1
|
Luo Q, Luo L, Zhao J, Wang Y, Luo H. Biological potential and mechanisms of Tea's bioactive compounds: An Updated review. J Adv Res 2024; 65:345-363. [PMID: 38056775 PMCID: PMC11519742 DOI: 10.1016/j.jare.2023.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Tea (Camellia sinensis) has a rich history and is widely consumed across many countries, and is categorized into green tea, white tea, oolong tea, yellow tea, black tea, and dark tea based on the level of fermentation. Based on a review of previous literature, the commonly recognized bioactive substances in tea include tea polyphenols, amino acids, polysaccharides, alkaloids, terpenoids, macro minerals, trace elements, and vitamins, which have been known to have various potential health benefits, such as anticancer, antioxidant, anti-inflammatory, anti-diabetes, and anti-obesity properties, cardiovascular protection, immune regulation, and control of the intestinal microbiota. Most studies have only pointed out the characteristics of tea's bioactivities, so a comprehensive summary of the pharmacological characteristics and mechanisms of tea's bioactivities and their use risks are vital. AIM OF REVIEW This paper aims to summarize tea's bioactive substances of tea and their pharmacological characteristics and mechanisms, providing a scientific basis for the application of bioactive substances in tea and outlining future research directions for the study of bioactive substances in tea. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the main biologically active substances, pharmacological effects, and mechanisms and discusses the potential risks. It may help researchers grasp more comprehensive progress in the study of tea bioactive substances to further promote the application of tea as a natural bioactive substance in the medical field.
Collapse
Affiliation(s)
- Qiaoxian Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Longbiao Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Jinmin Zhao
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China; College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China.
| |
Collapse
|
2
|
He L, Peng L, Wang L, Jiang X, Sun X, Li H, Lin T, Wu Z, Lin S. Investigation of folate-modified EGCG-loaded thermosensitive nanospheres inducing immunogenic cell death and damage-associated molecular patterns in hepatocellular carcinoma. Biochem Biophys Res Commun 2024; 714:149976. [PMID: 38677007 DOI: 10.1016/j.bbrc.2024.149976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The systemic treatment of advanced hepatocellular carcinoma is currently facing a bottleneck. EGCG, the primary active compound in green tea, exhibits anti-tumor effects through various pathways. However, there is a lack of study on EGCG-induced immunogenic cell death (ICD) in hepatocellular carcinoma. METHODS In a previous study, we successfully synthesized folate-modified thermosensitive nano-materials, encapsulated EGCG within nanoparticles using a hydration method, and established the EGCG nano-drug delivery system. The viability of HepG2 cells post-EGCG treatment was assessed via the MTT and EdU assays. Cell migration and invasion were evaluated through wound healing experiments, Transwell assays, and Annexin V-FITC/PI assay for apoptosis detection. Additionally, the expression levels of damage-associated molecular patterns (DAMPs) were determined using immunofluorescence, ATP measurement, RT-qPCR, and Western Blot. RESULTS The drug sensitivity test revealed an IC50 value of 96.94 μg/mL for EGCG in HepG2 cells after 48 h. EGCG at a low concentration (50 μg/mL) significantly impeded the migration and invasion of HepG2 cells, showing a clear dose-dependent response. Moreover, medium to high EGCG concentrations induced cell apoptosis in a dose-dependent manner and upregulated DAMPs expression. Immunofluorescence analysis demonstrated a notable increase in CRT expression following low-concentration EGCG treatment. As EGCG concentration increased, cell viability decreased, leading to CRT exposure on the cell membrane. EGCG also notably elevated ATP levels. RT-qPCR and Western Blot analyses indicated elevated expression levels of HGMB1, HSP70, and HSP90 following EGCG intervention. CONCLUSION EGCG not only hinders the proliferation, migration, and invasion of hepatocellular carcinoma cells and induces apoptosis, but also holds significant clinical promise in the treatment of malignant tumors by promoting ICD and DAMPs secretion.
Collapse
Affiliation(s)
- Li He
- Department of Oncology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Lisheng Peng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Lianan Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, The University of Hong Kong, Shenzhen, China
| | - Xiaoyan Jiang
- Department of Spleen and Stomach, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xinfeng Sun
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Haiwen Li
- Department of Spleen and Stomach, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Tong Lin
- Department of Integrated Traditional and Western Medicine, Fujian Provincial Tumor Hospital, Fuzhou, China
| | - Zhulin Wu
- Department of Traditional Chinese Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Sen Lin
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Alarabei AA, Abd Aziz NAL, AB Razak NI, Abas R, Bahari H, Abdullah MA, Hussain MK, Abdul Majid AMS, Basir R. Immunomodulating Phytochemicals: An Insight Into Their Potential Use in Cytokine Storm Situations. Adv Pharm Bull 2024; 14:105-119. [PMID: 38585461 PMCID: PMC10997936 DOI: 10.34172/apb.2024.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/17/2023] [Accepted: 07/14/2023] [Indexed: 04/09/2024] Open
Abstract
Phytochemicals are compounds found in plants that possess a variety of bioactive properties, including antioxidant and immunomodulatory properties. Recent studies have highlighted the potential of phytochemicals in targeting specific signalling pathways involved in cytokine storm, a life-threatening clinical condition resulting from excessive immune cell activation and oversupply of proinflammatory cytokines. Several studies have documented the immunomodulatory effects of phytochemicals on immune function, including their ability to regulate essential cellular and molecular interactions of immune system cells. This makes them a promising alternative for cytokine storm management, especially when combined with existing chemotherapies. Furthermore, phytochemicals have been found to target multiple signalling pathways, including the TNF-α/NF-κB, IL-1/NF-κB, IFN-γ/JAK/STAT, and IL-6/JAK-STAT. These pathways play critical roles in the development and progression of cytokine storm, and targeting them with phytochemicals represents a promising strategy for controlling cytokine release and the subsequent inflammation. Studies have also investigated certain families of plant-related constituents and their potential immunomodulatory actions. In vivo and in vitro studies have reported the immunomodulatory effects of phytochemicals, which provide viable alternatives in the management of cytokine storm syndrome. The collective data from previous studies suggest that phytochemicals represent a potentially functional source of cytokine storm treatment and promote further exploration of these compounds as immunomodulatory agents for suppressing specific signalling cascade responses. Overall, the previous research findings support the use of phytochemicals as a complementary approach in managing cytokine storm and improving patient outcomes.
Collapse
Affiliation(s)
- Abdusalam Abdullah Alarabei
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Aimi Liyana Abd Aziz
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Izah AB Razak
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Khairi Hussain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amin Malik Shah Abdul Majid
- Natureceuticals Sdn Bhd, Kedah Halal Park, Kawasan Perindustrian Sg. Petani, 08000 Sg. Petani, Kedah, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Chen Y, Liu Z, Gong Y. Neuron-immunity communication: mechanism of neuroprotective effects in EGCG. Crit Rev Food Sci Nutr 2023; 64:9333-9352. [PMID: 37216484 DOI: 10.1080/10408398.2023.2212069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Epigallocatechin gallate (EGCG), a naturally occurring active ingredient unique to tea, has been shown to have neuroprotective potential. There is growing evidence of its potential advantages in the prevention and treatment of neuroinflammation, neurodegenerative diseases, and neurological damage. Neuroimmune communication is an important physiological mechanism in neurological diseases, including immune cell activation and response, cytokine delivery. EGCG shows great neuroprotective potential by modulating signals related to autoimmune response and improving communication between the nervous system and the immune system, effectively reducing the inflammatory state and neurological function. During neuroimmune communication, EGCG promotes the secretion of neurotrophic factors into the repair of damaged neurons, improves intestinal microenvironmental homeostasis, and ameliorates pathological phenotypes through molecular and cellular mechanisms related to the brain-gut axis. Here, we discuss the molecular and cellular mechanisms of inflammatory signaling exchange involving neuroimmune communication. We further emphasize that the neuroprotective role of EGCG is dependent on the modulatory role between immunity and neurology in neurologically related diseases.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
5
|
Therapeutic Effects of Green Tea Polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. Int J Mol Sci 2022; 24:ijms24010340. [PMID: 36613784 PMCID: PMC9820274 DOI: 10.3390/ijms24010340] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
(‒)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea. Thanks to multiple interactions with cell surface receptors, intracellular signaling pathways, and nuclear transcription factors, EGCG possesses a wide variety of anti-inflammatory, antioxidant, antifibrotic, anti-remodelation, and tissue-protective properties which may be useful in the treatment of various diseases, particularly in cancer, and neurological, cardiovascular, respiratory, and metabolic disorders. This article reviews current information on the biological effects of EGCG in the above-mentioned disorders in relation to molecular pathways controlling inflammation, oxidative stress, and cell apoptosis.
Collapse
|
6
|
Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG): A Time for a New Player in the Treatment of Respiratory Diseases? Antioxidants (Basel) 2022; 11:antiox11081566. [PMID: 36009285 PMCID: PMC9405266 DOI: 10.3390/antiox11081566] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol of green tea that possesses a wide variety of actions. EGCG acts as a strong antioxidant which effectively scavenges reactive oxygen species (ROS), inhibits pro-oxidant enzymes including NADPH oxidase, activates antioxidant systems including superoxide dismutase, catalase, or glutathione, and reduces abundant production of nitric oxide metabolites by inducible nitric oxide synthase. ECGC also exerts potent anti-inflammatory, anti-fibrotic, pro-apoptotic, anti-tumorous, and metabolic effects via modulation of a variety of intracellular signaling cascades. Based on this knowledge, the use of EGCG could be of benefit in respiratory diseases with acute or chronic inflammatory, oxidative, and fibrotizing processes in their pathogenesis. This article reviews current information on the biological effects of EGCG in those respiratory diseases or animal models in which EGCG has been administered, i.e., acute respiratory distress syndrome, respiratory infections, COVID-19, bronchial asthma, chronic obstructive pulmonary disease, lung fibrosis, silicosis, lung cancer, pulmonary hypertension, and lung embolism, and critically discusses effectiveness of EGCG administration in these respiratory disorders. For this review, articles in English language from the PubMed database were used.
Collapse
|
7
|
Fan H, Bhullar KS, Wang Z, Wu J. Chicken muscle protein-derived peptide VVHPKESF reduces TNFα-induced inflammation and oxidative stress by suppressing TNFR1 signaling in human vascular endothelial cells. Mol Nutr Food Res 2022; 66:e2200184. [PMID: 35770889 DOI: 10.1002/mnfr.202200184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Indexed: 11/09/2022]
Abstract
SCOPE This study aimed to investigate the protective effects of four chicken muscle-derived peptides (Val-Arg-Pro (VRP), Leu-Lys-Tyr (LKY), Val-Arg-Tyr (VRY), and Val-Val-His-Pro-Lys-Glu-Ser-Phe [VVHPKESF (V-F)] on tumor necrosis factor alpha (TNFα)-induced endothelial inflammation and oxidative stress in human vascular endothelial EA.hy926 cells. METHODS AND RESULTS Inflammation and oxidative stress are induced in EA.hy926 cells by TNFα (10 ng/mL) treatment for different periods of time. Inflammatory proteins and signaling molecules including inducible nitric oxide synthase, intracellular cell adhesion molecule-1, vascular cell adhesion molecule-1 (VCAM-1), cyclooxygenase 2 (COX2), nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), and TNFα receptor 1 (TNFR1) were measured by qRT-PCR or western blotting; soluble TNFR1 level and NADPH oxidase activity were determined by Elisa kits; superoxide was measured by dihydroethidium staining. Only V-F treatment inhibited the expression of VCAM-1 and COX2, via suppressing NF-κB and p38 MAPK signaling, respectively, while reduced oxidative stress via the inhibition of NADPH oxidase activity; V-F treatment attenuated both gene and protein expressions of TNFR1. CONCLUSION V-F treatment ameliorated TNFα-induced endothelial inflammation and oxidative stress possibly via the inhibition of TNFR1 signaling, suggesting its potential as a functional food ingredient or nutraceutical in the prevention and treatment of hypertension and cardiovascular diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| | - Khushwant S Bhullar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| | - Zihan Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
8
|
Tang H, Hao S, Khan MF, Zhao L, Shi F, Li Y, Guo H, Zou Y, Lv C, Luo J, Zeng Z, Wu Q, Ye G. Epigallocatechin-3-Gallate Ameliorates Acute Lung Damage by Inhibiting Quorum-Sensing-Related Virulence Factors of Pseudomonas aeruginosa. Front Microbiol 2022; 13:874354. [PMID: 35547130 PMCID: PMC9083413 DOI: 10.3389/fmicb.2022.874354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/04/2022] [Indexed: 12/25/2022] Open
Abstract
The superbug Pseudomonas aeruginosa is among the most formidable antibiotic-resistant pathogens. With declining options for antibiotic-resistant infections, new medicines are of utmost importance to combat with P. aeruginosa. In our previous study, we demonstrated that Epigallocatechin-3-gallate (EGCG) can inhibit the production of quorum sensing (QS)-regulated virulence factors in vitro. Accordingly, the protective effect and molecular mechanisms of EGCG against P. aeruginosa-induced pneumonia were studied in a mouse model. The results indicated that EGCG significantly lessened histopathological changes and increased the survival rates of mice infected with P. aeruginosa. EGCG effectively alleviated lung injury by reducing the expression of virulence factors and bacterial burden. In addition, EGCG downregulated the production of pro-inflammatory cytokines, such as TNF-α, IL-1, IL-6, and IL-17, and increased the expression of anti-inflammatory cytokines IL-4 and IL-10. Thus, the experimental results supported for the first time that EGCG improved lung damage in P. aeruginosa infection by inhibiting the production of QS-related virulence factors in vivo.
