer. Emergent medicine-variant pairs herald further research into the expansion and optimization of PGx to improve systemic anti-cancer and supportive care medicine safety and efficacy.
Collapse
Affiliation(s)
- Senthil Lingaratnam
- Pharmacy DepartmentPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVictoriaAustralia
| | - Mahek Shah
- Faculty of Pharmacy and Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Joseph Nicolazzo
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVictoriaAustralia
| | - Michael Michael
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Department of Medical OncologyPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - John F. Seymour
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Department of Clinical HaematologyPeter MacCallum Cancer Centre and Royal Melbourne HospitalMelbourneVictoriaAustralia
| | - Paul James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne HospitalMelbourneVictoriaAustralia
| | - Smaro Lazarakis
- Health Sciences LibraryRoyal Melbourne HospitalMelbourneVictoriaAustralia
| | - Sherene Loi
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Carl M. J. Kirkpatrick
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
4
|
Cavaletti G, Forsey K, Alberti P. Toxic medications in Charcot-Marie-Tooth patients: A systematic review. J Peripher Nerv Syst 2023; 28:295-307. [PMID: 37249082 DOI: 10.1111/jns.12566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Several widely used medications, with a relevant efficacy profile, are toxic to the peripheral nervous system and an even larger number of agents are suspected to be neurotoxic. There are concerns about the use of these drugs in patients with Charcot-Marie-Tooth disease (CMT), a hereditary motor and sensory neuropathy. This review provides evidence-based updated recommendations on this clinically relevant topic. METHODS A systematic review of the available studies/reports written in English was performed from July to September 2022 including in the search string all reported putative neurotoxic drugs. RESULTS The results of our systematic review provide evidence-based support for the statement that use of vincristine, and possibly paclitaxel, can occasionally induce an atypical, and more severe, course of drug-related peripheral neurotoxicity in CMT patients. It is therefore reasonable to recommend caution in the use of these compounds in CMT patients. However, no convincing evidence for a similar recommendation could be found for all other drugs. INTERPRETATION It is important that patients with CMT are not denied effective treatments that may prolong life expectancy for cancer or improve their health status if affected by non-oncological diseases. Accurate monitoring of peripheral nerve function in CMT patients treated with any neurotoxic agent remains mandatory to detect the earliest signs of neuropathy worsening and atypical clinical courses. Neurologists monitoring CMT patients as part of their normal care package or for natural history studies should keep detailed records of exposures to neurotoxic medications and support reporting of accelerated neuropathy progression if observed.
Collapse
Affiliation(s)
- Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
5
|
Hjorth CF, Damkier P, Stage TB, Feddersen S, Hamilton-Dutoit S, Ejlertsen B, Lash TL, Bøggild H, Sørensen HT, Cronin-Fenton D. The impact of single nucleotide polymorphisms on return-to-work after taxane-based chemotherapy in breast cancer. Cancer Chemother Pharmacol 2023; 91:157-165. [PMID: 36598552 PMCID: PMC9905159 DOI: 10.1007/s00280-022-04499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Breast cancer treatment is associated with adverse effects, which may delay return-to-work. Single nucleotide polymorphisms (SNPs) may influence the risk and severity of treatment toxicities, which in turn could delay return-to-work. We examined the association of 26 SNPs with return-to-work in premenopausal women with breast cancer. METHODS Using Danish registries, we identified premenopausal women diagnosed with non-distant metastatic breast cancer during 2007‒2011, assigned adjuvant combination chemotherapy including cyclophosphamide and docetaxel. We genotyped 26 SNPs in 20 genes (ABCB1, ABCC2, ABCG2, CYP1A1, CYP1B1, CYP3A, CYP3A4, CYP3A5, GSTP1, SLCO1B1, SLCO1B3, ARHGEF10, EPHA4, EPHA5, EPHA6, EPHA8, ERCC1, ERCC2, FGD4 and TRPV1) using TaqMan assays. We computed the cumulative incidence of return-to-work (defined as 4 consecutive weeks of work) up to 10 years after surgery, treating death and retirement as competing events and fitted cause-specific Cox regression models to estimate crude hazard ratios (HRs) and 95% confidence intervals (CIs) of return-to-work. We also examined stable labor market attachment (defined as 12 consecutive weeks of work). RESULTS We included 1,964 women. No associations were found for 25 SNPs. The cumulative incidence of return-to-work varied by CYP3A5 rs776746 genotype. From 6 months to 10 years after surgery, return-to-work increased from 25 to 94% in wildtypes (n = 1600), from 17 to 94% in heterozygotes (n = 249), and from 7 to 82% in homozygotes (n = 15). The HR showed delayed return-to-work in CYP3A5 rs776746 homozygotes throughout follow-up (0.48, 95% CI 0.26, 0.86), compared with wildtypes. Estimates were similar for stable labor market attachment. CONCLUSION Overall, the SNPs examined in the study did not influence return-to-work or stable labor market attachment after breast cancer in premenopausal women. Our findings did suggest that the outcomes were delayed in homozygote carriers of CYP3A5 rs776746, though the number of homozygotes was low.
Collapse
Affiliation(s)
- Cathrine F Hjorth
- Department of Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark.
| | - Per Damkier
- Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Tore B Stage
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Søren Feddersen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Stephen Hamilton-Dutoit
- Department of Pathology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Bent Ejlertsen
- Department of Oncology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
- Danish Breast Cancer Group, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Timothy L Lash
- Department of Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Henrik Bøggild
- Public Health and Epidemiology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Unit of Clinical Biostatistics, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik T Sørensen
- Department of Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Deirdre Cronin-Fenton
- Department of Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Reizine N, O’Donnell PH. Modern developments in germline pharmacogenomics for oncology prescribing. CA Cancer J Clin 2022; 72:315-332. [PMID: 35302652 PMCID: PMC9262778 DOI: 10.3322/caac.21722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The integration of genomic data into personalized treatment planning has revolutionized oncology care. Despite this, patients with cancer remain vulnerable to high rates of adverse drug events and medication inefficacy, affecting prognosis and quality of life. Pharmacogenomics is a field seeking to identify germline genetic variants that contribute to an individual's unique drug response. Although there is widespread integration of genomic information in oncology, somatic platforms, rather than germline biomarkers, have dominated the attention of cancer providers. Patients with cancer potentially stand to benefit from improved integration of both somatic and germline genomic information, especially because the latter may complement treatment planning by informing toxicity risk for drugs with treatment-limiting tolerabilities and narrow therapeutic indices. Although certain germline pharmacogenes, such as TPMT, UGT1A1, and DPYD, have been recognized for decades, recent attention has illuminated modern potential dosing implications for a whole new set of anticancer agents, including targeted therapies and antibody-drug conjugates, as well as the discovery of additional genetic variants and newly relevant pharmacogenes. Some of this information has risen to the level of directing clinical action, with US Food and Drug Administration label guidance and recommendations by international societies and governing bodies. This review is focused on key new pharmacogenomic evidence and oncology-specific dosing recommendations. Personalized oncology care through integrated pharmacogenomics represents a unique multidisciplinary collaboration between oncologists, laboratory science, bioinformatics, pharmacists, clinical pharmacologists, and genetic counselors, among others. The authors posit that expanded consideration of germline genetic information can further transform the safe and effective practice of oncology in 2022 and beyond.
Collapse
Affiliation(s)
- Natalie Reizine
- Division of Hematology and Oncology, Department of Medicine, The University of Illinois at Chicago
| | - Peter H. O’Donnell
- Section of Hematology/Oncology, Department of Medicine, Center for Personalized Therapeutics, and Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago
- Correspondence to: Dr. Peter H. O’Donnell, Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL 60637, USA. ()
| |
Collapse
|
7
|
Rodwin RL, Siddiq NZ, Ehrlich BE, Lustberg MB. Biomarkers of Chemotherapy-Induced Peripheral Neuropathy: Current Status and Future Directions. FRONTIERS IN PAIN RESEARCH 2022; 3:864910. [PMID: 35360655 PMCID: PMC8963873 DOI: 10.3389/fpain.2022.864910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 01/18/2023] Open
Abstract
Chemotherapy induced peripheral neuropathy (CIPN) is an often severe and debilitating complication of multiple chemotherapeutic agents that can affect patients of all ages, across cancer diagnoses. CIPN can persist post-therapy, and significantly impact the health and quality of life of cancer survivors. Identifying patients at risk for CIPN is challenging due to the lack of standardized objective measures to assess for CIPN. Furthermore, there are no approved preventative treatments for CIPN, and therapeutic options for CIPN remain limited once it develops. Biomarkers of CIPN have been studied but are not widely used in clinical practice. They can serve as an important clinical tool to identify individuals at risk for CIPN and to better understand the pathogenesis and avenues for treatment of CIPN. Here we review promising biomarkers of CIPN in humans and their clinical implications.
