1
|
Rigal E, Josse M, Greco C, Rosenblatt N, Rochette L, Guenancia C, Vergely C. Short-Term Postnatal Overfeeding Induces Long-Lasting Cardiometabolic Syndrome in Mature and Old Mice Associated with Increased Sensitivity to Myocardial Infarction. Mol Nutr Food Res 2024; 68:e2400136. [PMID: 38937861 DOI: 10.1002/mnfr.202400136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/28/2024] [Indexed: 06/29/2024]
Abstract
SCOPE Perinatal nutritional disturbances may "program" an increased cardio-metabolic risk in adulthood; however, few experimental studies have explored their effects on mature and/or old animal. This study aims to investigate the influence of postnatal overfeeding (PNOF) on cardiac function, sensitivity to ischemia-reperfusion (I-R) injury in vivo, glucose metabolism, and metabolic profile of pericardial adipose tissue (PAT) in young (4 months), adult (6 months), old (12 months), and very old (18 months) male mice. METHODS AND RESULTS Two days after birth, PNOF is induced by adjusting the litter size of C57BL/6 male mice to three pups/mother, while the normally fed (NF) control group is normalized to nine pups/mother. After weaning, all mice have free access to standard diet. Glucose/insulin tests and in vivo myocardial I-R injury are conducted on mice aged from 2 to 12 months, while echocardiography is performed at all ages up to 18 months. PNOF mice exhibit an early and persistent 10-20% increase in body weight and a 10% decrease in left ventricular ejection fraction throughout their lifespan. In PNOF mice aged 4, 6, and 12 months, glucose intolerance and insulin resistance are observed, as well as a 27-34% increase in infarct size. This is accompanied by a higher PAT mass with increased inflammatory status. CONCLUSION Short-term PNOF results in nutritional programming, inducing long-lasting alterations in glucose metabolism and cardiac vulnerability in male mice, lasting up to 12 months.
Collapse
Affiliation(s)
- Eve Rigal
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, Dijon, 21000, France
| | - Marie Josse
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, Dijon, 21000, France
| | - Camille Greco
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, Dijon, 21000, France
| | - Nathalie Rosenblatt
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, 1011, Switzerland
| | - Luc Rochette
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, Dijon, 21000, France
| | - Charles Guenancia
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, Dijon, 21000, France
- Cardiology Department, University Hospital of Dijon, Dijon, 21000, France
| | - Catherine Vergely
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, Dijon, 21000, France
| |
Collapse
|
2
|
da Cunha Nones DC, Novais CO, Rojas VCT, de Paula Franco P, da Silva Estevam E, Silva MS, Giusti-Paiva A, Dos Anjos-Garcia T, Vilela FC. Litter reduction-induced obesity promotes early depressive-like behavior and elevated prefrontal cortex GFAP expression in male offspring. Behav Brain Res 2024; 461:114839. [PMID: 38154508 DOI: 10.1016/j.bbr.2023.114839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
AIMS The present study was developed to investigate how litter reduction-induced obesity promotes early depressive-related behaviors in rodent offspring. MAIN METHODS We employed a standardized litter size reduction protocol, dividing litters into groups: normal litters (NL), consisting of six males and six females pups and small litters (SL), comprising two males and two females pups. Maternal behavior was monitored during the initial week of lactation. Subsequently, we assessed the pups for weight gain, locomotor activity, social play behavior, and performance in forced swimming test. We further evaluated the weights of retroperitoneal and perigonadal fat tissues, along with the expression of glial fibrillary acidic pprotein (GFAP) in the hippocampus and prefrontal cortex of the offspring. KEY FINDINGS Our results indicated that litter size reduction led to an increased the maternal behavior. In contrast, offspring from the SL group displayed greater weight gain and increased, retroperitoneal and perigonadal fat. Both male and female rodents in the SL group exhibited decreased social play behavior, and male offspring spent more time immobile during the forced swimming test, suggesting a depressive-like phenotype. Notably, we observed an increase in the GFAP expression in the prefrontal cortex of male rodents, with a trend toward increased expression in the hippocampus. SIGNIFICANCE Obesity may facilitate the development of early depressive-like behaviors, potentially associated with elevated GFAP expression in the prefrontal cortex.
Collapse
Affiliation(s)
- Débora Cristina da Cunha Nones
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde (PPGB), Universidade Federal de Alfenas (Unifal-MG), Alfenas, Minas Gerais, Brazil; Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Minas Gerais, Brazil
| | - Cíntia Onofra Novais
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Universidade Federal de Alfenas (Unifal-MG), Alfenas, Minas Gerais, Brazil; Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Minas Gerais, Brazil
| | - Viviana Carolina Trujillo Rojas
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Universidade Federal de Alfenas (Unifal-MG), Alfenas, Minas Gerais, Brazil; Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Minas Gerais, Brazil
| | - Priscila de Paula Franco
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Universidade Federal de Alfenas (Unifal-MG), Alfenas, Minas Gerais, Brazil; Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Minas Gerais, Brazil
| | - Elisa da Silva Estevam
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Minas Gerais, Brazil
| | - Mariana Santos Silva
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Minas Gerais, Brazil
| | - Alexandre Giusti-Paiva
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas da Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Tayllon Dos Anjos-Garcia
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Universidade Federal de Alfenas (Unifal-MG), Alfenas, Minas Gerais, Brazil; Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Minas Gerais, Brazil.
| | - Fabiana Cardoso Vilela
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde (PPGB), Universidade Federal de Alfenas (Unifal-MG), Alfenas, Minas Gerais, Brazil; Centro de Inovação e Ensaios Pré-Clínicos (CIEnP), Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
3
|
Schumacher R, Rossetti MF, Canesini G, Gaydou L, Garcia AP, Lazzarino GP, Fernandez PR, Stoker C, Carrió MJ, Andreoli MF, Ramos JG. Neonatal overfeeding alters the functioning of the mesolimbic dopaminergic circuitry involving changes in DNA methylation and effects on feeding behavior. J Nutr Biochem 2023; 122:109451. [PMID: 37748623 DOI: 10.1016/j.jnutbio.2023.109451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/23/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Mesolimbic dopaminergic circuit is essential for food reward and motivational behaviors and can contribute to weight gain and obesity. Litter reduction is a classical model for studying the effects of neonatal overfeeding and overweight. Litters of Wistar rats were reduced to 4 pups/dam for small litter (SL) and 10 pups/dam for normal litter at postnatal day (PND) 4. Immediately after performing the feeding behavior tests, the animals were sacrificed in PND21 and PND90. The ventral tegmental area (VTA), Nucleus Accumbens Core (NAcC) and Shell (NAcSh) were isolated from frozen brain sections using the Palkovits micropunch technique. RNA and DNA were extracted from these areas, gene expression was measured by RT-qPCR and DNA methylation levels were measured by MSRM-qPCR technique. SL-PND21 animals presented increased expression levels of Tyrosine Hydroxylase and Dopamine Receptor D2 in VTA, decreased expression levels of dopamine active transporter (DAT) in VTA, and higher expression levels of DAT in NAcC. On the other hand, SL-PND90 animals showed decreased expression levels of Dopamine Receptor D1 and higher expression of DAT in NAcSh. These animals also evidenced impaired sensory-specific satiety. In addition, altered promoter methylation was observed at weaning, and remained in adulthood. This work demonstrates that neonatal overfeeding induces disruptions in the mesolimbic dopaminergic circuitry and causes alterations in feeding behavior from weaning to adulthood, suggesting that the neonatal period is critical for the normal development of dopaminergic circuit that impact on feeding behavior.
Collapse
Affiliation(s)
- Rocio Schumacher
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina
| | - Maria Florencia Rossetti
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina
| | - Guillermina Canesini
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina
| | - Luisa Gaydou
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ana Paula Garcia
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina
| | - Gisela Paola Lazzarino
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina
| | - Pamela Rocio Fernandez
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina
| | - Cora Stoker
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Maria Josefina Carrió
- Departamento de Matemática y Laboratorio de Investigaciones y Servicios en Bioestadística (LISEB), FBCB-UNL, Santa Fe, Argentina
| | - Maria Florencia Andreoli
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge Guillermo Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
4
|
Ullah R, Shen Y, Zhou YD, Fu J. Perinatal metabolic inflammation in the hypothalamus impairs the development of homeostatic feeding circuitry. Metabolism 2023; 147:155677. [PMID: 37543245 DOI: 10.1016/j.metabol.2023.155677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Over the past few decades, there has been a global increase in childhood obesity. This rise in childhood obesity contributes to the susceptibility of impaired metabolism during both childhood and adulthood. The hypothalamus, specifically the arcuate nucleus (ARC), houses crucial neurons involved in regulating homeostatic feeding. These neurons include proopiomelanocortin (POMC) and agouti-related peptide (AGRP) secreting neurons. They play a vital role in sensing nutrients and metabolic hormones like insulin, leptin, and ghrelin. The neurogenesis of AGRP and POMC neurons completes at birth; however, axon development and synapse formation occur during the postnatal stages in rodents. Insulin, leptin, and ghrelin are the essential regulators of POMC and AGRP neurons. Maternal obesity and postnatal overfeeding or a high-fat diet (HFD) feeding cause metabolic inflammation, disrupted signaling of metabolic hormones, netrin-1, and neurogenic factors, neonatal obesity, and defective neuronal development in animal models; however, the mechanism is unclear. Within the hypothalamus and other brain areas, there exists a wide range of interconnected neuronal populations that regulate various aspects of feeding. However, this review aims to discuss how perinatal metabolic inflammation influences the development of POMC and AGRP neurons within the hypothalamus.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yi Shen
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China.
| | - Yu-Dong Zhou
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China.
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China.
| |
Collapse
|
5
|
Amaro A, Sousa D, Sá-Rocha M, Ferreira-Junior MD, Rosendo-Silva D, Saavedra LPJ, Barra C, Monteiro-Alfredo T, Gomes RM, de Freitas Mathias PC, Baptista FI, Matafome P. Postnatal Overfeeding in Rodents Induces a Neurodevelopment Delay and Anxious-like Behaviour Accompanied by Sex- and Brain-Region-Specific Synaptic and Metabolic Changes. Nutrients 2023; 15:3581. [PMID: 37630771 PMCID: PMC10459868 DOI: 10.3390/nu15163581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Nutritional disturbances during the early postnatal period can have long-lasting effects on neurodevelopment and may be related to behavioural changes at adulthood. While such neuronal connection disruption can contribute to social and behaviour alterations, the dysregulation of the neuroendocrine pathways involved in nutrient-sensing balance may also cause such impairments, although the underlying mechanisms are still unclear. We aimed to evaluate sex-specific neurodevelopmental and behavioural changes upon postnatal overfeeding and determine the potential underpinning mechanisms at the central nervous system level, with a focus on the interconnection between synaptic and neuroendocrine molecular alterations. At postnatal day 3 (PND3) litters were culled to three animals (small litter procedure). Neurodevelopmental tests were conducted at infancy, whereas behavioural tests to assess locomotion, anxiety, and memory were performed at adolescence, together with molecular analysis of the hippocampus, hypothalamus, and prefrontal cortex. At infancy, females presented impaired acquisition of an auditory response, eye opening, olfactory discrimination, and vestibular system development, suggesting that female offspring neurodevelopment/maturation was deeply affected. Male offspring presented a transitory delay in locomotor performance., while both offspring had lower upper limb strength. At adolescence, both sexes presented anxious-like behaviour without alterations in short-term memory retention. Both males and females presented lower NPY1R levels in a region-specific manner. Furthermore, both sexes presented synaptic changes in the hippocampus (lower GABAA in females and higher GABAA levels in males), while, in the prefrontal cortex, similar higher GABAA receptor levels were observed. At the hypothalamus, females presented synaptic changes, namely higher vGLUT1 and PSD95 levels. Thus, we demonstrate that postnatal overfeeding modulates offspring behaviour and dysregulates nutrient-sensing mechanisms such as NPY and GABA in a sex- and brain-region-specific manner.