Collapse
Affiliation(s)
- Huaqiao Tang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Suqi Hao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Faraz Khan
- Department of Botany, Faculty of Basic and Applied Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Ling Zhao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fei Shi
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yinglun Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongrui Guo
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cheng Lv
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jie Luo
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren, China.,Engineering Research Center of the Medicinal Diet Industry, Tongren Polytechnic College, Tongren, China
| | - Ze Zeng
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren, China
| | - Qiang Wu
- Agricultural College, Yibin Vocational and Technical College, Yibin, China
| | - Gang Ye
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Anti-Inflammatory Effect of Resveratrol Derivatives via the Downregulation of Oxidative-Stress-Dependent and c-Src Transactivation EGFR Pathways on Rat Mesangial Cells. Antioxidants (Basel) 2022; 11:antiox11050835. [PMID: 35624699 PMCID: PMC9138040 DOI: 10.3390/antiox11050835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
In Taiwan, the root extract of Vitis thunbergii Sieb. et Zucc. (Vitaceae, VT) is rich in stilbenes, with resveratrol (Res) and its derivatives being the most abundant. Previously, we showed that the effect of Res derivatives against tumor necrosis factor-α (TNF-α)-stimulated inflammatory responses occurs via cPLA2/COX-2/PGE2 inhibition. This study compared and explored the underlying anti-inflammatory pharmacological mechanisms. Before stimulation with TNF-α, RMCs were treated with/without pharmacological inhibitors of specific protein kinases. The expression of inflammatory mediators was determined by Western blotting, gelatin zymography, real-time PCR, and luciferase assay. Cellular and mitochondrial ROS were measured by H2DHFDA or DHE and MitoSOX™ Red staining, respectively. The RNS level was indirectly measured by Griess reagent assay. Kinase activation and association were assayed by immunoprecipitation followed by Western blotting. TNF-α binding to TNFR recruited Rac1 and p47phox, thus activating the NAPDH oxidase-dependent MAPK and NF-κB pathways. The TNF-α-induced NF-κB activation via c-Src-driven ROS was independent from the EGFR signaling pathway. The anti-inflammatory effects of Res derivatives occurred via the inhibition of ROS derived from mitochondria and NADPH oxidase; RNS derived from iNOS; and the activation of the ERK1/2, JNK1/2, and NF-κB pathways. Overall, this study provides an understanding of the various activities of Res derivatives and their pharmacological mechanisms. In the future, the application of the active molecules of VT to health foods and medicine in Taiwan may increase.
Collapse
|
10
|
Wang CY, Yang CC, Hsiao LD, Yang CM. Involvement of FoxO1, Sp1, and Nrf2 in Upregulation of Negative Regulator of ROS by 15d-PGJ 2 Attenuates H 2O 2-Induced IL-6 Expression in Rat Brain Astrocytes. Neurotox Res 2022; 40:154-172. [PMID: 34997457 PMCID: PMC8784370 DOI: 10.1007/s12640-020-00318-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023]
Abstract
Excessive production of reactive oxygen species (ROS) by NADPH oxidase (Nox) resulted in inflammation. The negative regulator of ROS (NRROS) dampens ROS generation during inflammatory responses. 15-Deoxy-∆12,14-prostaglandin J2 (15d-PGJ2) exhibits neuroprotective effects on central nervous system (CNS). However, whether 15d-PGJ2-induced NRROS expression was unknown in rat brain astrocytes (RBA-1). NRROS expression was determined by Western blot, RT/real-time PCR, and promoter activity assays. The signaling components were investigated using pharmacological inhibitors or specific siRNAs. The interaction between transcription factors and the NRROS promoter was investigated by chromatin immunoprecipitation assay. Upregulation of NRROS on the hydrogen peroxide (H2O2)-mediated ROS generation and interleukin 6 (IL-6) secretion was measured. 15d-PGJ2-induced NRROS expression was mediated through PI3K/Akt-dependent activation of Sp1 and FoxO1 and established the essential promoter regions. We demonstrated that 15d-PGJ2 activated PI3K/Akt and following by cooperation between phosphorylated nuclear FoxO1 and Sp1 to initiate the NRROS transcription. In addition, Nrf2 played a key role in NRROS expression induced by 15d-PGJ2 which was mediated through its phosphorylation. Finally, the NRROS stable clones attenuated the H2O2-induced ROS generation and expression of IL-6 through suppressing the Nox-2 activity. These results suggested that 15d-PGJ2-induced NRROS expression is mediated through a PI3K/Akt-dependent FoxO1 and Sp1 phosphorylation, and Nrf2 cascade, which suppresses ROS generation through attenuating the p47phox phosphorylation and gp91phox formation and IL-6 expression in RBA-1 cells. These results confirmed the mechanisms underlying 15d-PGJ2-induced NRROS expression which might be a potential strategy for prevention and management of brain inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital At Tao-Yuan, Kwei-San, Tao-Yuan, 33302, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, 33302, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan. .,Ph.D. Program for Biotch Pharmaceutical Industry, China Medical University, Taichung, 40402, Taiwan. .,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung, 41354, Taiwan.
| |
Collapse
|
11
|
Ali Reza ASM, Nasrin MS, Hossen MA, Rahman MA, Jantan I, Haque MA, Sobarzo-Sánchez E. Mechanistic insight into immunomodulatory effects of food-functioned plant secondary metabolites. Crit Rev Food Sci Nutr 2021; 63:5546-5576. [PMID: 34955042 DOI: 10.1080/10408398.2021.2021138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Medicinally important plant-foods offer a balanced immune function, which is essential for protecting the body against antigenic invasion, mainly by microorganisms. Immunomodulators play pivotal roles in supporting immune function either suppressing or stimulating the immune system's response to invading pathogens. Among different immunomodulators, plant-based secondary metabolites have emerged as high potential not only for immune defense but also for cellular immunoresponsiveness. These natural immunomodulators can be developed into safer alternatives to the clinically used immunosuppressants and immunostimulant cytotoxic drugs which possess serious side effects. Many plants of different species have been reported to possess strong immunomodulating properties. The immunomodulatory effects of plant extracts and their bioactive metabolites have been suggested due to their diverse mechanisms of modulation of the complex immune system and their multifarious molecular targets. Phytochemicals such as alkaloids, flavonoids, terpenoids, carbohydrates and polyphenols have been reported as responsible for the immunomodulatory effects of several medicinal plants. This review illustrates the potent immunomodulatory effects of 65 plant secondary metabolites, including dietary compounds and their underlying mechanisms of action on cellular and humoral immune functions in in vitro and in vivo studies. The clinical potential of some of the compounds to be used for various immune-related disorders is highlighted.
Collapse
Affiliation(s)
- A S M Ali Reza
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Mst Samima Nasrin
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md Amjad Hossen
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | |
Collapse
|
12
|
Xu M, Zhou F, Ahmed O, Upadhya GA, Jia J, Lee C, Xing J, Ye L, Shim SH, Zhang Z, Byrnes K, Wong B, Kim JS, Lin Y, Chapman WC. A Novel Multidrug Combination Mitigates Rat Liver Steatosis Through Activating AMPK Pathway During Normothermic Machine Perfusion. Transplantation 2021; 105:e215-e225. [PMID: 34019362 PMCID: PMC8356968 DOI: 10.1097/tp.0000000000003675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Hepatic steatosis is now the leading cause of liver discards in deceased donors. Previous studies [Yarmush formula (Y) defatting] have successfully reduced the fat content by treating rat steatotic livers on extracorporeal normothermic machine perfusion (NMP) with a multidrug combination including the GW compounds that were linked to an increased risk of carcinogenesis. METHODS We developed a novel multidrug combination by replacing the GW compounds with 2 polyphenols, epigallocatechin-3-gallate (E) and resveratrol (R). Sixteen rat livers were placed on NMP and assigned to control, Y defatting, Y + E + R defatting, or Y'-GW + E + R defatting groups (Y'-GW = 90% dose-reduced Y defatting, n = 4/group). RESULTS All livers in defatting groups had significant decreases in hepatic triglyceride content at the end of the experiment. However, livers treated with our novel Y'-GW + E + R combination had evidence of increased metabolism and less hepatocyte damage and carcinogenic potential. Our Y'-GW + E + R combination had increased phosphorylation of AMP-activated protein kinase (P = 0.019) and acetyl-CoA carboxylase (P = 0.023) compared with control; these were not increased in Y + E + R group and actually decreased in the Y group. Furthermore, the Y'-GW + E + R group had less evidence of carcinogenic potential with no increase in AKT phosphorylation compared with control (P = 0.089); the Y (P = 0.031) and Y + E + R (P = 0.035) groups had striking increases in AKT phosphorylation. Finally, our Y'-GW + E + R showed less evidence of hepatocyte damage with significantly lower perfusate alanine aminotransferase (P = 0.007) and aspartate aminotransferase (P = 0.014) levels. CONCLUSIONS We have developed a novel multidrug combination demonstrating promising defatting efficacy via activation of the AMP-activated protein kinase pathway with an optimized safety profile and reduced hepatotoxicity during ex vivo NMP.
Collapse
Affiliation(s)
- Min Xu
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Fangyu Zhou
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Ola Ahmed
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Gundumi A. Upadhya
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Jianluo Jia
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Choonghee Lee
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Jianwei Xing
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Li Ye
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - So Hee Shim
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhengyan Zhang
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathleen Byrnes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian Wong
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Jae-Sung Kim
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Yiing Lin
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - William C. Chapman
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
13
|
Islam BU, Suhail M, Khan MK, Zughaibi TA, Alserihi RF, Zaidi SK, Tabrez S. Polyphenols as anticancer agents: Toxicological concern to healthy cells. Phytother Res 2021; 35:6063-6079. [PMID: 34679214 DOI: 10.1002/ptr.7216] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Polyphenols are a group of diverse chemical compounds present in a wide range of plants. Various biological properties such as antiallergic, antiviral, antibacterial, anticarcinogenic, antiinflammatory, antithrombotic, vasodilatory, and hepatoprotective effect of different polyphenols have been reported in the scientific literature. The major classes of polyphenols are flavonoids, stilbenoids, lignans, and polyphenolic acids. Flavonoids are a large class of food constituents comprising flavones, isoflavanones, flavanones, flavonols, catechins, and anthocyanins sub-classes. Even with seemingly broad biological activities, their use is minimal clinically. Among the other concurrent problems such as limited bioavailability, rapid metabolism, untargeted delivery, the toxicity associated with these polyphenols has been a topic of concern lately. These polyphenols have been reported to result in different forms of toxicity that include organ toxicity, genotoxicity, mutagenicity, cytotoxicity, etc. In the present article, we have tried to unravel the toxicological aspect of these polyphenols to healthy cells. Further high-quality studies are needed to establish the clinical efficacy and toxicology concern leading to further exploration of these polyphenols.
