1
|
Crescioli C, Paronetto MP. The Emerging Role of Phosphodiesterase 5 Inhibition in Neurological Disorders: The State of the Art. Cells 2024; 13:1720. [PMID: 39451238 PMCID: PMC11506759 DOI: 10.3390/cells13201720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Growing evidence suggests that neuroinflammation is not just a consequence of neurodegeneration in pathologies such as Alzheimer's disease, Parkinson's disease, Huntington's disease or Amyotrophic lateral sclerosis, but it is rather a determinant factor, which plays a pivotal role in the onset and progression of these disorders. Neuroinflammation can affect cells and processes in the central nervous system (CNS) as well as immune cells, and might precede protein aggregation, which is a hallmark of the neurodegenerative process. Standard treatment methods are far from being able to counteract inflammation and delay neurodegeneration. Remarkably, phosphodiesterase 5 inhibitors (PDE5is), which represent potent vasoactive drugs used as a first-line treatment for erectile dysfunction (ED), display important anti-inflammatory effects through cyclic guanosine monophosphate (cGMP) level stabilization. Since PDE5 hydrolyzes cGMP, several studies positioned PDE5 as a therapeutic target, and more specifically, PDE5is as potential alternative strategies for the treatment of a variety of neurological disorders. Indeed, PDE5is can limit neuroinflammation and enhance synaptic plasticity, with beneficial effects on cognitive function and memory. The aim of this review is to provide an overview of some of the main processes underlying neuroinflammation and neurodegeneration which may be potential targets for PDE5is, focusing on sildenafil, the most extensively studied. Current strategies using PDEis for the treatment of neurodegenerative diseases will be summarized.
Collapse
Affiliation(s)
- Clara Crescioli
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 6, 00135 Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 6, 00135 Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| |
Collapse
|
2
|
Xiang Y, Naik S, Zhao L, Shi J, Ke H. Emerging phosphodiesterase inhibitors for treatment of neurodegenerative diseases. Med Res Rev 2024; 44:1404-1445. [PMID: 38279990 DOI: 10.1002/med.22017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
Neurodegenerative diseases (NDs) cause progressive loss of neuron structure and ultimately lead to neuronal cell death. Since the available drugs show only limited symptomatic relief, NDs are currently considered as incurable. This review will illustrate the principal roles of the signaling systems of cyclic adenosine and guanosine 3',5'-monophosphates (cAMP and cGMP) in the neuronal functions, and summarize expression/activity changes of the associated enzymes in the ND patients, including cyclases, protein kinases, and phosphodiesterases (PDEs). As the sole enzymes hydrolyzing cAMP and cGMP, PDEs are logical targets for modification of neurodegeneration. We will focus on PDE inhibitors and their potentials as disease-modifying therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, and Huntington's disease. For the overlapped but distinct contributions of cAMP and cGMP to NDs, we hypothesize that dual PDE inhibitors, which simultaneously regulate both cAMP and cGMP signaling pathways, may have complementary and synergistic effects on modifying neurodegeneration and thus represent a new direction on the discovery of ND drugs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Swapna Naik
- Department of Pharmacology, Yale Cancer Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Liyun Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Hobbs NZ, Papoutsi M, Delva A, Kinnunen KM, Nakajima M, Van Laere K, Vandenberghe W, Herath P, Scahill RI. Neuroimaging to Facilitate Clinical Trials in Huntington's Disease: Current Opinion from the EHDN Imaging Working Group. J Huntingtons Dis 2024; 13:163-199. [PMID: 38788082 PMCID: PMC11307036 DOI: 10.3233/jhd-240016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Neuroimaging is increasingly being included in clinical trials of Huntington's disease (HD) for a wide range of purposes from participant selection and safety monitoring, through to demonstration of disease modification. Selection of the appropriate modality and associated analysis tools requires careful consideration. On behalf of the EHDN Imaging Working Group, we present current opinion on the utility and future prospects for inclusion of neuroimaging in HD trials. Covering the key imaging modalities of structural-, functional- and diffusion- MRI, perfusion imaging, positron emission tomography, magnetic resonance spectroscopy, and magnetoencephalography, we address how neuroimaging can be used in HD trials to: 1) Aid patient selection, enrichment, stratification, and safety monitoring; 2) Demonstrate biodistribution, target engagement, and pharmacodynamics; 3) Provide evidence for disease modification; and 4) Understand brain re-organization following therapy. We also present the challenges of translating research methodology into clinical trial settings, including equipment requirements and cost, standardization of acquisition and analysis, patient burden and invasiveness, and interpretation of results. We conclude, that with appropriate consideration of modality, study design and analysis, imaging has huge potential to facilitate effective clinical trials in HD.
Collapse
Affiliation(s)
- Nicola Z. Hobbs
- HD Research Centre, UCL Institute of Neurology, UCL, London, UK
| | - Marina Papoutsi
- HD Research Centre, UCL Institute of Neurology, UCL, London, UK
- IXICO plc, London, UK
| | - Aline Delva
- Department of Neurosciences, KU Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Belgium
| | | | | | - Koen Van Laere
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, KU Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Belgium
| | | | | |
Collapse
|
4
|
Ali Alshehri S, Alsayari A, Wahab S, H Alqarni M, Sweilam SH, Khalid M. Prediction of molecular interaction of Phosphodiesterase 10A inhibition by natural compounds: insights from structure-based screening and molecular dynamics simulations. J Biomol Struct Dyn 2023:1-12. [PMID: 37850684 DOI: 10.1080/07391102.2023.2270756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/08/2023] [Indexed: 10/19/2023]
Abstract
Phosphodiesterase 10 A (PDE10A) is an enzyme that regulates cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) levels in the brain, particularly in the striatum, which plays a critical role in movement control and reward processing. Inhibition of PDE10A can increase cAMP and cGMP levels, improving neuronal signaling and reducing symptoms of neuropsychiatric disorders such as schizophrenia, Huntington's disease, and Parkinson's disease. In this study, a structure-based virtual screening was conducted to identify potential anti-neuropsychiatric disorders compounds from phytoconstituents in the IMPPAT database. The ligands were docked against PDE10A, resulting in 40 compounds with appreciable docking scores. These 40 compounds underwent further ADMET predictions and drug likeliness, resulting in five potential compounds. Finally, based on the specific interactions, two compounds (Colladonin and Isopongachromene), were subjected to molecular dynamics (MD) simulation and MM-PBSA studies. The MM-PBSA analysis validated and captured the intermolecular interactions, indicating that Colladonin and Isopongachromene had appreciable binding affinities of -155.60 kJ.mol-1 and -108.28 kJ.mol-1, respectively and were promising candidates against neuropsychiatric disorders, targeting PDE10A. Overall, this study provides insight into the potential of PDE10A inhibitors as therapeutic agents for treating neuropsychiatric disorders, and Colladonin and Isopongachromene are promising compounds for further development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammed H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
5
|
Martí-Martínez S, Valor LM. A Glimpse of Molecular Biomarkers in Huntington's Disease. Int J Mol Sci 2022; 23:ijms23105411. [PMID: 35628221 PMCID: PMC9142992 DOI: 10.3390/ijms23105411] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder that is caused by an abnormal expansion of CAG repeats in the Huntingtin (HTT) gene. Although the main symptomatology is explained by alterations at the level of the central nervous system, predominantly affecting the basal ganglia, a peripheral component of the disease is being increasingly acknowledged. Therefore, the manifestation of the disease is complex and variable among CAG expansion carriers, introducing uncertainty in the appearance of specific signs, age of onset and severity of disease. The monogenic nature of the disorder allows a precise diagnosis, but the use of biomarkers with prognostic value is still needed to achieve clinical management of the patients in an individual manner. In addition, we need tools to evaluate the patient's response to potential therapeutic approaches. In this review, we provide a succinct summary of the most interesting molecular biomarkers that have been assessed in patients, mostly obtained from body fluids such as cerebrospinal fluid, peripheral blood and saliva.
