1
|
Mullin SM, Kelly AJ, Ní Chathail MB, Norris S, Shannon CE, Roche HM. Macronutrient Modulation in Metabolic Dysfunction-Associated Steatotic Liver Disease-the Molecular Role of Fatty Acids compared with Sugars in Human Metabolism and Disease Progression. Adv Nutr 2025:100375. [PMID: 39842721 DOI: 10.1016/j.advnut.2025.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a significant public health concern, with its progression to metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis leading to severe outcomes including cirrhosis, hepatocellular carcinoma, and liver failure. Whereas obesity and excess energy intake are well-established contributors to the development and progression of MASLD, the distinct role of specific macronutrients is less clear. This review examines the mechanistic pathways through which dietary fatty acids and sugars contribute to the development of hepatic inflammation and fibrosis, offering a nuanced understanding of their respective roles in MASLD progression. In terms of addressing potential therapeutic options, human intervention studies that investigate whether modifying the intake of dietary fats and carbohydrates affects MASLD progression are reviewed. By integrating this evidence, this review seeks to bridge the gap in the understanding between the mechanisms of macronutrient-driven MASLD progression and the effect of altering the intake of these nutrients in the clinical setting and presents a foundation for future research into targeted dietary strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Sinéad M Mullin
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Aidan J Kelly
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Méabh B Ní Chathail
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Suzanne Norris
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Christopher E Shannon
- Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Helen M Roche
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; Institute for Global Food Security, Queen's University Belfast, Northern Ireland.
| |
Collapse
|
2
|
Westerbeke FHM, Rios-Morales M, Attaye I, Nieuwdorp M. Fructose catabolism and its metabolic effects: Exploring host-microbiota interactions and the impact of ethnicity. J Physiol 2025. [PMID: 39805044 DOI: 10.1113/jp287316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Important health disparities are observed in the prevalence of obesity and associated non-communicable diseases (NCDs), including type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) among ethnic groups. Yet, the underlying factors accounting for these disparities remain poorly understood. Fructose has been widely proposed as a potential mediator of these NCDs, given that hepatic fructose catabolism can result in deleterious metabolic effects, including insulin resistance and hepatic steatosis. Moreover, the fermentation of fructose by the gut microbiota can produce metabolites such as ethanol and acetate, both which serve as potential substrates for de novo lipogenesis (DNL) and could therefore contribute to the development of these metabolic conditions. Significant inter-ethnic differences in gut microbiota composition have been observed. Moreover, fructose consumption varies across ethnic groups, and fructose intake has been demonstrated to significantly alter gut microbiota composition, which can influence its fermenting properties and metabolic effects. Therefore, ethnic differences in gut microbiota composition, which may be influenced by variations in fructose consumption, could contribute to the observed health disparities. This review provides an overview of the complex interactions between host and microbial fructose catabolism, the role of ethnicity in shaping these metabolic processes and their impact on host health. Understanding these interactions could provide insights into the mechanisms driving ethnic health disparities to improve personalized nutrition strategies. KEY POINTS: Dietary fructose consumption has increased substantially over recent decades, which has been associated with the rising prevalence of obesity and non-communicable diseases (NCDs) such as type 2 diabetes and metabolic dysfunction-associated steatotic liver disease. Pronounced disparities among different ethnic groups in NCD prevalence and dietary fructose consumption underscore the need to elucidate the underlying mechanisms of fructose catabolism and its health effects. Together with the well-known toxic effects of hepatic fructose catabolism, emerging evidence highlights a role for the small intestinal microbiota in fermenting sugars like fructose into various bacterial products with potential deleterious metabolic effects. There are significant ethnic differences in gut microbiota composition that, combined with varying fructose consumption, could mediate the observed health disparities. To comprehensively understand the role of the gut microbiota in mediating fructose-induced adverse metabolic effects, future research should focus on the small intestinal microbiota. Future research on fructose - microbiota - host interactions should account for ethnic differences in dietary habits and microbial composition to elucidate the potential role of the gut microbiota in driving the mentioned health disparities.
Collapse
Affiliation(s)
- Florine H M Westerbeke
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Melany Rios-Morales
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ilias Attaye
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Aghaei SM, Hosseini SM. Inflammation-related miRNAs in obesity, CVD, and NAFLD. Cytokine 2024; 182:156724. [PMID: 39106574 DOI: 10.1016/j.cyto.2024.156724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Obesity, cardiovascular diseases (CVD), and nonalcoholic fatty liver disease (NAFLD) pose significant worldwide health challenges, characterized by complex interplay among inflammatory pathways that underlie their development. In this review, we examine the contribution of inflammation and associated signaling molecules to the pathogenesis of these conditions, while also emphasizing the significant participation of non-coding RNAs (ncRNAs) in modulating inflammatory pathways. In the context of obesity, aberrant expression patterns of inflammatory-associated miRNAs play a contributory role in adipose tissue inflammation and insulin resistance, thereby exacerbating disturbances in metabolic homeostasis. Similarly, in CVD, dysregulated miRNA expression alters inflammatory reactions, disrupts endothelial function, and induces cardiac remodeling, thereby impacting the advancement of the disease. Moreover, in the context of NAFLD, inflammatory-associated miRNAs are implicated in mediating hepatic inflammation, lipid deposition, and fibrosis, underscoring their candidacy as promising therapeutic targets. Additionally, the competing endogenous RNA (ceRNA) network has emerged as a novel regulatory mechanism in the etiology of CVD, obesity, and NAFLD, wherein ncRNAs assume pivotal roles in facilitating communication across diverse molecular pathways. Moreover, in the concluding section, we underscored the potential efficacy of directing interventions towards inflammatory-related miRNAs utilizing herbal remedies and therapies based on exosome delivery systems as a promising strategy for ameliorating pathologies associated with inflammation in obesity, CVD, and NAFLD.