Collapse
Affiliation(s)
- Badar Ul Islam
- Department of Biochemistry, J N Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Kaleem Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed F Alserihi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,3D Bioprinting Unit, Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Kashif Zaidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Pan T, Han D, Xu Y, Peng W, Bai L, Zhou X, He H. LC-MS Based Metabolomics Study of the Effects of EGCG on A549 Cells. Front Pharmacol 2021; 12:732716. [PMID: 34650434 PMCID: PMC8505700 DOI: 10.3389/fphar.2021.732716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
(−)-Epigallocatechin-3-gallate (EGCG) is the main bioactive catechin in green tea. The antitumor activity of EGCG has been confirmed in various types of cancer, including lung cancer. However, the precise underlying mechanisms are still largely unclear. In the present study, we investigated the metabolite changes in A549 cells induced by EGCG in vitro utilizing liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. The result revealed 33 differentially expressed metabolites between untreated and 80 μM EGCG-treated A549 cells. The altered metabolites were involved in the metabolism of glucose, amino acid, nucleotide, glutathione, and vitamin. Two markedly altered pathways, including glycine, serine and threonine metabolism and alanine, aspartate and glutamate metabolism, were identified by MetaboAnalyst 5.0 metabolic pathway analysis. These results may provide potential clues for the intramolecular mechanisms of EGCG’s effect on A549 cells. Our study may contribute to future molecular mechanistic studies of EGCG and the therapeutic application of EGCG in cancer management.
Collapse
Affiliation(s)
- Tingyu Pan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Di Han
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenpan Peng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Le Bai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianmei Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Hailang He
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, United States
| |
Collapse
|
15
|
Zheng JN, Zhuo JY, Nie J, Liu YL, Chen BY, Wu AZ, Li YC. Phenylethanoid Glycosides From Callicarpa kwangtungensis Chun Attenuate TNF-α-Induced Cell Damage by Inhibiting NF-κB Pathway and Enhancing Nrf2 Pathway in A549 Cells. Front Pharmacol 2021; 12:693983. [PMID: 34305604 PMCID: PMC8293607 DOI: 10.3389/fphar.2021.693983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/18/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Acute lung injury (ALI) is a complicated and severe lung disease, which is often characterized by acute inflammation. Poliumoside (POL), acteoside (ACT) and forsythiaside B (FTB) are phenylethanoid glycosides (PGs) with strong antioxidant, anti-inflammatory, and anti-apoptotic properties, which are extracted from Callicarpa kwangtungensis Chun (CK). The aim of this study was to investigate the protective effects of POL, ACT, and FTB against TNF-α-induced damage using an ALI cell model and explore their potential mechanisms. Methods and Results: MTT method was used to measure cell viability. Flow cytometry was used for detecting the apoptosis rate. Reactive oxygen species (ROS) activity was determined using fluorescence microscope. The expression of mRNA in apoptosis-related genes (Caspase 3, Caspase 8, and Caspase 9) were tested by qPCR. The effects of POL, ACT, FTB on the activities of nuclear factor erythroid-2 related factor 2 (Nrf2), nuclear factor kappa-B (NF-κB) and the expression of their downstream genes were assessed by western blotting and RT-PCR in A549 cells. In the current study, POL, ACT, and FTB dose-dependently attenuated TNF-α-induced IL-1β, IL-6 and IL-8 production, cell apoptosis, the expression of apoptosis-related genes (Caspase 3, Caspase 8, and Caspase 9) and ROS activity. POL, ACT, and FTB not only increased in the mRNA levels of antioxidative enzymes NADPH quinone oxidoreductase (NQO1), glutamate cysteine ligase catalytic subunit (GCLC), heme oxygenase (HO-1), but also decreased the mRNA levels of IL-1β, IL-6 and IL-8. Furthermore, they upregulated the expression of Keap1 and enhanced the activation of Nrf2, while decreased the expression of phosphor-IκBα (p-IκBα) and nuclear p65. In addition, no significant changes were observed in anti-inflammatory and antioxidant effects of POL, ACT, FTB following Nrf2 and NF-κB p65 knockdown. Conclusion: Our study revealed that POL, ACT, and FTB alleviated oxidative damage and lung inflammation of TNF-α-induced ALI cell model through regulating the Nrf2 and NF-κB pathways.
Collapse
Affiliation(s)
- Jing-Na Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian-Yi Zhuo
- Department of Pharmacy, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Juan Nie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Lu Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bao-Yi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ai-Zhi Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-Cui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Li W, Yu J, Xiao X, Li W, Zang L, Han T, Zhang D, Niu X. The inhibitory effect of (-)-Epicatechin gallate on the proliferation and migration of vascular smooth muscle cells weakens and stabilizes atherosclerosis. Eur J Pharmacol 2020; 891:173761. [PMID: 33249078 DOI: 10.1016/j.ejphar.2020.173761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
Vascular smooth muscle cells (VSMCs) lesions play an important role in atherosclerosis. The latest findings indicate that green tea extract has potential benefits for patients with atherosclerosis, but the components and mechanisms of action are unknown. (-)-Epicatechin gallate (ECG) is the main active ingredient extracted from green tea and has significant biological functions. However, the mechanism of ECG in atherosclerosis remains unclear. Therefore, we investigated the intervention of ECG on VSMCs induced by oxidized low-density lipoprotein (ox-LDL). The results show that ECG reduces the inflammatory response by preventing the overproduction of inflammatory mediators in VSMCs. ECG regulates the cell cycle and down-regulates the expression of proliferating cell nuclear antigen (PCNA) and cyclinD1, and then exerts an anti-proliferative effect. Furthermore, inhibition of the expression of matrix metalloproteinase 2 (MMP-2) and intercellular adhesion molecule 1 (ICAM-1) may be the mechanism by which ECG inhibits the migration of ox-LDL-induced VSMCs. Oil red O staining results show that ECG can improve cell foaming and reduce the content of total cholesterol (TC). In addition, ECG significantly reduces reactive oxygen species activity and also reduces the expression of p-p38, p-JNK, p-ERK1/2, p-IκBα, p-NF-κBp65, and TLR4. These results indicate that ECG has potential clinical applications for preventing atherosclerosis.
Collapse
Affiliation(s)
- Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Xin Xiao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Wenqi Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Lulu Zang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Tengfei Han
- Shaanxi Panlong Pharmaceutical Group Limited By Share LTD, Xi'an, PR China
| | - Dezhu Zhang
- Shaanxi Panlong Pharmaceutical Group Limited By Share LTD, Xi'an, PR China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
17
|
Free Radicals as a Double-Edged Sword: The Cancer Preventive and Therapeutic Roles of Curcumin. Molecules 2020; 25:molecules25225390. [PMID: 33217990 PMCID: PMC7698794 DOI: 10.3390/molecules25225390] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 01/07/2023] Open
Abstract
Free radicals, generally composed of reactive oxygen species (ROS) and reactive nitrogen species (RNS), are generated in the body by various endogenous and exogenous systems. The overproduction of free radicals is known to cause several chronic diseases including cancer. However, increased production of free radicals by chemotherapeutic drugs is also associated with apoptosis in cancer cells, indicating the dual nature of free radicals. Among various natural compounds, curcumin manifests as an antioxidant in normal cells that helps in the prevention of carcinogenesis. It also acts as a prooxidant in cancer cells and is associated with inducing apoptosis. Curcumin quenches free radicals, induces antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase), and upregulates antioxidative protein markers-Nrf2 and HO-1 that lead to the suppression of cellular oxidative stress. In cancer cells, curcumin aggressively increases ROS that results in DNA damage and subsequently cancer cell death. It also sensitizes drug-resistant cancer cells and increases the anticancer effects of chemotherapeutic drugs. Thus, curcumin shows beneficial effects in prevention, treatment and chemosensitization of cancer cells. In this review, we will discuss the dual role of free radicals as well as the chemopreventive and chemotherapeutic effects of curcumin and its analogues against cancer.
Collapse
|
18
|
Selective Blockade of TNFR1 Improves Clinical Disease and Bronchoconstriction in Experimental RSV Infection. Viruses 2020; 12:v12101176. [PMID: 33080861 PMCID: PMC7588931 DOI: 10.3390/v12101176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis in infants and young children. Although some clinical studies have speculated that tumor necrosis factor (TNF)-α is a major contributor of RSV-mediated airway disease, experimental evidence remains unclear or conflicting. TNF-α initiates inflammation and cell death through two distinct receptors: TNF-receptor (TNFR)1 and TNFR2. Here we delineate the function of TNF-α by short-lasting blockade of either receptor in an experimental BALB/c mouse model of RSV infection. We demonstrate that antibody-mediated blockade of TNFR1, but not TNFR2, results in significantly improved clinical disease and bronchoconstriction as well as significant reductions of several inflammatory cytokines and chemokines, including IL-1α, IL-1β, IL-6, Ccl3, Ccl4, and Ccl5. Additionally, TNFR1 blockade was found to significantly reduce neutrophil number and activation status, consistent with the concomitant reduction of pro-neutrophilic chemokines Cxcl1 and Cxcl2. Similar protective activity was also observed when a single-dose of TNFR1 blockade was administered to mice following RSV inoculation, although this treatment resulted in improved alveolar macrophage survival rather than reduced neutrophil activation. Importantly, short-lasting blockade of TNFR1 did not affect RSV peak replication in the lung. This study suggests a potential therapeutic approach for RSV bronchiolitis based on selective blockade of TNFR1.
Collapse
|
19
|
Stroe AC, Oancea S. Immunostimulatory Potential of Natural Compounds and Extracts: A Review. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190301154200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proper functioning of human immune system is essential for organism survival
against infectious, toxic and oncogenic agents. The present study aimed to describe the scientific evidence
regarding the immunomodulatory properties of the main micronutrients and specific phytochemicals.
Plants of food interest have the ability to dynamically affect the immune system through
particular molecules. Plant species, type of compounds and biological effects were herein reviewed
mainly focusing on plants which are not commonly used in food supplements. Several efficient phytoproducts
showed significant advantages compared to synthetic immunomodulators, being good
candidates for the development of immunotherapeutic drugs.
Collapse
Affiliation(s)
- Andreea C. Stroe
- Department of Agricultural Sciences and Food Engineering, "Lucian Blaga" University of Sibiu, 7-9 Ion Ratiu Street, Sibiu 550012, Romania
| | - Simona Oancea
- Department of Agricultural Sciences and Food Engineering, "Lucian Blaga" University of Sibiu, 7-9 Ion Ratiu Street, Sibiu 550012, Romania
| |
Collapse
|
20
|
Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer. Molecules 2020; 25:molecules25143146. [PMID: 32660101 PMCID: PMC7397003 DOI: 10.3390/molecules25143146] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG), an active compound of green tea and its role in diseases cure and prevention has been proven. Its role in diseases management can be attributed to its antioxidant and anti-inflammatory properties. The anti-cancer role of this green tea compound has been confirmed in various types of cancer and is still being under explored. EGCG has been proven to possess a chemopreventive effect through inhibition of carcinogenesis process such as initiation, promotion, and progression. In addition, this catechin has proven its role in cancer management through modulating various cell signaling pathways such as regulating proliferation, apoptosis, angiogenesis and killing of various types of cancer cells. The additive or synergistic effect of epigallocatechin with chemopreventive agents has been verified as it reduces the toxicities and enhances the anti-cancerous effects. Despite its effectiveness and safety, the implications of EGCG in cancer prevention is certainly still discussed due to a poor bioavailability. Several studies have shown the ability to overcome poor bioavailability through nanotechnology-based strategies such as encapsulation, liposome, micelles, nanoparticles and various other formulation. In this review, we encapsulate therapeutic implication of EGCG in cancer management and the mechanisms of action are discussed with an emphasis on human clinical trials.