Collapse
Affiliation(s)
- Rozalyn L. Rodwin
- Section of Pediatric Hematology/Oncology, Department of Pediatrics, Yale School of Medicine, New Haven, CT, United States
| | - Namrah Z. Siddiq
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Barbara E. Ehrlich
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, United States
- Yale Cancer Center, New Haven, CT, United States
| | - Maryam B. Lustberg
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
- Yale Cancer Center, New Haven, CT, United States
- *Correspondence: Maryam B. Lustberg
| |
Collapse
|
8
|
Tam EK, Laver NV, Thakore-James M, Mooney MA, Daly MK, Lefebvre DR. ARHGEF-10 gene mutation presenting as orbital inflammatory syndrome. BMJ Case Rep 2022; 15:e245475. [PMID: 35260397 PMCID: PMC8905991 DOI: 10.1136/bcr-2021-245475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 11/03/2022] Open
Abstract
Rho guanine nucleotide exchange factor 10 (ARHGEF-10) is a RHO GTPase that has a role for neural morphogenesis, however its effect on the eyes remains unknown. Here, we report a 44-year-old man who presented with eyelid swelling along with a history of bilateral hand contractures, high-arched feet and muscle wasting, who was found to have an ARHGEF-10 mutation. Neuroimaging was significant for numerous nerve-based cystic abnormalities in the bilateral orbits and throughout the neuraxis, and an orbital biopsy revealed S-100 and SOX-10 positive lesion consistent with pseudocysts. While the role of ARHGEF-10 remains unclear, further research is warranted to further describe its clinical manifestations.
Collapse
Affiliation(s)
- Emily K Tam
- Veterans Affairs Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Nora V Laver
- Department of Pathology and Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Manisha Thakore-James
- Veterans Affairs Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Michael A Mooney
- Veterans Affairs Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Mary K Daly
- Veterans Affairs Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Daniel R Lefebvre
- Veterans Affairs Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Chua KC, El-Haj N, Priotti J, Kroetz DL. Mechanistic insights into the pathogenesis of microtubule-targeting agent-induced peripheral neuropathy from pharmacogenetic and functional studies. Basic Clin Pharmacol Toxicol 2022; 130 Suppl 1:60-74. [PMID: 34481421 PMCID: PMC8716520 DOI: 10.1111/bcpt.13654] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting toxicity that affects 30%-40% of patients undergoing cancer treatment. Although multiple mechanisms of chemotherapy-induced neurotoxicity have been described in preclinical models, these have not been translated into widely effective strategies for the prevention or treatment of CIPN. Predictive biomarkers to inform therapeutic approaches are also lacking. Recent studies have examined genetic risk factors associated with CIPN susceptibility. This review provides an overview of the clinical and pathologic features of CIPN and summarizes efforts to identify target pathways through genetic and functional studies. Structurally and mechanistically diverse chemotherapeutics are associated with CIPN; however, the current review is focused on microtubule-targeting agents since these are the focus of most pharmacogenetic association and functional studies of CIPN. Genome-wide pharmacogenetic association studies are useful tools to identify not only causative genes and genetic variants but also genetic networks implicated in drug response or toxicity and have been increasingly applied to investigations of CIPN. Induced pluripotent stem cell-derived models of human sensory neurons are especially useful to understand the mechanistic significance of genomic findings. Combined genetic and functional genomic efforts to understand CIPN hold great promise for developing therapeutic approaches for its prevention and treatment.
Collapse
Affiliation(s)
- Katherina C. Chua
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, CA 94143-2911,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Nura El-Haj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Josefina Priotti
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Deanna L. Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143-2911
| |
Collapse
|
10
|
Sharma A, Johnson KB, Bie B, Rhoades EE, Sen A, Kida Y, Hockings J, Gatta A, Davenport J, Arcangelini C, Ritzu J, DeVecchio J, Hughen R, Wei M, Thomas Budd G, Lynn Henry N, Eng C, Foss J, Rotroff DM. A Multimodal Approach to Discover Biomarkers for Taxane-Induced Peripheral Neuropathy (TIPN): A Study Protocol. Technol Cancer Res Treat 2022; 21:15330338221127169. [PMID: 36172750 PMCID: PMC9523841 DOI: 10.1177/15330338221127169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction: Taxanes are a class of chemotherapeutics commonly used to treat various solid tumors, including breast and ovarian cancers. Taxane-induced peripheral neuropathy (TIPN) occurs in up to 70% of patients, impacting quality of life both during and after treatment. TIPN typically manifests as tingling and numbness in the hands and feet and can cause irreversible loss of function of peripheral nerves. TIPN can be dose-limiting, potentially impacting clinical outcomes. The mechanisms underlying TIPN are poorly understood. As such, there are limited treatment options and no tools to provide early detection of those who will develop TIPN. Although some patients may have a genetic predisposition, genetic biomarkers have been inconsistent in predicting chemotherapy-induced peripheral neuropathy (CIPN). Moreover, other molecular markers (eg, metabolites, mRNA, miRNA, proteins) may be informative for predicting CIPN, but remain largely unexplored. We anticipate that combinations of multiple biomarkers will be required to consistently predict those who will develop TIPN. Methods: To address this clinical gap of identifying patients at risk of TIPN, we initiated the Genetics and Inflammatory Markers for CIPN (GENIE) study. This longitudinal multicenter observational study uses a novel, multimodal approach to evaluate genomic variation, metabolites, DNA methylation, gene expression, and circulating cytokines/chemokines prior to, during, and after taxane treatment in 400 patients with breast cancer. Molecular and patient reported data will be collected prior to, during, and after taxane therapy. Multi-modal data will be used to develop a set of comprehensive predictive biomarker signatures of TIPN. Conclusion: The goal of this study is to enable early detection of patients at risk of developing TIPN, provide a tool to modify taxane treatment to minimize morbidity from TIPN, and improved patient quality of life. Here we provide a brief review of the current state of research into CIPN and TIPN and introduce the GENIE study design.
Collapse
Affiliation(s)
- Anukriti Sharma
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - Ken B. Johnson
- Department of Anesthesiology, University of Utah, UT, USA
| | - Bihua Bie
- Department of Anesthesiology, Cleveland Clinic, OH, USA
| | | | - Alper Sen
- Department of Anesthesiology, University of Utah, UT, USA
| | - Yuri Kida
- Department of Anesthesiology, University of Utah, UT, USA
| | - Jennifer Hockings
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, OH, USA
- Department of Pharmacy, Cleveland Clinic, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alycia Gatta
- Taussig Cancer Institute, Cleveland Clinic, OH, USA
| | | | | | | | - Jennifer DeVecchio
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - Ron Hughen
- Department of Anesthesiology, University of Utah, UT, USA
| | - Mei Wei
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - G. Thomas Budd
- Taussig Cancer Institute, Cleveland Clinic, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - N. Lynn Henry
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Charis Eng
- Taussig Cancer Institute, Cleveland Clinic, OH, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Joseph Foss
- Department of Anesthesiology, Cleveland Clinic, OH, USA
| | - Daniel M. Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
11
|
Tsai CH, Lin YH, Li YS, Ho TL, Hoai Thuong LH, Liu YH. Integrated Medicine for Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2021; 22:ijms22179257. [PMID: 34502166 PMCID: PMC8430591 DOI: 10.3390/ijms22179257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of typical chemotherapeutics among cancer survivors. Despite the recent progress, the effective prevention and treatment strategies for CIPN remain limited. Better understanding of the pathogenesis of CIPN may provide new niches for developing a new ideal therapeutic strategy. This review summarizes the current understanding of CIPN and current recommendations along with completed/active clinical trials and aims to foster translational research to improve the development of effective strategies for managing CIPN.
Collapse
Affiliation(s)
- Chih-Hung Tsai
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan; (C.-H.T.); (Y.-H.L.); (Y.-S.L.)
- Department of Neurology, National Taiwan University Hospital Yunlin Branch, Yunlin 64041, Taiwan
| | - Yuan-Ho Lin
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan; (C.-H.T.); (Y.-H.L.); (Y.-S.L.)
- Department of Chinese Medicine of E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
| | - Yung-Sheng Li
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan; (C.-H.T.); (Y.-H.L.); (Y.-S.L.)
- Department of Chinese Medicine of Jiannren Hospital, Kaohsiung 811504, Taiwan
| | - Trung-Loc Ho
- International Master’s Program of Biomedical Sciences, China Medical University, Taichun 40402, Taiwan; (T.-L.H.); (L.H.H.T.)
| | - Le Huynh Hoai Thuong
- International Master’s Program of Biomedical Sciences, China Medical University, Taichun 40402, Taiwan; (T.-L.H.); (L.H.H.T.)
| | - Yu-Huei Liu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan; (C.-H.T.); (Y.-H.L.); (Y.-S.L.)