Collapse
Affiliation(s)
- Silvia Martí-Martínez
- Servicio de Neurología, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain;
| | - Luis M. Valor
- Laboratorio de Apoyo a la Investigación, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
- Correspondence: ; Tel.: +34-965-913-988
| |
Collapse
|
6
|
Brumberg J, Varrone A. New PET radiopharmaceuticals for imaging CNS diseases. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
7
|
Erro R, Mencacci NE, Bhatia KP. The Emerging Role of Phosphodiesterases in Movement Disorders. Mov Disord 2021; 36:2225-2243. [PMID: 34155691 PMCID: PMC8596847 DOI: 10.1002/mds.28686] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclic nucleotide phosphodiesterase (PDE) enzymes catalyze the hydrolysis and inactivation of the cyclic nucleotides cyclic adenosine monophosphate and cyclic guanosine monophosphate, which act as intracellular second messengers for many signal transduction pathways in the central nervous system. Several classes of PDE enzymes with specific tissue distributions and cyclic nucleotide selectivity are highly expressed in brain regions involved in cognitive and motor functions, which are known to be implicated in neurodegenerative diseases, such as Parkinson's disease and Huntington's disease. The indication that PDEs are intimately involved in the pathophysiology of different movement disorders further stems from recent discoveries that mutations in genes encoding different PDEs, including PDE2A, PDE8B, and PDE10A, are responsible for rare forms of monogenic parkinsonism and chorea. We here aim to provide a translational overview of the preclinical and clinical data on PDEs, the role of which is emerging in the field of movement disorders, offering a novel venue for a better understanding of their pathophysiology. Modulating cyclic nucleotide signaling, by either acting on their synthesis or on their degradation, represents a promising area for development of novel therapeutic approaches. The study of PDE mutations linked to monogenic movement disorders offers the opportunity of better understanding the role of PDEs in disease pathogenesis, a necessary step to successfully benefit the treatment of both hyperkinetic and hypokinetic movement disorders. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Niccoló E Mencacci
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
8
|
de Laat B, Kling YE, Schroyen G, Ooms M, Hooker JM, Bormans G, Van Laere K, Ceccarini J. Effects of chronic voluntary alcohol consumption on PDE10A availability: a longitudinal behavioral and [ 18F]JNJ42259152 PET study in rats. Eur J Nucl Med Mol Imaging 2021; 49:492-502. [PMID: 34142214 DOI: 10.1007/s00259-021-05448-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Phosphodiesterase 10A (PDE10A) is a dual substrate enzyme highly enriched in dopamine-receptive striatal medium spiny neurons, which are involved in psychiatric disorders such as alcohol use disorders (AUD). Although preclinical studies suggest a correlation of PDE10A mRNA expression in neuronal and behavioral responses to alcohol intake, little is known about the effects of alcohol exposure on in vivo PDE10A activity in relation to apparent risk factors for AUD such as decision-making and anxiety. METHODS We performed a longitudinal [18F]JNJ42259152 microPET study to evaluate PDE10A changes over a 9-week intermittent access to alcohol model, including 6 weeks of alcohol exposure, 2 weeks of abstinence followed by 1 week relapse. Parametric PDE10A-binding potential (BPND) images were generated using a Logan reference tissue model with cerebellum as reference region and were analyzed using both a volume-of-interest and voxel-based approach. Moreover, individual decision-making and anxiety levels were assessed with the rat Iowa Gambling Task and open-field test over the IAE model. RESULTS We observed an increased alcohol preference especially in those animals that exhibited poor initial decision-making. The first 2 weeks of alcohol exposure resulted in an increased striatal PDE10A binding (> 10%). Comparing PDE10A-binding potential after 2 versus 4 weeks of exposure showed a significant decreased PDE10A in the caudate-putamen and nucleus accumbens (pFWE-corrected < 0.05). This striatal PDE10A decrease was related to alcohol consumption and preference. Normalization of striatal PDE10A to initial levels was observed after 1 week of relapse, apart from the globus pallidus. CONCLUSION This study shows that chronic voluntary alcohol consumption induces a reversible increased PDE10A enzymatic availability in the striatum, which is related to the amount of alcohol preference. Thus, PDE10A-mediated signaling plays an important role in modulating the reinforcing effects of alcohol, and the data suggest that PDE10A inhibition may have beneficial behavioral effects on alcohol intake.
Collapse
Affiliation(s)
- Bart de Laat
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Yvonne E Kling
- Department of Neurosciences, KU Leuven, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium.,Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Gwen Schroyen
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
| | - Maarten Ooms
- Laboratory for Radiopharmaceutical Research, KU Leuven, Leuven, Belgium
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium. .,University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
9
|
Sun J, Xiao Z, Haider A, Gebhard C, Xu H, Luo HB, Zhang HT, Josephson L, Wang L, Liang SH. Advances in Cyclic Nucleotide Phosphodiesterase-Targeted PET Imaging and Drug Discovery. J Med Chem 2021; 64:7083-7109. [PMID: 34042442 DOI: 10.1021/acs.jmedchem.1c00115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) control the intracellular concentrations of cAMP and cGMP in virtually all mammalian cells. Accordingly, the PDE family regulates a myriad of physiological functions, including cell proliferation, differentiation and apoptosis, gene expression, central nervous system function, and muscle contraction. Along this line, dysfunction of PDEs has been implicated in neurodegenerative disorders, coronary artery diseases, chronic obstructive pulmonary disease, and cancer development. To date, 11 PDE families have been identified; however, their distinct roles in the various pathologies are largely unexplored and subject to contemporary research efforts. Indeed, there is growing interest for the development of isoform-selective PDE inhibitors as potential therapeutic agents. Similarly, the evolving knowledge on the various PDE isoforms has channeled the identification of new PET probes, allowing isoform-selective imaging. This review highlights recent advances in PDE-targeted PET tracer development, thereby focusing on efforts to assess disease-related PDE pathophysiology and to support isoform-selective drug discovery.