Collapse
|
21
|
Karatas A, Dagli AF, Orhan C, Gencoglu H, Ozgen M, Sahin N, Sahin K, Koca SS. Epigallocatechin 3-gallate attenuates arthritis by regulating Nrf2, HO-1, and cytokine levels in an experimental arthritis model. Biotechnol Appl Biochem 2019; 67:317-322. [PMID: 31746064 DOI: 10.1002/bab.1860] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022]
Abstract
Epigallocatechin 3-gallate (EGCG) is a polyphenol that has been shown to have antioxidant and anti-inflammatory effects. In this study, collagen-induced arthritis (CIA) model, in Wistar albino rats, was used to elucidate the effect of EGCG on pathogenetic pathways in inflammatory arthritis. The levels of serum TNF-α, IL-17, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx); the expression levels of tissue heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2); histopathologically, perisynovial inflammation and cartilage-bone destruction were examined. In the sham group, serum TNF-α, IL-17, and MDA levels increased, while SOD, CAT, GPx levels, and the expressions of Nrf2 and HO-1 decreased. On the other hand, in the EGCG administered groups, serum TNF-α, IL-17, and MDA levels improved, while SOD, CAT, GPx levels and the expressions of Nrf2 and HO-1 increased. Moreover, histopathological analysis has shown that perisynovial inflammation and cartilage-bone destruction decreased in the EGCG administered groups. These results suggest that EGCG has an antiarthritic effect by regulating the oxidative-antioxidant balance and cytokine levels in the CIA model, which is a surrogate experimental model of rheumatoid arthritis.
Collapse
Affiliation(s)
- Ahmet Karatas
- Department of Rheumatology, Firat University School of Medicine, Elazig, Turkey
| | - Adile Ferda Dagli
- Department of Pathology, School of Medicine, Firat University, Elazig, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Hasan Gencoglu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Metin Ozgen
- Department of Rheumatology, Firat University School of Medicine, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | | |
Collapse
|
22
|
Feng T, Zhou L, Gai S, Zhai Y, Gou N, Wang X, Zhang X, Cui M, Wang L, Wang S. Acacia catechu (L.f.) Willd and Scutellaria baicalensis Georgi extracts suppress LPS-induced pro-inflammatory responses through NF-кB, MAPK, and PI3K-Akt signaling pathways in alveolar epithelial type II cells. Phytother Res 2019; 33:3251-3260. [PMID: 31506998 DOI: 10.1002/ptr.6499] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Acacia catechu (L.f.) Willd (ACW) and Scutellaria baicalensis Georgi (SBG) are one of the most famous couplet Chinese medicines, widely used for treating infantile cough, phlegm, and fever caused by pulmonary infection. However, the underlying molecular mechanism of their anti-inflammatory activity has not been determined. The aim of this study was to evaluate the protective effect of this couplet Chinese medicines (ACW-SBG) on lipopolysaccharide (LPS)-induced inflammatory responses in acute lung injury (ALI) model of rats and the potential molecular mechanisms responsible for anti-inflammatory activities in alveolar epithelial type II cells (AEC-II). Standardization of the 70% ethanol extract of ACW and SBG was performed by using a validated reversed-phase high-pressure liquid chromatography method. Rats were pretreated with ACW-SBG for 7 days prior to LPS challenge. We assessed the effects of ACW-SBG on the LPS-induced production of tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) in the bronchoalveolar lavage fluid (BALF). The wet-to-dry weight ratio was calculated, and hematoxylin and eosin staining of lung tissue was performed. Cell viability of AEC-II was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Real-time quantitative reverse transcription polymerase chain reaction assay was carried out to quantify the relative gene expression of TNF-α and IL-1β in AEC-II. The western blotting analysis was executed to elucidate the expression of mediators linked to nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and phosphatidylinositol-3 kinase-protein kinase B (PI3K-Akt) signaling pathways. ACW-SBG significantly decreased lung wet-to-dry weight ratio, ameliorated LPS-induced lung histopathological changes, and reduced the release of inflammatory mediators such as TNF-α and IL-1β in BALF. In AEC-II, we found that the expression of TNF-α mRNA was also inhibited by ACW-SBG. ACW-SBG blocked NF-κB activation by preventing the phosphorylation of NF-κB (p65) as well as the phosphorylation and degradation of the inhibitor of kappa B kinase. ACW-SBG extracts also inhibited the phosphorylation of respective MAPKs (c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38) as well as Akt. The present study demonstrated that ACW-SBG played a potent anti-inflammatory role in LPS-induced ALI in rats. The potential molecular mechanism was involved in attenuating the NF-κB, MAPKs, and PI3K-Akt signaling pathways in LPS-induced AEC-II.
Collapse
Affiliation(s)
- Tian Feng
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, PR China
| | - Liying Zhou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Shouchang Gai
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an, PR China
| | - Yumeng Zhai
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an, PR China
| | - Nan Gou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Xingchen Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Xinyu Zhang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, PR China
| | - Minxuan Cui
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, PR China
| | - Libin Wang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, PR China.,Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an, PR China
| | - Siwang Wang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, PR China.,College of Life Science and Medicine, Northwest University, Xi'an, PR China
| |
Collapse
|
23
|
Ud-Din S, Foden P, Mazhari M, Al-Habba S, Baguneid M, Bulfone-Paus S, McGeorge D, Bayat A. A Double-Blind, Randomized Trial Shows the Role of Zonal Priming and Direct Topical Application of Epigallocatechin-3-Gallate in the Modulation of Cutaneous Scarring in Human Skin. J Invest Dermatol 2019; 139:1680-1690.e16. [DOI: 10.1016/j.jid.2019.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 01/19/2023]
|
24
|
Lei F, Zhang H, Xie X. Comprehensive analysis of an lncRNA-miRNA-mRNA competing endogenous RNA network in pulpitis. PeerJ 2019; 7:e7135. [PMID: 31304055 PMCID: PMC6609876 DOI: 10.7717/peerj.7135] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/16/2019] [Indexed: 12/30/2022] Open
Abstract
Background Pulpitis is a common inflammatory disease that affects dental pulp. It is important to understand the molecular signals of inflammation and repair associated with this process. Increasing evidence has revealed that long noncoding RNAs (lncRNAs), via competitively sponging microRNAs (miRNAs), can act as competing endogenous RNAs (ceRNAs) to regulate inflammation and reparative responses. The aim of this study was to elucidate the potential roles of lncRNA, miRNA and messenger RNA (mRNA) ceRNA networks in pulpitis tissues compared to normal control tissues. Methods The oligo and limma packages were used to identify differentially expressed lncRNAs and mRNAs (DElncRNAs and DEmRNAs, respectively) based on expression profiles in two datasets, GSE92681 and GSE77459, from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were further analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Protein–protein interaction (PPI) networks and modules were established to screen hub genes using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and the Molecular Complex Detection (MCODE) plugin for Cytoscape, respectively. Furthermore, an lncRNA-miRNA-mRNA-hub genes regulatory network was constructed to investigate mechanisms related to the progression and prognosis of pulpitis. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was applied to verify critical lncRNAs that may significantly affect the pathogenesis in inflamed and normal human dental pulp. Results A total of 644 upregulated and 264 downregulated differentially expressed genes (DEGs) in pulpitis samples were identified from the GSE77459 dataset, while 8 up- and 19 downregulated probes associated with lncRNA were identified from the GSE92681 dataset. Protein–protein interaction (PPI) based on STRING analysis revealed a network of DEGs containing 4,929 edges and 623 nodes. Upon combined analysis of the constructed PPI network and the MCODE results, 10 hub genes, including IL6, IL8, PTPRC, IL1B, TLR2, ITGAM, CCL2, PIK3CG, ICAM1, and PIK3CD, were detected in the network. Next, a ceRNA regulatory relationship consisting of one lncRNA (PVT1), one miRNA (hsa-miR-455-5p) and two mRNAs (SOCS3 and PLXNC1) was established. Then, we constructed the network in which the regulatory relationship between ceRNA and hub genes was summarized. Finally, our qRT-PCR results confirmed significantly higher levels of PVT1 transcript in inflamed pulp than in normal pulp tissues (p = 0.03). Conclusion Our study identified a novel lncRNA-mediated ceRNA regulatory mechanisms in the pathogenesis of pulpitis.
Collapse
Affiliation(s)
- Fangcao Lei
- Department of Operative Dentistry and Endodontics, School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Han Zhang
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaoli Xie
- Department of Operative Dentistry and Endodontics, School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Sarcoidosis is a chronic disease, which is routinely treated with corticosteroids. Steroid resistance or steroid-induced adverse effects require alternatives. Other immune-modulating pharmacological treatments have been developed, and therefore expanded tremendously. Until now, the role of nutrition in the overall management of sarcoidosis has been neglected although anti-inflammatory properties of nutritional components have been known for many years now. New nutritional possibilities emerge from already existing data and offer new therapeutic avenues in the treatment of sarcoidosis. RECENT FINDINGS Various dietary components have been shown to reduce pulmonary inflammatory processes. It is increasingly recognized, however, that the specificity and magnitude of the effect of nutrition differs from pharmacological interventions. Conventional randomized clinical trials are less suitable to test the effect of nutrition in comparison with testing drugs. Mechanistic knowledge on the action of dietary components in conjunction with an increasing understanding of the molecular processes underlying steroid resistance (as investigated in asthma and COPD and unfortunately hardly in sarcoidosis) lead to exciting suggestions on combinations of nutrition/nutritional bioactive compounds and corticosteroids that may benefit sarcoidosis patients. SUMMARY In order to understand the effects of nutrition in chronic disease, it is important to elucidate mechanisms and pathways of effects. Several complementing lines of evidence should be integrated in order to be able to advise sarcoidosis patients on a healthy diet as such or in combination with prescribed anti-inflammatory therapy.
Collapse
|
26
|
CO-Releasing Molecule-2 Induces Nrf2/ARE-Dependent Heme Oxygenase-1 Expression Suppressing TNF-α-Induced Pulmonary Inflammation. J Clin Med 2019; 8:jcm8040436. [PMID: 30934992 PMCID: PMC6517967 DOI: 10.3390/jcm8040436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 11/16/2022] Open
Abstract
The upregulation of heme oxygenase-1 (HO-1) by the carbon monoxide-releasing molecule (CORM)-2 may be mediated through the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases [Nox] and reactive oxygen species (ROS) generation, which could provide cytoprotection against various cellular injuries. However, the detailed mechanisms of CORM-2-induced HO-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs) remain largely unknown. Therefore, we dissected the mechanisms underlying CORM-2-induced HO-1 expression in HPAEpiCs. We found that the administration of mice with CORM-2 attenuated the tumor necrosis factor-alpha (TNF-α)-induced intercellular adhesion molecule-1 (ICAM-1) expression and leukocyte count as revealed by immunohistochemical staining, western blot, real-time polymerase chain reaction (PCR), and cell count. Furthermore, TNF-α-induced ICAM-1 expression associated with monocyte adhesion to HPAEpiCs was attenuated by infection with adenovirus (adv)-HO-1 or incubation with CORM-2. These inhibitory effects of HO-1 were reversed by pretreatment with hemoglobin (Hb). Moreover, CORM-2-induced HO-1 expression was mediated via the phosphorylation of p47phox, c-Src, epidermal growth factor receptor (EGFR), Akt, and NF-E2-related factor 2 (Nrf2), which were inhibited by their pharmacological inhibitors, including diphenyleneiodonium (DPI) or apocynin (APO), ROS [N-acetyl-L-cysteine (NAC)], PP1, AG1478, PI3K (LY294002), or Akt (SH-5), and small interfering RNAs (siRNAs). CORM-2-enhanced Nrf2 expression, and anti-oxidant response element (ARE) promoter activity was also inhibited by these pharmacological inhibitors. The interaction between Nrf2 and AREs was confirmed with a chromatin immunoprecipitation (ChIP) assay. These findings suggest that CORM-2 increases the formation of the Nrf2 and AREs complex and binds with ARE-binding sites via Src, EGFR, and PI3K/Akt, which further induces HO-1 expression in HPAEpiCs. Thus, the HO-1/CO system might suppress TNF-α-mediated inflammatory responses and exert a potential therapeutic strategy in pulmonary diseases.