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Drug Development Center, China Medical University, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-4-22052121 (ext. 2044)
| |
Collapse
|
12
|
Al-Mahayri ZN, AlAhmad MM, Ali BR. Current opinion on the pharmacogenomics of paclitaxel-induced toxicity. Expert Opin Drug Metab Toxicol 2021; 17:785-801. [PMID: 34128748 DOI: 10.1080/17425255.2021.1943358] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Paclitaxel is a microtubule stabilizer that is currently one of the most utilized chemotherapeutic agents. Its efficacy in breast, uterine, lung and other neoplasms made its safety profile enhancement a subject of great interest. Neurotoxicity is the most common paclitaxel-associated toxicities. In addition, hypersensitivity reactions, hematological, gastrointestinal, and cardiac toxicities are all encountered.Areas covered: The current review explores paclitaxel-induced toxicities mechanisms and risk factors. Studies investigating these toxicities pharmacogenomic biomarkers are reviewed and summarized. There is a limited margin of consistency between the retrieved associations. Variants in genes related to neuro-sensitivity are the most promising candidates for future studies.Expert opinion: Genome-wide association studies highlighted multiple-candidate biomarkers relevant to neuro-sensitivity. Most of the identified paclitaxel-neurotoxicity candidate genes are derived from congenital neuropathy and diabetic-induced neurotoxicity pathways. Future studies should explore these sets of genes while considering the multifactorial nature of paclitaxel-induced neurotoxicity. In the absence of certain paclitaxel-toxicity biomarkers, future research should avoid earlier studies' caveats. Genes in paclitaxel's pharmacokinetic pathways could not provide consistent results in any of its associated toxicities. There is a need to dig deeper into toxicity-development mechanisms and personal vulnerability factors, rather than targeting only the genes suspected to affect drug exposure.
Collapse
Affiliation(s)
- Zeina N Al-Mahayri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohammad M AlAhmad
- Department of Clinical Pharmacy, College of Pharmacy, Al-Ain University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
13
|
Fuemmeler BF, Dozmorov MG, Do EK, Zhang J(J, Grenier C, Huang Z, Maguire RL, Kollins SH, Hoyo C, Murphy SK. DNA Methylation in Babies Born to Nonsmoking Mothers Exposed to Secondhand Smoke during Pregnancy: An Epigenome-Wide Association Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57010. [PMID: 34009014 PMCID: PMC8132610 DOI: 10.1289/ehp8099] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Maternal smoking during pregnancy is related to altered DNA methylation in infant umbilical cord blood. The extent to which low levels of smoke exposure among nonsmoking pregnant women relates to offspring DNA methylation is unknown. OBJECTIVE This study sought to evaluate relationships between maternal prenatal plasma cotinine levels and DNA methylation in umbilical cord blood in newborns using the Infinium HumanMethylation 450K BeadChip. METHODS Participants from the Newborn Epigenetics Study cohort who reported not smoking during pregnancy had verified low levels of cotinine from maternal prenatal plasma (0 ng / mL to < 4 ng / mL ), and offspring epigenetic data from umbilical cord blood were included in this study (n = 79 ). Multivariable linear regression models were fit to the data, controlling for cell proportions, age, race, education, and parity. Estimates represent changes in response to any 1 -ng / mL unit increase in exposure. RESULTS Multivariable linear regression models yielded 29,049 CpGs that were differentially methylated in relation to increases in cotinine at a 5% false discovery rate. Top CpGs were within or near genes involved in neuronal functioning (PRKG1, DLGAP2, BSG), carcinogenesis (FHIT, HSPC157) and inflammation (AGER). Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggest cotinine was related to methylation of gene pathways controlling neuronal signaling, metabolic regulation, cell signaling and regulation, and cancer. Further, enhancers associated with transcription start sites were enriched in altered CpGs. Using an independent sample from the same study population (n = 115 ), bisulfite pyrosequencing was performed with infant cord blood DNA for two genes within our top 20 hits (AGER and PRKG1). Results from pyrosequencing replicated epigenome results for PRKG1 (cg17079497, estimate = - 1.09 , standard error ( SE ) = 0.45 , p = 0.018 ) but not for AGER (cg09199225; estimate = - 0.16 , SE = 0.21 , p = 0.44 ). DISCUSSION Secondhand smoke exposure among nonsmoking women may alter DNA methylation in regions involved in development, carcinogenesis, and neuronal functioning. These novel findings suggest that even low levels of smoke exposure during pregnancy may be sufficient to alter DNA methylation in distinct sites of mixed umbilical cord blood leukocytes in pathways that are known to be altered in cord blood from pregnant active smokers. https://doi.org/10.1289/EHP8099.
Collapse
Affiliation(s)
- Bernard F. Fuemmeler
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Elizabeth K. Do
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Junfeng (Jim) Zhang
- Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Carole Grenier
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| | - Rachel L. Maguire
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Biological Sciences, Center for Human Health and the Environment North Carolina State University, Raleigh, North Carolina, USA
| | - Scott H. Kollins
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment North Carolina State University, Raleigh, North Carolina, USA
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
14
|
Catusi I, Garzo M, Capra AP, Briuglia S, Baldo C, Canevini MP, Cantone R, Elia F, Forzano F, Galesi O, Grosso E, Malacarne M, Peron A, Romano C, Saccani M, Larizza L, Recalcati MP. 8p23.2-pter Microdeletions: Seven New Cases Narrowing the Candidate Region and Review of the Literature. Genes (Basel) 2021; 12:genes12050652. [PMID: 33925474 PMCID: PMC8146486 DOI: 10.3390/genes12050652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
To date only five patients with 8p23.2-pter microdeletions manifesting a mild-to-moderate cognitive impairment and/or developmental delay, dysmorphisms and neurobehavioral issues were reported. The smallest microdeletion described by Wu in 2010 suggested a critical region (CR) of 2.1 Mb including several genes, out of which FBXO25, DLGAP2, CLN8, ARHGEF10 and MYOM2 are the main candidates. Here we present seven additional patients with 8p23.2-pter microdeletions, ranging from 71.79 kb to 4.55 Mb. The review of five previously reported and nine Decipher patients confirmed the association of the CR with a variable clinical phenotype characterized by intellectual disability/developmental delay, including language and speech delay and/or motor impairment, behavioral anomalies, autism spectrum disorder, dysmorphisms, microcephaly, fingers/toes anomalies and epilepsy. Genotype analysis allowed to narrow down the 8p23.3 candidate region which includes only DLGAP2, CLN8 and ARHGEF10 genes, accounting for the main signs of the broad clinical phenotype associated to 8p23.2-pter microdeletions. This region is more restricted compared to the previously proposed CR. Overall, our data favor the hypothesis that DLGAP2 is the actual strongest candidate for neurodevelopmental/behavioral phenotypes. Additional patients will be necessary to validate the pathogenic role of DLGAP2 and better define how the two contiguous genes, ARHGEF10 and CLN8, might contribute to the clinical phenotype.
Collapse
Affiliation(s)
- Ilaria Catusi
- Istituto Auxologico Italiano, IRCCS, Laboratory of Medical Cytogenetics and Molecular Genetics, 20145 Milan, Italy
| | - Maria Garzo
- Istituto Auxologico Italiano, IRCCS, Laboratory of Medical Cytogenetics and Molecular Genetics, 20145 Milan, Italy
| | - Anna Paola Capra
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98100 Messina, Italy
| | - Silvana Briuglia
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98100 Messina, Italy
| | - Chiara Baldo
- UOC Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Maria Paola Canevini
- Child Neuropsychiatry Unit-Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, 20142 Milan, Italy
| | - Rachele Cantone
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Flaviana Elia
- Unit of Psychology, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Francesca Forzano
- Clinical Genetics Department, Guy's & St Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Ornella Galesi
- Laboratory of Medical Genetics, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Enrico Grosso
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Michela Malacarne
- UOC Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Angela Peron
- Child Neuropsychiatry Unit-Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, 20142 Milan, Italy
- Human Pathology and Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, 20142 Milan, Italy
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Corrado Romano
- Unit of Pediatrics and Medical Genetics, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Monica Saccani
- Child Neuropsychiatry Unit-Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, 20142 Milan, Italy
| | - Lidia Larizza
- Istituto Auxologico Italiano, IRCCS, Laboratory of Medical Cytogenetics and Molecular Genetics, 20145 Milan, Italy
| | - Maria Paola Recalcati
- Istituto Auxologico Italiano, IRCCS, Laboratory of Medical Cytogenetics and Molecular Genetics, 20145 Milan, Italy
| |
Collapse
|
15
|
Ghosh S, Tourtellotte WG. The Complex Clinical and Genetic Landscape of Hereditary Peripheral Neuropathy. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:487-509. [PMID: 33497257 DOI: 10.1146/annurev-pathol-030320-100822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hereditary peripheral neuropathy (HPN) is a complex group of neurological disorders caused by mutations in genes expressed by neurons and Schwann cells. The inheritance of a single mutation or multiple mutations in several genes leads to disease phenotype. Patients exhibit symptoms during development, at an early age or later in adulthood. Most of the mechanistic understanding about these neuropathies comes from animal models and histopathological analyses of postmortem human tissues. Diagnosis is often very complex due to the heterogeneity and overlap in symptoms and the frequent overlap between various genes and different mutations they possess. Some symptoms in HPN are common through different subtypes such as axonal degeneration, demyelination, and loss of motor and sensory neurons, leading to similar physiologic abnormalities. Recent advances in gene-targeted therapies, genetic engineering, and next-generation sequencing have augmented our understanding of the underlying pathogenetic mechanisms of HPN.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Department of Pathology and Laboratory Medicine, Neurology, and Neurological Surgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA;
| | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine, Neurology, and Neurological Surgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA;
| |
Collapse
|
16
|
Adjei AA, Lopez CL, Schaid DJ, Sloan JA, Le-Rademacher JG, Loprinzi CL, Norman AD, Olson JE, Couch FJ, Beutler AS, Vachon CM, Ruddy KJ. Genetic Predictors of Chemotherapy-Induced Peripheral Neuropathy from Paclitaxel, Carboplatin and Oxaliplatin: NCCTG/Alliance N08C1, N08CA and N08CB Study. Cancers (Basel) 2021; 13:1084. [PMID: 33802509 PMCID: PMC7959452 DOI: 10.3390/cancers13051084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common and potentially permanent adverse effect of chemotherapeutic agents including taxanes such as paclitaxel and platinum-based compounds such as oxaliplatin and carboplatin. Previous studies have suggested that genetics may impact the risk of CIPN. We conducted genome-wide association studies (GWASs) for CIPN in two independent populations who had completed European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ)-CIPN20 assessments (a CIPN-specific 20-item questionnaire which includes three scales that evaluate sensory, autonomic, and motor symptoms). The study population N08Cx included 692 participants from three clinical trials (North Central Cancer Treatment Group (NCCTG) N08C1, N08CA, and N08CB) who had been treated with paclitaxel, paclitaxel plus carboplatin, or oxaliplatin. The primary endpoint for the GWAS was the change from pre-chemotherapy CIPN20 sensory score to the worse score over the following 18 weeks. Study population The Mayo Clinic Breast Disease Registry (MCBDR) consisted of 381 Mayo Clinic Breast Disease Registry enrollees who had been treated with taxane or platinum-based chemotherapy. The primary endpoint for the GWAS assessed was the earliest CIPN20 sensory score available after the completion of chemotherapy. In multivariate model analyses, chemotherapy regimen (p = 3.0 × 10-8) and genetic ancestry (p = 0.007) were significantly associated with CIPN in the N08Cx population. Only age (p = 0.0004) was significantly associated with CIPN in the MCBDR population. The SNP most associated with CIPN was rs56360211 near PDE6C (p =7.92 × 10-8) in N08Cx and rs113807868 near TMEM150C in the MCBDR (p = 1.27 × 10-8). Due to a lack of replication, we cannot conclude that we identified any genetic predictors of CIPN.