Collapse
Affiliation(s)
- Andreia Amaro
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Diana Sousa
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Mariana Sá-Rocha
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Marcos Divino Ferreira-Junior
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Physiological Sciences, Institute of Biological Sciences, University Federal of Goiás, Goiânia 74690-900, Brazil;
| | - Daniela Rosendo-Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Lucas Paulo Jacinto Saavedra
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa 87020-900, Brazil; (L.P.J.S.); (P.C.d.F.M.)
| | - Cátia Barra
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Internal Medicine Department, University Hospital Center of Coimbra, 3004-561 Coimbra, Portugal
| | - Tamaeh Monteiro-Alfredo
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Rodrigo Mello Gomes
- Department of Physiological Sciences, Institute of Biological Sciences, University Federal of Goiás, Goiânia 74690-900, Brazil;
| | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa 87020-900, Brazil; (L.P.J.S.); (P.C.d.F.M.)
| | - Filipa I. Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Paulo Matafome
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Coimbra Health School (EsTeSC), Polytechnic University of Coimbra, 3046-854 Coimbra, Portugal
| |
Collapse
|
6
|
de Souza CF, Stopa LRS, Martins AB, Wunderlich ALM, Lopes GM, de Fatima Silva F, Komino ACM, Zaia DAM, Zaia CTBV, Lima FB, Uchoa ET. Glucocorticoids contribute to metabolic and liver impairments induced by lactation overnutrition in male adult rats. Front Physiol 2023; 14:1161582. [PMID: 37234421 PMCID: PMC10206267 DOI: 10.3389/fphys.2023.1161582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction: Lactation overnutrition is a programming agent of energy metabolism, and litter size reduction leads to the early development of obesity, which persists until adulthood. Liver metabolism is disrupted by obesity, and increased levels of circulating glucocorticoids are pointed as a possible mediator for the obesity development, since bilateral adrenalectomy (ADX) can reduce obesity in different models of obesity. Methods: This study aimed to evaluate the effects of glucocorticoids on metabolic changes and liver lipogenesis and insulin pathway induced by lactation overnutrition. For this, on the postnatal day 3 (PND), 3 pups (small litter-SL) or 10 pups (normal litter-NL) were kept with each dam. On PND 60, male Wistar rats underwent bilateral adrenalectomy (ADX) or fictitious surgery (sham), and half of ADX animals received corticosterone (CORT- 25 mg/L) diluted in the drinking fluid. On PND 74, the animals were euthanized by decapitation for trunk blood collection, and liver dissection and storage. Results and Discussion: SL rats presented increased corticosterone, free fatty acids, total and LDL-cholesterol plasma levels, without changes in triglycerides (TG) and HDL-cholesterol. The SL group also showed increased content of liver TG, and expression of fatty acid synthase (FASN), but decreased expression of PI3Kp110 in the liver, compared to NL rats. In the SL group, the ADX decreased plasma levels of corticosterone, FFA, TG and HDL cholesterol, liver TG, and liver expression of FASN, and IRS2, compared to sham animals. In SL animals, CORT treatment increased plasma levels of TG and HDL cholesterol, liver TG, and expression of FASN, IRS1, and IRS2, compared with the ADX group. In summary, the ADX attenuated plasma and liver changes observed after lactation overnutrition, and CORT treatment could reverse most ADX-induced effects. Thus, increased circulating glucocorticoids are likely to play a pivotal role in liver and plasma impairments induced by lactation overnutrition in male rats.
Collapse
Affiliation(s)
- Camila F. de Souza
- Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Larissa Rugila S. Stopa
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Andressa B. Martins
- Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Ana Luiza M. Wunderlich
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
| | | | | | | | - Dimas A. M. Zaia
- Department of Chemistry, State University of Londrina, Londrina, Brazil
| | - Cassia Thaïs B. V. Zaia
- Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
- Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Fabio Bessa Lima
- Department of Physiology and Biophysics, University of Sao Paulo, Sao Paulo, Brazil
| | - Ernane Torres Uchoa
- Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
- Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
7
|
Miranda RA, de Moura EG, Lisboa PC. Adverse perinatal conditions and the developmental origins of thyroid dysfunction-Lessons from Animal Models. Endocrine 2023; 79:223-234. [PMID: 36036880 DOI: 10.1007/s12020-022-03177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/17/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE Nutritional, hormonal, and environmental status during development can predispose the individual to obesity and endocrine diseases later in life, an association known as metabolic programming. In general, weight loss or gain are seen in thyroid disorders, and thyroid function can be affected by body adiposity. In addition, hyper- and hypothyroidism can be related to metabolic programming. Our aim was to gather evidence that regardless of the type or critical window of metabolic imprinting, offspring exposed to certain adverse perinatal conditions have a higher risk of developing thyroid dysfunction. METHODS We reviewed literature data that relate insults occurring during pregnancy and/or lactation to short- and long-term offspring thyroid dysfunction in animal models. RESULTS Few studies have addressed the hypothalamic-pituitary-thyroid axis and thyroid dysfunction related to metabolic programming. The literature shows that under- and overnutrition, exposure to endocrine disruptors, early weaning, maternal thyroid disease and maternal high-fat diet can induce alterations in offspring thyroid function in a sex-dependent manner. CONCLUSION Based on the few available data, mainly in rodent models, we can conclude that diet, hormones, and environmental contaminants are related to the developmental origins of later thyroid dysfunction by interrupting the normal maturation of the thyroid gland.
Collapse
Affiliation(s)
- Rosiane Aparecida Miranda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
The central nervous system control of energy homeostasis: high fat diet induced hypothalamic microinflammation and obesity. Brain Res Bull 2022; 185:99-106. [PMID: 35525336 DOI: 10.1016/j.brainresbull.2022.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022]
Abstract
Obesity is believed to arise through the imbalance of energy homeostasis controlled by the central nervous system, where the hypothalamus plays the fundamental role in energy metabolism. In this review, we will provide an overview regarding the functions of POMC neurons and AgRP neurons in acute nucleus of the hypothalamus which mediated the energy metabolism, highlighting their interactions with peripheral organs derived hormones in control of energy homeostasis. Furthermore, the role of high fat diet induced hypothalamic microinflammation in the pathogenesis of obesity will be discussed. We hope this review could help researchers to understand the mechanism of hypothalamus in control of energy metabolism, and design related drugs to block the pathways involving in the impaired metabolism in obese patients.
Collapse
|
9
|
Colldén G, Caron E, Bouret SG. Neonatal leptin antagonism improves metabolic programming of postnatally overnourished mice. Int J Obes (Lond) 2022; 46:1138-1144. [PMID: 35173277 DOI: 10.1038/s41366-022-01093-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES Alteration of the perinatal nutritional environment is an important risk factor for the development of metabolic diseases in later life. The hormone leptin plays a critical role in growth and development. Previous studies reported that postnatal overnutrition increases leptin secretion during the pre-weaning period. However, a direct link between leptin, neonatal overnutrition, and lifelong metabolic regulation has not been investigated. METHODS We used the small litter mouse model combined with neonatal leptin antagonist injections to examine whether attenuating leptin during early life improves lifelong metabolic regulation in postnatally overnourished mice. RESULTS Postnatally overnourished mice displayed rapid weight gain during lactation and remained overweight as adults. These mice also showed increased adiposity and perturbations in glucose homeostasis in adulthood. Neonatal administration of a leptin antagonist normalized fat mass and insulin sensitivity in postnatally overnourished mice. These metabolic improvements were associated with enhanced sensitivity of hypothalamic neurons to leptin. CONCLUSIONS Early postnatal overnutrition causes metabolic alterations that can be permanently attenuated with the administration of a leptin antagonist during a restricted developmental window.
Collapse
Affiliation(s)
- Gustav Colldén
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1,000 Days for Health, Lille, 59000, France
| | - Emilie Caron
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1,000 Days for Health, Lille, 59000, France
| | - Sebastien G Bouret
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1,000 Days for Health, Lille, 59000, France.
| |
Collapse
|
10
|
Rodrigues VST, Moura EG, Peixoto TC, Soares P, Lopes BP, Bertasso IM, Silva BS, Cabral S, Kluck GEG, Atella GC, Trindade PL, Daleprane JB, Oliveira E, Lisboa PC. The model of litter size reduction induces long-term disruption of the gut-brain axis: An explanation for the hyperphagia of Wistar rats of both sexes. Physiol Rep 2022; 10:e15191. [PMID: 35146951 PMCID: PMC8831958 DOI: 10.14814/phy2.15191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/10/2021] [Accepted: 01/04/2022] [Indexed: 04/26/2023] Open
Abstract
The gut microbiota affects the host's metabolic phenotype, impacting health and disease. The gut-brain axis unites the intestine with the centers of hunger and satiety, affecting the eating behavior. Deregulation of this axis can lead to obesity onset. Litter size reduction is a well-studied model for infant obesity because it causes overnutrition and programs for obesity. We hypothesize that animals raised in small litters (SL) have altered circuitry between the intestine and brain, causing hyperphagia. We investigated vagus nerve activity, the expression of c-Fos, brain-derived neurotrophic factor (BDNF), gastrointestinal (GI) hormone receptors, and content of bacterial phyla and short-chain fatty acids (SCFAs) in the feces of adult male and female Wistar rats overfed during lactation. On the 3rd day after birth, litter size was reduced to 3 pups/litter (SL males or SL females) until weaning. Controls had normal litter size (10 pups/litter: 5 males and 5 females). The rats were killed at 5 months of age. The male and female offspring were analyzed separately. The SL group of both sexes showed higher food consumption and body adiposity than the respective controls. SL animals presented dysbiosis (increased Firmicutes, decreased Bacteroidetes) and had increased vagus nerve activity. Only the SL males had decreased hypothalamic GLP-1 receptor expression, while only the SL females had lower acetate and propionate in the feces and higher CCK receptor expression in the hypothalamus. Thus, overfeeding during lactation differentially changes the gut-brain axis, contributing to hyperphagia of the offspring of both sexes.