Collapse
|
27
|
da Silva AFM, de Mello MVP, Gómez JG, Ferreira GB, Lanznaster M. Investigation of Cobalt(III)-Tetrachlorocatechol Complexes as Models for Catechol-Based Anticancer Prodrugs. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Javier G. Gómez
- Instituto de Química; Universidade Federal Fluminense; Outeiro S J Batista SN 24020-141 Niteroi RJ Brazil
| | - Glaucio Braga Ferreira
- Instituto de Química; Universidade Federal Fluminense; Outeiro S J Batista SN 24020-141 Niteroi RJ Brazil
| | - Mauricio Lanznaster
- Instituto de Química; Universidade Federal Fluminense; Outeiro S J Batista SN 24020-141 Niteroi RJ Brazil
| |
Collapse
|
28
|
Rengasamy KR, Khan H, Gowrishankar S, Lagoa RJ, Mahomoodally FM, Khan Z, Suroowan S, Tewari D, Zengin G, Hassan ST, Pandian SK. The role of flavonoids in autoimmune diseases: Therapeutic updates. Pharmacol Ther 2019; 194:107-131. [PMID: 30268770 DOI: 10.1016/j.pharmthera.2018.09.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Resveratrol Attenuates Staphylococcus Aureus-Induced Monocyte Adhesion through Downregulating PDGFR/AP-1 Activation in Human Lung Epithelial Cells. Int J Mol Sci 2018; 19:ijms19103058. [PMID: 30301269 PMCID: PMC6213130 DOI: 10.3390/ijms19103058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a very common Gram-positive bacterium. It is widely distributed in air, soil, and water. S. aureus often causes septicemia and pneumonia in patients. In addition, it is considered to play a key role in mediating cell adhesion molecules upregulation. Resveratrol is a natural antioxidant with diverse biological effects, including the modulation of immune function, anti-inflammation, and cancer chemoprevention. In this study, we proved that S. aureus-upregulated vascular cell adhesion molecule-1 (VCAM-1) expression in human lung epithelial cells (HPAEpiCs) was inhibited by resveratrol. We also observed that resveratrol downregulated S. aureus-enhanced leukocyte count in bronchoalveolar lavage (BAL) fluid in mice. In HPAEpiCs, S. aureus stimulated c-Src, PDGFR, p38 MAPK, or JNK1/2 phosphorylation, which was inhibited by resveratrol. S. aureus induced the adhesion of THP-1 cells (a human monocytic cell line) to HPAEpiCs, which was also reduced by resveratrol. Finally, we found that S. aureus induced c-Src/PDGFR/p38 MAPK and JNK1/2-dependent c-Jun and ATF2 activation and in vivo binding of c-Jun and ATF2 to the VCAM-1 promoter, which were inhibited by resveratrol. Thus, resveratrol functions as a suppressor of S. aureus-induced inflammatory signaling, not only by inhibiting VCAM-1 expression but also by diminishing c-Src, PDGFR, JNK1/2, p38 MAPK, and AP-1 activation in HPAEpiCs.
Collapse
|
30
|
Yang HM, Zhuo JY, Sun CY, Nie J, Yuan J, Liu YL, Lin RF, Lai XP, Su ZR, Li YC. Pogostone attenuates TNF-α-induced injury in A549 cells via inhibiting NF-κB and activating Nrf2 pathways. Int Immunopharmacol 2018; 62:15-22. [DOI: 10.1016/j.intimp.2018.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022]
|
31
|
Lee CW, Wu CH, Chiang YC, Chen YL, Chang KT, Chuang CC, Lee IT. Carbon monoxide releasing molecule-2 attenuates Pseudomonas aeruginosa-induced ROS-dependent ICAM-1 expression in human pulmonary alveolar epithelial cells. Redox Biol 2018; 18:93-103. [PMID: 30007888 PMCID: PMC6039312 DOI: 10.1016/j.redox.2018.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) infection in the lung is common in patients with cystic fibrosis (CF). Intercellular adhesion molecule-1 (ICAM-1) is known to play a key role in lung inflammation. Acute inflammation and its timely resolution are important to ensure bacterial clearance and limit tissue damage. Carbon monoxide (CO) has been shown to exert anti-inflammatory effects in various tissues and organ systems. Here, we explored the protective effects and mechanisms of carbon monoxide releasing molecule-2 (CORM-2) on P. aeruginosa-induced inflammatory responses in human pulmonary alveolar epithelial cells (HPAEpiCs). We showed that P. aeruginosa induced prostaglandin E2 (PGE2)/interleukin-6 (IL-6)/ICAM-1 expression and monocyte adherence to HPAEpiCs. Moreover, P. aeruginosa-induced inflammatory responses were inhibited by transfection with siRNA of Toll-like receptor 4 (TLR4), PKCα, p47phox, JNK2, p42, p50, or p65. P. aeruginosa also induced PKCα, JNK, ERK1/2, and NF-κB activation. We further demonstrated that P. aeruginosa increased intracellular ROS generation via NADPH oxidase activation. On the other hand, P. aeruginosa-induced inflammation was inhibited by pretreatment with CORM-2. Preincubation with CORM-2 had no effects on TLR4 mRNA levels in response to P. aeruginosa. However, CORM-2 inhibits P. aeruginosa-induced inflammation by decreasing intracellular ROS generation. P. aeruginosa-induced PKCα, JNK, ERK1/2, and NF-κB activation was inhibited by CORM-2. Finally, we showed that P. aeruginosa induced levels of the biomarkers of inflammation in respiratory diseases, which were inhibited by pretreatment with CORM-2. Taken together, these data suggest that CORM-2 inhibits P. aeruginosa-induced PGE2/IL-6/ICAM-1 expression and lung inflammatory responses by reducing the ROS generation and the inflammatory pathways. CORM-2 inhibits P. aeruginosa-induced PGE2/IL-6/ICAM-1 expression. CORM-2 reduced PKCα phosphorylation in response to P. aeruginosa. We provide molecular mechanisms for antibacterial effects of CORM-2.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Division of Basic Medical Sciences, Department of Nursing and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan, ROC; Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan, ROC; Department of Rehabilitation, Chang Gung Memorial Hospital, Chia-Yi, Taiwan, ROC
| | - Cheng-Hsun Wu
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan, ROC
| | - Yao-Chang Chiang
- Division of Basic Medical Sciences, Department of Nursing and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan, ROC; Center for Drug Abuse and Addiction, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Kuo-Ting Chang
- Translational Medicine Center, Taoyuan General Hospital, Ministry of Healthy and Welfare, Taoyuan, Taiwan, ROC
| | - Chu-Chun Chuang
- Department of Physical Therapy, China Medical University, Taichung, Taiwan, ROC
| | - I-Ta Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, ROC; Department of Nursing, College of Nursing, Hungkuang University, Taichung, Taiwan, ROC.
| |
Collapse
|
32
|
Baranowska M, Suliborska K, Chrzanowski W, Kusznierewicz B, Namieśnik J, Bartoszek A. The relationship between standard reduction potentials of catechins and biological activities involved in redox control. Redox Biol 2018; 17:355-366. [PMID: 29803149 PMCID: PMC6007051 DOI: 10.1016/j.redox.2018.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/01/2018] [Accepted: 05/12/2018] [Indexed: 01/03/2023] Open
Abstract
Redox homeostasis involves factors that ensure proper function of cells. The excess reactive oxygen species (ROS) leads to oxidative stress and increased risk of oxidative damage to cellular components. In contrast, upon reductive stress, insufficient ROS abundance may result in faulty cell signalling. It may be expected that dietary antioxidants, depending on their standard reduction potentials (E°), will affect both scenarios. In our study, for the first time, we systematically tested the relationship among E°, chemical properties, and biological effects in HT29 cells for a series of structurally different catechins and a major endogenous antioxidant - glutathione (GSH), at both physiological and dietary concentrations. Among chemical antioxidant activity tests, the strongest correlation with E° was seen using a DPPH assay. The values of E° were also highly correlated with cellular antioxidant activity (CAA) values determined in HT29 cells. Our results indicated that physiological concentrations (1-10 µM) of tested catechins stabilized the redox status of cells, which was not exhibited at higher concentrations. This stabilization of redox homeostasis was mirrored by constant, dose and E° independent CAA values, uninhibited growth of HT29 cells, modulation of hydrogen peroxide-induced DNA damage, as well as effects at the genomic level, where either up-regulation of three redox-related genes (ALB, CCL5, and HSPA1A) out of 84 in the array (1 µM) or no effect (10 µM) was observed for catechins. Higher catechin concentrations (over 10 µM) increased CAA values in a dose- and E°-dependent manner, caused cell growth inhibition, but surprisingly did not protect HT29 cells against reactive oxygen species (ROS)-induced DNA fragmentation. In conclusion, dose-dependent effects of dietary antioxidants and biological functions potentially modulated by them may become deregulated upon exposure to excessive doses.
Collapse
Affiliation(s)
- Monika Baranowska
- Department of Food Chemistry, Technology and Biotechnology, Gdansk University of Technology, Gdansk, Poland.
| | - Klaudia Suliborska
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Wojciech Chrzanowski
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Barbara Kusznierewicz
- Department of Food Chemistry, Technology and Biotechnology, Gdansk University of Technology, Gdansk, Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
33
|
Sung HC, Liu CW, Hsiao CY, Lin SR, Yu IS, Lin SW, Chiang MH, Liang CJ, Pu CM, Chen YC, Lin MS, Chen YL. The effects of wild bitter gourd fruit extracts on ICAM-1 expression in pulmonary epithelial cells of C57BL/6J mice and microRNA-221/222 knockout mice: Involvement of the miR-221/-222/PI3K/AKT/NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:90-99. [PMID: 29655703 DOI: 10.1016/j.phymed.2018.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/22/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The extracts from wild bitter gourd fruit (WBGE) were reported to possess numerous pharmacological activities. However, the anti-inflammatory effects of WBGE on human lung epithelial cells and the underlying mechanisms have not been determined. PURPOSE To evaluate the molecular basis of the effects of WBGE on intercellular adhesion molecule-1 (ICAM-1) expression in alveolar epithelial (A549) cells, C57BL/6 wild-type (WT) mice and microRNA (miR)-221/-222 knockout (KO) mice with or without tumor necrosis factor (TNF-α; 3 ng/ml) treatment. STUDY DESIGN/METHODS WT mice and miR-221/-222 KO mice were fed a control diet and divided into four groups (C: control mice; T: treated with TNF-α alone; WBGE/T: pretreated with WBGE and then stimulated with TNF-α; WBGE: treated with WBGE alone). The effects of WBGE on ICAM-1 expression and the related signals in A549 cells and mice with or without TNF-α treatment were examined by Western blot and immunofluorescent staining. RESULTS WBGE significantly decreased the TNF-α-induced ICAM-1 expression in A549 cells through the inhibition of phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT)/ nuclear factor- kappa B (NF-κB)/ inhibitor of NF-κB (IκB) phosphorylation and decreased leukocyte adhesion. In addition, WBGE reduced endogenous ICAM-1 expression and upregulated miR-221/-222 expression. The overexpression of miR-222 decreased PI3K/AKT/NF-κB/IκB and ICAM-1 expression, which resulted in reducing monocyte adhesion. Moreover, WBGE reduced ICAM-1 expression in lung tissues of WT mice with or without TNF-α treatment and upregulated miR-221/222. WBGE did not affect the miR-221/-222 level and had little effect on ICAM-1 expression in miR-221/-222 KO mice. CONCLUSIONS These results suggest that WBGE reduced ICAM-1 expression both under in vitro and in vivo conditions. The protective effects were mediated partly through the miR-221/-222/PI3K/AKT/NF-κB pathway.
Collapse
Affiliation(s)
- Hsin-Ching Sung
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Wei Liu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Hsiao
- Department of Nutrition and Health Sciences, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu-Rung Lin
- Department of Bioscience Technology, College of Science, Chung-Yuan Christian University, Taoyuan, Taiwan; Center for Nanotechnology and Center for Biomedical Technology, Chung-Yuan Christian University, Taoyuan, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsien Chiang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chan-Jung Liang
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Taiwan
| | - Chi-Ming Pu
- Division of Plastic Surgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Yu-Chen Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Shian Lin
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan; Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan.