Collapse
Affiliation(s)
- Araba A. Adjei
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (A.A.A.); (C.L.L.); (A.S.B.)
- Alliance Cancer Control Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Camden L. Lopez
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (J.E.O.); (C.M.V.); (A.D.N.)
| | - Daniel J. Schaid
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (J.E.O.); (C.M.V.); (A.D.N.)
| | - Jeff A. Sloan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (J.E.O.); (C.M.V.); (A.D.N.)
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer G. Le-Rademacher
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (J.E.O.); (C.M.V.); (A.D.N.)
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles L. Loprinzi
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (A.A.A.); (C.L.L.); (A.S.B.)
- Alliance Cancer Control Program, Mayo Clinic, Rochester, MN 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (J.E.O.); (C.M.V.); (A.D.N.)
| | - Aaron D. Norman
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (J.E.O.); (C.M.V.); (A.D.N.)
| | - Janet E. Olson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (J.E.O.); (C.M.V.); (A.D.N.)
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Andreas S. Beutler
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (A.A.A.); (C.L.L.); (A.S.B.)
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (J.E.O.); (C.M.V.); (A.D.N.)
| | - Celine M. Vachon
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (J.E.O.); (C.M.V.); (A.D.N.)
| | - Kathryn J. Ruddy
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (A.A.A.); (C.L.L.); (A.S.B.)
- Alliance Cancer Control Program, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
17
|
Hertz DL. Exploring pharmacogenetics of paclitaxel- and docetaxel-induced peripheral neuropathy by evaluating the direct pharmacogenetic-pharmacokinetic and pharmacokinetic-neuropathy relationships. Expert Opin Drug Metab Toxicol 2021; 17:227-239. [PMID: 33401943 DOI: 10.1080/17425255.2021.1856367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Peripheral neuropathy (PN) is an adverse effect of several classes of chemotherapy including the taxanes. Predictive PN biomarkers could inform individualized taxane treatment to reduce PN and enhance therapeutic outcomes. Pharmacogenetics studies of taxane-induced PN have focused on genes involved in pharmacokinetics, including enzymes and transporters. Contradictory findings from these studies prevent translation of genetic biomarkers into clinical practice. Areas covered: This review discusses the progress toward identifying pharmacogenetic predictors of PN by assessing the evidence for two independent associations; the effect of pharmacogenetics on taxane pharmacokinetics and the evidence that taxane pharmacokinetics affects PN. Assessing these direct relationships allows the reader to understand the progress toward individualized taxane treatment and future research opportunities. Expert opinion: Paclitaxel pharmacokinetics is a major determinant of PN. Additional clinical trials are needed to confirm the clinical benefit of individualized dosing to achieve target paclitaxel exposure. Genetics does not meaningfully contribute to paclitaxel pharmacokinetics and may not be useful to inform dosing. However, genetics may contribute to PN sensitivity and could be useful for estimating patients' optimal paclitaxel exposure. For docetaxel, genetics has not been demonstrated to have a meaningful effect on pharmacokinetics and there is no evidence that pharmacokinetics determines PN.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy , Ann Arbor, MI, United States
| |
Collapse
|
18
|
St. Germain DC, O’Mara AM, Robinson JL, Torres AD, Minasian LM. Chemotherapy‐induced peripheral neuropathy: Identifying the research gaps and associated changes to clinical trial design. Cancer 2020; 126:4602-4613. [DOI: 10.1002/cncr.33108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/25/2022]
Affiliation(s)
| | - Ann M. O’Mara
- Division of Cancer Prevention National Cancer Institute Bethesda Maryland
| | - Jennifer L. Robinson
- Department of Behavioral and Community Health University of Maryland College Park Maryland
| | | | - Lori M. Minasian
- Division of Cancer Prevention National Cancer Institute Bethesda Maryland
| |
Collapse
|
19
|
Chen Y, Fang F, Kidwell KM, Vangipuram K, Marcath LA, Gersch CL, Rae JM, Hayes DF, Lavoie Smith EM, Henry NL, Beutler AS, Hertz DL. Genetic variation in Charcot-Marie-Tooth genes contributes to sensitivity to paclitaxel-induced peripheral neuropathy. Pharmacogenomics 2020; 21:841-851. [PMID: 32700628 DOI: 10.2217/pgs-2020-0053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: This study explored whether inherited variants in genes causing the hereditary neuropathy condition Charcot-Marie-Tooth disease are associated with sensitivity to paclitaxel-induced peripheral neuropathy (PN). Patients & methods: Hereditary neuropathy genes previously associated with risk of paclitaxel-induced PN were sequenced in paclitaxel-treated patients. Eight putative genetic predictors in five hereditary neuropathy genes (ARHGEF10, SBF2, FGD4, FZD3 and NXN) were tested for association with PN sensitivity after accounting for systemic exposure and clinical variables. Results: FZD3 rs7833751, a proxy for rs7001034, decreased PN sensitivity (additive model, β = -0.41; 95% CI: -0.66 to -0.17; p = 0.0011). None of the other genetic predictors were associated with PN sensitivity. Conclusion: Our results support prior evidence that FZD3 rs7001034 is protective of PN and may be useful for individualizing paclitaxel treatment to prevent PN.
Collapse
Affiliation(s)
- Yongzhen Chen
- College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fang Fang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Kelley M Kidwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109
| | - Kiran Vangipuram
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Lauren A Marcath
- Department of Pharmacotherapy, Washington State University College of Pharmacy & Pharmaceutical Sciences, Pullman, WA 99164, USA
| | - Christina L Gersch
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - James M Rae
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Daniel F Hayes
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ellen M Lavoie Smith
- Department of Health Behavior & Biological Sciences, University of Michigan School of Nursing, Ann Arbor, MI 48109, USA
| | - N Lynn Henry
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109.,Department of Internal Medicine, Division of Oncology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Andreas S Beutler
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55902, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55902, USA
| | - Daniel L Hertz
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109.,Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Staff NP, Fehrenbacher JC, Caillaud M, Damaj MI, Segal RA, Rieger S. Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems. Exp Neurol 2020; 324:113121. [PMID: 31758983 PMCID: PMC6993945 DOI: 10.1016/j.expneurol.2019.113121] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022]
Abstract
Paclitaxel (Brand name Taxol) is widely used in the treatment of common cancers like breast, ovarian and lung cancer. Although highly effective in blocking tumor progression, paclitaxel also causes peripheral neuropathy as a side effect in 60-70% of chemotherapy patients. Recent efforts by numerous labs have aimed at defining the underlying mechanisms of paclitaxel-induced peripheral neuropathy (PIPN). In vitro models using rodent dorsal root ganglion neurons, human induced pluripotent stem cells, and rodent in vivo models have revealed a number of molecular pathways affected by paclitaxel within axons of sensory neurons and within other cell types, such as the immune system and peripheral glia, as well skin. These studies revealed that paclitaxel induces altered calcium signaling, neuropeptide and growth factor release, mitochondrial damage and reactive oxygen species formation, and can activate ion channels that mediate responses to extracellular cues. Recent studies also suggest a role for the matrix-metalloproteinase 13 (MMP-13) in mediating neuropathy. These diverse changes may be secondary to paclitaxel-induced microtubule transport impairment. Human genetic studies, although still limited, also highlight the involvement of cytoskeletal changes in PIPN. Newly identified molecular targets resulting from these studies could provide the basis for the development of therapies with which to either prevent or reverse paclitaxel-induced peripheral neuropathy in chemotherapy patients.