Collapse
Affiliation(s)
- Vanessa S. T. Rodrigues
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Egberto G. Moura
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Thamara C. Peixoto
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Patricia N. Soares
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Bruna P. Lopes
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Iala M. Bertasso
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Beatriz S. Silva
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - S. S. Cabral
- Laboratory of Lipids and Lipoprotein BiochemistryBiochemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - G. E. G. Kluck
- Laboratory of Lipids and Lipoprotein BiochemistryBiochemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - G. C. Atella
- Laboratory of Lipids and Lipoprotein BiochemistryBiochemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - P. L. Trindade
- Laboratory for studies of Interactions between Nutrition and GeneticsNutrition InstituteRio de Janeiro State UniversityRio de JaneiroBrazil
| | - J. B. Daleprane
- Laboratory for studies of Interactions between Nutrition and GeneticsNutrition InstituteRio de Janeiro State UniversityRio de JaneiroBrazil
| | - Elaine Oliveira
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Patricia Cristina Lisboa
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
11
|
Zhu F, Zhang D, Shen F, Xu K, Huang X, Liu J, Zhang J, Teng Y. Maternal Socs3 knockdown attenuates postnatal obesity caused by an early life environment of maternal obesity and intrauterine overnutrition in progeny mice. IUBMB Life 2021; 73:1210-1221. [PMID: 34184397 DOI: 10.1002/iub.2526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/29/2021] [Accepted: 06/20/2021] [Indexed: 11/07/2022]
Abstract
Pathological states in the early life environment of mammalian offspring, including maternal obesity and intrauterine overnutrition, can induce obesity and metabolic disorder later in life. Leptin resistance caused by upregulation of Socs3 in the hypothalamus of offspring was believed to be the main mechanism of this effect. In this study, obese mother (OM) and lean mother (LM) models were generated by feeding C57BL/6N female mice a high-fat diet or standard lean diet, respectively. Additionally, an obese mother with intervention (OMI) model was generated by injecting the high-fat diet group with Socs3-shRNA lentivirus during early pregnancy. The offspring of the groups was correspondingly named OM-F1 , LM-F1 , and OMI-F1 , representing progeny mouse models of different early life environments. The offspring were fed a high-fat diet to test their propensity for obesity. The body weight, food intake and fat accumulation were higher, while glucose intolerance and insulin resistance were worse in the OM-F1 group than LM-F1 group. By contrast, the obesity phenotype, hyperphagia and metabolic disorder were alleviated in the OMI-F1 group compared with the OM-F1 group. The mechanism was identified that downregulation of hypothalamic SOCS3 resulted in an increased level of p-STAT3 and p-JAK2, which ameliorated the leptin resistance and restored the lean expression of appetite regulatory genes (Pomc and Agrp) in hypothalamus of OMI-F1 group. Taken together, these results indicate that reducing maternal Socs3 expression during pregnancy can attenuate obesity caused by the early life environment in mice, which may inspire therapies that enable obese mothers to bear metabolically healthy children.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Graduate, Bengbu Medical College, Bengbu, China
- College of Biological and Chemical Science and Engineering, Jiaxing University, Jiaxing, China
- Children's Medical Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Dawei Zhang
- College of Biological and Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Fangfang Shen
- Children's Medical Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ke Xu
- Children's Medical Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xin Huang
- College of Biological and Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Jue Liu
- Children's Medical Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jin Zhang
- College of Biological and Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Yiqun Teng
- Department of Graduate, Bengbu Medical College, Bengbu, China
- Children's Medical Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
12
|
Ullah R, Rauf N, Nabi G, Yi S, Yu-Dong Z, Fu J. Mechanistic insight into high-fat diet-induced metabolic inflammation in the arcuate nucleus of the hypothalamus. Biomed Pharmacother 2021; 142:112012. [PMID: 34388531 DOI: 10.1016/j.biopha.2021.112012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
A high-fat diet (HFD) is linked with cytokines production by non-neuronal cells within the hypothalamus, which mediates metabolic inflammation. These cytokines then activate different inflammatory mediators in the arcuate nucleus of the hypothalamus (ARC), a primary hypothalamic area accommodating proopiomelanocortin (POMC) and agouti-related peptide (AGRP) neurons, first-order neurons that sense and integrate peripheral metabolic signals and then respond accordingly. These mediators, such as inhibitor of κB kinase-β (IKKβ), suppression of cytokine signaling 3 (SOCS3), c-Jun N-terminal kinases (JNKs), protein kinase C (PKC), etc., cause insulin and leptin resistance in POMC and AGRP neurons and support obesity and related metabolic complications. On the other hand, inhibition of these mediators has been shown to counteract the impaired metabolism. Therefore, it is important to discuss the contribution of neuronal and non-neuronal cells in HFD-induced hypothalamic inflammation. Furthermore, understanding few other questions, such as the diets causing hypothalamic inflammation, the gender disparity in response to HFD feeding, and how hypothalamic inflammation affects ARC neurons to cause impaired metabolism, will be helpful for the development of therapeutic approaches to prevent or treat HFD-induced obesity.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Naveed Rauf
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Ghulam Nabi
- Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China; Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Shen Yi
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Zhou Yu-Dong
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; National Clinical Research Center for Child Health, Hangzhou 310052, China; National Children's Regional Medical Center, Hangzhou 310052, China.
| |
Collapse
|
13
|
Schumacher R, Rossetti MF, Lazzarino GP, Canesini G, García AP, Stoker C, Andreoli MF, Ramos JG. Temporary effects of neonatal overfeeding on homeostatic control of food intake involve alterations in POMC promoter methylation in male rats. Mol Cell Endocrinol 2021; 522:111123. [PMID: 33338550 DOI: 10.1016/j.mce.2020.111123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/18/2020] [Accepted: 12/09/2020] [Indexed: 12/30/2022]
Abstract
A small litter (SL) model was used to determine how neonatal overfeeding affects the homeostatic control of food intake in male rats at weaning and postnatal day (PND) 90. At PND4, litters were reduced to small (4 pups/dam) or normal (10 pups/dam) litters. At weaning, SL rats showed higher body weight and characteristic features of the metabolic syndrome. Gene expression of pro-opiomelanocortin (POMC), cocaine and amphetamine regulated transcript, neuropeptide Y (NPY) and leptin and ghrelin (GHSR) receptors were increased and POMC promoter was hypomethylated in arcuate nucleus, indicating that the early development of obesity may involve the GHSR/NPY system and changes in POMC methylation state. At PND90, body weight, metabolic parameters and gene expression were restored; however, POMC methylation state remained altered. This work provides insight into the effects of neonatal overfeeding, showing the importance of developmental plasticity in restoring early changes in central pathways involved in metabolic programming.
Collapse
Affiliation(s)
- Rocio Schumacher
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, 3000, Santa Fe, Argentina.
| | - María Florencia Rossetti
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, 3000, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| | - Gisela Paola Lazzarino
- Centro de Neurociencia Social y Afectiva, Departamento de Medicina Clínica y Experimental, Universidad de Linköping, 58x xx, Linköping, Suecia.
| | - Guillermina Canesini
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, 3000, Santa Fe, Argentina.
| | - Ana Paula García
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, 3000, Santa Fe, Argentina.
| | - Cora Stoker
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, 3000, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| | - María Florencia Andreoli
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), Hospital de niños de La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), 1900, La Plata, Argentina.
| | - Jorge Guillermo Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, 3000, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| |
Collapse
|
14
|
Programming of Cardiovascular Dysfunction by Postnatal Overfeeding in Rodents. Int J Mol Sci 2020; 21:ijms21249427. [PMID: 33322275 PMCID: PMC7763005 DOI: 10.3390/ijms21249427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Nutritional environment in the perinatal period has a great influence on health and diseases in adulthood. In rodents, litter size reduction reproduces the effects of postnatal overnutrition in infants and reveals that postnatal overfeeding (PNOF) not only permanently increases body weight but also affects the cardiovascular function in the short- and long-term. In addition to increased adiposity, the metabolic status of PNOF rodents is altered, with increased plasma insulin and leptin levels, associated with resistance to these hormones, changed profiles and levels of circulating lipids. PNOF animals present elevated arterial blood pressure with altered vascular responsiveness to vasoactive substances. The hearts of overfed rodents exhibit hypertrophy and elevated collagen content. PNOF also induces a disturbance of cardiac mitochondrial respiration and produces an imbalance between oxidants and antioxidants. A modification of the expression of crucial genes and epigenetic alterations is reported in hearts of PNOF animals. In vivo, a decreased ventricular contractile function is observed during adulthood in PNOF hearts. All these alterations ultimately lead to an increased sensitivity to cardiac pathologic challenges such as ischemia-reperfusion injury. Nevertheless, caloric restriction and physical exercise were shown to improve PNOF-induced cardiac dysfunction and metabolic abnormalities, drawing a path to the potential therapeutic correction of early nutritional programming.
Collapse
|
15
|
Neonatal overnutrition programming impairs cholecystokinin effects in adultmale rats. J Nutr Biochem 2020; 86:108494. [DOI: 10.1016/j.jnutbio.2020.108494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/05/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
|
16
|
Sun Q, Liu Y, Wei W, Wu D, Lin R, Wen D, Jia L. Chronic Timed Sleep Restriction Attenuates LepRb-Mediated Signaling Pathways and Circadian Clock Gene Expression in the Rat Hypothalamus. Front Neurosci 2020; 14:909. [PMID: 33013300 PMCID: PMC7507490 DOI: 10.3389/fnins.2020.00909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
The sleep duration of adolescents has continued to decline over the past 20 years. Sleep insufficiency is one of the most important risk factors for obesity, but the mechanisms underlying the association are unclear. Therefore, the hypothalamic-regulated mechanisms of appetite and the circadian clock gene expression were examined in sleep-restricted rats. Rats aged 7 weeks were randomly divided into two groups: the control group and sleep restriction group (7 rats/group) rats were sleep-restricted for 4 weeks. Body weight gain and amount of food/water consumption were quantified. The expression of genes or proteins which regulated appetite and energy metabolism via leptin receptor signaling and the circadian clock in the hypothalamus were assessed. Chronic sleep restriction induced increased food intake and weight gain in adolescent and young adult rats from the second week of initiation of sleep restriction. Phosphorylation of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) was decreased, although levels of circulating leptin or leptin receptor expression were unaltered. Furthermore, insulin receptor substrate (IRS)/phosphoinositide 3-kinase (PI3K)/AKT/mTOR and forkhead box O1 (FoxO1) signaling pathways were also compromised. Moreover, core circadian clock genes were also decreased in the sleep restriction group compared with the control. Chronic timed sleep restriction induced hyperphagic behaviors, attenuated leptin receptor-mediated signaling pathways, and depleted the expression of circadian clock gene in the hypothalamus of adolescent and young adult rats.
Collapse
Affiliation(s)
- Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, China
| | - Yang Liu
- Institute of Health Science, China Medical University, Shenyang, China
| | - Wei Wei
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, China
| | - Dan Wu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, China
| | - Ren Lin
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, China
| | - Deliang Wen
- Institute of Health Science, China Medical University, Shenyang, China
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
17
|
Parra-Vargas M, Ramon-Krauel M, Lerin C, Jimenez-Chillaron JC. Size Does Matter: Litter Size Strongly Determines Adult Metabolism in Rodents. Cell Metab 2020; 32:334-340. [PMID: 32814016 DOI: 10.1016/j.cmet.2020.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/16/2020] [Accepted: 07/20/2020] [Indexed: 11/25/2022]
Abstract
In this essay, we highlight how litter size in rodents is a strong determinant of neonatal growth and long-term metabolic health. Based on these effects, we strongly advise that scientific articles that utilize rodent models for obesity and metabolic research should include information on the litter sizes in the study to increase the data transparency of such reports.
Collapse
Affiliation(s)
- Marcela Parra-Vargas
- Institut de Recerca Sant Joan de Déu, Endocrinology, c/ Santa Rosa 39-57, 4ª planta, Esplugues, 08950 Barcelona, Spain
| | - Marta Ramon-Krauel
- Institut de Recerca Sant Joan de Déu, Endocrinology, c/ Santa Rosa 39-57, 4ª planta, Esplugues, 08950 Barcelona, Spain
| | - Carles Lerin
- Institut de Recerca Sant Joan de Déu, Endocrinology, c/ Santa Rosa 39-57, 4ª planta, Esplugues, 08950 Barcelona, Spain
| | - Josep C Jimenez-Chillaron
- Institut de Recerca Sant Joan de Déu, Endocrinology, c/ Santa Rosa 39-57, 4ª planta, Esplugues, 08950 Barcelona, Spain.
| |
Collapse
|
18
|
Debarba LK, Marangon PB, Borges BC, Veida-Silva H, Venâncio JC, Almeida-Pereira G, Antunes-Rodrigues J, Elias LLK. Neonatal nutritional programming induces gliosis and alters the expression of T-cell protein tyrosine phosphatase and connexins in male rats. Horm Behav 2020; 120:104690. [PMID: 31954709 DOI: 10.1016/j.yhbeh.2020.104690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/20/2019] [Accepted: 01/12/2020] [Indexed: 01/17/2023]
Abstract
Changes to neonatal nutrition result in long-lasting impairments in energy balance, which may be described as metabolic programing. Astrocytes, which are interconnected by gap junctions, have emerged as important players in the hypothalamic control of food intake. In order to study the effects of nutritional programming on glial morphology and protein expression, cross-fostered male Wistar rats at postnatal day 3 were assigned to three groups based on litter size: small litter (3 pups per dam, SL), normal litter (10 pups per dam, NL), and large litter (16 pups per dam, LL). Rats from the SL group exhibited higher body weight throughout the study and hyperphagia after weaning. LL animals exhibited hyperphagia, high energy efficiency and catch-up of body weight after weaning. Both the SL and LL groups at postnatal day 60 (PN60) exhibited increased levels of plasma leptin, the Lee index (as an index of obesity), adiposity content, immunoreactivity toward T-cell protein tyrosine phosphatase (TCPTP), and glial fibrillary acidic protein (GFAP) in the arcuate nucleus (ARC) of the hypothalamus. Astrocyte morphology was altered in the ARC of SL and LL animals, and this effect occurred in parallel with a reduction in immunoreactivity toward connexin 30 (CX30). The data obtained demonstrate that both neonatal over- and underfeeding promote not only alterations in the metabolic status but also morphological changes in glial cells in parallel with increasing TCPTP and changes in connexin expression.