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
34
|
Lin CC, Chiang YC, Cho RL, Lin WN, Yang CC, Hsiao LD, Yang CM. Up-regulation of PYK2/PKCα-dependent haem oxygenase-1 by CO-releasing molecule-2 attenuates TNF-α-induced lung inflammation. Br J Pharmacol 2017; 175:456-468. [PMID: 29139546 DOI: 10.1111/bph.14094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/18/2017] [Accepted: 11/02/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Haem oxygenase-1 (HO-1) could provide cytoprotection against various inflammatory diseases. However, the mechanisms underlying the protective effect of CO-releasing molecule-2 (CORM-2)-induced HO-1 expression against TNF-α-induced inflammatory responses in human pulmonary alveolar epithelial cells (HPAEpiCs) remain unknown. EXPERIMENTAL APPROACH CORM-2-induced HO-1 protein and mRNA expression, and signalling pathways were determined by Western blot and real-time PCR, coupled with respective pharmacological inhibitors or transfection with siRNAs. The effect of CORM-2 on TNF-α-induced increase in leukocyte counts in BAL fluid and VCAM-1 expression in lung was determined by cell counting and Western blot analysis. KEY RESULTS CORM-2 attenuated the TNF-α-induced pulmonary haematoma, VCAM-1 expression and increase in leukocytes through an up-regulation of HO-1 in mice; this effect of CORM-2 was reversed by the HO-1 inhibitor zinc protoporphyrin IX. Furthermore, CORM-2 increased HO-1 protein and mRNA expression as well as the phosphorylation of PYK2, PKCα and ERK1/2 (p44/p42 MAPK) in HPAEpiCs; these effects were attenuated by their respective pharmacological inhibitors or transfection with siRNAs. Inhibition of PKCα by Gö6976 or Gö6983 attenuated CORM-2-induced stimulation of PKCα and ERK1/2 phosphorylation but had no effect on PYK2 phosphorylation. Moreover, inhibition of PYK2 by PF431396 reduced the phosphorylation of all three protein kinases. Finally, PYK2/PKCα/ERK1/2-mediated stimulation of activator protein 1 was shown to play a key role in CORM-2-induced HO-1 expression via an up-regulation of c-Fos mRNA. CONCLUSIONS AND IMPLICATIONS CORM-2 activates a PYK2/PKCα/ERK1/2/AP-1 pathway leading to HO-1 expression in HPAEpiCs. This HO-1/CO system might have potential as a therapeutic target in pulmonary inflammation.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anaesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Tao-Yuan, Taiwan
| | - Yu-Ching Chiang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Rou-Ling Cho
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chien-Chung Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anaesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Anaesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Tao-Yuan, Taiwan.,Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Research Centre for Chinese Herbal Medicine and Research Centre for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| |
Collapse
|
35
|
Abstract
This review reports on the beneficial pharmacological properties of naturally occurring polyphenols for the treatment of inflammatory pulmonary diseases. In addition, it presents an overview of the different types of inhalable formulations which have been developed in order to achieve efficient delivery of polyphenols to the respiratory tract. The main biological activities of polyphenols (anti-oxidant and anti-inflammatory) are covered, with particular emphasis on the studies describing their therapeutic effects on different factors and conditions characteristic of lung pathologies. Special focus is on the technological aspects which influence the pulmonary delivery of drugs. The various polyphenol-based inhalable formulations reported in the literature are examined with specific attention to the preparation methodologies, aerosol performance, lung deposition and in vitro and in vivo polyphenol uptake by the pulmonary epithelial cells.
Collapse
Affiliation(s)
- Valentina Trotta
- a Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Santo Scalia
- a Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| |
Collapse
|
36
|
de Boer A, van de Worp WRPH, Hageman GJ, Bast A. The effect of dietary components on inflammatory lung diseases - a literature review. Int J Food Sci Nutr 2017; 68:771-787. [PMID: 28276906 DOI: 10.1080/09637486.2017.1288199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anti-inflammatory treatment in chronic inflammatory lung diseases usually involves glucocorticosteroids. With patients suffering from serious side effects or becoming resistant, specific nutrients, that are suggested to positively influence disease progression, can be considered as new treatment options. The dietary inflammatory index is used to calculate effects of dietary components on inflammation and lung function to identify most potent dietary components, based on 162 articles. The positive effects of n-3 PUFAs and vitamin E on lung function can at least partially be explained by their anti-inflammatory effect. Many other dietary components showed only small or no effects on inflammation and/or lung function, although the number of weighted studies was often too small for a reliable assessment. Optimal beneficial dietary elements might reduce the required amounts of anti-inflammatory treatments, thereby decreasing both side effects and development of resistance as to improve quality of life of patients suffering from chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Alie de Boer
- a Faculty of Humanities and Sciences , Food Claims Centre Venlo, Maastricht University Campus Venlo, Maastricht University , Venlo , The Netherlands
| | - Wouter R P H van de Worp
- b Department of Pharmacology and Toxicology, Faculty of Health Medicine and Life Sciences , Maastricht University , Maastricht , The Netherlands
| | - Geja J Hageman
- b Department of Pharmacology and Toxicology, Faculty of Health Medicine and Life Sciences , Maastricht University , Maastricht , The Netherlands
| | - Aalt Bast
- b Department of Pharmacology and Toxicology, Faculty of Health Medicine and Life Sciences , Maastricht University , Maastricht , The Netherlands.,c Faculty of Humanities and Sciences , Maastricht University Campus Venlo, Maastricht University , Venlo , The Netherlands
| |
Collapse
|
37
|
Shi J, Deng H, Pan H, Xu Y, Zhang M. Epigallocatechin-3-gallate attenuates microcystin-LR induced oxidative stress and inflammation in human umbilical vein endothelial cells. CHEMOSPHERE 2017; 168:25-31. [PMID: 27776235 DOI: 10.1016/j.chemosphere.2016.10.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) has been shown to possess anti-inflammatory effects. Microcystin-LR (MC-LR) is a potent toxin and our past research suggested that it also mediated human umbilical vein endothelial cell (HUVEC) injury. The aim of this study was to investigate the effects of EGCG on MC-LR-induced oxidative stress and inflammatory responses in HUVECs. HUVECs were stimulated with MC-LR in the presence or absence of EGCG. MC-LR (40 μM) significantly increased cell death and decreased cell viability, migration, and tube formation, whereas EGCG (50 μM) inhibited these effects. Furthermore, the results indicated that EGCG inhibited the production of reactive oxygen species (ROS), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) in MC-LR-stimulated HUVECs. Compared with MC-LR, EGCG significantly increased superoxide dismutase (SOD) and glutathione (GSH) levels and decreased malondialdehyde (MDA) levels. Moreover, the analysis indicated that EGCG suppressed MC-LR-induced NF-κB activation. In conclusion, the effects of EGCG were associated with inhibition of the NF-κB signaling pathway, which resulted in decreased ROS and TNF-α, thereby attenuating MC-LR-mediated oxidative and inflammatory responses.
Collapse
Affiliation(s)
- Jun Shi
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, China
| | - Huiping Deng
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, China
| | - Huichao Pan
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| | - Yinjie Xu
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| | - Min Zhang
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China.
| |
Collapse
|
38
|
Lin CC, Lin WN, Cho RL, Wang CY, Hsiao LD, Yang CM. TNF-α-Induced cPLA 2 Expression via NADPH Oxidase/Reactive Oxygen Species-Dependent NF-κB Cascade on Human Pulmonary Alveolar Epithelial Cells. Front Pharmacol 2016; 7:447. [PMID: 27932980 PMCID: PMC5122718 DOI: 10.3389/fphar.2016.00447] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/08/2016] [Indexed: 01/13/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) triggers activation of cytosolic phospholipase A2 (cPLA2) and then enhancing the synthesis of prostaglandin (PG) in inflammatory diseases. However, the detailed mechanisms of TNF-α induced cPLA2 expression were not fully defined in human pulmonary alveolar epithelial cells (HPAEpiCs). We found that TNF-α-stimulated increases in cPLA2 mRNA (5.2 folds) and protein (3.9 folds) expression, promoter activity (4.3 folds), and PGE2 secretion (4.7 folds) in HPAEpiCs, determined by Western blot, real-time PCR, promoter activity assay and PGE2 ELISA kit. These TNF-α-mediated responses were abrogated by the inhibitors of NADPH oxidase [apocynin (APO) and diphenyleneiodonium chloride (DPI)], ROS [N-acetyl cysteine, (NAC)], NF-κB (Bay11-7082) and transfection with siRNA of ASK1, p47 phox , TRAF2, NIK, IKKα, IKKβ, or p65. TNF-α markedly stimulated NADPH oxidase activation and ROS including superoxide and hydrogen peroxide production which were inhibited by pretreatment with a TNFR1 neutralizing antibody, APO, DPI or transfection with siRNA of TRAF2, ASK1, or p47 phox . In addition, TNF-α also stimulated p47 phox phosphorylation and translocation in a time-dependent manner. On the other hand, TNF-α induced TNFR1, TRAF2, ASK1, and p47 phox complex formation in HPAEpiCs, which were attenuated by a TNF-α neutralizing antibody. We found that pretreatment with NAC, DPI, or APO also attenuated the TNF-α-stimulated IKKα/β and NF-κB p65 phosphorylation, NF-κB (p65) translocation, and NF-κB promoter activity in HPAEpiCs. Finally, we observed that TNF-α-stimulated NADPH oxidase activation and ROS generation activates NF-κB through the NIK/IKKα/β pathway. Taken together, our results demonstrated that in HPAEpiCs, up-regulation of cPLA2 by TNF-α is, at least in part, mediated through the cooperation of TNFR1, TRAF2, ASK1, and NADPH oxidase leading to ROS generation and ultimately activates NF-κB pathway.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou and College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Basic Medicine, Fu Jen Catholic University New Taipei City, Taiwan
| | - Rou-Ling Cho
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| | - Chen-Yu Wang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou and College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou and College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan; Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and TechnologyTao-Yuan, Taiwan
| |
Collapse
|
39
|
Rocha BS, Nunes C, Laranjinha J. Tuning constitutive and pathological inflammation in the gut via the interaction of dietary nitrate and polyphenols with host microbiome. Int J Biochem Cell Biol 2016; 81:393-402. [PMID: 27989963 DOI: 10.1016/j.biocel.2016.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/22/2016] [Accepted: 10/26/2016] [Indexed: 02/08/2023]
Abstract
Chronic inflammation is currently recognized as a critical process in modern-era epidemics such as diabetes, obesity and neurodegeneration. However, little attention is paid to the constitutive inflammatory pathways that operate in the gut and that are mandatory for local welfare and the prevention of such multi-organic diseases. Hence, the digestive system, while posing as a barrier between the external environment and the host, is crucial for the balance between constitutive and pathological inflammatory events. Gut microbiome, a recently discovered organ, is now known to govern the interaction between exogenous agents and the host with ensued impact on local and systemic homeostasis. Whereas gut microbiota may be modulated by a myriad of factors, diet constitutes one of its major determinants. Thus, dietary compounds that influence microbial flora may thereby impact on inflammatory pathways. One such example is the redox environment in the gut lumen which is highly dependent on the local generation of nitric oxide along the nitrate-nitrite-nitric oxide pathway and that is further enhanced by simultaneous consumption of polyphenols. In this paper, different pathways encompassing the interaction of dietary nitrate and polyphenols with gut microbiota will be presented and discussed in connection with local and systemic inflammatory events. Furthermore, it will be discussed how these interactive cycles (nitrate-polyphenols-microbiome) may pose as novel strategies to tackle inflammatory diseases.