Collapse
Affiliation(s)
- Sayed Mohsen Aghaei
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sayed Mostafa Hosseini
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Ko G, Unno T, Kim Y, Kim J. Dietary Polycan, a β-glucan originating from Aureobasidium pullulansSM-2001, attenuates high-fat-diet-induced intestinal barrier damage in obese mice by modulating gut microbiota dysbiosis. Food Sci Nutr 2024; 12:5824-5835. [PMID: 39139941 PMCID: PMC11317661 DOI: 10.1002/fsn3.4235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 08/15/2024] Open
Abstract
Various metabolic diseases caused by a high-fat diet (HFD) are closely related to gut microbiota dysbiosis and epithelial barrier dysfunction. Polycan, a type of β-glucan, is effective in treating anti-obesity and metabolic diseases caused by HFD. However, the effect of Polycan on dysbiosis and epithelial barrier damage is still unknown. In this study, the effects of Polycan on dysbiosis and intestinal barrier damage were investigated using HFD-induced obese model mice. C57BL/6 mice were fed a HFD for 12 weeks and treated with two different doses of Polycan (250 and 500 mg/kg) orally administered during weeks 9 to 12. Polycan supplementation increased the expression of tight junction genes (zonula occludens-1, occludin, and claudin-3) and short-chain fatty acid (SCFA) content while reducing toxic substances (phenol, p-cresol, and skatole). Most significantly, Polycan enriched SCFA-producing bacteria (i.e., Phocaeicola, Bacteroides, Faecalibaculum, Oscillibacter, Lachnospiraceae, and Muribaculaceae), and decreased the Firmicutes/Bacteroidetes ratio and toxic substances-producing bacteria (i.e., Olsenella, Clostridium XVIII, and Schaedlerella). Furthermore, microbial functional capacity prediction of the gut microbiota revealed that Polycan enriched many SCFA-related KEGG enzymes while toxic substance-related KEGG enzymes were depleted. These findings indicated that Polycan has the potential to alleviate HFD-induced intestinal barrier damage by modulating the function and composition of the gut microbiota.
Collapse
Affiliation(s)
- Gwang‐Pyo Ko
- Faculty of Biotechnology, School of Life SciencesSARI Jeju National UniversityJejuKorea
| | - Tatsuya Unno
- Department of MicrobiologyChungbuk National UniversityCheongjuKorea
| | | | - Jungman Kim
- Subtropical/Tropical Organism Gene Bank Jeju National UniversityJejuKorea
- Jeju Institute of Korean MedicineJejuKorea
| |
Collapse
|
5
|
Sánchez-Terrón G, Martínez R, Morcuende D, Caballero V, Estévez M. Pomegranate supplementation alleviates dyslipidemia and the onset of non-alcoholic fatty liver disease in Wistar rats by shifting microbiota and producing urolithin-like microbial metabolites. Food Funct 2024; 15:7348-7363. [PMID: 38661445 DOI: 10.1039/d4fo00688g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), obesity and related chronic diseases are major non-communicable diseases with high mortality rates worldwide. While dietary sugars are known to be responsible for insulin resistance and metabolic syndrome (MetS), the underlying pathophysiological effects of sustained fructose consumption require further elucidation. We hypothesize that certain bioactive compounds (i.e. punicalagin and ellagic acid) from dietary pomegranate could counteract the harmful effects of sustained fructose consumption in terms of obesity and liver damage. The present study aimed to elucidate both the molecular mechanisms involved in the pathophysiology associated with fructose intake and the effect of a punicalagin-rich commercial pomegranate dietary supplement (P) used as a nutritional strategy to alleviate fructose-induced metabolic impairments. Thus, nineteen Wistar rats fed on a basal commercial feed were supplemented with either 30% (w/v) fructose in drinking water (F; n = 7) or 30% (w/v) fructose solution plus 0.2% (w/v) P (F + P; n = 6) for 10 weeks. The results were compared to those from a control group fed on the basal diet and provided with drinking water (C; n = 6). Body weight and energy intake were registered weekly. P supplementation decreased fat depots, counteracted the dyslipidemia caused by F and improved markers of liver injury including steatosis. The study of the microbiota by metagenomics and urine by untargeted MS-based metabolomics revealed microbial metabolites from P that may be responsible for these health benefits.
Collapse
Affiliation(s)
- Guadalupe Sánchez-Terrón
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX, ROR-ID 0174shg90), Cáceres, 10003, Spain.
| | - Remigio Martínez
- Animal Health Department, Animal Health and Zoonoses Research Group (GISAZ), UIC Zoonosis and Emergent Diseases (ENZOEM Competitive Research Unit), Universidad of Córdoba (UCO, ROR-ID 05yc77b46), Córdoba, 14014, Spain
| | - David Morcuende
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX, ROR-ID 0174shg90), Cáceres, 10003, Spain.
| | - Víctor Caballero
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX, ROR-ID 0174shg90), Cáceres, 10003, Spain.
| | - Mario Estévez
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX, ROR-ID 0174shg90), Cáceres, 10003, Spain.
| |
Collapse
|
6
|
Bergheim I, Moreno-Navarrete JM. The relevance of intestinal barrier dysfunction, antimicrobial proteins and bacterial endotoxin in metabolic dysfunction-associated steatotic liver disease. Eur J Clin Invest 2024; 54:e14224. [PMID: 38634717 DOI: 10.1111/eci.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of end-stage liver disease associated with increased mortality and cardiovascular disease. Obesity and diabetes are the most important risk factors of MASLD. It is well-established that obesity-associated insulin resistance leads to a situation of tissue lipotoxicity characterized by an accumulation of excess fat in non-fat tissues such as the liver, promoting the development of MASLD, and its progression into metabolic dysfunction-associated steatohepatitis. METHODS Here, we aimed to review the impact of disrupted intestinal permeability, antimicrobial proteins and bacterial endotoxin in the development and progression of MASLD. RESULTS AND CONCLUSION Recent studies demonstrated that obesity- and obesogenic diets-associated alterations of intestinal microbiota along with the disruption of intestinal barrier integrity, the alteration in antimicrobial proteins and, in consequence, an enhanced translocation of bacterial endotoxin into bloodstream might contribute to this pathological process through to impacting liver metabolism and inflammation.