Collapse
Affiliation(s)
- Lucas Kniess Debarba
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil. 14049-900.
| | - Paula Beatriz Marangon
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil. 14049-900
| | - Beatriz C Borges
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil. 14049-900
| | - Hellen Veida-Silva
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil. 14049-900
| | - Jade Cabestre Venâncio
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil. 14049-900
| | - Gislaine Almeida-Pereira
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil. 14049-900
| | - José Antunes-Rodrigues
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil. 14049-900
| | - Lucila Leico Kagohara Elias
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil. 14049-900
| |
Collapse
|
19
|
Lin Z, Tong Y, Li N, Zhu Z, Li J. Network pharmacology-based study of the mechanisms of action of anti-diabetic triterpenoids from Cyclocarya paliurus. RSC Adv 2020; 10:37168-37181. [PMID: 35521232 PMCID: PMC9057148 DOI: 10.1039/d0ra06846b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a complex illness requiring long-term therapy. Cyclocarya paliurus, a recently confirmed new food resource, shows significant hypoglycemic and hypolipidemic effects in type II diabetes. Triterpenoid saponins are considered as the effective medicinal components of C. paliurus and are useful for the treatment of diabetes mellitus. However, little is known regarding their specific mechanism of actions. In this study, we used active ingredient screening and target prediction techniques to determine the components of C. paliurus responsible for its anti-diabetic effects as well as their targets. In addition, we used bioinformatics technology and molecular docking analysis to determine the mechanisms underlying their anti-diabetic effects. A total of 39 triterpenes were identified through a literature search and 1 triterpene compound by experiments. In all, 33 potential target proteins associated with 36 pathways were predicted to be related to diabetes. Finally, 7 compounds, 15 target proteins, and 15 signaling pathways were found to play important roles in the therapeutic effects of C. paliurus against diabetes. These results provide a theoretical framework for the use of C. paliurus against diabetes. Moreover, molecular docking verification showed that more than 90% of the active ingredients had binding activity when tested against key target proteins, and a literature search showed that the active ingredients identified had anti-diabetic effects, indicating that the results were highly reliable. Active ingredient screening and target prediction techniques were used to determine the components of Cyclocarya paliurus responsible for its anti-diabetic effects as well as their targets. ![]()
Collapse
Affiliation(s)
- Zixin Lin
- School of Life Science
- Shanghai Normal University
- Shanghai 200234
- China
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation
| | - Yingpeng Tong
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation
- Taizhou University
- Taizhou 318000
- China
- School of Advanced Study
| | - Na Li
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation
- Taizhou University
- Taizhou 318000
- China
| | - Ziping Zhu
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation
- Taizhou University
- Taizhou 318000
- China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation
- Taizhou University
- Taizhou 318000
- China
- School of Advanced Study
| |
Collapse
|
20
|
Rivera P, Ramírez‐López MT, Vargas A, Decara J, Vázquez M, Arco R, Gómez de Heras R, Argente J, Rodríguez de Fonseca F, Chowen JA, Suárez J. Perinatal free-choice of a high-calorie low-protein diet affects leptin signaling through IRS1 and AMPK dephosphorylation in the hypothalami of female rat offspring in adulthood. Acta Physiol (Oxf) 2019; 226:e13244. [PMID: 30589509 DOI: 10.1111/apha.13244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022]
Abstract
AIM We aimed to investigate whether a dysregulated maternal diet during gestation and lactation induces long-lasting changes in the hypothalamic control of feeding behavior in the offspring and whether this effect is sex specific. METHODS The study included an analysis of appetite-regulating metabolic hormones and hypothalamic signaling in male and female offspring in adulthood after exposure to a free-choice high-calorie palatable low-protein (P) diet or standard chow (C) during (pre)gestation/lactation (maternal) and/or postweaning (offspring). RESULTS Maternal exposure to the P diet resulted in decreased protein intake and body weight gain in dams and decreased body weight gain in offspring during lactation. The maternal P diet (PC) specifically increased feed efficacy and decreased body weight and cholesterol levels in the female offspring in adulthood, but no changes in adiposity or leptin levels were found. In contrast, P diet exposure after weaning (CP and PP) increased caloric intake, adiposity and circulating levels of leptin in the male and female offspring in adulthood. The hypothalami of the female offspring exposed to the maternal P diet (PC and PP) expressed high levels of the phospho-leptin receptor and low levels of SOCS3, phospho-IRS1 and phospho-AMPK, regardless of the postweaning diet. The hypothalami of the female rats in the PC group also showed increased levels of STAT3 and the orexigenic neuropeptide Agrp. CONCLUSIONS Maternal exposure to a free-choice high-calorie low-protein diet induces a long-term feed efficacy associated with changes in leptin signaling through IRS-1 and AMPK dephosphorylation in the hypothalami of female offspring in adulthood.
Collapse
Affiliation(s)
- Patricia Rivera
- Department of Endocrinology, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús Instituto de Investigación Biomédica la Princesa Madrid Spain
| | - María T. Ramírez‐López
- Departamento de Psicobiología, Facultad de Psicología Universidad Complutense de Madrid Pozuelo de Alarcón Spain
- Hospital Universitario de Getafe Getafe (Madrid) Spain
| | - Antonio Vargas
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga Universidad de Málaga Málaga Spain
| | - Juan Decara
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga Universidad de Málaga Málaga Spain
| | - Mariam Vázquez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga Universidad de Málaga Málaga Spain
| | - Rocío Arco
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga Universidad de Málaga Málaga Spain
| | - Raquel Gómez de Heras
- Departamento de Psicobiología, Facultad de Psicología Universidad Complutense de Madrid Pozuelo de Alarcón Spain
| | - Jesús Argente
- Department of Endocrinology, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús Instituto de Investigación Biomédica la Princesa Madrid Spain
- Centro de Investigación Biomédica en Red Fisiología de la Obesidad y Nutrición (CIBEROBN) Madrid Spain
- IMDEA Food Institute Campus of International Excellence (CEI) UAM + CSIC Madrid Spain
- Department of PediatricsUniversity Autonoma de Madrid Madrid Spain
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología, Facultad de Psicología Universidad Complutense de Madrid Pozuelo de Alarcón Spain
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga Universidad de Málaga Málaga Spain
| | - Julie A. Chowen
- Department of Endocrinology, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús Instituto de Investigación Biomédica la Princesa Madrid Spain
- Centro de Investigación Biomédica en Red Fisiología de la Obesidad y Nutrición (CIBEROBN) Madrid Spain
- IMDEA Food Institute Campus of International Excellence (CEI) UAM + CSIC Madrid Spain
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga Universidad de Málaga Málaga Spain
| |
Collapse
|
21
|
Maia LDA, Cruz FF, de Oliveira MV, Samary CS, Fernandes MVDS, Trivelin SDAA, Rocha NDN, Gama de Abreu M, Pelosi P, Silva PL, Rocco PRM. Effects of Obesity on Pulmonary Inflammation and Remodeling in Experimental Moderate Acute Lung Injury. Front Immunol 2019; 10:1215. [PMID: 31275296 PMCID: PMC6593291 DOI: 10.3389/fimmu.2019.01215] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Obese patients are at higher risk of developing acute respiratory distress syndrome (ARDS); however, their survival rates are also higher compared to those of similarly ill non-obese patients. We hypothesized that obesity would not only prevent lung inflammation, but also reduce remodeling in moderate endotoxin-induced acute lung injury (ALI). Obesity was induced by early postnatal overfeeding in Wistar rats in which the litter size was reduced to 3 pups/litter (Obese, n = 18); Control animals (n = 18) were obtained from unculled litters. On postnatal day 150, Control, and Obese animals randomly received E. coli lipopolysaccharide (ALI) or saline (SAL) intratracheally. After 24 h, echocardiography, lung function and morphometry, and biological markers in lung tissue were evaluated. Additionally, mediator expression in neutrophils and macrophages obtained from blood and bronchoalveolar lavage fluid (BALF) was analyzed. Compared to Control-SAL animals, Control-ALI rats showed no changes in echocardiographic parameters, increased lung elastance and resistance, higher monocyte phagocytic capacity, collagen fiber content, myeloperoxidase (MPO) activity, and levels of interleukin (IL-6), tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, and type III (PCIII), and I (PCI) procollagen in lung tissue, as well as increased expressions of TNF-α and monocyte chemoattractant protein (MCP)-1 in blood and BALF neutrophils. Monocyte (blood) and macrophage (adipose tissue) phagocytic capacities were lower in Obese-ALI compared to Control-ALI animals, and Obese animals exhibited reduced neutrophil migration compared to Control. Obese-ALI animals, compared to Obese-SAL, exhibited increased interventricular septum thickness (p = 0.003) and posterior wall thickness (p = 0.003) and decreased pulmonary acceleration time to pulmonary ejection time ratio (p = 0.005); no changes in lung mechanics, IL-6, TNF-α, TGF-β, PCIII, and PCI in lung tissue; increased IL-10 levels in lung homogenate (p = 0.007); reduced MCP-1 expression in blood neutrophils (p = 0.009); decreased TNF-α expression in blood (p = 0.02) and BALF (p = 0.008) neutrophils; and increased IL-10 expression in monocytes (p = 0.004). In conclusion, after endotoxin challenge, obese rats showed less deterioration of lung function, secondary to anti-inflammatory and anti-fibrotic effects, as well as changes in neutrophil and monocyte/macrophage phenotype in blood and BALF compared to Control rats.
Collapse
Affiliation(s)
- Lígia de A Maia
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Milena V de Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cynthia S Samary
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Vinicius de S Fernandes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stefano de A A Trivelin
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nazareth de N Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Brazil
| | - Marcelo Gama de Abreu
- Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Therapy, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Paolo Pelosi
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
de Oliveira E, Quitete FT, Bernardino DN, Guarda DS, Caramez FAH, Soares PN, Peixoto TC, Rodrigues VST, Trevenzoli IH, Moura EG, Lisboa PC. Maternal coconut oil intake on lactation programs for endocannabinoid system dysfunction in adult offspring. Food Chem Toxicol 2019; 130:12-21. [PMID: 31059745 DOI: 10.1016/j.fct.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/29/2023]
Abstract
Maternal exposure to coconut oil metabolically programs adult offspring for overweight, hyperphagia and hyperleptinemia. We studied the neuroendocrine mechanisms by which coconut oil supplementation during breastfeeding as well as continued exposure of this oil throughout life affect the feeding behavior of the progeny. At birth, pups were divided into two groups: Soybean oil (SO) and Coconut oil (CO). Dams received these oils by gavage (0.5 g/kg body mass/day) during lactation. Half of the CO group continued to receive CO in chow throughout life (CO + C). Adult CO and CO + C groups had overweight; the CO group had hyperphagia, higher visceral adiposity, and hyperleptinemia, while the CO + C group had hypophagia only. The CO group showed higher DAGLα (endocannabinoid synthesis) but no alteration of FAAH (endocannabinoid degradation) or CB1R. Leptin signaling and GLP1R were unchanged in the CO group, which did not explain its phenotype. Hyperphagia in these animals can be due to higher DAGLα, increasing the production of 2-AG, an orexigenic mediator. The CO + C group had higher preference for fat and lower hypothalamic GLP1R content. Continuous exposure to coconut oil prevented an increase in DAGLα. The CO + C group, although hypophagic, showed greater voracity when exposed to a hyperlipidemic diet, maybe due to lower GLP1R, since GLP1 inhibits short-term food intake.