Collapse
Affiliation(s)
- Jiyun Sun
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Zhiwei Xiao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Ahmed Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, Zurich 8006, Switzerland.,Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Han-Ting Zhang
- Departments of Neuroscience, Behavioral Medicine & Psychiatry, and Physiology & Pharmacology, the Rockefeller Neuroscience Institute, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, United States
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Lu Wang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States.,Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Steven H Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
10
|
Schröder S, Scheunemann M, Wenzel B, Brust P. Challenges on Cyclic Nucleotide Phosphodiesterases Imaging with Positron Emission Tomography: Novel Radioligands and (Pre-)Clinical Insights since 2016. Int J Mol Sci 2021; 22:ijms22083832. [PMID: 33917199 PMCID: PMC8068090 DOI: 10.3390/ijms22083832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) represent one of the key targets in the research field of intracellular signaling related to the second messenger molecules cyclic adenosine monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP). Hence, non-invasive imaging of this enzyme class by positron emission tomography (PET) using appropriate isoform-selective PDE radioligands is gaining importance. This methodology enables the in vivo diagnosis and staging of numerous diseases associated with altered PDE density or activity in the periphery and the central nervous system as well as the translational evaluation of novel PDE inhibitors as therapeutics. In this follow-up review, we summarize the efforts in the development of novel PDE radioligands and highlight (pre-)clinical insights from PET studies using already known PDE radioligands since 2016.
Collapse
Affiliation(s)
- Susann Schröder
- Department of Research and Development, ROTOP Pharmaka Ltd., 01328 Dresden, Germany
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
- Correspondence: ; Tel.: +49-341-234-179-4631
| | - Matthias Scheunemann
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
| | - Barbara Wenzel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
| |
Collapse
|
11
|
Gorny N, Kelly MP. Alterations in cyclic nucleotide signaling are implicated in healthy aging and age-related pathologies of the brain. VITAMINS AND HORMONES 2021; 115:265-316. [PMID: 33706951 DOI: 10.1016/bs.vh.2020.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is not only important to consider how hormones may change with age, but also how downstream signaling pathways that couple to hormone receptors may change. Among these hormone-coupled signaling pathways are the 3',5'-cyclic guanosine monophosphate (cGMP) and 3',5'-cyclic adenosine monophosphate (cAMP) intracellular second messenger cascades. Here, we test the hypothesis that dysfunction of cAMP and/or cGMP synthesis, execution, and/or degradation occurs in the brain during healthy and pathological diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Although most studies report lower cyclic nucleotide signaling in the aged brain, with further reductions noted in the context of age-related diseases, there are select examples where cAMP signaling may be elevated in select tissues. Thus, therapeutics would need to target cAMP/cGMP in a tissue-specific manner if efficacy for select symptoms is to be achieved without worsening others.
Collapse
Affiliation(s)
- Nicole Gorny
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Michy P Kelly
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
12
|
Benn CL, Gibson KR, Reynolds DS. Drugging DNA Damage Repair Pathways for Trinucleotide Repeat Expansion Diseases. J Huntingtons Dis 2021; 10:203-220. [PMID: 32925081 PMCID: PMC7990437 DOI: 10.3233/jhd-200421] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA damage repair (DDR) mechanisms have been implicated in a number of neurodegenerative diseases (both genetically determined and sporadic). Consistent with this, recent genome-wide association studies in Huntington’s disease (HD) and other trinucleotide repeat expansion diseases have highlighted genes involved in DDR mechanisms as modifiers for age of onset, rate of progression and somatic instability. At least some clinical genetic modifiers have been shown to have a role in modulating trinucleotide repeat expansion biology and could therefore provide new disease-modifying therapeutic targets. In this review, we focus on key considerations with respect to drug discovery and development using DDR mechanisms as a target for trinucleotide repeat expansion diseases. Six areas are covered with specific reference to DDR and HD: 1) Target identification and validation; 2) Candidate selection including therapeutic modality and delivery; 3) Target drug exposure with particular focus on blood-brain barrier penetration, engagement and expression of pharmacology; 4) Safety; 5) Preclinical models as predictors of therapeutic efficacy; 6) Clinical outcome measures including biomarkers.
Collapse
Affiliation(s)
- Caroline L Benn
- LoQus23 Therapeutics, Riverside, Babraham Research Campus, Cambridge, UK
| | - Karl R Gibson
- Sandexis Medicinal Chemistry Ltd, Innovation House, Discovery Park, Sandwich, Kent, UK
| | - David S Reynolds
- LoQus23 Therapeutics, Riverside, Babraham Research Campus, Cambridge, UK
| |
Collapse
|
13
|
Abstract
Mass spectrometry (MS) is a physical technique used to identify specific chemicals and molecules by precise analysis of their mass and charge; this technology has been adapted for biological sciences applications. Investigators have used MS to identify differential expressions of proteins in Huntington's disease (HD), to discover Huntingtin (HTT) interacting proteins and to analyze HTT proteoforms. Using systems biology and computational approaches, data from MS screens have been leveraged to find differentially expressed pathways. This review summarizes the data from most of the MS studies done in the HD field in the last 20 years and compares it to the protein data reported before the use of MS technology. The MS results validate early findings in the field such as differential expression of PDE10a and DARPP-32 and identify new changes. We offer a perspective on the MS approach in HD, particularly for identification of disease pathways, the challenges in interpreting data across different studies, and its application to protein studies moving forward.