Collapse
Affiliation(s)
- Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - José María Moreno-Navarrete
- Nutrition, Eumetabolism and Health Group, Institut d'Investigació Biomèdica de Girona (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Universitat de Girona, Girona, Spain
| |
Collapse
|
7
|
Ronen D, Rokach Y, Abedat S, Qadan A, Daana S, Amir O, Asleh R. Human Gut Microbiota in Cardiovascular Disease. Compr Physiol 2024; 14:5449-5490. [PMID: 39109979 DOI: 10.1002/cphy.c230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut ecosystem, termed microbiota, is composed of bacteria, archaea, viruses, protozoa, and fungi and is estimated to outnumber human cells. Microbiota can affect the host by multiple mechanisms, including the synthesis of metabolites and toxins, modulating inflammation and interaction with other organisms. Advances in understanding commensal organisms' effect on human conditions have also elucidated the importance of this community for cardiovascular disease (CVD). This effect is driven by both direct CV effects and conditions known to increase CV risk, such as obesity, diabetes mellitus (DM), hypertension, and renal and liver diseases. Cardioactive metabolites, such as trimethylamine N -oxide (TMAO), short-chain fatty acids (SCFA), lipopolysaccharides, bile acids, and uremic toxins, can affect atherosclerosis, platelet activation, and inflammation, resulting in increased CV incidence. Interestingly, this interaction is bidirectional with microbiota affected by multiple host conditions including diet, bile acid secretion, and multiple diseases affecting the gut barrier. This interdependence makes manipulating microbiota an attractive option to reduce CV risk. Indeed, evolving data suggest that the benefits observed from low red meat and Mediterranean diet consumption can be explained, at least partially, by the changes that these diets may have on the gut microbiota. In this article, we depict the current epidemiological and mechanistic understanding of the role of microbiota and CVD. Finally, we discuss the potential therapeutic approaches aimed at manipulating gut microbiota to improve CV outcomes. © 2024 American Physiological Society. Compr Physiol 14:5449-5490, 2024.
Collapse
Affiliation(s)
- Daniel Ronen
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair Rokach
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Suzan Abedat
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abed Qadan
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samar Daana
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Offer Amir
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rabea Asleh
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Fakhoury-Sayegh N, Hamdan A, Lebbos S, Itani T, Trak-Smayra V, Khazzaka A, Dagher-Hamalian C, Sayegh LN, Mallah M, Obeid O, Sayegh R. Spirulina ( Arthrospira platensis) Improved Nonalcoholic Fatty Liver Disease Characteristics and Microbiota and Did Not Affect Organ Fibrosis Induced by a Fructose-Enriched Diet in Wistar Male Rats. Nutrients 2024; 16:1701. [PMID: 38892633 PMCID: PMC11174493 DOI: 10.3390/nu16111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Spirulina (Arthrospira platensis) is reported to play a role in improving nonalcoholic fatty liver disease (NAFLD) and intestinal microbiota (IM). To study spirulina's effects in the improvement of NAFLD characteristics, IM, and pancreatic-renal lesions induced by a fructose-enriched diet, 40 Wistar healthy male rats, weighing 200-250 g, were randomly divided into four groups of 10, and each rat per group was assigned a diet of equal quantities (20 g/day) for 18 weeks. The first control group (CT) was fed a standardized diet, the second group received a 40% fructose-enriched diet (HFr), and the third (HFr-S5) and fourth groups (HFr-S10) were assigned the same diet composition as the second group but enriched with 5% and 10% spirulina, respectively. At week 18, the HFr-S10 group maintained its level of serum triglycerides and had the lowest liver fat between the groups. At the phylae and family level, and for the same period, the HFr-S10 group had the lowest increase in the Firmicutes/Bacteroidetes ratio and the Ruminococcaceae and the highest fecal alpha diversity compared to all other groups (p < 0.05). These findings suggest that at a 10% concentration, spirulina could be used in nutritional intervention to improve IM, fatty liver, metabolic, and inflammatory parameters associated with NAFLD.
Collapse
Affiliation(s)
- Nicole Fakhoury-Sayegh
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University, Damascus Street, Beirut P.O. Box 11-5076, Lebanon;
| | - Aya Hamdan
- Department of Human Nutrition, College of Health Sciences, QU-Health, Qatar University, Doha 2713, Qatar;
| | - Sarah Lebbos
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University, Damascus Street, Beirut P.O. Box 11-5076, Lebanon;
| | - Tarek Itani
- Laboratory of Enteric Virus Infections, Federal Budgetary Institution of Science Federal Scientific Research Institute of Viral Infections «Virome», Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 620030 Yekaterinburg, Russia;
| | - Viviane Trak-Smayra
- Department of Pathology, Faculty of Medicine, Saint Joseph University, Damascus Street, Beirut P.O. Box 11-5076, Lebanon;
| | - Aline Khazzaka
- Department of Surgical Research, Faculty of Medicine, Saint Joseph University, Damascus Street, Beirut P.O. Box 11-5076, Lebanon;
| | - Carole Dagher-Hamalian
- Department of Pathology, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon;
| | - Lea Nicole Sayegh
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55902, USA;
| | - May Mallah
- Department of Microbiology Research, Faculty of Pharmacy, Saint Joseph University, Damascus Street, Beirut P.O. Box 11-5076, Lebanon;
| | - Omar Obeid
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
| | - Raymond Sayegh
- Department of Gastroenterology, Faculty of Medicine, Saint Joseph University, Damascus Street, Beirut P.O. Box 11-5076, Lebanon;
| |
Collapse
|
9
|
Shi Y, Guo S, Zhou J, Xu P, Wang Y. Black tea preserves intestinal homeostasis through balancing barriers and microbiota in mice. Front Nutr 2024; 11:1367047. [PMID: 38835958 PMCID: PMC11148374 DOI: 10.3389/fnut.2024.1367047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Black tea, a beverage consumed worldwide, possesses favorable effects on gastrointestinal tract, including nourishing stomach and promoting digestion. Nevertheless, its specific effects on intestinal homeostasis remains inconclusive. Methods We applied black tea to mice prior to inducing colitis with DSS and then monitored their body weight and disease activity index (DAI) daily. When sacrificed, we measured intestinal permeability and conducted analyses of mucin and tight junction proteins. We detected inflammatory cytokines, immune cells, and related inflammatory signaling pathways. In addition, the gut microbiota was analyzed through 16S rRNA sequencing, and the concentrations of short-chain fatty acids (SCFAs) were also measured. Results The results showed that black tea-treated group significantly rescued the DSS-disrupted intestinal structure. It reduced the relative abundance of the pathogenic bacterium Turicibacter, while increased the abundance of beneficial bacteria norank_f_Muribaculaceae and restored the contents of SCFAs such as acetate, propionate, and butyrate. It also protected the intestinal barrier by reducing the levels of immune response-related factors (e.g., TNF-α, IL-6, IL-1β) and increasing the expression of tight junction proteins (TJs) (e.g., ZO-1, occludin). Furthermore, black tea exhibited the capacity to suppress the expression of MMP-9 and ICAM-1, as well as to inhibit the activation of NF-κB signaling pathway. Discussion Our findings provide a theoretical framework that elucidates the mechanisms by which black tea preserves intestinal homeostasis, highlighting its potential as a preventive strategy against intestinal disruptions. This study contributes to the understanding of the dietary effects of black tea on gastrointestinal health.