Collapse
Affiliation(s)
- Bárbara S Rocha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carla Nunes
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - João Laranjinha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
40
|
Ning W, Wang S, Liu D, Fu L, Jin R, Xu A. Potent effects of peracetylated (-)-epigallocatechin-3-gallate against hydrogen peroxide-induced damage in human epidermal melanocytes via attenuation of oxidative stress and apoptosis. Clin Exp Dermatol 2016; 41:616-24. [PMID: 27339454 DOI: 10.1111/ced.12855] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Damage to melanocytes induced by oxidative stress plays an important role in the pathogenesis of vitiligo. A polyphenol found in green tea, (-)-epigallocatechin-3-gallate (EGCG), exhibits certain antioxidative effects in the treatment of various diseases. The major problem that limits the clinical application of this polyphenol is its low bioavailability and stability. Peracetylated EGCG (AcEGCG), a fully acetylated derivative of EGCG, is more stable and bioavailable than EGCG, but the effects of its action on human epidermal melanocytes have not been elucidated. AIM To compare the protective effects of AcEGCG and EGCG on hydrogen peroxide (H2 O2 )-induced damage to human melanocytes. METHODS Effects of AcEGCG and EGCG on human melanocytes were examined by measuring cell viability, levels of reactive oxygen species (ROS), the mitochondrial membrane potential (ΔΨm)and protein levels of caspase-9, caspase-3 and p38 mitogen-activated protein kinase. RESULTS Both AcEGCG and EGCG decreased ROS generation, restored lost mitochondrial membrane potential and reduced H2 O2 -induced apoptosis in melanocytes. All of these effects were more pronounced with AcEGCG than with EGCG. Furthermore, AcEGCG effectively suppressed H2 O2 -induced p38 mitogen-activated protein kinase phosphorylation, which has been suggested to contribute to melanocyte damage. CONCLUSIONS AcEGCG is a more potent agent than EGCG for protection of melanocytes from oxidative damage.
Collapse
Affiliation(s)
- W Ning
- Department of Dermatology, Guangxing Hospital, Zhejiang Chinese Medical University, Zhejiang, PR, China
| | - S Wang
- Department of Dermatology, Third People's Hospital of Hangzhou, Hangzhou, PR, China
| | - D Liu
- Department of Dermatology, Third People's Hospital of Hangzhou, Hangzhou, PR, China
| | - L Fu
- Department of Dermatology, Third People's Hospital of Hangzhou, Hangzhou, PR, China
| | - R Jin
- Department of Dermatology, Third People's Hospital of Hangzhou, Hangzhou, PR, China
| | - A Xu
- Department of Dermatology, Third People's Hospital of Hangzhou, Hangzhou, PR, China
| |
Collapse
|
41
|
Lin HR, Wu YH, Yen WC, Yang CM, Chiu DTY. Diminished COX-2/PGE2-Mediated Antiviral Response Due to Impaired NOX/MAPK Signaling in G6PD-Knockdown Lung Epithelial Cells. PLoS One 2016; 11:e0153462. [PMID: 27097228 PMCID: PMC4838297 DOI: 10.1371/journal.pone.0153462] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/30/2016] [Indexed: 11/18/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) provides the reducing agent NADPH to meet the cellular needs for reductive biosynthesis and the maintenance of redox homeostasis. G6PD-deficient cells experience a high level of oxidative stress and an increased susceptibility to viral infections. Cyclooxygenase-2 (COX-2) is a key mediator in the regulation of viral replication and inflammatory response. In the current study, the role of G6PD on the inflammatory response was determined in both scramble control and G6PD-knockdown (G6PD-kd) A549 cells upon tumor necrosis factor-α (TNF-α) stimulation. A decreased expression pattern of induced COX-2 and reduced production of downstream PGE2 occurred upon TNF-α stimulation in G6PD-kd A549 cells compared with scramble control A549 cells. TNF-α-induced antiviral activity revealed that decreased COX-2 expression enhanced the susceptibility to coronavirus 229E infection in G6PD-kd A549 cells and was a result of the decreased phosphorylation levels of MAPK (p38 and ERK1/2) and NF-κB. The impaired inflammatory response in G6PD-kd A549 cells was found to be mediated through NADPH oxidase (NOX) signaling as elucidated by cell pretreatment with a NOX2-siRNA or NOX inhibitor, diphenyleneiodonium chloride (DPI). In addition, NOX activity with TNF-α treatment in G6PD-kd A549 cells was not up-regulated and was coupled with a decrease in NOX subunit expression at the transcriptional level, implying that TNF-α-mediated NOX signaling requires the participation of G6PD. Together, these data suggest that G6PD deficiency affects the cellular inflammatory response and the decreased TNF-α-mediated antiviral response in G6PD-kd A549 cells is a result of dysregulated NOX/MAPK/NF-κB/COX-2 signaling.
Collapse
Affiliation(s)
- Hsin-Ru Lin
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Yi-Hsuan Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Wei-Chen Yen
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chuen-Mao Yang
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Department of physiology and pharmacology, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- * E-mail: (DTYC); (CMY)
| | - Daniel Tsun-Yee Chiu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Department of Pediatric Hematology, Chang Gung Memorial Hospital, Lin-Kou, Taiwan
- * E-mail: (DTYC); (CMY)
| |
Collapse
|
42
|
Vezza T, Rodríguez-Nogales A, Algieri F, Utrilla MP, Rodriguez-Cabezas ME, Galvez J. Flavonoids in Inflammatory Bowel Disease: A Review. Nutrients 2016; 8:211. [PMID: 27070642 PMCID: PMC4848680 DOI: 10.3390/nu8040211] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/19/2016] [Accepted: 03/30/2016] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the intestine that compromises the patients’ life quality and requires sustained pharmacological and surgical treatments. Since their etiology is not completely understood, non-fully-efficient drugs have been developed and those that have shown effectiveness are not devoid of quite important adverse effects that impair their long-term use. In this regard, a growing body of evidence confirms the health benefits of flavonoids. Flavonoids are compounds with low molecular weight that are widely distributed throughout the vegetable kingdom, including in edible plants. They may be of great utility in conditions of acute or chronic intestinal inflammation through different mechanisms including protection against oxidative stress, and preservation of epithelial barrier function and immunomodulatory properties in the gut. In this review we have revised the main flavonoid classes that have been assessed in different experimental models of colitis as well as the proposed mechanisms that support their beneficial effects.
Collapse
Affiliation(s)
- Teresa Vezza
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| | - Alba Rodríguez-Nogales
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| | - Maria Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| | - Maria Elena Rodriguez-Cabezas
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| | - Julio Galvez
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| |
Collapse
|
43
|
Yeoh BS, Aguilera Olvera R, Singh V, Xiao X, Kennett MJ, Joe B, Lambert JD, Vijay-Kumar M. Epigallocatechin-3-Gallate Inhibition of Myeloperoxidase and Its Counter-Regulation by Dietary Iron and Lipocalin 2 in Murine Model of Gut Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:912-26. [PMID: 26968114 PMCID: PMC5848242 DOI: 10.1016/j.ajpath.2015.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/05/2015] [Accepted: 12/03/2015] [Indexed: 12/19/2022]
Abstract
Green tea-derived polyphenol (-)-epigallocatechin-3-gallate (EGCG) has been extensively studied for its antioxidant and anti-inflammatory properties in models of inflammatory bowel disease, yet the underlying molecular mechanism is not completely understood. Herein, we demonstrate that EGCG can potently inhibit the proinflammatory enzyme myeloperoxidase in vitro in a dose-dependent manner over a range of physiologic temperatures and pH values. The ability of EGCG to mediate its inhibitory activity is counter-regulated by the presence of iron and lipocalin 2. Spectral analysis indicated that EGCG prevents the peroxidase-catalyzed reaction by reverting the reactive peroxidase heme (compound I:oxoiron) back to its native inactive ferric state, possibly via the exchange of electrons. Further, administration of EGCG to dextran sodium sulfate-induced colitic mice significantly reduced the colonic myeloperoxidase activity and alleviated proinflammatory mediators associated with gut inflammation. However, the efficacy of EGCG against gut inflammation is diminished when orally coadministered with iron. These findings indicate that the ability of EGCG to inhibit myeloperoxidase activity is one of the mechanisms by which it exerts mucoprotective effects and that counter-regulatory factors such as dietary iron and luminal lipocalin 2 should be taken into consideration for optimizing clinical management strategies for inflammatory bowel disease with the use of EGCG treatment.
Collapse
Affiliation(s)
- Beng San Yeoh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Rodrigo Aguilera Olvera
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Xia Xiao
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Mary J Kennett
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Bina Joe
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Joshua D Lambert
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania
| | - Matam Vijay-Kumar
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania; Department of Medicine, The Pennsylvania State University Medical Center, Hershey, Pennsylvania.
| |
Collapse
|
44
|
Cho RL, Yang CC, Lee IT, Lin CC, Chi PL, Hsiao LD, Yang CM. Lipopolysaccharide induces ICAM-1 expression via a c-Src/NADPH oxidase/ROS-dependent NF-κB pathway in human pulmonary alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 310:L639-57. [DOI: 10.1152/ajplung.00109.2014] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 01/06/2016] [Indexed: 11/22/2022] Open
Abstract
Upregulation of intercellular adhesion molecule-1 (ICAM-1) is frequently implicated in lung inflammation. Lipopolysaccharide (LPS) has been shown to play a key role in inflammation via adhesion molecule induction and then causes lung injury. However, the mechanisms underlying LPS-induced ICAM-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs) remain unclear. We showed that LPS induced ICAM-1 expression in HPAEpiCs, revealed by Western blotting, RT-PCR, real-time PCR, and promoter assay. Pretreatment with the inhibitor of c-Src (protein phosphatase-1, PP1), reactive oxygen species (ROS) (Edaravone), NADPH oxidase (apocynin and diphenyleneiodonium chloride), EGFR (AG1478), PDGFR (AG1296), phosphatidylinositol-3-kinase (PI3K) (LY294002), MEK1/2 (U0126), or NF-κB (Bay11-7082) and transfection with siRNAs of c-Src, EGFR, PDGFR, Akt, p47 phox, Nox2, Nox4, p42, and p65 markedly reduced LPS-induced ICAM-1 expression and monocyte adherence to HPAEpiCs challenged with LPS. In addition, we established that LPS stimulated phosphorylation of c-Src, EGFR, PDGFR, Akt, or p65, which was inhibited by pretreatment with their respective inhibitors. LPS induced Toll-like receptor 4 (TLR4), MyD88, TNF receptor-associated factor 6 (TRAF6), c-Src, p47 phox, and Rac1 complex formation 2, which was attenuated by transfection with c-Src or TRAF6 siRNA. Furthermore, LPS markedly enhanced NADPH oxidase activation and intracellular ROS generation, which were inhibited by PP1. We established that LPS induced p42/p44 MAPK activation via a c-Src/NADPH oxidase/ROS/EGFR, PDGFR/PI3K/Akt-dependent pathway in these cells. Finally, we observed that LPS significantly enhanced NF-κB and IκBα phosphorylation, NF-κB translocation, and NF-κB promoter activity, which were inhibited by PP1, Edaravone, apocynin, diphenyleneiodonium chloride, AG1478, AG1296, LY294002 , or U0126. These results demonstrated that LPS induces p42/p44 MAPK activation mediated through the TLR4/MyD88/TRAF6/c-Src/NADPH oxidase/ROS/EGFR, PDGFR/PI3K/Akt pathway, which in turn initiates the activation of NF-κB and ultimately induces ICAM-1 expression in HPAEpiCs.