Collapse
Affiliation(s)
- Connor Seeley
- Laboratory of Cellular Neurobiology, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Kimberly B. Kegel-Gleason
- Laboratory of Cellular Neurobiology, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
14
|
Heim B, Peball M, Saft C, von Hein SM, Ellmerer P, Piater JM, Seppi K, Djamshidian A. Time will tell: Decision making in premanifest and manifest Huntington's disease. Brain Behav 2020; 10:e01843. [PMID: 32978893 PMCID: PMC7667290 DOI: 10.1002/brb3.1843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/06/2020] [Accepted: 08/22/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To investigate cognitive flexibility in premanifest and manifest Huntington's disease (HD). BACKGROUND HD is an autosomal dominant neurodegenerative disease characterized by motor, cognitive, and behavioral abnormalities with typical motor symptoms. In this study, we wanted to assess decision making in premanifest (pre-HD) and manifest HD patients. METHODS A total of 77 non-demented subjects including 29 pre-HD, 22 manifest HD patients, and 26 healthy controls (HC) were included. We stratified the pre-HD group based on their estimated years to disease onset into a far (FAR, n = 13) and a near (NEAR, n = 16) group. Furthermore, participants performed the Montreal cognitive assessment battery (MoCA), the trail making task part A and B (TMT A, TMT B), the Symbol digit modalities test (SDMT), and the beads task. RESULTS In the beads task, HD patients gathered less information than all other groups (all p-values < .001). Furthermore, the NEAR group gathered less information than the FAR group (p < .001) and HC (p = .001). There was no difference between the HC and the FAR group (p = 1.0). In the TMT and the SDMT, HD patients were slower than all other groups (all p-values < .01) but there were no other significant differences. CONCLUSIONS Decision making with a higher degree of uncertainty may be an early neuropsychological sign to indicate the disease process prior to reaching criteria for motor diagnosis of HD.
Collapse
Affiliation(s)
- Beatrice Heim
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marina Peball
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Carsten Saft
- Department of Neurology, Huntington - Center NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Sarah Maria von Hein
- Department of Neurology, Huntington - Center NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Philipp Ellmerer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Atbin Djamshidian
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Chorea-related mutations in PDE10A result in aberrant compartmentalization and functionality of the enzyme. Proc Natl Acad Sci U S A 2019; 117:677-688. [PMID: 31871190 PMCID: PMC6955301 DOI: 10.1073/pnas.1916398117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phosphodiesterase 10A (PDE10A) is as a target of interest in Huntington’s disease (HD) as levels of the enzyme have been shown to decrease prior to the development of the hallmark motor symptoms. Clearly, a better understanding of how PDE10A protein levels change as HD develops is required. Here we show that mutations in the regulatory GAF domains of PDE10A that cause hyperkinetic syndromes in humans lead to misprocessing of the PDE10A enzyme that ultimately leads to targeted degradation by the ubiquitin proteasome system or clearance by autophagy. Both mechanisms result in a paucity of PDE10A activity that lead to a loss of movement coordination. Our research suggests that similar mechanisms may underpin PDE10A loss during HD. A robust body of evidence supports the concept that phosphodiesterase 10A (PDE10A) activity in the basal ganglia orchestrates the control of coordinated movement in human subjects. Although human mutations in the PDE10A gene manifest in hyperkinetic movement disorders that phenocopy many features of early Huntington’s disease, characterization of the maladapted molecular mechanisms and aberrant signaling processes that underpin these conditions remains scarce. Recessive mutations in the GAF-A domain have been shown to impair PDE10A function due to the loss of striatal PDE10A protein levels, but here we show that this paucity is caused by irregular intracellular trafficking and increased PDE10A degradation in the cytosolic compartment. In contrast to GAF-A mutants, dominant mutations in the GAF-B domain of PDE10A induce PDE10A misfolding, a common pathological phenotype in many neurodegenerative diseases. These data demonstrate that the function of striatal PDE10A is compromised in disorders where disease-associated mutations trigger a reduction in the fidelity of PDE compartmentalization.
Collapse
|
16
|
Skotte NH, Andersen JV, Santos A, Aldana BI, Willert CW, Nørremølle A, Waagepetersen HS, Nielsen ML. Integrative Characterization of the R6/2 Mouse Model of Huntington's Disease Reveals Dysfunctional Astrocyte Metabolism. Cell Rep 2019; 23:2211-2224. [PMID: 29768217 DOI: 10.1016/j.celrep.2018.04.052] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/23/2018] [Accepted: 04/12/2018] [Indexed: 01/05/2023] Open
Abstract
Huntington's disease is a fatal neurodegenerative disease, where dysfunction and loss of striatal and cortical neurons are central to the pathogenesis of the disease. Here, we integrated quantitative studies to investigate the underlying mechanisms behind HD pathology in a systems-wide manner. To this end, we used state-of-the-art mass spectrometry to establish a spatial brain proteome from late-stage R6/2 mice and compared this with wild-type littermates. We observed altered expression of proteins in pathways related to energy metabolism, synapse function, and neurotransmitter homeostasis. To support these findings, metabolic 13C labeling studies confirmed a compromised astrocytic metabolism and regulation of glutamate-GABA-glutamine cycling, resulting in impaired release of glutamine and GABA synthesis. In recent years, increasing attention has been focused on the role of astrocytes in HD, and our data support that therapeutic strategies to improve astrocytic glutamine homeostasis may help ameliorate symptoms in HD.
Collapse
Affiliation(s)
- Niels H Skotte
- Proteomics Program, The Novo Nordisk Foundation Centre for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alberto Santos
- Proteomics Program, The Novo Nordisk Foundation Centre for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie W Willert
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael L Nielsen
- Proteomics Program, The Novo Nordisk Foundation Centre for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
17
|
Martínez-Horta S, Horta-Barba A, Perez-Perez J, Antoran M, Pagonabarraga J, Sampedro F, Kulisevsky J. Impaired face-like object recognition in premanifest Huntington's disease. Cortex 2019; 123:162-172. [PMID: 31794910 DOI: 10.1016/j.cortex.2019.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/02/2019] [Accepted: 10/22/2019] [Indexed: 11/15/2022]
Abstract
Progressive striatal atrophy has long been considered the pathological hallmark of Huntington's disease (HD), but is it now recognized that malfunction and degeneration of posterior-cortical territories are also prominent characteristics of the disease. The limited knowledge about the functional impact of these posterior-cortical changes could be partially attributed to the lack of sensitive measures to capture them. We hypothesized that early malfunction of specific territories of the ventral visual pathway in premanifest HD would lead to difficulties in the recognition of complex stimuli and to differences in their neurophysiological correlates. To test this idea, we used an object, face and face-like object recognition task to be conducted during an electroencephalographic recording. Compared to healthy-matched controls, premanifest participants showed a significantly increased number of recognition errors in the face-like object condition. Moreover, premanifest participants showed a dramatic decrease in the N170 component elicited for the face-like objects. This N170 decrease was significantly associated with the number of recognition errors and with severity of apathy and global cognitive performance. The lack of differences in other clinical and cognitive measures supports a selective deficit in recognition of face-like objects and their neurophysiological correlates in premanifest HD. These deficits occurred in participants up to 15 years before the estimated time to disease onset and correlated strongly with cognitive and behavioral measures known to be sensitive to HD progression. This finding highlights the existence of selective visuoperceptive deficits years before motor-based onset of HD and emphasizes the need to develop sensitive measures to capture early visual system changes in this population. Assessing the integrity of the visual cortex and its related functions in HD could help to identify early markers of disease progression.