Collapse
Affiliation(s)
- Elaine de Oliveira
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Fernanda T Quitete
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Dayse N Bernardino
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Deysla S Guarda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Fabiele A H Caramez
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Patrícia N Soares
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Thamara C Peixoto
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Vanessa S T Rodrigues
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Isis H Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Egberto G Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Patrícia C Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil.
| |
Collapse
|
23
|
Quitete FT, de Moura EG, Atella GC, Lisboa PC, de Oliveira E. Differential effects in male adult rats of lifelong coconut oil exposure versus during early-life only. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
24
|
Pérez-Morales M, Hurtado-Alvarado G, Morales-Hernández I, Gómez-González B, Domínguez-Salazar E, Velázquez-Moctezuma J. Postnatal overnutrition alters the orexigenic effects of melanin-concentrating hormone (MCH) and reduces MCHR1 hypothalamic expression on spontaneous feeding and fasting. Pharmacol Biochem Behav 2018; 175:53-61. [PMID: 30196088 DOI: 10.1016/j.pbb.2018.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/04/2023]
Abstract
One of the approaches to induce obesity in rodents consists in reducing litter size to 3 pups during the lactation period. Animals submitted to this manipulation are heavier, hyperphagic and develop several metabolic diseases for the rest of their lives. In the present study, under the premise that melanin-concentrating hormone (MCH), an orexigenic peptide synthesized by neurons of the lateral hypothalamus, is involved in food intake regulation, we aimed to measure the hypothalamic expression of its receptor, MCHR1, in adult early overfed obese animals and normoweight controls at both ad libitum and food deprived conditions. Additionally, we administered MCH, or an antiMCH antibody, into the third ventricle of ad libitum-fed rats, or fasted rats, respectively, and evaluated chow consumption. Typical nocturnal hyperphagia in rodents was elevated in obese animals compared to normoweight controls, accompanied by a lower expression of MCHR1 and leptin receptor (Ob-R). Following a 24 h fasting, MCHR1 remained lower in SL rats. After 4 h of re-feeding, obese animals ate more than normoweight controls. MCH failed to enhance appetite in early overfed obese animals and immunoneutralization of the peptide only reduced fasted induced-hyperphagia in normoweight controls. These results support the notion that both peptide and brain endogenous MCH exert a physiological relevant action in food intake regulation in normoweight rats, but that postnatal overnutrition disturbs this system, as reflected by MCHR1 downregulation at both ad libitum and fasted conditions and in the lack of response to MCH in both positive- and negative-energetic states in early overfed obese animals.
Collapse
Affiliation(s)
- Marcel Pérez-Morales
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México City, México.
| | - Gabriela Hurtado-Alvarado
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México City, México
| | - Itzel Morales-Hernández
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México City, México
| | - Beatriz Gómez-González
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México City, México.
| | - Emilio Domínguez-Salazar
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México City, México
| | - Javier Velázquez-Moctezuma
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México City, México.
| |
Collapse
|
25
|
Quitete FT, Lisboa PC, de Moura EG, de Oliveira E. Different oils used as supplement during lactation causes endocrine-metabolic dysfunctions in male rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
26
|
Bohlen TM, Silveira MA, Buonfiglio DDC, Ferreira-Neto HC, Cipolla-Neto J, Donato J, Frazao R. A Short-Day Photoperiod Delays the Timing of Puberty in Female Mice via Changes in the Kisspeptin System. Front Endocrinol (Lausanne) 2018; 9:44. [PMID: 29515520 PMCID: PMC5826198 DOI: 10.3389/fendo.2018.00044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The reproduction of seasonal breeders is modulated by exposure to light in an interval of 24 h defined as photoperiod. The interruption of reproductive functions in seasonally breeding rodents is accompanied by the suppression of the Kiss1 gene expression, which is known to be essential for reproduction. In non-seasonal male rodents, such as rats and mice, short-day photoperiod (SP) conditions or exogenous melatonin treatment also have anti-gonadotropic effects; however, whether photoperiod is able to modulate the puberty onset or Kiss1 gene expression in mice is unknown. In the present study, we investigated whether photoperiodism influences the sexual maturation of female mice via changes in the kisspeptin system. We observed that SP condition delayed the timing of puberty in female mice, decreased the hypothalamic expression of genes related to the reproductive axis and reduced the number of Kiss1-expressing neurons in the rostral hypothalamus. However, SP also reduced the body weight gain during development and affected the expression of neuropeptides involved in the energy balance regulation. When body weight was recovered via a reduction in litter size, the timing of puberty in mice born and raised in SP was advanced and the effects in hypothalamic mRNA expression were reverted. These results suggest that the SP delays the timing of puberty in female mice via changes in the kisspeptin system, although the effects on hypothalamic-pituitary-gonadal axis are likely secondary to changes in body weight gain.
Collapse
Affiliation(s)
- Tabata Mariz Bohlen
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marina Augusto Silveira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniella do Carmo Buonfiglio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Renata Frazao
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Renata Frazao,
| |
Collapse
|
27
|
Effects ofIlex paraguariensis(yerba mate) on the hypothalamic signalling of insulin and leptin and liver dysfunction in adult rats overfed during lactation. J Dev Orig Health Dis 2016; 8:123-132. [DOI: 10.1017/s2040174416000519] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ilex paraguariensis(yerba mate) has a beneficial effect in the management of obesity. Here, we studied the effects of yerba mate on hypothalamic changes in leptin and insulin signalling, oxidative stress and liver morphology and metabolism in postnatal early overfeeding (EO) Wistar rats. To induce EO, the litter size was reduced to three pups per dam, and litters with 10 pups per dam were used as a control (10 litters each). On postnatal day (PN) 150, EO offspring were subdivided into EO and EO+mate groups (10 animals each), which were treated with water or mate tea [1 g/kg body weight (BW)/day, by gavage], respectively, for 30 days. The C offspring received water. On PN180, yerba mate treatment prevented BW gain and reduced total body fat, visceral fat and food intake in comparison with the EO group. Leptin and insulin signalling in the hypothalamus measured by Western blotting was reduced only in the EO group. Yerba mate treatment had a greater impact on insulin signalling normalization. In the liver, yerba mate treatment normalized antioxidant enzyme activities and, consequently, decreased lipid peroxidation, determined by malondialdehyde content. In addition, the steatosis level and the liver triglyceride content were also restored. Thus, for the first time, yerba mate was demonstrated to increase antioxidant defences and improve liver metabolism in adult rats that were overfed during lactation, possibly through improvements in the hypothalamic action of insulin. These findings may be important for the treatment of obesity-related disorders.
Collapse
|
28
|
Conceição EPS, Moura EG, Carvalho JC, Oliveira E, Lisboa PC. Early redox imbalance is associated with liver dysfunction at weaning in overfed rats. J Physiol 2016; 593:4799-811. [PMID: 26332355 DOI: 10.1113/jp271189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/12/2015] [Indexed: 12/30/2022] Open
Abstract
Neonatal overfeeding induced by litter size reduction leads to further obesity and other metabolic disorders, such as liver oxidative stress and microsteatosis at adulthood. We hypothesized that overfeeding causes an early redox imbalance at weaning, which could programme the animals to future liver dysfunction. Thus, we studied lipogenesis, adipogenesis, catecholamine status and oxidative balance in weaned overfed pups. To induce early overfeeding, litters were adjusted to three pups at the 3rd day of lactation (SL group). The control group contained 10 pups per litter until weaning (NL group). Peripheral autonomic nerve function was determined in vivo at 21 days old. Thereafter, pups were killed for further analysis. Differences were considered significant when P < 0.05. The SL pups presented with a higher visceral adipocyte area, higher content of lipogenic enzymes (ACC, FAS) and with a lower content of adipogenic factors (CEBP, PPARγ) in visceral adipose tissue (VAT). Although autonomic nerve activity and adrenal catecholamine production were not significantly altered, catecholamine receptor (β3ADR) content was lower in VAT. The SL pups also presented with higher triglyceride, PPARγ, PPARα and PGC1α contents in liver. In plasma and liver, the SL pups showed an oxidative imbalance, with higher lipid peroxidation and protein oxidation. The SL group presented with a higher serum alanine aminotransferase (ALT). The early increase in lipogenesis in adipose tissue and liver in weaned overfed rats suggests that the higher oxidative stress and lower catecholamine content in VAT are associated with the early development of liver dysfunction and adipocyte hypertrophy.
Collapse
Affiliation(s)
- E P S Conceição
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - E G Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - J C Carvalho
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - E Oliveira
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - P C Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| |
Collapse
|
29
|
Conceição EPS, Moura EG, Manhães AC, Carvalho JC, Nobre JL, Oliveira E, Lisboa PC. Calcium reduces vitamin D and glucocorticoid receptors in the visceral fat of obese male rats. J Endocrinol 2016; 230:263-74. [PMID: 27325245 DOI: 10.1530/joe-16-0041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/20/2016] [Indexed: 01/04/2023]
Abstract
Rats overfed during lactation show higher visceral adipose tissue (VAT) mass and metabolic dysfunctions at adulthood. As both vitamin D and glucocorticoids change adipogenesis, parameters related to metabolism and action of these hormones in the adipocyte can be altered in rats raised in small litters (SL). We also studied the antiobesity effects of high calcium diet since it decreases visceral fat in obesity models. On postnatal day (PN) 3, litter size was adjusted to 3pups/dam (SL) to induce overfeeding. Control litters (NL) remained with 10pups/dam until weaning. From PN120 to PN180, half of the SL rats were fed standard chow (SL) and the other half was fed a calcium-supplemented chow (SL-Ca, 10g CaCO3/kg). Both SL groups were heavier and hyperphagic when compared with the NL group; however, SL-Ca rats ate less than SL. SL-Ca rats had decreased VAT mass and adipocyte size, associated with lower hypothalamic NPY content, VAT fat acid synthase content and leptinemia. At PN120, SL rats had increased plasma 25(OH)D3, Cyp27b1 mRNA and glucocorticoid receptor (GR-α) in the VAT, but lower vitamin D receptor (Vdr) mRNA. At PN180, Cyp27b1 and GR-α remained higher, while Vdr normalized in SL rats. SL-Ca rats had normal VAT Cyp27b1 and GR-α, but lower Vdr Thus, higher body mass and glucocorticoid receptors in the VAT of SL rats are normalized by calcium-enriched diet, and Vdr expression in this tissue is reduced, suggesting a possible role of glucocorticoids and vitamin D in calcium action in the adipocyte.
Collapse
Affiliation(s)
- E P S Conceição
- Laboratory of Endocrine PhysiologyDepartment of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - E G Moura
- Laboratory of Endocrine PhysiologyDepartment of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A C Manhães
- Laboratory of NeurophysiologyDepartment of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J C Carvalho
- Laboratory of Endocrine PhysiologyDepartment of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J L Nobre
- Laboratory of Endocrine PhysiologyDepartment of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - E Oliveira
- Laboratory of Endocrine PhysiologyDepartment of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P C Lisboa
- Laboratory of Endocrine PhysiologyDepartment of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Short-term moderate diet restriction in adulthood can reverse oxidative, cardiovascular and metabolic alterations induced by postnatal overfeeding in mice. Sci Rep 2016; 6:30817. [PMID: 27465434 PMCID: PMC4964358 DOI: 10.1038/srep30817] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/11/2016] [Indexed: 01/21/2023] Open
Abstract
We aimed to determine whether moderate diet restriction could restore cardiac, oxidative and metabolic alterations induced by postnatal overfeeding (PNOF). Litters of C57BL/6 male mice were either maintained at 9 (normal litter, NL), or reduced to 3 (small litter, SL) in order to induce PNOF. At 6 months, half of the NL and SL mice were subjected to 20% calorie-restriction (CR: NLCR, SLCR) for one month, while the other half continued to eat ad libitum (AL: NLAL, SLAL). Six-month old SL mice presented overweight, fat accumulation, hyperleptinemia, glucose intolerance, insulin resistance, increased cardiac ROS production and decreased left ventricular ejection fraction (LVEF). After CR, SL mice body weight was normalized; however, their fat mass and leptinemia were not decreased, glucose metabolism was improved and LVEF was increased. In SL mice, CR increased the cardiac mitochondrial respiratory rate and decreased cardiac ROS production. Hearts from SLCR mice showed better recovery and smaller postischemic infarct size. Intriguingly, no difference was observed between NLAL and NLCR mice for most of the parameters investigated. Short-term moderate CR not only normalized body weight in SL mice but also improved metabolic programming and reversed oxidative and cardiac dysfunction induced by PNOF.