Collapse
Affiliation(s)
- Yuxuan Shi
- Institute of Tea Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Shasha Guo
- Institute of Tea Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Jihong Zhou
- Institute of Tea Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
10
|
Burger K, Jung F, Staufer K, Ladurner R, Trauner M, Baumann A, Brandt A, Bergheim I. MASLD is related to impaired alcohol dehydrogenase (ADH) activity and elevated blood ethanol levels: Role of TNFα and JNK. Redox Biol 2024; 71:103121. [PMID: 38493749 PMCID: PMC10957403 DOI: 10.1016/j.redox.2024.103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Elevated fasting ethanol levels in peripheral blood frequently found in metabolic dysfunction-associated steatohepatitis (MASLD) patients even in the absence of alcohol consumption are discussed to contribute to disease development. To test the hypothesis that besides an enhanced gastrointestinal synthesis a diminished alcohol elimination through alcohol dehydrogenase (ADH) may also be critical herein, we determined fasting ethanol levels and ADH activity in livers and blood of MASLD patients and in wild-type ± anti-TNFα antibody (infliximab) treated and TNFα-/- mice fed a MASLD-inducing diet. Blood ethanol levels were significantly higher in patients and wild-type mice with MASLD while relative ADH activity in blood and liver tissue was significantly lower compared to controls. Both alterations were significantly attenuated in MASLD diet-fed TNFα-/- mice and wild-type mice treated with infliximab. Moreover, alcohol elimination was significantly impaired in mice with MASLD. In in vitro models, TNFα but not IL-1β or IL-6 significantly decreased ADH activity. Our data suggest that elevated ethanol levels in MASLD patients are related to TNFα-dependent impairments of ADH activity.
Collapse
Affiliation(s)
- Katharina Burger
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Finn Jung
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Katharina Staufer
- Department of Internal Medicine III, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria; Department of Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Ruth Ladurner
- Department of General, Visceral and Transplant Surgery, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Michael Trauner
- Department of Internal Medicine III, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Chae YR, Lee YR, Kim YS, Park HY. Diet-Induced Gut Dysbiosis and Leaky Gut Syndrome. J Microbiol Biotechnol 2024; 34:747-756. [PMID: 38321650 DOI: 10.4014/jmb.2312.12031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Chronic gut inflammation promotes the development of metabolic diseases such as obesity. There is growing evidence which suggests that dysbiosis in gut microbiota and metabolites disrupt the integrity of the intestinal barrier and significantly impact the level of inflammation in various tissues, including the liver and adipose tissues. Moreover, dietary sources are connected to the development of leaky gut syndrome through their interaction with the gut microbiota. This review examines the effects of these factors on intestinal microorganisms and the communication pathways between the gut-liver and gut-brain axis. The consumption of diets rich in fats and carbohydrates has been found to weaken the adherence of tight junction proteins in the gastrointestinal tract. Consequently, this allows endotoxins, such as lipopolysaccharides produced by detrimental bacteria, to permeate through portal veins, leading to metabolic endotoxemia and alterations in the gut microbiome composition with reduced production of metabolites, such as short-chain fatty acids. However, the precise correlation between gut microbiota and alternative sweeteners remains uncertain, necessitating further investigation. This study highlights the significance of exploring the impact of diet on gut microbiota and the underlying mechanisms in the gut-liver and gut-brain axis. Nevertheless, limited research on the gut-liver axis poses challenges in comprehending the intricate connections between diet and the gut-brain axis. This underscores the need for comprehensive studies to elucidate the intricate gut-brain mechanisms underlying intestinal health and microbiota.
Collapse
Affiliation(s)
- Yu-Rim Chae
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Yu Ra Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Young-Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
12
|
Yiğit Ziolkowski A, Şenol N, Aslankoç R, Samur G. Whey protein supplementation reduced the liver damage scores of rats fed with a high fat-high fructose diet. PLoS One 2024; 19:e0301012. [PMID: 38573884 PMCID: PMC10994406 DOI: 10.1371/journal.pone.0301012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/09/2024] [Indexed: 04/06/2024] Open
Abstract
Different functional foods with bioactive nutrients are being explored for the management of NAFLD. Whey proteins are rich in bioactive peptides and are suggested to show antioxidant and anti-inflammatory effects. We aim to test the hypothesis that the whey protein supplementation following a high fat-high fructose (HFHF) diet would protect against liver damage, inflammation, endotoxemia and steatosis in male Wistar rats. 36 rats were randomized into four groups for 8 weeks as the HFHF diet group, HFHF diet and whey protein isolate (WPI-200mg/kg/day) group (HFHF+WPI), control (C) group, and C+WPI (200mg/kg/day) group. Rats fed with a HFHF diet had higher final body weight compared to C and C+WPI groups (p = 0.002). Thus, WPI showed no significant effects for the body weight of rats with a HFHF diet. On the other hand, the HFHF+WPI group had significantly lower abdominal circumference when compared with the HFHF group (p<0,001). Higher serum CRP levels were observed in the groups with a HFHF diet (p<0,001) and WPI supplementation showed no effects on CRP levels. Whey protein supplementation resulted with lower total liver damage score in HFHF+WPI group compared with the HFHF diet group (p<0,001). Conversely, higher liver damage scores were observed with the C+WPI group compared to C group (p<0,001). HFHF diet resulted with higher expression of TLR-4 in the liver meanwhile WPI supplementation showed no effects on liver TLR-4 expression. We observed higher colon Occludin expression in HFHF+WPI and C+WPI groups compared with HFHF and C groups (p<0,001). Our results showed that, whey protein supplementation might help improve liver damage associated with a high fat-high fructose diet and increase the expression of Occludin in the small intestine and colon.