Collapse
Affiliation(s)
- Saul Martínez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Department of Medicine, Autonomous University of Barcelona, Spain; European Huntington's Disease Network (EHDN), Germany
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Department of Medicine, Autonomous University of Barcelona, Spain; European Huntington's Disease Network (EHDN), Germany
| | - Jesús Perez-Perez
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Department of Medicine, Autonomous University of Barcelona, Spain; European Huntington's Disease Network (EHDN), Germany
| | - Mizar Antoran
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Department of Medicine, Autonomous University of Barcelona, Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Department of Medicine, Autonomous University of Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Department of Medicine, Autonomous University of Barcelona, Spain; European Huntington's Disease Network (EHDN), Germany.
| |
Collapse
|
18
|
Chugani HT. Positron Emission Tomography in Pediatric Neurodegenerative Disorders. Pediatr Neurol 2019; 100:12-25. [PMID: 31416725 DOI: 10.1016/j.pediatrneurol.2019.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 12/01/2022]
Abstract
Application of molecular neuroimaging using positron emission tomographic techniques to assess pediatric neurodegenerative disorders has been limited, unlike in adults where positron emission tomography has contributed to clinical diagnosis, monitoring of neurodegenerative disease progression, and assessment of novel therapeutic approaches. Yet, there is a huge unexplored potential of molecular imaging to improve our understanding of the pathophysiology of neurodegenerative disorders in children and provide radiological biomarkers that can be applied clinically. The obstacles in performing PET scans on children include sedation, radiation exposure, and access but, as will be illustrated, these barriers can be easily overcome. This review summarizes findings from PET studies that have been performed over the past three decades on children with various neurodegenerative disorders, including the neuronal ceroid lipofuscinoses, juvenile Huntington disease, Wilson disease, Niemann-Pick disease type C, Dravet syndrome, dystonia, mitochondrial disorders, inborn errors of metabolism, lysosomal storage diseases, dysmyelinating disorders, Rett syndrome, neurotransmitter disorders, glucose transporter Glut 1 deficiency, and Lesch-Nyhan disease. Because positron emission tomographic scans have often been clinically useful and have contributed to the management of these disorders, we suggest that the time has come for glucose metabolism positron emission tomographic scans to be reimbursed by insurance carriers for children with neurodegenerative disorders, and not restricted only to epilepsy surgery evaluation.
Collapse
Affiliation(s)
- Harry T Chugani
- Department of Neurology, NYU School of Medicine, New York, New York.
| |
Collapse
|
19
|
Baillie GS, Tejeda GS, Kelly MP. Therapeutic targeting of 3',5'-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat Rev Drug Discov 2019; 18:770-796. [PMID: 31388135 PMCID: PMC6773486 DOI: 10.1038/s41573-019-0033-4] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2019] [Indexed: 01/24/2023]
Abstract
Phosphodiesterases (PDEs), enzymes that degrade 3',5'-cyclic nucleotides, are being pursued as therapeutic targets for several diseases, including those affecting the nervous system, the cardiovascular system, fertility, immunity, cancer and metabolism. Clinical development programmes have focused exclusively on catalytic inhibition, which continues to be a strong focus of ongoing drug discovery efforts. However, emerging evidence supports novel strategies to therapeutically target PDE function, including enhancing catalytic activity, normalizing altered compartmentalization and modulating post-translational modifications, as well as the potential use of PDEs as disease biomarkers. Importantly, a more refined appreciation of the intramolecular mechanisms regulating PDE function and trafficking is emerging, making these pioneering drug discovery efforts tractable.
Collapse
Affiliation(s)
- George S Baillie
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Gonzalo S Tejeda
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
20
|
Zeitler B, Froelich S, Marlen K, Shivak DA, Yu Q, Li D, Pearl JR, Miller JC, Zhang L, Paschon DE, Hinkley SJ, Ankoudinova I, Lam S, Guschin D, Kopan L, Cherone JM, Nguyen HOB, Qiao G, Ataei Y, Mendel MC, Amora R, Surosky R, Laganiere J, Vu BJ, Narayanan A, Sedaghat Y, Tillack K, Thiede C, Gärtner A, Kwak S, Bard J, Mrzljak L, Park L, Heikkinen T, Lehtimäki KK, Svedberg MM, Häggkvist J, Tari L, Tóth M, Varrone A, Halldin C, Kudwa AE, Ramboz S, Day M, Kondapalli J, Surmeier DJ, Urnov FD, Gregory PD, Rebar EJ, Muñoz-Sanjuán I, Zhang HS. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington's disease. Nat Med 2019; 25:1131-1142. [PMID: 31263285 DOI: 10.1038/s41591-019-0478-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/03/2019] [Indexed: 02/08/2023]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion in the huntingtin gene (HTT), which codes for the pathologic mutant HTT (mHTT) protein. Since normal HTT is thought to be important for brain function, we engineered zinc finger protein transcription factors (ZFP-TFs) to target the pathogenic CAG repeat and selectively lower mHTT as a therapeutic strategy. Using patient-derived fibroblasts and neurons, we demonstrate that ZFP-TFs selectively repress >99% of HD-causing alleles over a wide dose range while preserving expression of >86% of normal alleles. Other CAG-containing genes are minimally affected, and virally delivered ZFP-TFs are active and well tolerated in HD neurons beyond 100 days in culture and for at least nine months in the mouse brain. Using three HD mouse models, we demonstrate improvements in a range of molecular, histopathological, electrophysiological and functional endpoints. Our findings support the continued development of an allele-selective ZFP-TF for the treatment of HD.