Collapse
|
31
|
Early life overnutrition induced by litter size manipulation decreases social play behavior in adolescent male rats. Int J Dev Neurosci 2016; 53:75-82. [DOI: 10.1016/j.ijdevneu.2016.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/19/2016] [Accepted: 07/23/2016] [Indexed: 11/23/2022] Open
|
32
|
Karakosta P, Roumeliotaki T, Chalkiadaki G, Sarri K, Vassilaki M, Venihaki M, Malliaraki N, Kampa M, Castanas E, Kogevinas M, Mantzoros C, Chatzi L. Cord blood leptin levels in relation to child growth trajectories. Metabolism 2016; 65:874-82. [PMID: 27173466 DOI: 10.1016/j.metabol.2016.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/22/2016] [Accepted: 03/02/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Leptin represents a potential modulator of developmental programming of childhood obesity. We investigated the association of cord blood leptin with growth trajectories from birth to early childhood. MATERIALS/METHODS We used data from the prospective mother-child cohort "Rhea", Crete, Greece. Cord blood samples from 642 neonates were collected. 578 (90%) children had complete follow up data from birth to 4years. We measured child weight, height, waist circumference, skinfold thicknesses, blood pressure, and serum lipids, leptin, adiponectin and C-reactive protein in early childhood (median 4.2years). We estimated growth trajectories from 3months up to 4years using random-effects linear-spline models. Multivariable logistic and linear regression models were used adjusting for confounders. RESULTS Mean cord blood leptin levels were 7.3ng/mL (standard deviation: 6.3). Children with high cord blood leptin (>90th percentile) exhibited lower weight, height and body mass index from 6months to early childhood. Each SD increase in cord blood leptin was associated with lower weight at the age of 4 by 242g (95% CI: -416, -69). In a stratified analysis, the reverse association was observed in children born small for gestational age (p for interaction=0.001), and in those exhibiting rapid infant growth during the first 3months of life (p for interaction=0.002). Cord blood leptin levels were not associated with cardiometabolic risk factors at 4years. CONCLUSIONS Long term programming effects of in utero exposure to leptin extends beyond infancy into early childhood. Further studies are needed to explore potential effect modification by intrauterine and early infancy growth patterns.
Collapse
Affiliation(s)
- Polyxeni Karakosta
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece; Department of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece.
| | - Theano Roumeliotaki
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Georgia Chalkiadaki
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Katerina Sarri
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria Vassilaki
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria Venihaki
- Department of Clinical Chemistry-Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Niki Malliaraki
- Department of Clinical Chemistry-Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Marilena Kampa
- Department of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Elias Castanas
- Department of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Manolis Kogevinas
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; IMIM (Hospital del Mar Research Institute), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain; National School of Public Health, Athens, Greece
| | - Christos Mantzoros
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Leda Chatzi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
33
|
Conceição EPS, Carvalho JC, Manhães AC, Guarda DS, Figueiredo MS, Quitete FT, Oliveira E, Moura EG, Lisboa PC. Effect of Early Overfeeding on Palatable Food Preference and Brain Dopaminergic Reward System at Adulthood: Role of Calcium Supplementation. J Neuroendocrinol 2016; 28. [PMID: 26929129 DOI: 10.1111/jne.12380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 01/21/2023]
Abstract
Rats raised in small litters (SL) are obese and hyperphagic. In the present study, we evaluated whether obesity is associated with changes in the mesocorticolimbic dopaminergic reward system in these animals at adulthood. We also assessed the anti-obesity effects of dietary calcium supplementation. To induce early overfeeding, litters were adjusted to three pups on postnatal day (PN)3 (SL group). Control litters were kept with 10 pups each until weaning (NL group). On PN120, SL animals were subdivided into two groups: SL (standard diet) and SL-Ca [SL with calcium supplementation (10 g calcium carbonate/kg rat chow) for 60 days]. On PN175, animals were subjected to a food challenge: animals could choose between a high-fat (HFD) or a high-sugar diet (HSD). Food intake was recorded after 30 min and 12 h. Euthanasia occurred on PN180. SL rats had higher food intake, body mass and central adiposity. Sixty days of dietary calcium supplementation (SL-Ca) prevented these changes. Only SL animals preferred the HFD at 12 h. Both SL groups had lower tyrosine hydroxylase content in the ventral tegmental area, lower dopaminergic transporter content in the nucleus accumbens, and higher type 2 dopamine receptor (D2R) content in the hypothalamic arcuate nucleus (ARC). They also had higher neuropeptide Y (NPY) and lower pro-opiomelanocortin contents in the ARC. Calcium treatment normalised only D2R and NPY contents. Precocious obesity induces long-term effects in the brain dopaminergic system, which can be associated with an increased preference for fat at adulthood. Calcium treatment prevents this last alteration, partially through its actions on ARC D2R and NPY proteins.
Collapse
Affiliation(s)
- E P S Conceição
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J C Carvalho
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A C Manhães
- Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - D S Guarda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M S Figueiredo
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F T Quitete
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - E Oliveira
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - E G Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P C Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Bohlen TM, Silveira MA, Zampieri TT, Frazão R, Donato J. Fatness rather than leptin sensitivity determines the timing of puberty in female mice. Mol Cell Endocrinol 2016; 423:11-21. [PMID: 26762764 DOI: 10.1016/j.mce.2015.12.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
Abstract
Leptin is a permissive factor for the onset of puberty. However, changes in adiposity frequently influence leptin sensitivity. Thus, the objective of the present study was to investigate how changes in body weight, fatness, leptin levels and leptin sensitivity interact to control the timing of puberty in female mice. Pre-pubertal obesity, induced by raising C57BL/6 mice in small litters, led to an early puberty onset. Inactivation of Socs3 gene in the brain or exclusively in leptin receptor-expressing cells reduced the body weight and leptin levels at pubertal onset, and increased leptin sensitivity. Notably, these female mice exhibited significant delays in vaginal opening, first estrus and onset of estrus cyclicity. In conclusion, our findings suggest that increased leptin sensitivity did not play an important role in favoring pubertal onset in female mice. Rather, changes in pubertal body weight, fatness and/or leptin levels were more important in influencing the timing of puberty.
Collapse
Affiliation(s)
- Tabata M Bohlen
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marina A Silveira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Thais T Zampieri
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renata Frazão
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
35
|
Lisboa PC, Conceição EPS, de Oliveira E, Moura EG. Postnatal overnutrition programs the thyroid hormone metabolism and function in adulthood. J Endocrinol 2015. [PMID: 26203167 DOI: 10.1530/joe-15-0237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Early overnutrition (EO) during lactation leads to obesity, leptin resistance and lower thyroid hormone (TH) levels during adulthood. To better understand the biological significance of this thyroid hypofunction, we studied the long-term effects of postnatal EO on both the function of hypothalamic-pituitary-thyroid (HPT) axis and the metabolism and action of TH. To induce EO, the litter size was reduced to three pups per litter (small litter (SL) group) on the third day of lactation. In the controls (normal litter group), litter size was adjusted to 10 pups per litter. Rats were killed at PN180. TRH content and in vitro TSH were evaluated. Iodothyronine deiodinase (D1 and D2) activities were measured in different tissues. Mitochondrial α-glycerol-3-phosphate dehydrogenase (mGPD), uncoupling protein 1 (UCP1) and TH receptor (TRβ1) were evaluated to assess TH action. The SL group presented lower TRH, intra-pituitary and released TSH levels, despite unchanged plasma TSH. They presented lower D1 activity in thyroid, muscle and white adipose tissue (WAT) and higher D2 activity in the hypothalamus, pituitary, brown adipose tissue (BAT) and WAT, which confirmed the hypothyroidism. UCP1 in BAT and TRβ1 in WAT were decreased, which can contribute to a lower catabolic status. Despite the lower TH, the D2 activity in the thyroid, heart and testes was unchanged. Hepatic D1, mGPD and TRβ1 were also unchanged in SL rats, suggesting that the TH conversion and action were preserved in the liver, even with lower TH. Thus, this model indicates that postnatal EO changes thyroid function in adult life in a tissue-specific way, which can help in the understanding of obesogenesis.
Collapse
Affiliation(s)
- Patricia C Lisboa
- Laboratory of Endocrine PhysiologyDepartment of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Avenida 28 de setembro, 87, Rio de Janeiro, RJ 20551-031, Brazil
| | - Ellen P S Conceição
- Laboratory of Endocrine PhysiologyDepartment of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Avenida 28 de setembro, 87, Rio de Janeiro, RJ 20551-031, Brazil
| | - Elaine de Oliveira
- Laboratory of Endocrine PhysiologyDepartment of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Avenida 28 de setembro, 87, Rio de Janeiro, RJ 20551-031, Brazil
| | - Egberto G Moura
- Laboratory of Endocrine PhysiologyDepartment of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Avenida 28 de setembro, 87, Rio de Janeiro, RJ 20551-031, Brazil
| |
Collapse
|
36
|
Bei F, Jia J, Jia YQ, Sun JH, Liang F, Yu ZY, Cai W. Long-term effect of early postnatal overnutrition on insulin resistance and serum fatty acid profiles in male rats. Lipids Health Dis 2015; 14:96. [PMID: 26302954 PMCID: PMC4549095 DOI: 10.1186/s12944-015-0094-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/14/2015] [Indexed: 01/09/2023] Open
Abstract
Background Increasing evidence suggests that overnutrition during the early postnatal period, a critical window of development, increases the risk of adult-onset obesity and insulin resistance. In this study, we investigated the impact of overnutrition during the suckling period on body weight, serum biochemistry and serum fatty acid metabolomics in male rats. Methods Rats raised in small litters (SL, 3 pups/dam) and normal litters (NL, 10 pups/dam) were used to model early postnatal overnutrition and control, respectively. Serum glucose, triglyceride, high-density lipoprotein-cholesterol, free fatty acid, insulin and leptin concentrations were assayed using standard biochemical techniques. Serum fatty acids were identified and quantified using a gas chromatography–mass spectrometry-based metabolomic approach. mRNA and protein levels of key components of the insulin receptor signaling pathway were measured in epididymal fat and gastrocnemius muscle by quantitative PCR and western blotting. Results SL rats were 37.3 % and 15.1 % heavier than NL rats at weaning and 16-weeks-old, respectively. They had increased visceral fat mass, adult-onset insulin resistance and glucose intolerance as well as elevated serum levels of free fatty acids and triglycerides. All detectable fatty acids were elevated in the serum of SL pups at weaning compared to NL controls, and significant increases in the levels of four fatty acids (palmitic acid, palmitoleic acid, oleic acid and arachidonic acid) persisted into adulthood. Moreover, a significantly positive correlation was identified between an insulin resistance index (HOMA-IR) and concentrations of myristic, palmitic, palmitoleic and oleic acid in serum at postnatal 16 weeks. Early postnatal overnutrition also resulted in a significant downregulation of insulin receptor substrate-1 (Irs-1), protein kinase B (Akt2) and glucose transporter 4 (Glut4) at the protein level in epididymal fat of SL rats at 16 weeks, accompanied by decreased mRNA levels for Irs-1 and Glut4. In gastrocnemius muscle, Akt2 and Glut4 mRNA and Glut4 protein levels were significantly decreased in SL rats. Conclusions This study demonstrates that early postnatal overnutrition can have long-lasting effects on body weight and serum fatty acid profiles and can lead to impaired insulin signaling pathway in visceral white adipose tissue and skeletal muscle, which may play a major role in IR.