Collapse
Affiliation(s)
- Aslı Yiğit Ziolkowski
- Faculty of Health Sciences, Nutrition and Dietetics Department, Süleyman Demirel University, Isparta, Turkey
| | - Nurgül Şenol
- Faculty of Health Sciences, Nutrition and Dietetics Department, Süleyman Demirel University, Isparta, Turkey
| | - Rahime Aslankoç
- Faculty of Medicine, Department of Physiology, Süleyman Demirel University, Isparta, Turkey
| | - Gülhan Samur
- Faculty of Health Sciences, Nutrition and Dietetics Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
13
|
Gan Q, Song G, Fang W, Wang Y, Qi W. Fructose dose-dependently influences colon barrier function by regulation of some main physical, immune, and biological factors in rats. J Nutr Biochem 2024; 126:109582. [PMID: 38242179 DOI: 10.1016/j.jnutbio.2024.109582] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Little is known about the effects of fructose on colonic function. Here, forty-eight 7-week-old male SD rats were randomly divided into four groups and given 0, 7.5%, 12.75%, and 35% fructose in diet for 8 weeks respectively to investigate the regulatory influence of fructose on colonic barrier function. The exact amount of fructose intake was tracked and recorded. We showed that fructose affects colonic barrier function in a dose-dependent manner. High-fructose at a dose of 1.69±0.23 g/kg/day could damage the physical barrier function of the colon by down-regulating expression of tight junction proteins (ZO-1 and occludin) and mucus layer biomarkers (MUC2 and TFF3). High fructose reduced sIgA and the anti-inflammatory cytokine (IL-10), induced abdominal fat accumulation and pro-inflammatory cytokines (IL-6 and IL-8), leading to colon inflammation and immune barrier dysfunction. In addition, high-fructose altered the biological barrier of the colon by decreasing the abundance of Blautia, Ruminococcus, and Lactobacillius, and increasing the abundance of Allobaculum at the genus level, leading to a reduction in short-chain fatty acids (SCFAs), amino acids, and carbohydrates, etc. Low fructose at a dose of 0.31±0.05 g/kg/day showed no adverse effects on the colonic barrier. The ability of fructose to affect the colonic barrier through physical, immune, and biological pathways provides additional insight into the intestinal disorders caused by high-fructose diets.
Collapse
Affiliation(s)
- Qianyun Gan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China;; Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Ge Song
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Wei Fang
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Wentao Qi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China;; Academy of National Food and Strategic Reserves Administration, Beijing, China.
| |
Collapse
|
14
|
Wen Y, Zhang T, Zhang B, Wang F, Wei X, Wei Y, Ma X, Tang X. Comprehensive bibliometric and visualized analysis of research on gut-liver axis published from 1998 to 2022. Heliyon 2024; 10:e27819. [PMID: 38496853 PMCID: PMC10944270 DOI: 10.1016/j.heliyon.2024.e27819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
Background The concept of the gut-liver axis was proposed by Marshall in 1998, and since then, this hypothesis has been gradually accepted by the academic community. Many publications have been published on the gut-liver axis, making it important to assess the scientific implications of these studies and the trends in this field. Methods Publications were retrieved from the Web of Science Core Collection. Microsoft Excel, CiteSpace, VOSviewer, and Scimago Graphica software were used for bibliometric analysis. Results A total of 776 publications from the Web of Science core database were included in this study. In the past 25 years, the number of publications on the gut-liver axis has shown an upward trend, particularly in the past 3 years (2020-2022). China had the highest number of publications (267 articles, 34.4%). However, the United States was at the top regarding influence and international cooperation in this field. The University of California San Diego had contributed the most publications. Suk, Ki Tae and Schnabl, Bernd were tied for the first rank in most publications. Thematic hotspots and frontiers were focused on gut microbiota, microbial metabolite, intestinal permeability, bacterial translocation, bile acid, non-alcoholic steatohepatitis, and alcoholic liver disease. Conclusion Our study is the first bibliometric analysis of literature using visualization software to present the current research status of the gut-liver axis over the past 25 years. The damage and repair of intestinal barrier function, as well as the disruption of gut microbiota and host metabolism, should be a focus of attention. This study can provide a reference for later researchers to understand the global research trends, hotspots, and frontiers in this field.
Collapse
Affiliation(s)
- Yongtian Wen
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tai Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Beihua Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuxiu Wei
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuchen Wei
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangxue Ma
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Montero-Vallejo R, Maya-Miles D, Ampuero J, Martín F, Romero-Gómez M, Gallego-Durán R. Novel insights into metabolic-associated steatotic liver disease preclinical models. Liver Int 2024; 44:644-662. [PMID: 38291855 DOI: 10.1111/liv.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
Metabolic-associated steatotic liver disease (MASLD) encompasses a wide spectrum of metabolic conditions associated with an excess of fat accumulation in the liver, ranging from simple hepatic steatosis to cirrhosis and hepatocellular carcinoma. Finding appropriate tools to study its development and progression is essential to address essential unmet therapeutic and staging needs. This review discusses advantages and shortcomings of different dietary, chemical and genetic factors that can be used to mimic this disease and its progression in mice from a hepatic and metabolic point of view. Also, this review will highlight some additional factors and considerations that could have a strong impact on the outcomes of our model to end up providing recommendations and a checklist to facilitate the selection of the appropriate MASLD preclinical model based on clinical aims.
Collapse
Affiliation(s)
- Rocío Montero-Vallejo
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Douglas Maya-Miles
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Javier Ampuero
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Franz Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University Pablo Olavide-University of Seville-CSIC, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Romero-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Rocío Gallego-Durán
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| |
Collapse
|
16
|
Ochoa-Rios S, Grauzam SE, Gregory R, Angel PM, Drake RR, Helke KL, Mehta AS. Spatial Omics Reveals that Cancer-Associated Glycan Changes Occur Early in Liver Disease Development in a Western Diet Mouse Model of MASLD. J Proteome Res 2024; 23:786-796. [PMID: 38206822 DOI: 10.1021/acs.jproteome.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive disease and comprises different stages of liver damage; it is significantly associated with obese and overweight patients. Untreated MASLD can progress to life-threatening end-stage conditions, such as cirrhosis and liver cancer. N-Linked glycosylation is one of the most common post-translational modifications in the cell surface and secreted proteins. N-Linked glycan alterations have been established to be signatures of liver diseases. However, the N-linked glycan changes during the progression of MASLD to liver cancer are still unknown. Here, we induced different stages of MASLD in mice and liver-cancer-related phenotypes and elucidated the N-glycome profile during the progression of MASLD by quantitative and qualitative profiling in situ using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS). Importantly, we identified specific N-glycan structures including fucosylated and highly branched N-linked glycans at very early stages of liver injury (steatosis), which in humans are associated with cancer development, establishing the importance of these modifications with disease progression. Finally, we report that N-linked glycan alterations can be observed in our models by MALDI-IMS before liver injury is identified by histological analysis. Overall, we propose these findings as promising biomarkers for the early diagnosis of liver injury in MASLD.