Collapse
Affiliation(s)
| | | | | | | | - Qi Yu
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | - Davis Li
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | | | | | - Lei Zhang
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | | | | | | | - Stephen Lam
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | - Dmitry Guschin
- Sangamo Therapeutics, Inc., Richmond, CA, USA.,Laboratory of Intracellular Signalling, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation
| | - Lexi Kopan
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | | | | | | | | | | | | | | | - Josee Laganiere
- Sangamo Therapeutics, Inc., Richmond, CA, USA.,Medical Affairs and Innovation, Hema-Quebec, Quebec City, Quebec, Canada
| | - B Joseph Vu
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | | | | | | | | | | | - Seung Kwak
- CHDI Management/CHDI Foundation, Los Angeles, CA, USA
| | - Jonathan Bard
- CHDI Management/CHDI Foundation, Los Angeles, CA, USA
| | | | - Larry Park
- CHDI Management/CHDI Foundation, Los Angeles, CA, USA
| | | | | | - Marie M Svedberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Jenny Häggkvist
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Lenke Tari
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Miklós Tóth
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | | | | | - Michelle Day
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jyothisri Kondapalli
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Fyodor D Urnov
- Sangamo Therapeutics, Inc., Richmond, CA, USA.,Innovative Genomics Institute, Berkeley, CA, USA
| | | | | | | | - H Steve Zhang
- Sangamo Therapeutics, Inc., Richmond, CA, USA.,Applied StemCell, Inc., Milpitas, CA, USA
| |
Collapse
|
21
|
PDE10A mutations help to unwrap the neurobiology of hyperkinetic disorders. Cell Signal 2019; 60:31-38. [PMID: 30951862 DOI: 10.1016/j.cellsig.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022]
Abstract
The dual-specific cAMP/cGMP phosphodiesterase PDE10A is exclusively localised to regions of the brain and specific cell types that control crucial brain circuits and behaviours. The downside to this expression pattern is that PDE10A is also positioned to be a key player in pathology when its function is perturbed. The last decade of research has seen a clear role emerge for PDE10A inhibition in modifying behaviours in animal models of psychosis and Huntington's disease. Unfortunately, this has not translated to the human diseases as expected. More recently, a series of families with hyperkinetic movement disorders have been identified with mutations altering the PDE10A protein sequence. As these mutations have been analysed and characterised in other model systems, we are beginning to learn more about PDE10A function and perhaps catch a glimpse into how PDE10A activity could be modified for therapeutic benefit.
Collapse
|
22
|
PET Radioligands for imaging of the PDE10A in human: current status. Neurosci Lett 2019; 691:11-17. [DOI: 10.1016/j.neulet.2018.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/19/2018] [Accepted: 08/08/2018] [Indexed: 01/26/2023]
|
23
|
Mori W, Yamasaki T, Fujinaga M, Ogawa M, Zhang Y, Hatori A, Xie L, Kumata K, Wakizaka H, Kurihara Y, Ohkubo T, Nengaki N, Zhang MR. Development of 2-(2-(3-(4-([ 18F]Fluoromethoxy- d 2)phenyl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione for Positron-Emission-Tomography Imaging of Phosphodiesterase 10A in the Brain. J Med Chem 2018; 62:688-698. [PMID: 30516998 DOI: 10.1021/acs.jmedchem.8b01366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phosphodiesterase 10A (PDE10A) is a newly identified therapeutic target for central-nervous-system disorders. 2-(2-(3-(4-([18F]Fluoroethoxy)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione ([18F]MNI-659, [18F]5) is a useful positron-emission-tomography (PET) ligand for imaging of PDE10A in the human brain. However, the radiolabeled metabolite of [18F]5 can accumulate in the brain. In this study, using [18F]5 as a lead compound, we designed four new 18F-labeled ligands ([18F]6-9) to find one more suitable than [18F]5. Of these, 2-(2-(3-(4-([18F]fluoromethoxy- d2)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione ([18F]9) exhibited high in vitro binding affinity ( Ki = 2.9 nM) to PDE10A and suitable lipophilicity (log D = 2.2). In PET studies, the binding potential (BPND) of [18F]9 (5.8) to PDE10A in the striatum of rat brains was significantly higher than that of [18F]5 (4.6). Furthermore, metabolite analysis showed much lower levels of contamination with radiolabeled metabolites in the brains of rats given [18F]9 than in those given [18F]5. In conclusion, [18F]9 is a useful PET ligand for PDE10A imaging in brain.
Collapse
Affiliation(s)
| | | | | | - Masanao Ogawa
- SHI Accelerator Service, Ltd. , 1-17-6 Osaki , Shinagawa-ku, Tokyo 141-0032 , Japan
| | | | | | | | | | | | - Yusuke Kurihara
- SHI Accelerator Service, Ltd. , 1-17-6 Osaki , Shinagawa-ku, Tokyo 141-0032 , Japan
| | - Takayuki Ohkubo
- SHI Accelerator Service, Ltd. , 1-17-6 Osaki , Shinagawa-ku, Tokyo 141-0032 , Japan
| | - Nobuki Nengaki
- SHI Accelerator Service, Ltd. , 1-17-6 Osaki , Shinagawa-ku, Tokyo 141-0032 , Japan
| | | |
Collapse
|
24
|
Molecular Imaging in Huntington's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:289-333. [PMID: 30409256 DOI: 10.1016/bs.irn.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Huntington's disease (HD) is a rare monogenic neurodegenerative disorder caused by a trinucleotide CAG repeat expansion in the huntingtin gene resulting in the formation of intranuclear inclusions of mutated huntingtin. The accumulation of mutated huntingtin leads to loss of GABAergic medium spiny neurons (MSNs); subsequently resulting in the development of chorea, cognitive dysfunction and psychiatric symptoms. Premanifest HD gene expansion carriers, provide a unique cohort to examine very early molecular changes, occurring before the development of overt symptoms, to elucidate disease pathophysiology and identify reliable biomarkers of HD progression. Positron emission tomography (PET) is a non-invasive molecular imaging technique allowing the evaluation of specific molecular targets in vivo. Selective PET radioligands provide invaluable tools to investigate the role of the dopaminergic system, brain metabolism, microglial activation, phosphodiesterase 10A, and cannabinoid, GABA, adenosine and opioid receptors in HD. PET has been employed to monitor disease progression aiming to identify a reliable biomarker to predict phenoconversion from premanifest to manifest HD.