Collapse
Affiliation(s)
- Fei Bei
- Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China. .,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, 1665 Kongjiang Road, Shanghai, 200092, China. .,Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Jia Jia
- Shanghai Center for Bioformation Technology, 1278 Keyuan Road, Shanghai, 201203, China.
| | - Yi-Qun Jia
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Jian-Hua Sun
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
| | - Fei Liang
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
| | - Zhong-Yi Yu
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin, 4, Ireland.
| | - Wei Cai
- Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China. .,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, 1665 Kongjiang Road, Shanghai, 200092, China. .,Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
37
|
Kayser BD, Goran MI, Bouret SG. Perinatal overnutrition exacerbates adipose tissue inflammation caused by high-fat feeding in C57BL/6J mice. PLoS One 2015; 10:e0121954. [PMID: 25835281 PMCID: PMC4383546 DOI: 10.1371/journal.pone.0121954] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/06/2015] [Indexed: 12/24/2022] Open
Abstract
Obesity causes white adipose tissue (WAT) inflammation and insulin resistance in some, but not all individuals. Here, we used a mouse model of early postnatal overfeeding to determine the role of neonatal nutrition in lifelong WAT inflammation and metabolic dysfunction. C57BL/6J mice were reared in small litters of 3 (SL) or normal litters of 7 pups (NL) and fed either regular chow or a 60% high fat diet (HFD) from 5 to 17 weeks. At weaning, SL mice did not develop WAT inflammation despite increased fat mass, although there was an up-regulation of WAT Arg1 and Tlr4 expression. On HFD, adult SL mice had greater inguinal fat mass compared to NL mice, however both groups showed similar increases in visceral fat depots and adipocyte hypertrophy. Despite the similar levels of visceral adiposity, SL-HFD mice displayed greater impairments in glucose homeostasis and more pronounced hepatic steatosis compared to NL-HFD mice. In addition, WAT from SL mice fed a HFD displayed greater crown-like structure formation, increased M1 macrophages, and higher cytokine gene expression. Together, these data suggest that early postnatal overnutrition may be a critical determinant of fatty liver and insulin resistance in obese adults by programming the inflammatory capacity of adipose tissue.
Collapse
Affiliation(s)
- Brandon D. Kayser
- Human and Evolutionary Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, United States of America
- Department of Preventive Medicine, Keck School of Medicine, Childhood Obesity Research Center, University of Southern California, Los Angeles, California, United States of America
| | - Michael I. Goran
- Department of Preventive Medicine, Keck School of Medicine, Childhood Obesity Research Center, University of Southern California, Los Angeles, California, United States of America
| | - Sebastien G. Bouret
- Developmental Neuroscience Program, The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
38
|
Cheng L, Yu Y, Szabo A, Wu Y, Wang H, Camer D, Huang XF. Palmitic acid induces central leptin resistance and impairs hepatic glucose and lipid metabolism in male mice. J Nutr Biochem 2015; 26:541-8. [PMID: 25724108 DOI: 10.1016/j.jnutbio.2014.12.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/19/2014] [Accepted: 12/08/2014] [Indexed: 12/12/2022]
Abstract
The consumption of diets rich in saturated fat largely contributes to the development of obesity in modern societies. A diet high in saturated fats can induce inflammation and impair leptin signaling in the hypothalamus. However, the role of saturated fatty acids on hypothalamic leptin signaling, and hepatic glucose and lipid metabolism remains largely undiscovered. In this study, we investigated the effects of intracerebroventricular (icv) administration of a saturated fatty acid, palmitic acid (PA, C16:0), on central leptin sensitivity, hypothalamic leptin signaling, inflammatory molecules and hepatic energy metabolism in C57BL/6J male mice. We found that the icv administration of PA led to central leptin resistance, evidenced by the inhibition of central leptin's suppression of food intake. Central leptin resistance was concomitant with impaired hypothalamic leptin signaling (JAK2-STAT3, PKB/Akt-FOXO1) and a pro-inflammatory response (TNF-α, IL1-β, IL-6 and pIκBa) in the mediobasal hypothalamus and paraventricular hypothalamic nuclei. Furthermore, the pre-administration of icv PA blunted the effect of leptin-induced decreases in mRNA expression related to gluconeogenesis (G6Pase and PEPCK), glucose transportation (GLUT2) and lipogenesis (FAS and SCD1) in the liver of mice. Therefore, elevated central PA concentrations can induce pro-inflammatory responses and leptin resistance, which are associated with disorders of energy homeostasis in the liver as a result of diet-induced obesity.
Collapse
Affiliation(s)
- Licai Cheng
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| | - Yinghua Yu
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia; Schizophrenia Research Institute (SRI), 405 Liverpool St, Sydney, NSW 2010, Australia
| | - Alexander Szabo
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia; ANSTO Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Yizhen Wu
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| | - Hongqin Wang
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| | - Danielle Camer
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| | - Xu-Feng Huang
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia; Schizophrenia Research Institute (SRI), 405 Liverpool St, Sydney, NSW 2010, Australia.
| |
Collapse
|
39
|
Drew JE, Farquharson AJ, Horgan GW, Duthie SJ, Duthie GG. Postprandial cell defense system responses to meal formulations: Stratification through gene expression profiling. Mol Nutr Food Res 2014; 58:2066-79. [DOI: 10.1002/mnfr.201400331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/19/2014] [Accepted: 06/27/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Janice E. Drew
- Rowett Institute of Nutrition and Health; University of Aberdeen; Aberdeen Scotland UK
| | - Andrew J. Farquharson
- Rowett Institute of Nutrition and Health; University of Aberdeen; Aberdeen Scotland UK
| | | | - Susan J. Duthie
- School of Pharmacy and Life Sciences; Robert Gordon University; Aberdeen Scotland UK
| | - Garry G. Duthie
- Rowett Institute of Nutrition and Health; University of Aberdeen; Aberdeen Scotland UK
| |
Collapse
|
40
|
Aréchiga-Ceballos F, Alvarez-Salas E, Matamoros-Trejo G, Amaya MI, García-Luna C, de Gortari P. Pro-TRH and pro-CRF expression in paraventricular nucleus of small litter-reared fasted adult rats. J Endocrinol 2014; 221:77-88. [PMID: 24464021 DOI: 10.1530/joe-13-0458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neuroendocrine axes adapt to nutrient availability. During fasting, the function of the hypothalamus-pituitary-thyroid axis (HPT) is reduced, whereas that of the hypothalamus-pituitary-adrenal axis (HPA) is increased. Overfeeding-induced hyperleptinemia during lactation may alter the regulatory set point of neuroendocrine axes and their adaptability to fasting in adulthood. Hyperleptinemia is developed in rodents by litter size reduction during lactation; adult rats from small litters become overweight, but their paraventricular nucleus (PVN) TRH synthesis is unchanged. It is unclear whether peptide expression still responds to nutrient availability. PVN corticotropin-releasing factor (CRF) expression has not been evaluated in this model. We analyzed adaptability of HPT and HPA axes to fasting-induced low leptin levels of reduced-litter adult rats. Offspring litters were reduced to 2-3/dam (early-overfed) or maintained at 8/dam (controls, C). At 10 weeks old, a subset of animals from each group was fasted for 48 h and leptin, corticosterone, and thyroid hormones serum levels were analyzed. In brain, expressions of leptin receptor, NPY and SOCS3, were evaluated in arcuate nucleus, and those of proTRH and proCRF in PVN by real-time PCR. ProTRH expression in anterior and medial PVN subcompartments was assayed by in situ hybridization. Early-overfed adults developed hyperphagia and excessive weight, together with decreased proTRH expression in anterior PVN, supporting the anorexigenic effects of TRH. Early-overfed rats presented low PVN proTRH synthesis, whereas fasting did not induce a further reduction. Fasting-induced stress was unable to increase corticosterone levels, contributing to reduced body weight loss in early-overfed rats. We concluded that early overfeeding impaired the adaptability of HPT and HPA axes to excess weight and fasting in adults.
Collapse
Affiliation(s)
- F Aréchiga-Ceballos
- Neurofisiología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, C.P. 14370, México, Distrito Federal, México Escuela de Dietética y Nutrición, ISSSTE, Callejón Vía San Fernando #12, México, Distrito Federal, México
| | | | | | | | | | | |
Collapse
|
41
|
Jang H, Serra C. Nutrition, epigenetics, and diseases. Clin Nutr Res 2014; 3:1-8. [PMID: 24527414 PMCID: PMC3921290 DOI: 10.7762/cnr.2014.3.1.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 12/21/2013] [Accepted: 12/21/2013] [Indexed: 01/06/2023] Open
Abstract
Increasing epidemiological evidence suggests that maternal nutrition and environmental exposure early in development play an important role in susceptibility to disease in later life. In addition, these disease outcomes seem to pass through subsequent generations. Epigenetic modifications provide a potential link between the nutrition status during critical periods in development and changes in gene expression that may lead to disease phenotypes. An increasing body of evidence from experimental animal studies supports the role of epigenetics in disease susceptibility during critical developmental periods, including periconceptional period, gestation, and early postnatal period. The rapid improvements in genetic and epigenetic technologies will allow comprehensive investigations of the relevance of these epigenetic phenomena in human diseases.
Collapse
Affiliation(s)
- Hyeran Jang
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA. ; Harvard Medical School, Boston, MA 02115, USA
| | - Carlo Serra
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA. ; Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
42
|
Long-term effect of altered nutrition induced by litter size manipulation and cross-fostering in suckling male rats on development of obesity risk and health complications. Eur J Nutr 2013; 53:1273-80. [DOI: 10.1007/s00394-013-0630-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/20/2013] [Indexed: 11/26/2022]
|
43
|
Abstract
During critical periods of development early in life, excessive or scarce nutritional environments can disrupt the development of central feeding and metabolic neural circuitry, leading to obesity and metabolic disorders in adulthood. A better understanding of the genetic networks that control the development of feeding and metabolic neural circuits, along with knowledge of how and where dietary signals disrupt this process, can serve as the basis for future therapies aimed at reversing the public health crisis that is now building as a result of the global obesity epidemic. This review of animal and human studies highlights recent insights into the molecular mechanisms that regulate the development of central feeding circuitries, the mechanisms by which gestational and early postnatal nutritional status affects this process, and approaches aimed at counteracting the deleterious effects of early over- and underfeeding.
Collapse
Affiliation(s)
- Daniel A Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | | |
Collapse
|
44
|
Liu HW, Mahmood S, Srinivasan M, Smiraglia DJ, Patel MS. Developmental programming in skeletal muscle in response to overnourishment in the immediate postnatal life in rats. J Nutr Biochem 2013; 24:1859-69. [PMID: 23968580 PMCID: PMC3805821 DOI: 10.1016/j.jnutbio.2013.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/03/2013] [Indexed: 11/19/2022]
Abstract
Overnourishment during the suckling period [small litter (SL)] results in the development of adult-onset obesity. To investigate the mechanisms that underlie the development of insulin resistance in the skeletal muscle of young and adult female SL rats, the litter size was reduced to 3 female pups/dam (SL) while the control litter had 12 pups/dam from the postnatal Day 3 until Day 21. Protein content, mRNA expression and methylation status of the promoter region of key components in the insulin signaling pathway were determined in the skeletal muscle of SL rats. Overnutrition during the suckling period resulted in increased body weight gains, hyperphagia and adult-onset obesity as well as increased levels of serum insulin, glucose and leptin in SL rats. No differences in the expression of total protein as well as tyrosine phosphorylation of insulin receptor β and glucose transporter 4 (Glut4) were observed in skeletal muscle between two groups at both ages. A significant decrease of total insulin receptor substrate 1 (IRS-1) and an increase in serine phosphorylation of IRS-1 were observed in skeletal muscle from adult SL rats. Hypermethylation of specific cytidyl-3',5'phospho-guanylyl (CpG) dinucleotides in the proximal promoter region was observed for the Irs1 and Glut4 genes, which correlated with the reduction in Irs1 and Glut4 mRNA levels in skeletal muscle of adult SL rats. Our results suggest that epigenetic modifications of the key genes involved in the insulin signaling pathway in skeletal muscle could result in the development of insulin resistance in SL female rats.