Collapse
Affiliation(s)
- Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology and Toxicology, University School of Medicine, Indianapolis, IN 46202, USA
| | - Martial Caillaud
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sandra Rieger
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
21
|
Le-Rademacher JG, Lopez CL, Kanwar R, Major-Elechi B, Abyzov A, Banck MS, Therneau TM, Sloan JA, Loprinzi CL, Beutler AS. Neurological safety of oxaliplatin in patients with uncommon variants in Charcot-Marie-tooth disease genes. J Neurol Sci 2020; 411:116687. [PMID: 32018185 DOI: 10.1016/j.jns.2020.116687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
Oxaliplatin therapy can be complicated by chemotherapy-induced peripheral neuropathy (CIPN). Other neurotoxic chemotherapies have been linked to single nucleotide variants (SNV) in Charcot-Marie-Tooth disease (CMT) genes. Whether oxaliplatin carries increased risks of CIPN due to SNV in CMT-associated genes is unknown. 353 patients receiving oxaliplatin in NCCTG N08CB were serially evaluated for CIPN using a validated patient-reported outcome (PRO) instrument, the CIPN20 questionnaire (sensory scale). 49 canonical CMT-associated genes were analyzed for rare and common SNV by nextgen sequencing. The 157 patients with the highest and lowest susceptibility to CIPN (cases and controls) harbored 270 non-synonymous SNV in CMT-associated genes (coding regions). 143 of these were rare, occurring only once ("singletons"). CIPN cases had 0.84 singletons per patient compared with 0.98 in controls. An imbalance in favor of cases was noted only in few genes including PRX, which was previously highlighted as a candidate CIPN gene in patients receiving paclitaxel. However, the imbalance was only modest (5 singleton SNV in cases and 2 in controls). Therefore, while singleton SNV were common, they did overall not portend an increased risk of CIPN. Furthermore, testing CMT-associated genes using recurrent non-synonymous SNV did not reveal any significant association with CIPN. Genetic analysis of patients from N08CB provides clinical guidance that oxaliplatin chemotherapy decisions should not be altered by the majority of SNV that may be encountered in CMT-associated genes when common genetic tests are performed, such as exome or genome sequencing. Oxaliplatin's CIPN risk appears unrelated to CMT-associated genes.
Collapse
Affiliation(s)
- Jennifer G Le-Rademacher
- Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Rochester, MN, USA; Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Camden L Lopez
- Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Rochester, MN, USA
| | - Rahul Kanwar
- Center for Individualized Medicine, Rochester, MN, USA
| | - Brittny Major-Elechi
- Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Rochester, MN, USA; Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN, USA.
| | - Alexej Abyzov
- Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Rochester, MN, USA; Center for Individualized Medicine, Rochester, MN, USA
| | - Michaela S Banck
- Mayo Clinic Cancer Center, Rochester, MN, USA; Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Terry M Therneau
- Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Rochester, MN, USA
| | - Jeff A Sloan
- Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Rochester, MN, USA; Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN, USA
| | - Charles L Loprinzi
- Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Rochester, MN, USA; Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Andreas S Beutler
- Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Rochester, MN, USA; Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
22
|
Chan A, Hertz DL, Morales M, Adams EJ, Gordon S, Tan CJ, Staff NP, Kamath J, Oh J, Shinde S, Pon D, Dixit N, D'Olimpio J, Dumitrescu C, Gobbo M, Kober K, Mayo S, Pang L, Subbiah I, Beutler AS, Peters KB, Loprinzi C, Lustberg MB. Biological predictors of chemotherapy-induced peripheral neuropathy (CIPN): MASCC neurological complications working group overview. Support Care Cancer 2019; 27:3729-3737. [PMID: 31363906 DOI: 10.1007/s00520-019-04987-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common and debilitating condition associated with a number of chemotherapeutic agents. Drugs commonly implicated in the development of CIPN include platinum agents, taxanes, vinca alkaloids, bortezomib, and thalidomide analogues. As a drug response can vary between individuals, it is hypothesized that an individual's specific genetic variants could impact the regulation of genes involved in drug pharmacokinetics, ion channel functioning, neurotoxicity, and DNA repair, which in turn affect CIPN development and severity. Variations of other molecular markers may also affect the incidence and severity of CIPN. Hence, the objective of this review was to summarize the known biological (molecular and genomic) predictors of CIPN and discuss the means to facilitate progress in this field.
Collapse
Affiliation(s)
- Alexandre Chan
- National University of Singapore, Singapore, Singapore
- National Cancer Centre Singapore, Singapore, Singapore
| | | | - Manuel Morales
- University Hospital Ntra. Sra. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Elizabeth J Adams
- The Ohio State University Comprehensive Cancer Center, Columbus, USA
| | - Sharon Gordon
- University of Connecticut, Storrs, USA
- East Carolina University, Greenville, USA
| | - Chia Jie Tan
- National University of Singapore, Singapore, Singapore
- National Cancer Centre Singapore, Singapore, Singapore
| | | | - Jayesh Kamath
- University of Connecticut Health Center, Storrs, USA
| | - Jeong Oh
- MD Anderson Cancer Center, Houston, USA
| | - Shivani Shinde
- University of Colorado, Colorado, USA
- VA Eastern Colorado Health Care Systems, Aurora, MS, USA
| | - Doreen Pon
- Western University of Health Sciences, Pomona, USA
| | - Niharkia Dixit
- University of California San Francisco, San Francisco, USA
- Zuckerberg San Francisco General Hospital, San Francisco, USA
| | - James D'Olimpio
- Northwell Cancer Institute, New Hyde Park, USA
- Zucker School of Medicine at Hofstra, 500 Hofstra Blvd, Hempstead, USA
| | | | | | - Kord Kober
- University of California San Francisco, San Francisco, USA
- Helen Diller Comprehensive Cancer Centre, San Francisco, USA
| | | | | | | | | | | | | | - Maryam B Lustberg
- The Ohio State University Comprehensive Cancer Center, Columbus, USA.
| |
Collapse
|
23
|
Budure AN, Winquist E, Palma D, Correa RJM. Successful treatment of nasopharyngeal cancer using radiotherapy with concurrent cetuximab in a patient with Charcot-Marie-Tooth disease. BMJ Case Rep 2019; 12:12/7/e228956. [DOI: 10.1136/bcr-2018-228956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Herein we present a case of a patient with Charcot-Marie-Tooth (CMT) disease who was diagnosed with locally invasive nasopharyngeal carcinoma. In the context of CMT, the use of standard platinum-based radio-sensitising chemotherapy would have been neurotoxic and is contraindicated in patients with CMT. However, no alternate antineoplastic treatment strategies for patients with CMT have been described in the literature. In this case, an innovative approach was taken using radical radiotherapy concurrently with the biological agent cetuximab. The patient did not suffer any neurotoxicity, though he did experience several expected toxicities commonly associated with this regimen. The patient nonetheless completed treatment and has experienced an excellent response both clinically and radiographically and remains disease free.
Collapse
|
24
|
Niftullayev S, Lamarche-Vane N. Regulators of Rho GTPases in the Nervous System: Molecular Implication in Axon Guidance and Neurological Disorders. Int J Mol Sci 2019; 20:E1497. [PMID: 30934641 PMCID: PMC6471118 DOI: 10.3390/ijms20061497] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
One of the fundamental steps during development of the nervous system is the formation of proper connections between neurons and their target cells-a process called neural wiring, failure of which causes neurological disorders ranging from autism to Down's syndrome. Axons navigate through the complex environment of a developing embryo toward their targets, which can be far away from their cell bodies. Successful implementation of neuronal wiring, which is crucial for fulfillment of all behavioral functions, is achieved through an intimate interplay between axon guidance and neural activity. In this review, our focus will be on axon pathfinding and the implication of some of its downstream molecular components in neurological disorders. More precisely, we will talk about axon guidance and the molecules implicated in this process. After, we will briefly review the Rho family of small GTPases, their regulators, and their involvement in downstream signaling pathways of the axon guidance cues/receptor complexes. We will then proceed to the final and main part of this review, where we will thoroughly comment on the implication of the regulators for Rho GTPases-GEFs (Guanine nucleotide Exchange Factors) and GAPs (GTPase-activating Proteins)-in neurological diseases and disorders.
Collapse
Affiliation(s)
- Sadig Niftullayev
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| |
Collapse
|
25
|
Diaz PL, Furfari A, Wan BA, Lam H, Charames G, Drost L, Fefekos A, Ohearn S, Blake A, Asthana R, Chow E, DeAngelis C. Predictive biomarkers of chemotherapy-induced peripheral neuropathy: a review. Biomark Med 2018; 12:907-916. [DOI: 10.2217/bmm-2017-0427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of taxane treatment during chemotherapy. Identifying predictive biomarkers of CIPN would allow physicians to alter treatment given to patients according to a personal risk of developing this condition. The current literature on CIPN biomarkers is reviewed, identifying biomarkers which have been found to be significantly related to CIPN. Three genetic biomarkers are identified (ARHGEF10 rs9657362, CYP2C8 rs11572080/rs10509681 and FGD4 rs10771973) which have been found to act as predictive CIPN biomarkers in multiple studies. Possible mechanisms underlying the relationship between these single nucleotide polymorphisms and CIPN development are explored. The biomarkers identified in this study should be investigated further to generate predictive biomarkers that may be used in a clinical setting.