Collapse
Affiliation(s)
- Rou-Ling Cho
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chien-Chung Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Lin-Kou, Kwei-San, Tao-Yuan, Taiwan
| | - I-Ta Lee
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Pei-Ling Chi
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| |
Collapse
|
45
|
Lin CC, Yang CC, Cho RL, Wang CY, Hsiao LD, Yang CM. Sphingosine 1-Phosphate-Induced ICAM-1 Expression via NADPH Oxidase/ROS-Dependent NF-κB Cascade on Human Pulmonary Alveolar Epithelial Cells. Front Pharmacol 2016; 7:80. [PMID: 27065868 PMCID: PMC4815023 DOI: 10.3389/fphar.2016.00080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/14/2016] [Indexed: 12/11/2022] Open
Abstract
The intercellular adhesion molecule-1 (ICAM-1) expression is frequently correlated with the lung inflammation. In lung injury, sphingosine-1-phosphate (S1P, bioactive sphingolipid metabolite), participate gene regulation of adhesion molecule in inflammation progression and aggravate tissue damage. To investigate the transduction mechanisms of the S1P in pulmonary epithelium, we demonstrated that exposure of HPAEpiCs (human pulmonary alveolar epithelial cells) to S1P significantly induces ICAM-1 expression leading to increase monocyte adhesion on the surface of HPAEpiCs. These phenomena were effectively attenuated by pretreatments with series of inhibitors such as Rottlerin (PKCδ), PF431396 (PYK2), diphenyleneiodonium chloride (DPI), apocynin (NADPH oxidase), Edaravone (ROS), and Bay11-7082 (NF-κB). Consistently, knockdown with siRNA transfection of PKCδ, PYK2, p47phox, and p65 exhibited the same results. Pretreatment with both Gq-coupled receptor antagonist (GPA2A) and Gi/o-coupled receptor antagonist (GPA2) also blocked the upregulation of ICAM-1 protein and mRNA induced by S1P. We observed that S1P induced PYK2 activation via a Gq-coupled receptor/PKCδ-dependent pathway. In addition, S1P induced NADPH oxidase activation and intracellular ROS generation, which were also reduced by Rottlerin or PF431396. We demonstrated that S1P induced NF-κB p65 phosphorylation and nuclear translocation in HPAEpiCs. Activated NF-κB was blocked by Rottlerin, PF431396, APO, DPI, or Edaravone. Besides, the results of monocyte adhesion assay indicated that S1P-induced ICAM-1 expression on HPAEpiCs can enhance the monocyte attachments. In the S1P-treated mice, we found that the levels of ICAM-1 protein and mRNA in the lung fractions, the pulmonary hematoma and leukocyte count in bronchoalveolar lavage fluid were enhanced through a PKCδ/PYK2/NADPH oxidase/ROS/NF-κB signaling pathway. We concluded that S1P-accelerated lung damage is due to the ICAM-1 induction associated with leukocyte recruitment.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan; College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Chien-Chung Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan
| | - Rou-Ling Cho
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University Taoyuan, Taiwan
| | - Chen-Yu Wang
- Department of Anesthetics, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan; College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan; College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Chuen-Mao Yang
- Department of Anesthetics, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan; College of Medicine, Chang Gung UniversityTaoyuan, Taiwan; Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan; Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and TechnologyTaoyuan, Taiwan
| |
Collapse
|
46
|
Fontani F, Domazetovic V, Marcucci T, Vincenzini MT, Iantomasi T. Tumor Necrosis Factor-Alpha Up-Regulates ICAM-1 Expression and Release in Intestinal Myofibroblasts by Redox-Dependent and -Independent Mechanisms. J Cell Biochem 2015; 117:370-81. [DOI: 10.1002/jcb.25279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Filippo Fontani
- Department of Biomedical; Experimental and Clinical Sciences “Mario Serio”; University of Florence; Viale Morgagni 50; 50134 Florence; Italy
| | - Vladana Domazetovic
- Department of Biomedical; Experimental and Clinical Sciences “Mario Serio”; University of Florence; Viale Morgagni 50; 50134 Florence; Italy
| | - Tommaso Marcucci
- Santa Maria Annunziata Hospital; Section of General Surgery; 50126 Via dell'Antella 58, Ponte a Niccheri (Florence); Italy
| | - Maria Teresa Vincenzini
- Department of Biomedical; Experimental and Clinical Sciences “Mario Serio”; University of Florence; Viale Morgagni 50; 50134 Florence; Italy
| | - Teresa Iantomasi
- Department of Biomedical; Experimental and Clinical Sciences “Mario Serio”; University of Florence; Viale Morgagni 50; 50134 Florence; Italy
| |
Collapse
|
47
|
Liu W, Dong M, Bo L, Li C, Liu Q, Li Z, Jin F. Epigallocatechin-3-gallate suppresses alveolar epithelial cell apoptosis in seawater aspiration-induced acute lung injury via inhibiting STAT1-caspase-3/p21 associated pathway. Mol Med Rep 2015; 13:829-36. [PMID: 26647880 DOI: 10.3892/mmr.2015.4617] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 10/26/2015] [Indexed: 11/06/2022] Open
Abstract
The apoptosis of alveolar epithelial cells is important in seawater aspiration‑induced acute lung injury (ALI). The present study aimed to investigate whether epigallocatechin-3-gallate (EGCG) is able to suppress apoptosis in alveolar epithelial cells in seawater aspiration‑induced ALI in vivo and in vitro, and the possible mechanisms underlying it. The results indicated that seawater aspiration‑induced ALI in rats is accompanied by increased apoptosis in lung tissue cells and the expression of apoptosis‑associated proteins, caspase‑3 and p21. EGCG pretreatment significantly ameliorated seawater aspiration‑induced ALI. Furthermore, EGCG decreased seawater aspiration‑induced apoptosis and the expression of caspase‑3 and p21 in lung tissue cells. Seawater‑challenged A549 cells experienced increased apoptosis and elevated levels of phosphorylated‑signal transducer and activator of transcription 1 (P‑STAT1). EGCG pretreatment of the cells resulted in significantly decreased seawater‑induced apoptosis and lower levels of STAT1 and P‑STAT1 in A549 cells. This suggests that EGCG suppresses alveolar epithelial cell apoptosis in seawater aspiration‑induced ALI via inhibiting the STAT1-caspase-3/p21 associated pathway.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pulmonary Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Mingqing Dong
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Liyan Bo
- Department of Pulmonary Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Congcong Li
- Department of Pulmonary Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Qingqing Liu
- Department of Pulmonary Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Zhichao Li
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Faguang Jin
- Department of Pulmonary Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
48
|
Lin YH, Chen ZR, Lai CH, Hsieh CH, Feng CL. Active Targeted Nanoparticles for Oral Administration of Gastric Cancer Therapy. Biomacromolecules 2015; 16:3021-32. [PMID: 26286711 DOI: 10.1021/acs.biomac.5b00907] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gastric carcinogenesis is a commonly diagnosed type of cancer and has a dismal prognosis because of the rate at which it aggressively spreads and because of the lack of effective therapies to stop its progression. This study evaluated a type of oral drug delivery system of a potential target-activated nanosizer comprising a fucose-conjugated chitosan and polyethylene glycol-conjugated chitosan complex with gelatin containing encapsulated green tea polyphenol extract epigallocatechin-3-gallate, allowing oral administration of the drug through a site-specific release in gastric cancer cells. The results demonstrated that the nanoparticles effectively reduced drug release within gastric acids and that a controlled epigallocatechin-3-gallate release inhibited gastric cancer cell growth, induced cell apoptosis, and reduced vascular endothelial growth factor protein expression. Furthermore, in vivo assay results indicated that the prepared epigallocatechin-3-gallate-loaded fucose-chitosan/polyethylene glycol-chitosan/gelatin nanoparticles significantly affected gastric tumor activity and reduced gastric and liver tissue inflammatory reaction in an orthotopic gastric tumor mouse model.
Collapse
Affiliation(s)
- Yu-Hsin Lin
- Department of Biological Science and Technology, China Medical University , Taichung, Taiwan.,Department of Urology, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Zih-Rou Chen
- Department of Biological Science and Technology, China Medical University , Taichung, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University , Taoyuan, Taiwan.,Graduate Institute of Basic Medical Science & School of Medicine, China Medical University , Taichung, Taiwan
| | - Chia-Hung Hsieh
- Graduate Institute of Basic Medical Science, China Medical University , Taichung, Taiwan
| | - Chun-Lung Feng
- Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University Hospital , Taichung, Taiwan
| |
Collapse
|
49
|
Sung HC, Liang CJ, Lee CW, Yen FL, Hsiao CY, Wang SH, Jiang-Shieh YF, Tsai JS, Chen YL. The protective effect of eupafolin against TNF-α-induced lung inflammation via the reduction of intercellular cell adhesion molecule-1 expression. JOURNAL OF ETHNOPHARMACOLOGY 2015; 170:136-147. [PMID: 25975517 DOI: 10.1016/j.jep.2015.04.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/22/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eupafolin, a major bioactive compound found in Phyla nodiflora, has the anti-inflammatory property. Upregulation of cell adhesion molecules in the lung airway epithelium is associated with the epithelium-leukocyte interaction and plays a critical role in the pathogenesis of lung airway inflammatory disorders. To investigate the effects of eupafolin on tumor necrosis factor-α (TNF-α)-induced intercellular cell adhesion molecule-1 (ICAM-1) expression in A549 human lung airway epithelial cells and the underlying mechanisms. MATERIALS AND METHODS The effect of eupafolin on ICAM-1 expression in A549 cells were examined by Western blotting and immunofluorescent staining. The mice were injected intraperitoneally with or without eupafolin and then were left untreated or were injected intratracheally with TNF-α. To detect the effect of eupafolin on ICAM-1 expression, the lung tissues were also examined by Western blotting and immunohistochemical staining. RESULTS Eupafolin pretreatment reduced the TNF-α-induced ICAM-1 expression and also the ERK1/2, JNK, p38, and AKT/PI3K phosphorylation. However, the increase in ICAM-1 expression with TNF-α treatment was unaffected by p38 and PI3K inhibitors. Eupafolin decreased the TNF-α-induced NF-κB p65 activation and its nuclear translocation. Furthermore, eupafolin reduced ICAM-1 expression in the lung tissues of TNF-α-treated mice. CONCLUSIONS Eupafolin exerts its anti-inflammatory activity by suppressing the TNF-α-induced ICAM-1 expression and subsequent monocyte adhesion via AKT/ERK1/2/JNK phosphorylation and nuclear translocation of NF-κB p65. These results suggest that eupafolin may represent a novel therapeutic agent targeting epithelial activation in lung inflammation.
Collapse
Affiliation(s)
- Hsin-Ching Sung
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan; Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chan-Jung Liang
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan; Center for Lipid and Glycomedicine Research (CLGR), Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Lipid Biosciences (CLB), Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Feng-Lin Yen
- Department of France and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Yu Hsiao
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - Ya-Fen Jiang-Shieh
- Department of Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jaw-Shiun Tsai
- Department of Family Medicine and Center for Complementary and Integrated Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
50
|
Chunlian W, Heyong W, Jia X, Jie H, Xi C, Gentao L. Magnolol inhibits tumor necrosis factor-α-induced ICAM-1 expression via suppressing NF-κB and MAPK signaling pathways in human lung epithelial cells. Inflammation 2015; 37:1957-67. [PMID: 24893579 DOI: 10.1007/s10753-014-9928-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Magnolol is a traditional Chinese medicine from the root and bark of Magnolia officinalis. It has long been used to treat anxiety, cough, headache and allergies, as well as a variety of inflammations. Lung inflammation is a key event in the pathogenesis of asthma and chronic obstructive pulmonary disease. The present study sought to examine the effects of magnolol on tumor necrosis factor (TNF)-α-induced upregulation of intercellular adhesion molecule-1 (ICAM-1), activation of the nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathway in cultured human pulmonary epithelial cells, and adhesion of human macrophage-like U937 cells to A549 cells. A549 cells were incubated with magnolol at 25 and 50 μmol/l. Then, 20 ng/ml TNF-α was used to activate the cells. Magnolol inhibited the growth of human pulmonary epithelial A549 cells in a dose- and time-dependent manner. Magnolol suppressed the adhesion of U937 cells to TNF-α-induced A549 cells. In cultured human pulmonary epithelial A549 cells, magnolol decreased TNF-α-induced upregulation of ICAM-1. Magnolol repressed TNF-α-induced activation of NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways in A549 cells by inhibiting phosphorylation of NF-κB, p38, extracellular signal-regulated kinase (ERK) 1/2, and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). These findings support the hypothesis that magnolol inhibits the inflammatory process in lung epithelial A549 cells by suppressing the ICAM-1 and NF-κB and MAPK signaling pathways. Taken together, these results indicate that magnolol offers significant potential as a therapeutic treatment for inflammatory diseases of the lungs including asthma, sepsis, and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Wu Chunlian
- Center for Translational Research, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, 200433, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|