Collapse
Affiliation(s)
- Shaaron Ochoa-Rios
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Stéphane Elie Grauzam
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Rebecca Gregory
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
17
|
Rodrigues SG, van der Merwe S, Krag A, Wiest R. Gut-liver axis: Pathophysiological concepts and medical perspective in chronic liver diseases. Semin Immunol 2024; 71:101859. [PMID: 38219459 DOI: 10.1016/j.smim.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Susana G Rodrigues
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Schalk van der Merwe
- Department of Gastroenterology and Hepatology, University hospital Gasthuisberg, University of Leuven, Belgium
| | - Aleksander Krag
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark, University of Southern Denmark, Odense, Denmark
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
18
|
Brandt A, Csarmann K, Hernández-Arriaga A, Baumann A, Staltner R, Halilbasic E, Trauner M, Camarinha-Silva A, Bergheim I. Antibiotics attenuate diet-induced nonalcoholic fatty liver disease without altering intestinal barrier dysfunction. J Nutr Biochem 2024; 123:109495. [PMID: 37871765 DOI: 10.1016/j.jnutbio.2023.109495] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
To date the role of the alterations of intestinal microbiota in the development of intestinal barrier dysfunction in settings of nonalcoholic fatty liver disease (NAFLD) has not been fully understood. Here, we assessed the effect of antibiotics on development of NAFLD and their impact on intestinal barrier dysfunction. Male C57BL/6J mice were either pair-fed a liquid control diet (C) or fat- and fructose-rich diet (FFr) +/- antibiotics (AB, ampicillin/vancomycin/metronidazole/gentamycin) for 7 weeks. Fasting blood glucose was determined and markers of liver damage, inflammation, intestinal barrier function, and microbiota composition were assessed. The development of hepatic steatosis with early signs of inflammation found in FFr-fed mice was significantly abolished in FFr+AB-fed mice. Also, while prevalence of bacteria in feces was not detectable and TLR4 ligand levels in portal plasma were at the level of controls in FFr+AB-fed mice, impairments of intestinal barrier function like an increased permeation of xylose and iNOS protein levels persisted to a similar extent in both FFr-fed groups irrespective of AB use. Exposure of everted small intestinal tissue sacs of naïve mice to fructose resulted in a significant increase in tissue permeability and loss of tight junction proteins, being not affected by the presence of AB, whereas the concomitant treatment of tissue sacs with the NOS inhibitor aminoguanidine attenuated these alterations. Taken together, our data suggest that intestinal barrier dysfunction in diet-induced NAFLD in mice may not be predominantly dependent on changes in intestinal microbiota but rather that fructose-induced alterations of intestinal NO-homeostasis might be critically involved.
Collapse
Affiliation(s)
- Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Katja Csarmann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Angélica Hernández-Arriaga
- Livestock Microbial Ecology Department, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Emina Halilbasic
- Department of Internal Medicine III, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Department of Internal Medicine III, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| | - Amélia Camarinha-Silva
- Livestock Microbial Ecology Department, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Burger K, Jung F, Baumann A, Brandt A, Staltner R, Sánchez V, Bergheim I. TNFα is a key trigger of inflammation in diet-induced non-obese MASLD in mice. Redox Biol 2023; 66:102870. [PMID: 37683301 PMCID: PMC10493600 DOI: 10.1016/j.redox.2023.102870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Tumor necrosis factor alpha (TNFα) is thought to be a critical factor in the development of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we determined the effects of a treatment with the anti-TNFα antibody infliximab and a genetic deletion of TNFα, respectively, in the development of non-obese diet-induced early metabolic dysfunction-associated steatohepatitis (MASH) in mice. The treatment with infliximab improved markers of liver damage in mice with pre-existing early MASH. In TNFα-/- mice, the development of early signs of MASH and insulin resistance was significantly attenuated compared to wild-type animals. While mRNA expression of proinflammatory cytokines like interleukin 1β (Il1b) and interleukin 6 (Il6) were significantly lower in livers of MASH-diet-fed TNFα-/- mice compared to wild-type mice with early MASH, markers of intestinal barrier function were similarly impaired in both MASH-diet-fed groups compared to controls. Our data suggest that TNFα is a key regulator of hepatic inflammation and insulin resistance associated with the development of early non-obese MASH.
Collapse
Affiliation(s)
- Katharina Burger
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Finn Jung
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Victor Sánchez
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Alabdulaali B, Al-rashed F, Al-Onaizi M, Kandari A, Razafiarison J, Tonui D, Williams MR, Blériot C, Ahmad R, Alzaid F. Macrophages and the development and progression of non-alcoholic fatty liver disease. Front Immunol 2023; 14:1195699. [PMID: 37377968 PMCID: PMC10291618 DOI: 10.3389/fimmu.2023.1195699] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The liver is the site of first pass metabolism, detoxifying and metabolizing blood arriving from the hepatic portal vein and hepatic artery. It is made up of multiple cell types, including macrophages. These are either bona fide tissue-resident Kupffer cells (KC) of embryonic origin, or differentiated from circulating monocytes. KCs are the primary immune cells populating the liver under steady state. Liver macrophages interact with hepatocytes, hepatic stellate cells, and liver sinusoidal endothelial cells to maintain homeostasis, however they are also key contributors to disease progression. Generally tolerogenic, they physiologically phagocytose foreign particles and debris from portal circulation and participate in red blood cell clearance. However as immune cells, they retain the capacity to raise an alarm to recruit other immune cells. Their aberrant function leads to the development of non-alcoholic fatty liver disease (NAFLD). NAFLD refers to a spectrum of conditions ranging from benign steatosis of the liver to steatohepatitis and cirrhosis. In NAFLD, the multiple hit hypothesis proposes that simultaneous influences from the gut and adipose tissue (AT) generate hepatic fat deposition and that inflammation plays a key role in disease progression. KCs initiate the inflammatory response as resident immune effectors, they signal to neighbouring cells and recruit monocytes that differentiated into recruited macrophages in situ. Recruited macrophages are central to amplifying the inflammatory response and causing progression of NAFLD to its fibro-inflammatory stages. Given their phagocytic capacity and their being instrumental in maintaining tissue homeostasis, KCs and recruited macrophages are fast-becoming target cell types for therapeutic intervention. We review the literature in the field on the roles of these cells in the development and progression of NAFLD, the characteristics of patients with NAFLD, animal models used in research, as well as the emerging questions. These include the gut-liver-brain axis, which when disrupted can contribute to decline in function, and a discussion on therapeutic strategies that act on the macrophage-inflammatory axis.