Collapse
Affiliation(s)
- Patrick L Diaz
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | - Anthony Furfari
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | - Bo Angela Wan
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | - Henry Lam
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | - George Charames
- Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Mount Sinai Services Inc., Toronto, Ontario, M5G 1X5, Canada
- Lunenfeld–Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
| | - Leah Drost
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | | | | | - Alexia Blake
- MedReleaf Inc., Markham, Ontario, L3R 6G4, Canada
| | - Rashi Asthana
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | - Edward Chow
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | - Carlo DeAngelis
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
- Department of Pharmacy, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
26
|
Jaffee EM, Dang CV, Agus DB, Alexander BM, Anderson KC, Ashworth A, Barker AD, Bastani R, Bhatia S, Bluestone JA, Brawley O, Butte AJ, Coit DG, Davidson NE, Davis M, DePinho RA, Diasio RB, Draetta G, Frazier AL, Futreal A, Gambhir SS, Ganz PA, Garraway L, Gerson S, Gupta S, Heath J, Hoffman RI, Hudis C, Hughes-Halbert C, Ibrahim R, Jadvar H, Kavanagh B, Kittles R, Le QT, Lippman SM, Mankoff D, Mardis ER, Mayer DK, McMasters K, Meropol NJ, Mitchell B, Naredi P, Ornish D, Pawlik TM, Peppercorn J, Pomper MG, Raghavan D, Ritchie C, Schwarz SW, Sullivan R, Wahl R, Wolchok JD, Wong SL, Yung A. Future cancer research priorities in the USA: a Lancet Oncology Commission. Lancet Oncol 2017; 18:e653-e706. [PMID: 29208398 PMCID: PMC6178838 DOI: 10.1016/s1470-2045(17)30698-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
We are in the midst of a technological revolution that is providing new insights into human biology and cancer. In this era of big data, we are amassing large amounts of information that is transforming how we approach cancer treatment and prevention. Enactment of the Cancer Moonshot within the 21st Century Cures Act in the USA arrived at a propitious moment in the advancement of knowledge, providing nearly US$2 billion of funding for cancer research and precision medicine. In 2016, the Blue Ribbon Panel (BRP) set out a roadmap of recommendations designed to exploit new advances in cancer diagnosis, prevention, and treatment. Those recommendations provided a high-level view of how to accelerate the conversion of new scientific discoveries into effective treatments and prevention for cancer. The US National Cancer Institute is already implementing some of those recommendations. As experts in the priority areas identified by the BRP, we bolster those recommendations to implement this important scientific roadmap. In this Commission, we examine the BRP recommendations in greater detail and expand the discussion to include additional priority areas, including surgical oncology, radiation oncology, imaging, health systems and health disparities, regulation and financing, population science, and oncopolicy. We prioritise areas of research in the USA that we believe would accelerate efforts to benefit patients with cancer. Finally, we hope the recommendations in this report will facilitate new international collaborations to further enhance global efforts in cancer control.
Collapse
Affiliation(s)
| | - Chi Van Dang
- Ludwig Institute for Cancer Research New York, NY; Wistar Institute, Philadelphia, PA, USA.
| | - David B Agus
- University of Southern California, Beverly Hills, CA, USA
| | - Brian M Alexander
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Alan Ashworth
- University of California San Francisco, San Francisco, CA, USA
| | | | - Roshan Bastani
- Fielding School of Public Health and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Sangeeta Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey A Bluestone
- University of California San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Atul J Butte
- University of California San Francisco, San Francisco, CA, USA
| | - Daniel G Coit
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Nancy E Davidson
- Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA
| | - Mark Davis
- California Institute for Technology, Pasadena, CA, USA
| | | | | | - Giulio Draetta
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - A Lindsay Frazier
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew Futreal
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Patricia A Ganz
- Fielding School of Public Health and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Levi Garraway
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA; Eli Lilly and Company, Boston, MA, USA
| | | | - Sumit Gupta
- Division of Haematology/Oncology, Hospital for Sick Children, Faculty of Medicine and IHPME, University of Toronto, Toronto, Canada
| | - James Heath
- California Institute for Technology, Pasadena, CA, USA
| | - Ruth I Hoffman
- American Childhood Cancer Organization, Beltsville, MD, USA
| | - Cliff Hudis
- Breast Cancer Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Chanita Hughes-Halbert
- Medical University of South Carolina and the Hollings Cancer Center, Charleston, SC, USA
| | - Ramy Ibrahim
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Hossein Jadvar
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian Kavanagh
- Department of Radiation Oncology, University of Colorado, Denver, CO, USA
| | - Rick Kittles
- College of Medicine, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | | | - Scott M Lippman
- University of California San Diego Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - David Mankoff
- Department of Radiology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine R Mardis
- The Institute for Genomic Medicine at Nationwide Children's Hospital Columbus, OH, USA; College of Medicine, Ohio State University, Columbus, OH, USA
| | - Deborah K Mayer
- University of North Carolina Lineberger Cancer Center, Chapel Hill, NC, USA
| | - Kelly McMasters
- The Hiram C Polk Jr MD Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dean Ornish
- University of California San Francisco, San Francisco, CA, USA
| | - Timothy M Pawlik
- Department of Surgery, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | | | - Martin G Pomper
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek Raghavan
- Levine Cancer Institute, Carolinas HealthCare, Charlotte, NC, USA
| | | | - Sally W Schwarz
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | | | - Richard Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jedd D Wolchok
- Ludwig Center for Cancer Immunotherapy, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Sandra L Wong
- Department of Surgery, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Alfred Yung
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Pasternak AL, Ward KM, Luzum JA, Ellingrod VL, Hertz DL. Germline genetic variants with implications for disease risk and therapeutic outcomes. Physiol Genomics 2017; 49:567-581. [PMID: 28887371 PMCID: PMC5668651 DOI: 10.1152/physiolgenomics.00035.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Genetic testing has multiple clinical applications including disease risk assessment, diagnosis, and pharmacogenomics. Pharmacogenomics can be utilized to predict whether a pharmacologic therapy will be effective or to identify patients at risk for treatment-related toxicity. Although genetic tests are typically ordered for a distinct clinical purpose, the genetic variants that are found may have additional implications for either disease or pharmacology. This review will address multiple examples of germline genetic variants that are informative for both disease and pharmacogenomics. The discussed relationships are diverse. Some of the agents are targeted for the disease-causing genetic variant, while others, although not targeted therapies, have implications for the disease they are used to treat. It is also possible that the disease implications of a genetic variant are unrelated to the pharmacogenomic implications. Some of these examples are considered clinically actionable pharmacogenes, with evidence-based, pharmacologic treatment recommendations, while others are still investigative as areas for additional research. It is important that clinicians are aware of both the disease and pharmacogenomic associations of these germline genetic variants to ensure patients are receiving comprehensive personalized care.
Collapse
Affiliation(s)
- Amy L Pasternak
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Kristen M Ward
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Jasmine A Luzum
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Vicki L Ellingrod
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| |
Collapse
|
28
|
Cliff J, Jorgensen AL, Lord R, Azam F, Cossar L, Carr DF, Pirmohamed M. The molecular genetics of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2017; 120:127-140. [PMID: 29198326 DOI: 10.1016/j.critrevonc.2017.09.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/12/2017] [Accepted: 09/11/2017] [Indexed: 01/13/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) can adversely affect completion of systemic anti-cancer treatment and cause long-term morbidity. Increasingly pharmacogenetic studies have been performed to explore susceptibility to this important adverse effect. A systematic review was conducted to identify pharmacogenetic studies, assess their quality and findings and undertake meta-analysis where possible. 93 studies were included. Notable methodological issues included lack of standardisation and detail in phenotype definition and acknowledgement of potential confounding factors. Insufficient data was presented in many studies meaning only a minority could be included in meta-analysis showing mainly non-significant effects. Nonetheless, SNPs in CYP2C8, CYP3A4, ARHGEF10, EPHA and TUBB2A genes (taxanes), FARS2, ACYP2 and TAC1 (oxaliplatin), and CEP75 and CYP3A5 (vincristine) are of potential interest. These require exploration in large cohort studies with robust methodology and well-defined phenotypes. Seeking standardisation of phenotype, collaboration and subsequently, individual-patient-data meta-analysis may facilitate identifying contributory SNPs which could be combined in a polygenic risk score to predict those most at risk of CIPN.