Collapse
Affiliation(s)
- Hung-Wen Liu
- Department of Exercise & Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Saleh Mahmood
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Malathi Srinivasan
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Dominic J. Smiraglia
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Mulchand S. Patel
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
45
|
Li G, Kohorst JJ, Zhang W, Laritsky E, Kunde-Ramamoorthy G, Baker MS, Fiorotto ML, Waterland RA. Early postnatal nutrition determines adult physical activity and energy expenditure in female mice. Diabetes 2013; 62:2773-83. [PMID: 23545705 PMCID: PMC3717861 DOI: 10.2337/db12-1306] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Decades of research in rodent models has shown that early postnatal overnutrition induces excess adiposity and other components of metabolic syndrome that persist into adulthood. The specific biologic mechanisms explaining the persistence of these effects, however, remain unknown. On postnatal day 1 (P1), mice were fostered in control (C) or small litters (SL). SL mice had increased body weight and adiposity at weaning (P21), which persisted to adulthood (P180). Detailed metabolic studies indicated that female adult SL mice have decreased physical activity and energy expenditure but not increased food intake. Genome-scale DNA methylation profiling identified extensive changes in hypothalamic DNA methylation during the suckling period, suggesting that it is a critical period for developmental epigenetics in the mouse hypothalamus. Indeed, SL mice exhibited subtle and sex-specific changes in hypothalamic DNA methylation that persisted from early life to adulthood, providing a potential mechanistic basis for the sustained physiological effects. Expression profiling in adult hypothalamus likewise provided evidence of widespread sex-specific alterations in gene expression. Together, our data indicate that early postnatal overnutrition leads to a reduction in spontaneous physical activity and energy expenditure in females and suggest that early postnatal life is a critical period during which nutrition can affect hypothalamic developmental epigenetics.
Collapse
Affiliation(s)
- Ge Li
- Department of Pediatrics, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Houston, Texas
| | - John J. Kohorst
- Department of Pediatrics, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Houston, Texas
| | - Wenjuan Zhang
- Department of Pediatrics, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Houston, Texas
| | - Eleonora Laritsky
- Department of Pediatrics, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Houston, Texas
| | - Govindarajan Kunde-Ramamoorthy
- Department of Pediatrics, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Houston, Texas
| | - Maria S. Baker
- Department of Pediatrics, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Houston, Texas
| | - Marta L. Fiorotto
- Department of Pediatrics, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Houston, Texas
| | - Robert A. Waterland
- Department of Pediatrics, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Houston, Texas
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas
- Corresponding author: Robert A. Waterland,
| |
Collapse
|
46
|
Fuente-Martín E, García-Cáceres C, Díaz F, Argente-Arizón P, Granado M, Barrios V, Argente J, Chowen JA. Hypothalamic inflammation without astrogliosis in response to high sucrose intake is modulated by neonatal nutrition in male rats. Endocrinology 2013; 154:2318-30. [PMID: 23671260 DOI: 10.1210/en.2012-2196] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypothalamic inflammation and gliosis are proposed to participate in the pathogenesis of high-fat diet-induced obesity. Because other factors and nutrients also induce weight gain and adiposity, we analyzed the inflammatory and glial responses to a sucrose (S)-enriched diet. Neonatal overnutrition (NON) exacerbates weight gain in response to metabolic challenges; thus, we compared the inflammatory response of male Wistar rats with NON (4 pups/litter) and controls (12 pups/litter) to increased S intake. At weaning rats received water or a 33% sucrose solution and normal chow ad libitum for 2 months. Sucrose increased serum IL-1β and -6 and hypothalamic IL-6 mRNA levels in NON and TNFα mRNA levels in control and NON rats, whereas NON alone had no effect. The astrocyte marker glial fibrillary acidic protein was increased by NON but decreased by S. This was associated with hypothalamic nuclei specific changes in glial fibrillary acidic protein-positive cell number and morphology. Sucrose increased the number of microglia and phosphorylation of inhibitor of -κB and c-Jun N-terminal kinase in control but not NON rats, with no effect on microglia activation markers. Proteins highly expressed in astrocytes (glutamate, glucose, and lactate transporters) were increased by NON but not S, with no increase in vimentin expression in astrocytes, further suggesting that S-induced adiposity is not associated with hypothalamic astrogliosis. Hence, activation of hypothalamic inflammatory processes and gliosis depend not only on weight gain but also on the diet inducing this weight gain and the early nutritional status. These diverse inflammatory processes could indicate a differential disposition to obesity-induced pathologies.
Collapse
Affiliation(s)
- Esther Fuente-Martín
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology, Instituto de Investigación La Princesa, 28009 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Habbout A, Li N, Rochette L, Vergely C. Postnatal overfeeding in rodents by litter size reduction induces major short- and long-term pathophysiological consequences. J Nutr 2013; 143:553-62. [PMID: 23446961 DOI: 10.3945/jn.112.172825] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Numerous studies have demonstrated that the early postnatal environment can influence body weight and energy homeostasis into adulthood. Rodents raised in small litters have been shown to be a useful experimental model to study the short- and long-term consequences of early overnutrition, which can lead to modifications not only in body weight but also of several metabolic features. Postnatal overfeeding (PNOF) induces early malprogramming of the hypothalamic system, inducing acquired persisting central leptin and insulin resistance and an increase in orexigenic signals. Visceral white adipose tissue, lipogenic activity, and inflammatory status are increased in PNOF rodents, while brown adipose tissue shows reduced thermogenic activity. Pancreatic and hepatic glucose responsiveness is persistently reduced in PNOF rodents, which also frequently present disturbances in plasma lipids. PNOF rodents present increased circulating concentrations of leptin, elevated corticosterone secretion, and significant changes in glucocorticoid sensitivity. PNOF also influences nephrogenesis and renal maturation. Increased oxidative stress is also described in circulating blood and in some tissues, such as the heart or liver. At the cardiovascular level, a moderate increase in arterial blood pressure is sometimes observed and rapid cardiac hypertrophy is observed at weaning; however, during maturation, impaired contractility and fibrosis are observed. Myocardial genome expression is rapidly modified in overfed mice. Moreover, hearts of PNOF rodents are more sensitive to ischemia-reperfusion injury. Together, these results suggest that the nutritional state in the immediate postnatal period should be taken into account, because it may have an impact on cardiometabolic risk in adulthood.
Collapse
Affiliation(s)
- Ahmed Habbout
- Inserm UMR866, LPPCM, Faculties of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | | | | | | |
Collapse
|
48
|
Younes-Rapozo V, Moura EG, Manhães AC, Pinheiro CR, Santos-Silva AP, de Oliveira E, Lisboa PC. Maternal nicotine exposure during lactation alters hypothalamic neuropeptides expression in the adult rat progeny. Food Chem Toxicol 2013; 58:158-68. [PMID: 23623838 DOI: 10.1016/j.fct.2013.04.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/08/2013] [Accepted: 04/16/2013] [Indexed: 11/28/2022]
Abstract
Maternal exposure to nicotine during lactation causes hyperleptinemia in the pups and, at adulthood, these animals are overweight and hyperleptinemic, while, in their hypothalamus, the leptin signaling pathway is reduced, evidencing a central leptin resistance. Then, we evaluated the expression of pro-opiomelanocortin (POMC), alpha-melanocyte stimulating hormone (α-MSH), cocaine and amphetamine-regulated transcript (CART), neuropeptide Y (NPY), agouti-related peptide (AgRP) and others in different hypothalamic nuclei in order to better understand the mechanisms underlying the obese phenotype observed in these animals at adulthood. On the 2nd postnatal day (P2), dams were subcutaneously implanted with osmotic minipumps releasing nicotine (NIC-6 mg/kg/day) or saline for 14 days. Offspring were killed in P180 and immunohistochemistry and Western blot analysis were carried out. Significance data had p<0.05. Adult NIC offspring showed more intense NPY staining in the paraventricular nucleus (PVN) (+21%) and increased number of POMC-positive cells in the: arcuate nucleus (+33%), as an increase in fiber density of α-MSH in PVN (+85%). However, the number of CART-positive cells was reduced in the PVN (-25%). CRH staining was more intense in NIC offspring (+136%). Orexins and AgRP were not altered. Thus, maternal nicotine exposure changes hypothalamic neuropeptides in the adult progeny that is partially compatible with leptin resistance.
Collapse
Affiliation(s)
- Viviane Younes-Rapozo
- Laboratório de Fisiologia Endócrina, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
49
|
Coutinho GVP, Coutinho FR, Faiad JZ, Taki MS, de Lima Reis SR, Ignácio-Souza LM, Paiva AA, Latorraca MQ, Gomes-da-Silva MHG, Martins MSF. Intrauterine protein restriction combined with early postnatal overfeeding was not associated with adult-onset obesity but produced glucose intolerance by pancreatic dysfunction. Nutr Metab (Lond) 2013; 10:5. [PMID: 23305533 PMCID: PMC3574039 DOI: 10.1186/1743-7075-10-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/19/2012] [Indexed: 12/19/2022] Open
Abstract
We investigated if whether intrauterine protein restriction in combination with overfeeding during lactation would cause adult-onset obesity and metabolic disorders. After birth, litters from dams fed with control (17% protein) and low protein (6% protein) diets were adjusted to a size of four (CO and LO groups, respectively) or eight (CC and LC groups, respectively) pups. All of the offspring were fed a diet containing 12% protein from the time of weaning until they were 90 d old. Compared to the CC and LC groups, the CO and LO groups had higher relative and absolute food intakes, oxygen consumption and carbon dioxide production; lower brown adipose tissue weight and lipid content and greater weight gain and absolute and relative white adipose tissue weight and absolute lipid content. Compared with the CO and CC rats, the LC and LO rats exhibited higher relative food intake, brown adipose tissue weight and lipid content, reduced oxygen consumption, carbon dioxide production and spontaneous activity, increased relative retroperitoneal adipose tissue weight and unaltered absolute white adipose tissue weight and lipid content. The fasting serum glucose was similar among the groups. The area under the glucose curve was higher in the LO and CO rats than in the LC and CC rats. The basal insulinemia and homeostasis model assessment of insulin resistance (HOMA-IR) were lower in the LO group than in the other groups. The total area under the insulin curve for the LO rats was similar to the CC rats, and both were lower than the CO and LC rats. Kitt was higher in the LO, LC and CO groups than in the CC group. Thus, intrauterine protein restriction followed by overfeeding during lactation did not induce obesity, but produced glucose intolerance by impairing pancreatic function in adulthood.
Collapse
|
50
|
Sun B, Purcell RH, Terrillion CE, Yan J, Moran TH, Tamashiro KL. Maternal high-fat diet during gestation or suckling differentially affects offspring leptin sensitivity and obesity. Diabetes 2012; 61:2833-41. [PMID: 22751689 PMCID: PMC3478561 DOI: 10.2337/db11-0957] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maternal high-fat (HF) diet throughout gestation and suckling has long-term consequences on the offspring's metabolic phenotype. Here we determine the relative contribution of pre- or postnatal maternal HF diet on offspring's metabolic phenotype. Pregnant Sprague-Dawley rats were maintained on normal chow or HF diet throughout gestation and suckling. All litters were cross-fostered to chow or HF dams on postnatal day (PND)1, resulting in four groups. Body weight, body composition, and glucose tolerance were measured at weaning and in adulthood. Leptin sensitivity was assessed by signal transducer and activator of transcription (STAT)3 activation on PND10 and PND21. Pups cross-fostered to HF dams gained more body weight than chow pups by PND7 and persisted until weaning. Postnatal HF pups had greater adiposity, higher plasma leptin concentration, impaired glucose tolerance, and reduced phosphorylated STAT3 in response to leptin in the arcuate nucleus at weaning. After weaning, male offspring cross-fostered to HF dams were hyperphagic and maintained greater body weight than postnatal chow pups. Postnatal HF diet during suckling continued to impair glucose tolerance in male and female offspring in adulthood. Maternal HF diet during suckling has a greater influence in determining offspring's metabolic phenotype than prenatal HF diet exposure and could provide insight regarding optimal perinatal nutrition for mothers and children.
Collapse
Affiliation(s)
- Bo Sun
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi, People’s Republic of China
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ryan H. Purcell
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chantelle E. Terrillion
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jianqun Yan
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi, People’s Republic of China
- Corresponding authors: Kellie L.K. Tamashiro, , and Jianqun Yan,
| | - Timothy H. Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kellie L.K. Tamashiro
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Corresponding authors: Kellie L.K. Tamashiro, , and Jianqun Yan,
| |
Collapse
|