Collapse
Affiliation(s)
- Bader Alabdulaali
- Dasman Diabetes Institute, Kuwait City, Kuwait
- Ministry of Health, Kuwait City, Kuwait
| | | | - Mohammed Al-Onaizi
- Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Anwar Kandari
- Dasman Diabetes Institute, Kuwait City, Kuwait
- Ministry of Health, Kuwait City, Kuwait
| | - Joanna Razafiarison
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| | - Dorothy Tonui
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| | | | - Camille Blériot
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
- Inserm U1015, Gustave Roussy, Villejuif, France
| | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Kuwait City, Kuwait
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| |
Collapse
|
21
|
Moradi M, Mard SA, Farbood Y, Dianat M, Goudarzi G, Khorsandi L, Seyedian SS. The protective effect of p-Coumaric acid on hepatic injury caused by particulate matter in the rat and determining the role of long noncoding RNAs MEG3 and HOTAIR. J Biochem Mol Toxicol 2023:e23364. [PMID: 37183931 DOI: 10.1002/jbt.23364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 12/30/2022] [Accepted: 03/20/2023] [Indexed: 05/16/2023]
Abstract
Increasing air pollution is associated with serious human health problems. P-coumaric acid (PC) is a herbal phenolic compound that exhibits beneficial pharmacological potentials. Here, the protective effect of PC on liver injury induced by air pollution was examined. Thirty-two adult male Wistar rats (200-250 g) were divided randomly into four groups (n = 8). The groups were; Control (rats received DMSO and then exposed to clean air), PC (rats received PC and then exposed to clean air), DMSO + Dust (rats received DMSO and then exposed to dust), and PC + Dust (the animals received PC and then exposed to dust). The clean air, DMSO, PC, and dust were administrated 3 days a week for 6 consecutive weeks. The rats were anesthetized and their blood samples and liver sections were taken to conduct molecular, biomedical, and histopathological tests. Dust exposure increased the liver enzymes, bilirubin, triglyceride, cholesterol, and the production of liver malondialdehyde, and decreased in liver total anti-oxidant capacity and serum high-density lipoprotein. It also increased the mRNA expression of inflammatory-related cytokines, decreased the mRNA expression of SIRT-1, decreased the expression levels of miR-20b5p, and MEG3 while increased the expression levels of miR-34a, and HOTAIR. Dust exposure also increased the liver content of three cytokines TNF-α, NF-κB, HMGB-1, and ATG-7 proteins. PC enhanced liver function against adverse effects of dust through recovering almost all the studied variables. Exposure to dust damaged the liver through induction of oxidative stress, inflammation, and autophagy. PC protected the liver against dust-induced cytotoxicity.
Collapse
Affiliation(s)
- Mojtaba Moradi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed A Mard
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran. Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, School of Medicine, Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed S Seyedian
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Inci MK, Park SH, Helsley RN, Attia SL, Softic S. Fructose impairs fat oxidation: Implications for the mechanism of western diet-induced NAFLD. J Nutr Biochem 2023; 114:109224. [PMID: 36403701 PMCID: PMC11042502 DOI: 10.1016/j.jnutbio.2022.109224] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Increased fructose intake from sugar-sweetened beverages and highly processed sweets is a well-recognized risk factor for the development of obesity and its complications. Fructose strongly supports lipogenesis on a normal chow diet by providing both, a substrate for lipid synthesis and activation of lipogenic transcription factors. However, the negative health consequences of dietary sugar are best observed with the concomitant intake of a HFD. Indeed, the most commonly used obesogenic research diets, such as "Western diet", contain both fructose and a high amount of fat. In spite of its common use, how the combined intake of fructose and fat synergistically supports development of metabolic complications is not fully elucidated. Here we present the preponderance of evidence that fructose consumption decreases oxidation of dietary fat in human and animal studies. We provide a detailed review of the mitochondrial β-oxidation pathway. Fructose affects hepatic activation of fatty acyl-CoAs, decreases acylcarnitine production and impairs the carnitine shuttle. Mechanistically, fructose suppresses transcriptional activity of PPARα and its target CPT1α, the rate limiting enzyme of acylcarnitine production. These effects of fructose may be, in part, mediated by protein acetylation. Acetylation of PGC1α, a co-activator of PPARα and acetylation of CPT1α, in part, account for fructose-impaired acylcarnitine production. Interestingly, metabolic effects of fructose in the liver can be largely overcome by carnitine supplementation. In summary, fructose decreases oxidation of dietary fat in the liver, in part, by impairing acylcarnitine production, offering one explanation for the synergistic effects of these nutrients on the development of metabolic complications, such as NAFLD.
Collapse
Affiliation(s)
| | - Se-Hyung Park
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Robert N Helsley
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Suzanna L Attia
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Samir Softic
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Ji L, Deng H, Xue H, Wang J, Hong K, Gao Y, Kang X, Fan G, Huang W, Zhan J, You Y. Research progress regarding the effect and mechanism of dietary phenolic acids for improving nonalcoholic fatty liver disease via gut microbiota. Compr Rev Food Sci Food Saf 2023; 22:1128-1147. [PMID: 36717374 DOI: 10.1111/1541-4337.13106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 02/01/2023]
Abstract
Phenolic acids (PAs), a class of small bioactive molecules widely distributed in food and mainly found as secondary plant metabolites, present significant advantages such as antioxidant activity and other health benefits. The global epidemic of nonalcoholic fatty liver disease (NAFLD) is becoming a serious public health problem. Existing studies showed that gut microbiota (GM) dysbiosis is highly associated with the occurrence and development of NAFLD. In recent years, progress has been made in the study of the relationship among PA compounds, GM, and NAFLD. PAs can regulate the composition and functions of the GM to promote human health, while GM can increase the dietary sources of PAs and improve its bioavailability. This paper discussed PAs, GM, and their interrelationship while introducing several representative dietary PA sources and examining the absorption and metabolism of PAs mediated by GM. It also summarizes the effect and mechanisms of PAs in improving and regulating NAFLD via GM and their metabolites. This helps to better evaluate the potential preventive effect of PAs on NAFLD via the regulation of GM and expands the utilization of PAs and PA-rich food resources.