Collapse
|
25
|
Abstract
Even before the success of combined positron emission tomography and computed tomography (PET/CT), the neuroimaging community was conceiving the idea to integrate the positron emission tomography (PET), with very high molecular quantitative data but low spatial resolution, and magnetic resonance imaging (MRI), with high spatial resolution. Several technical limitations have delayed the use of a hybrid scanner in neuroimaging studies, including the full integration of the PET detector ring within the MRI system, the optimization of data acquisition, and the implementation of reliable methods for PET attenuation, motion correction, and joint image reconstruction. To be valid and useful in clinical and research settings, this instrument should be able to simultaneously acquire PET and MRI, and generate quantitative parametric PET images comparable to PET-CT. While post hoc co-registration of combined PET and MRI data acquired separately became the most reliable technique for the generation of "fused" PET-MRI images, only hybrid PET-MRI approach allows merging these measurements naturally and correlating them in a temporal manner. Furthermore, hybrid PET-MRI represents the most accurate tool to investigate in vivo the interplay between molecular and functional aspects of brain pathophysiology. Hybrid PET-MRI technology is still in the early stages in the movement disorders field, due to the limited availability of scanners with integrated optimized methodological models. This technology is ideally suited to investigate interactions between resting-state functional/arterial spin labeling MRI and [18F]FDG PET glucose metabolism in the evaluation of the brain "hubs" particularly vulnerable to neurodegeneration, areas with a high degree of connectivity and associated with an efficient synaptic neurotransmission. In Parkinson's disease, hybrid PET-MRI is also the ideal instrument to deeper explore the relationship between resting-state functional MRI and dopamine release at [11C]raclopride PET challenge, in the identification of early drug-naïve Parkinson's disease patients at higher risk of motor complications and in the evaluation of the efficacy of novel neuroprotective treatment able to restore at the same time the altered resting state and the release of dopamine. In this chapter, we discuss the key methodological aspects of hybrid PET-MRI; the evidence in movement disorders of the key resting-state functional and perfusion MRI; [18F]FDG PET and [11C]raclopride PET challenge studies; the potential advantages of using hybrid PET-MRI to investigate the pathophysiology of movement disorders and neurodegenerative diseases. Future directions of hybrid PET-MRI will be discussed alongside with up-to-date technological innovations on hybrid systems.
Collapse
|
26
|
Pagano G, Polychronis S, Wilson H, Giordano B, Ferrara N, Niccolini F, Politis M. Diabetes mellitus and Parkinson disease. Neurology 2018; 90:e1654-e1662. [PMID: 29626177 DOI: 10.1212/wnl.0000000000005475] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/08/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To investigate whether diabetes mellitus is associated with Parkinson-like pathology in people without Parkinson disease and to evaluate the effect of diabetes mellitus on markers of Parkinson pathology and clinical progression in drug-naive patients with early-stage Parkinson disease. METHODS We compared 25 patients with Parkinson disease and diabetes mellitus to 25 without diabetes mellitus, and 14 patients with diabetes mellitus and no Parkinson disease to 14 healthy controls (people with no diabetes mellitus or Parkinson disease). The clinical diagnosis of diabetes mellitus was confirmed by 2 consecutive fasting measurements of serum glucose levels >126 mL/dL. Over a 36-month follow-up period, we then investigated in the population with Parkinson disease whether the presence of diabetes mellitus was associated with faster motor progression or cognitive decline. RESULTS The presence of diabetes mellitus was associated with higher motor scores (p < 0.01), lower striatal dopamine transporter binding (p < 0.05), and higher tau CSF levels (p < 0.05) in patients with Parkinson disease. In patients with diabetes but without Parkinson disease, the presence of diabetes mellitus was associated with lower striatal dopamine transporter binding (p < 0.05) and higher tau (p < 0.05) and α-synuclein (p < 0.05) CSF levels compared to healthy controls. At the Cox survival analysis in the population of patients with Parkinson disease, the presence of diabetes mellitus was associated with faster motor progression (hazard ratio = 4.521, 95% confidence interval = 1.468-13.926; p < 0.01) and cognitive decline (hazard ratio = 9.314, 95% confidence interval = 1.164-74.519; p < 0.05). CONCLUSIONS Diabetes mellitus may predispose toward a Parkinson-like pathology, and when present in patients with Parkinson disease, can induce a more aggressive phenotype.
Collapse
Affiliation(s)
- Gennaro Pagano
- From the Neurodegeneration Imaging Group (G.P., S.P., H.W., B.G., F.N., M.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; and Division of Geriatrics (B.G., N.F.), Department of Translational Medical Sciences, University of Naples Federico II, Italy
| | - Sotirios Polychronis
- From the Neurodegeneration Imaging Group (G.P., S.P., H.W., B.G., F.N., M.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; and Division of Geriatrics (B.G., N.F.), Department of Translational Medical Sciences, University of Naples Federico II, Italy
| | - Heather Wilson
- From the Neurodegeneration Imaging Group (G.P., S.P., H.W., B.G., F.N., M.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; and Division of Geriatrics (B.G., N.F.), Department of Translational Medical Sciences, University of Naples Federico II, Italy
| | - Beniamino Giordano
- From the Neurodegeneration Imaging Group (G.P., S.P., H.W., B.G., F.N., M.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; and Division of Geriatrics (B.G., N.F.), Department of Translational Medical Sciences, University of Naples Federico II, Italy
| | - Nicola Ferrara
- From the Neurodegeneration Imaging Group (G.P., S.P., H.W., B.G., F.N., M.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; and Division of Geriatrics (B.G., N.F.), Department of Translational Medical Sciences, University of Naples Federico II, Italy
| | - Flavia Niccolini
- From the Neurodegeneration Imaging Group (G.P., S.P., H.W., B.G., F.N., M.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; and Division of Geriatrics (B.G., N.F.), Department of Translational Medical Sciences, University of Naples Federico II, Italy
| | - Marios Politis
- From the Neurodegeneration Imaging Group (G.P., S.P., H.W., B.G., F.N., M.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; and Division of Geriatrics (B.G., N.F.), Department of Translational Medical Sciences, University of Naples Federico II, Italy.
| |
Collapse
|
27
|
Kelly MP. Cyclic nucleotide signaling changes associated with normal aging and age-related diseases of the brain. Cell Signal 2018; 42:281-291. [PMID: 29175000 PMCID: PMC5732030 DOI: 10.1016/j.cellsig.2017.11.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/21/2017] [Indexed: 01/23/2023]
Abstract
Deficits in brain function that are associated with aging and age-related diseases benefit very little from currently available therapies, suggesting a better understanding of the underlying molecular mechanisms is needed to develop improved drugs. Here, we review the literature to test the hypothesis that a break down in cyclic nucleotide signaling at the level of synthesis, execution, and/or degradation may contribute to these deficits. A number of findings have been reported in both the human and animal model literature that point to brain region-specific changes in Galphas (a.k.a. Gαs or Gsα), adenylyl cyclase, 3',5'-adenosine monophosphate (cAMP) levels, protein kinase A (PKA), cAMP response element binding protein (CREB), exchange protein activated by cAMP (Epac), hyperpolarization-activated cyclic nucleotide-gated ion channels (HCNs), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), soluble and particulate guanylyl cyclase, 3',5'-guanosine monophosphate (cGMP), protein kinase G (PKG) and phosphodiesterases (PDEs). Among the most reproducible findings are 1) elevated circulating ANP and BNP levels being associated with cognitive dysfunction or dementia independent of cardiovascular effects, 2) reduced basal and/or NMDA-stimulated cGMP levels in brain with aging or Alzheimer's disease (AD), 3) reduced adenylyl cyclase activity in hippocampus and specific cortical regions with aging or AD, 4) reduced expression/activity of PKA in temporal cortex and hippocampus with AD, 5) reduced phosphorylation of CREB in hippocampus with aging or AD, 6) reduced expression/activity of the PDE4 family in brain with aging, 7) reduced expression of PDE10A in the striatum with Huntington's disease (HD) or Parkinson's disease, and 8) beneficial effects of select PDE inhibitors, particularly PDE10 inhibitors in HD models and PDE4 and PDE5 inhibitors in aging and AD models. Although these findings generally point to a reduction in cyclic nucleotide signaling being associated with aging and age-related diseases, there are exceptions. In particular, there is evidence for increased cAMP signaling specifically in aged prefrontal cortex, AD cerebral vessels, and PD hippocampus. Thus, if cyclic nucleotide signaling is going to be targeted effectively for therapeutic gain, it will have to be manipulated in a brain region-specific manner.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, VA Bldg 1, 3rd Floor, D-12, Columbia, SC 29209, United States.