Collapse
Affiliation(s)
- J Cliff
- University of Liverpool, Liverpool, L69 3BX, UK; Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Wirral, CH63 4JY, UK.
| | | | - R Lord
- University of Liverpool, Liverpool, L69 3BX, UK; Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Wirral, CH63 4JY, UK.
| | - F Azam
- Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Wirral, CH63 4JY, UK.
| | - L Cossar
- University of Liverpool, Liverpool, L69 3BX, UK; Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Wirral, CH63 4JY, UK.
| | - D F Carr
- University of Liverpool, Liverpool, L69 3BX, UK.
| | - M Pirmohamed
- University of Liverpool, Liverpool, L69 3BX, UK.
| |
Collapse
|
29
|
Argyriou AA, Bruna J, Genazzani AA, Cavaletti G. Chemotherapy-induced peripheral neurotoxicity: management informed by pharmacogenetics. Nat Rev Neurol 2017; 13:492-504. [PMID: 28664909 DOI: 10.1038/nrneurol.2017.88] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The increasing availability of sophisticated methods to characterize human genetic variation has enabled pharmacogenetic data to be used not only to predict responses to treatment (in the context of so-called personalized medicine), but also to identify patients at high or low risk of specific treatment-related adverse effects. Over the past two decades, extensive attempts have been made to understand the genetic basis of chemotherapy-induced peripheral neurotoxicity (CIPN), one of the most severe non-haematological adverse effects of cancer treatment. Despite substantial efforts, however, the identification of a genetic profile that can detect patients at high risk of CIPN still represents an unmet need, as the information obtained from pharmacogenetic studies published so far is inconsistent at best. Among the reasons for these inconsistencies, methodological flaws and the poor reliability of existing tools for assessing CIPN features and severity are particularly relevant. This Review provides a critical update of the pharmacogenetics of CIPN, focusing on the studies published since 2011. Strategies for improving the reliability of future pharmacogenetic studies of CIPN are also discussed.
Collapse
Affiliation(s)
- Andreas A Argyriou
- Department of Neurology, Saint Andrew's State General Hospital of Patras, Tsertidou 1 Street, 26335, Patras, Greece
| | - Jordi Bruna
- Unit of Neuro-Oncology, Hospital Universitari de Bellvitge-ICO l'Hospitalet, Bellvitge Institute for Biomedical Research (IDIBELL), Hospital Duran i Reynals, 3a planta, Gran Via de l'Hospitalet 199, 08908 Hospitalet de Llobregat, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red (CIBERNED), 09193 Avinguda de Can Domènech, Bellaterra, Spain
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery and Milan Centre for Neuroscience, School of Medicine - University of Milano-Bicocca, via Cadore 48, 20900, Monza (MB), Italy
| |
Collapse
|
30
|
Staff NP, Grisold A, Grisold W, Windebank AJ. Chemotherapy-induced peripheral neuropathy: A current review. Ann Neurol 2017; 81:772-781. [PMID: 28486769 PMCID: PMC5656281 DOI: 10.1002/ana.24951] [Citation(s) in RCA: 486] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/30/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting side effect experienced by patients receiving treatment for cancer. Approximately 30 to 40% of patients treated with neurotoxic chemotherapy will develop CIPN, and there is considerable variability in its severity between patients. It is often sensory-predominant with pain and can lead to long-term morbidity in survivors. The prevalence and burden of CIPN late effects will likely increase as cancer survival rates continue to improve. In this review, we discuss the approach to peripheral neuropathy in patients with cancer and address the clinical phenotypes and pathomechanisms of specific neurotoxic chemotherapeutic agents. Ann Neurol 2017;81:772-781.
Collapse
Affiliation(s)
| | - Anna Grisold
- Department of Neurology, Medical University of Vienna, Austria
| | - Wolfgang Grisold
- Ludwig Boltzmann Institute for Experimental und Clinical
Traumatology, Vienna, Austria
| | | |
Collapse
|
31
|
Starobova H, Vetter I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front Mol Neurosci 2017; 10:174. [PMID: 28620280 PMCID: PMC5450696 DOI: 10.3389/fnmol.2017.00174] [Citation(s) in RCA: 380] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of several antineoplastics. It can lead to detrimental dose reductions and discontinuation of treatment, and severely affects the quality of life of cancer survivors. Clinically, chemotherapy-induced peripheral neuropathy presents as deficits in sensory, motor, and autonomic function which develop in a glove and stocking distribution due to preferential effects on longer axons. The pathophysiological processes are multi-factorial and involve oxidative stress, apoptotic mechanisms, altered calcium homeostasis, axon degeneration and membrane remodeling as well as immune processes and neuroinflammation. This review focusses on the commonly used antineoplastic substances oxaliplatin, cisplatin, vincristine, docetaxel, and paclitaxel which interfere with the cancer cell cycle-leading to cell death and tumor degradation-and cause severe acute and chronic peripheral neuropathies. We discuss drug mechanism of action and pharmacokinetic disposition relevant to the development of peripheral neuropathy, the epidemiology and clinical presentation of chemotherapy-induced neuropathy, emerging insight into genetic susceptibilities as well as current understanding of the pathophysiology and treatment approaches.
Collapse
Affiliation(s)
- Hana Starobova
- Centre for Pain Research, Institute for Molecular Bioscience, University of QueenslandSt Lucia, QLD, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, University of QueenslandSt Lucia, QLD, Australia.,School of Pharmacy, University of QueenslandSt Lucia, QLD, Australia
| |
Collapse
|
32
|
Shibata S, Teshima Y, Niimi K, Inagaki S. Involvement of ARHGEF10, GEF for RhoA, in Rab6/Rab8-mediating membrane traffic. Small GTPases 2017; 10:169-177. [PMID: 28448737 DOI: 10.1080/21541248.2017.1302550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Small GTPases play crucial roles in the maintenance of a homeostatic environment and appropriate movements of the cell. In these processes, the direct or indirect interaction between distinct small GTPases could be required for regulating mutual signaling pathways. In our recent study, ARHGEF10, known as a guanine nucleotide exchange factor (GEF) for RhoA, was indicated to interact with Rab6A and Rab8A, which are known to function in the exocytotic pathway, and colocalized with these Rabs at exocytotic vesicles. Moreover, it was suggested that ARHGEF10 is involved in the regulation of Rab6A and Rab8A localization and invasion of breast carcinoma cells, in which Rab8 also acts via regulation of membrane trafficking. These results may reveal the existence of a novel small GTPase cascade which connects the signaling of these Rabs with RhoA during membrane trafficking. In this mini-review, we consider the possible functions of ARHGEF10 and RhoA in the Rab6- and Rab8-mediated membrane trafficking pathway.
Collapse
Affiliation(s)
- Satoshi Shibata
- a Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine , Osaka University , Osaka , Japan
| | - Yui Teshima
- a Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine , Osaka University , Osaka , Japan
| | - Kenta Niimi
- a Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine , Osaka University , Osaka , Japan
| | - Shinobu Inagaki
- a Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine , Osaka University , Osaka , Japan
| |
Collapse
|
33
|
|
34
|
Li H, Yu S, Wang R, Sun Z, Zhou X, Zheng L, Yin Z, Zhang X, Sun Y. ARHGEF10 gene polymorphism is closely associated with the risk of ischemic stroke in Northern Han Chinese population. Neurol Res 2016; 39:158-164. [PMID: 27934548 DOI: 10.1080/01616412.2016.1263175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shasha Yu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Rui Wang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Zhaoqing Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinghu Zhou
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Liqiang Zheng
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Xingang Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Apellániz-Ruiz M, Tejero H, Inglada-Pérez L, Sánchez-Barroso L, Gutiérrez-Gutiérrez G, Calvo I, Castelo B, Redondo A, García-Donás J, Romero-Laorden N, Sereno M, Merino M, Currás-Freixes M, Montero-Conde C, Mancikova V, Åvall-Lundqvist E, Green H, Al-Shahrour F, Cascón A, Robledo M, Rodríguez-Antona C. Targeted Sequencing Reveals Low-Frequency Variants in EPHA Genes as Markers of Paclitaxel-Induced Peripheral Neuropathy. Clin Cancer Res 2016; 23:1227-1235. [PMID: 27582484 DOI: 10.1158/1078-0432.ccr-16-0694] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/29/2016] [Accepted: 08/16/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Neuropathy is the dose-limiting toxicity of paclitaxel and a major cause for decreased quality of life. Genetic factors have been shown to contribute to paclitaxel neuropathy susceptibility; however, the major causes for interindividual differences remain unexplained. In this study, we identified genetic markers associated with paclitaxel-induced neuropathy through massive sequencing of candidate genes.Experimental Design: We sequenced the coding region of 4 EPHA genes, 5 genes involved in paclitaxel pharmacokinetics, and 30 Charcot-Marie-Tooth genes, in 228 cancer patients with no/low neuropathy or high-grade neuropathy during paclitaxel treatment. An independent validation series included 202 paclitaxel-treated patients. Variation-/gene-based analyses were used to compare variant frequencies among neuropathy groups, and Cox regression models were used to analyze neuropathy along treatment.Results: Gene-based analysis identified EPHA6 as the gene most significantly associated with paclitaxel-induced neuropathy. Low-frequency nonsynonymous variants in EPHA6 were present exclusively in patients with high neuropathy, and all affected the ligand-binding domain of the protein. Accumulated dose analysis in the discovery series showed a significantly higher neuropathy risk for EPHA5/6/8 low-frequency nonsynonymous variant carriers [HR, 14.60; 95% confidence interval (CI), 2.33-91.62; P = 0.0042], and an independent cohort confirmed an increased neuropathy risk (HR, 2.07; 95% CI, 1.14-3.77; P = 0.017). Combining the series gave an estimated 2.5-fold higher risk of neuropathy (95% CI, 1.46-4.31; P = 9.1 × 10-4).Conclusions: This first study sequencing EPHA genes revealed that low-frequency variants in EPHA6, EPHA5, and EPHA8 contribute to the susceptibility to paclitaxel-induced neuropathy. Furthermore, EPHA's neuronal injury repair function suggests that these genes might constitute important neuropathy markers for many neurotoxic drugs. Clin Cancer Res; 23(5); 1227-35. ©2016 AACR.