| |
Collapse
|
28
|
Boscutti G, Huiban M, Passchier J. Use of carbon-11 labelled tool compounds in support of drug development. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 25:3-10. [PMID: 29233265 DOI: 10.1016/j.ddtec.2017.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
The pharmaceutical industry is facing key challenges to improve return on R&D investment. Positron emission tomography (PET), by itself or in combination with complementary technologies such as magnetic resonance imaging (MRI), provides a unique opportunity to confirm a candidate's ability to meet the so-called 'three pillars' of drug development. Positive confirmation provides confidence for go/no-go decision making at an early stage of the development process and enables informed clinical progression. Whereas fluorine-18 has probably gained wider use in the community, there are benefits to using carbon-11 given the greater flexibility the use of this isotope permits in adaptive clinical study design. This review explores the scope of available carbon-11 chemistries and provides clinical examples to highlight its value in PET studies in support of drug development.
Collapse
Affiliation(s)
- Giulia Boscutti
- Imanova Ltd., Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Mickael Huiban
- Imanova Ltd., Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Jan Passchier
- Imanova Ltd., Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
29
|
Morigaki R, Goto S. Striatal Vulnerability in Huntington's Disease: Neuroprotection Versus Neurotoxicity. Brain Sci 2017; 7:brainsci7060063. [PMID: 28590448 PMCID: PMC5483636 DOI: 10.3390/brainsci7060063] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 01/18/2023] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat encoding an abnormally long polyglutamine tract (PolyQ) in the huntingtin (Htt) protein. In HD, striking neuropathological changes occur in the striatum, including loss of medium spiny neurons and parvalbumin-expressing interneurons accompanied by neurodegeneration of the striosome and matrix compartments, leading to progressive impairment of reasoning, walking and speaking abilities. The precise cause of striatal pathology in HD is still unknown; however, accumulating clinical and experimental evidence suggests multiple plausible pathophysiological mechanisms underlying striatal neurodegeneration in HD. Here, we review and discuss the characteristic neurodegenerative patterns observed in the striatum of HD patients and consider the role of various huntingtin-related and striatum-enriched proteins in neurotoxicity and neuroprotection.
Collapse
Affiliation(s)
- Ryoma Morigaki
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima University, Tokushima 770-8503, Japan.
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
| | - Satoshi Goto
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima University, Tokushima 770-8503, Japan.
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
| |
Collapse
|
30
|
Yousaf T, Wilson H, Politis M. Imaging the Nonmotor Symptoms in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:179-257. [PMID: 28802921 DOI: 10.1016/bs.irn.2017.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is acknowledged to be a multisystem syndrome, manifesting as a result of multineuropeptide dysfunction, including dopaminergic, cholinergic, serotonergic, and noradrenergic deficits. This multisystem disorder ultimately leads to the presentation of a range of nonmotor symptoms, now appreciated to be an integral part of the disease-specific spectrum of symptoms, often preceding the diagnosis of motor Parkinson's disease. In this chapter, we review the dopaminergic and nondopaminergic basis of these symptoms by exploring the neuroimaging evidence based on several techniques including positron emission tomography, single-photon emission computed tomography molecular imaging, magnetic resonance imaging, functional magnetic resonance imaging, and diffusion tensor imaging. We discuss the role of these neuroimaging techniques in elucidating the underlying pathophysiology of NMS in Parkinson's disease.
Collapse
Affiliation(s)
- Tayyabah Yousaf
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Heather Wilson
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom.
| |
Collapse
|
31
|
Wilson H, De Micco R, Niccolini F, Politis M. Molecular Imaging Markers to Track Huntington's Disease Pathology. Front Neurol 2017; 8:11. [PMID: 28194132 PMCID: PMC5278260 DOI: 10.3389/fneur.2017.00011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is a progressive, monogenic dominant neurodegenerative disorder caused by repeat expansion mutation in the huntingtin gene. The accumulation of mutant huntingtin protein, forming intranuclear inclusions, subsequently leads to degeneration of medium spiny neurons in the striatum and cortical areas. Genetic testing can identify HD gene carriers before individuals develop overt cognitive, psychiatric, and chorea symptoms. Thus, HD gene carriers can be studied in premanifest stages to understand and track the evolution of HD pathology. While advances have been made, the precise pathophysiological mechanisms underlying HD are unclear. Magnetic resonance imaging (MRI) and positron emission tomography (PET) have been employed to understand HD pathology in presymptomatic and symptomatic disease stages. PET imaging uses radioactive tracers to detect specific changes, at a molecular level, which could be used as markers of HD progression and to monitor response to therapeutic treatments for HD gene expansion carriers (HDGECs). This review focuses on available PET techniques, employed in cross-sectional and longitudinal human studies, as biomarkers for HD, and highlights future potential PET targets. PET studies have assessed changes in postsynaptic dopaminergic receptors, brain metabolism, microglial activation, and recently phosphodiesterase 10A (PDE10A) as markers to track HD progression. Alterations in PDE10A expression are the earliest biochemical change identified in HD gene carriers up to 43 years before predicted symptomatic onset. Thus, PDE10A expression could be a promising marker to track HD progression from early premanifest disease stages. Other PET targets which have been less well investigated as biomarkers include cannabinoid, adenosine, and GABA receptors. Future longitudinal studies are required to fully validate these PET biomarkers for use to track disease progression from far-onset premanifest to manifest HD stages. PET imaging is a crucial neuroimaging tool, with the potential to detect early changes and validate sensitivity of biomarkers for tracking HD pathology. Moreover, continued development of novel PET tracers provides exciting opportunities to investigate new molecular targets, such as histamine and serotonin receptors, to further understand the mechanisms underlying HD pathology.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| | - Rosa De Micco
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| | - Flavia Niccolini
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| |
Collapse
|