Collapse
Affiliation(s)
- María Apellániz-Ruiz
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Héctor Tejero
- Translational Bioinformatics Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Lucía Inglada-Pérez
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Lara Sánchez-Barroso
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Isabel Calvo
- Medical Oncology Department, Hospital Montepríncipe, Madrid, Spain.,Medical Oncology Department, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Beatriz Castelo
- Medical Oncology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Andrés Redondo
- Medical Oncology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Jesús García-Donás
- Gynecological and Genitourinary Tumors Programme, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Nuria Romero-Laorden
- Gynecological and Genitourinary Tumors Programme, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - María Sereno
- Medical Oncology Department, Hospital Universitario Infanta Sofía, Madrid, Spain
| | - María Merino
- Medical Oncology Department, Hospital Universitario Infanta Sofía, Madrid, Spain
| | - María Currás-Freixes
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Veronika Mancikova
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elisabeth Åvall-Lundqvist
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköpings Universitet, Linköping, Sweden
| | - Henrik Green
- Clinical Pharmacology, Division of Drug Research, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköpings Universitet, Linköping, Sweden.,Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Fátima Al-Shahrour
- Translational Bioinformatics Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Cristina Rodríguez-Antona
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. .,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
36
|
Shibata S, Kawanai T, Hara T, Yamamoto A, Chaya T, Tokuhara Y, Tsuji C, Sakai M, Tachibana T, Inagaki S. ARHGEF10 directs the localization of Rab8 to Rab6-positive executive vesicles. J Cell Sci 2016; 129:3620-3634. [PMID: 27550519 DOI: 10.1242/jcs.186817] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/13/2016] [Indexed: 12/18/2022] Open
Abstract
The function of ARHGEF10, a known guanine nucleotide exchange factor (GEF) for RhoA with proposed roles in various diseases, is poorly understood. To understand the precise function of this protein, we raised a monoclonal antibody against ARHGEF10 and determined its localization in HeLa cells. ARHGEF10 was found to localize to vesicles containing Rab6 (of which there are three isoforms, Rab6a, Rab6b and Rab6c), Rab8 (of which there are two isoforms, Rab8a and Rab8b), and/or the secretion marker neuropeptide Y (NPY)-Venus in a Rab6-dependent manner. These vesicles were known to originate from the Golgi and contain secreted or membrane proteins. Ectopic expression of an N-terminal-truncated ARHGEF10 mutant led to the generation of large vesicle-like structures containing both Rab6 and Rab8. Additionally, small interfering (si)RNA-mediated knockdown of ARHGEF10 impaired the localization of Rab8 to these exocytotic vesicles. Furthermore, the invasiveness of MDA-MB231 cells was markedly decreased by knockdown of ARHGEF10, as well as of Rab8. From these results, we propose that ARHGEF10 acts in exocytosis and tumor invasion in a Rab8-dependent manner.
Collapse
Affiliation(s)
- Satoshi Shibata
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tsubasa Kawanai
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Takayuki Hara
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Asuka Yamamoto
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Taro Chaya
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yasunori Tokuhara
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Chinami Tsuji
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Manabu Sakai
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
| | - Shinobu Inagaki
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
37
|
Holloway MP, DeNardo BD, Phornphutkul C, Nguyen K, Davis C, Jackson C, Richendrfer H, Creton R, Altura RA. An asymptomatic mutation complicating severe chemotherapy-induced peripheral neuropathy (CIPN): a case for personalised medicine and a zebrafish model of CIPN. NPJ Genom Med 2016; 1:16016. [PMID: 29263815 PMCID: PMC5685301 DOI: 10.1038/npjgenmed.2016.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/13/2022] Open
Abstract
Targeted next-generation sequencing (NGS) identified a novel loss of function mutation in GARS, a gene linked to Charcot-Marie-Tooth disease (CMT), in a paediatric acute lymphoblastic leukaemia patient with severe chemotherapy-induced peripheral neuropathy (CIPN) due to vincristine. The patient was clinically asymptomatic, and lacked a family history of neuropathy. The effect of the mutation was modelled in a zebrafish knockdown system that recapitulated the symptoms of the patient both prior to and after treatment with vincristine. Confocal microscopy of pre- and post-synaptic markers revealed that the GARS knockdown results in changes to peripheral motor neurons, acetylcholine receptors and their co-localisation in neuromuscular junctions (NMJs), whereas a sensitive and reproducible stimulus-response assay demonstrated that the changes correlating with the GARS mutation in themselves fail to produce peripheral neuropathy symptoms. However, with vincristine treatment the GARS knockdown exacerbates decreased stimulus response and NMJ lesions. We propose that there is substantial benefit in the use of a targeted NGS screen of cancer patients who are to be treated with microtubule targeting agents for deleterious mutations in CMT linked genes, and for the screening in zebrafish of reagents that might inhibit CIPN.
Collapse
Affiliation(s)
- Michael P Holloway
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Bradley D DeNardo
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Chanika Phornphutkul
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Rhode Island Hospital and Brown University, Providence, RI, USA
| | - Kevin Nguyen
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Colby Davis
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Cynthia Jackson
- Departments of Pathology and Clinical Molecular Biology, Rhode Island Hospital and Brown University School of Medicine, Providence, RI, USA
| | - Holly Richendrfer
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Rachel A Altura
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| |
Collapse
|
38
|
Morrison G, Liu C, Wing C, Delaney SM, Zhang W, Dolan ME. Evaluation of inter-batch differences in stem-cell derived neurons. Stem Cell Res 2015; 16:140-8. [PMID: 26774046 DOI: 10.1016/j.scr.2015.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 01/24/2023] Open
Abstract
Differentiated cells retain the genetic information of the donor but the extent to which phenotypic differences between donors or batches of differentiated cells are explained by variation introduced during the differentiation process is not fully understood. In this study, we evaluated four separate batches of commercially available neurons originating from the same iPSCs to investigate whether the differentiation process used in manufacturing iPSCs to neurons affected genome-wide gene expression and modified cytosines, or neuronal sensitivity to drugs. No significant changes in gene expression, as measured by RNA-Seq, or cytosine modification levels, as measured by the Illumina 450K arrays, were observed between batches relative to changes over time. As expected, neurotoxic chemotherapeutics affected neuronal outgrowth, but no inter-batch differences were observed in sensitivity to paclitaxel, vincristine and cisplatin. As a testament to the utility of the model for studies of neuropathy, we observed that genes involved in neuropathy had relatively higher expression levels in these samples across different time points. Our results suggest that the process used to differentiate iPSCs into neurons is consistent, resulting in minimal intra-individual variability across batches. Therefore, this model is reasonable for studies of human neuropathy, druggable targets to prevent neuropathy, and other neurological diseases.
Collapse
Affiliation(s)
- Gladys Morrison
- Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, IL 60637, USA
| | - Cong Liu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Claudia Wing
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Shannon M Delaney
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Wei Zhang
- Department of Preventive Medicine & The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - M Eileen Dolan
- Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, IL 60637, USA; Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
39
|
Majithia N, Temkin SM, Ruddy KJ, Beutler AS, Hershman DL, Loprinzi CL. National Cancer Institute-supported chemotherapy-induced peripheral neuropathy trials: outcomes and lessons. Support Care Cancer 2015; 24:1439-47. [PMID: 26686859 DOI: 10.1007/s00520-015-3063-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/14/2015] [Indexed: 12/19/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common and debilitating complications of cancer treatment. Due to a lack of effective management options for patients with CIPN, the National Cancer Institute (NCI) sponsored a series of trials aimed at both prevention and treatment. A total of 15 such studies were approved, evaluating use of various neuro-modulatory agents which have shown benefit in other neuropathic pain states. Aside from duloxetine, none of the pharmacologic methods demonstrated therapeutic benefit for patients with CIPN. Despite these disappointing results, the series of trials revealed important lessons that have informed subsequent work. Some examples of this include the use of patient-reported symptom metrics, the elimination of traditional--yet unsubstantiated--practice approaches, and the discovery of molecular genetic predictors of neuropathy. Current inquiry is being guided by the results from these large-scale trials, and as such, stands better chance of identifying durable solutions for this treatment-limiting toxicity.
Collapse
Affiliation(s)
- Neil Majithia
- Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Sarah M Temkin
- Community Oncology and Prevention Trials Research Group, Division of Cancer Prevention, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Kathryn J Ruddy
- Department of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Andreas S Beutler
- Department of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Dawn L Hershman
- Department of Medicine, Department of Epidemiology, Mailman School of Public Health, Columbia University College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, 161 Fort Washington Ave #1068, New York, NY, 10032, USA
| | - Charles L Loprinzi
- Department of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|