Collapse
Affiliation(s)
- Lin Ji
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Huan Deng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Huimin Xue
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jiting Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Kexin Hong
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yunxiao Gao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xiping Kang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Guanghe Fan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Peng Y, Dong W, Chen G, Mi J, Lu L, Xie Z, Xu W, Zhou W, Sun Y, Zeng X, Cao Y, Yan Y. Anthocyanins from Lycium ruthenicum Murray Ameliorated High-Fructose Diet-Induced Neuroinflammation through the Promotion of the Integrity of the Intestinal Barrier and the Proliferation of Lactobacillus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2864-2882. [PMID: 36725206 DOI: 10.1021/acs.jafc.2c06713] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the present study, we found that anthocyanins from Lycium ruthenicum Murray (ACN) potently ameliorated a high-fructose diet (HFrD)-induced neuroinflammation in mice. ACN improved the integrity of the intestinal barrier and suppressed the toll-like receptor 4 (TLR4) signaling pathway to ameliorate the neuroinflammation, which was verified by Tlr4-/- mice. Furthermore, ACN could modulate the HFrD-induced dysbiosis of gut microbiota. The fecal microbiota transplantation from ACN-induced mice was sufficient to attenuate the neuroinflammation, while the amelioration of neuroinflammation by ACN was blocked upon gut microbiota depletion. In addition, ACN-induced increment of the relative abundance of Lactobacillus might be responsible for the alleviation of the neuroinflammation, which was further confirmed in the promoting effect of ACN on the growth of Lactobacillus in vitro. Overall, these results provided the evidence of a comprehensive cross-talk mechanism between ACN and neuroinflammation in HFrD-fed mice, which was mediated by reducing gut microbiota dysbiosis and maintaining the intestinal barrier integrity.
Collapse
Affiliation(s)
- Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia Mi
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
- National Wolfberry Engineering Research Center, Yinchuan, Ningxia 750002, China
| | - Lu Lu
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
- National Wolfberry Engineering Research Center, Yinchuan, Ningxia 750002, China
| | - Zhiyong Xie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Youlong Cao
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Yamei Yan
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
| |
Collapse
|
25
|
Pengnet S, Sumarithum P, Phongnu N, Prommaouan S, Kantip N, Phoungpetchara I, Malakul W. Naringin attenuates fructose-induced NAFLD progression in rats through reducing endogenous triglyceride synthesis and activating the Nrf2/HO-1 pathway. Front Pharmacol 2022; 13:1049818. [PMID: 36588703 PMCID: PMC9797507 DOI: 10.3389/fphar.2022.1049818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Excessive fructose consumption causes hepatic lipid accumulation via increased triglyceride (TG) synthesis, leading to the development and progression of non-alcoholic fatty liver disease (NALFD). Naringin, a flavanone glycoside found in citrus fruit, has antioxidant and hypolipidemic properties. Therefore, the aim of this study was to investigate the effect of naringin on fructose-induced NAFLD in rats and the possible underlying mechanism. Methods: Male Sprague Dawley rats were given 10% (w/v) fructose in drinking water for 12 weeks. Naringin (100 mg/kg/day) was administered orally to rats for the last 4 weeks of fructose overload. After 12 weeks of treatment, the hepatic lipid content was determined. In addition, the expression of proteins involved in de novo lipogenesis (DNL) and TG synthesis as well as antioxidant and inflammatory mediators in the liver were examined by western blot analysis. Results: Treatment of fructose-fed rats with naringin significantly decreased the hepatic TG and cholesterol content as well as serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities. Naringin treatment also decreased the hepatic expression of carbohydrate response element binding protein (ChREBP), sterol regulatory element-binding protein-1c (SREBP-1c) and nuclear SREBP-1c (nSREBP-1c) as well as enzymes involved in DNL (acetyl CoA carboxylase [ACC] and fatty acid synthase [FAS]) and an enzyme involved in TG synthesis (glycerol-3-phosphate acyltransferase 1 [GPAT-1] and diacylglycerol acyltransferase2 [DGAT2]) in fructose-fed rats. In addition, naringin induced a significant decrease in the hepatic expression of nuclear factor kappa B (NF-κB) and tumor necrosis factor α (TNF-α). Furthermore, naringin administration restored the expression of the antioxidant mediators nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) in the liver of fructose-fed rats. Conclusion: These results demonstrate that oral administration of naringin protects against fructose-induced hepatic steatosis by decreasing DNL and TG synthesis. In addition, naringin could prevent NAFLD progression via targeting the Nrf2/HO-1 and the NF-κB/TNF-α pathways.
Collapse
Affiliation(s)
- Sirinat Pengnet
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Phinsuda Sumarithum
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Nuttaphong Phongnu
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sakdina Prommaouan
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Napapas Kantip
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Ittipon Phoungpetchara
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Wachirawadee Malakul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand,Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand,*Correspondence: Wachirawadee Malakul,
| |
Collapse
|
26
|
Chua D, Low ZS, Cheam GX, Ng AS, Tan NS. Utility of Human Relevant Preclinical Animal Models in Navigating NAFLD to MAFLD Paradigm. Int J Mol Sci 2022; 23:14762. [PMID: 36499091 PMCID: PMC9737809 DOI: 10.3390/ijms232314762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Fatty liver disease is an emerging contributor to disease burden worldwide. The past decades of work established the heterogeneous nature of non-alcoholic fatty liver disease (NAFLD) etiology and systemic contributions to the pathogenesis of the disease. This called for the proposal of a redefinition in 2020 to that of metabolic dysfunction-associated fatty liver disease (MAFLD) to better reflect the current understanding of the disease. To date, several clinical cohort studies comparing NAFLD and MAFLD hint at the relevancy of the new nomenclature in enriching for patients with more severe hepatic injury and extrahepatic comorbidities. However, the underlying systemic pathogenesis is still not fully understood. Preclinical animal models have been imperative in elucidating key biological mechanisms in various contexts, including intrahepatic disease progression, interorgan crosstalk and systemic dysregulation. Furthermore, they are integral in developing novel therapeutics against MAFLD. However, substantial contextual variabilities exist across different models due to the lack of standardization in several aspects. As such, it is crucial to understand the strengths and weaknesses of existing models to better align them to the human condition. In this review, we consolidate the implications arising from the change in nomenclature and summarize MAFLD pathogenesis. Subsequently, we provide an updated evaluation of existing MAFLD preclinical models in alignment with the new definitions and perspectives to improve their translational relevance.
Collapse
Affiliation(s)
- Damien Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Zun Siong Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Guo Xiang Cheam
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Aik Seng Ng
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
27
|
Tilg H, Adolph TE, Trauner M. Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metab 2022; 34:1700-1718. [PMID: 36208625 DOI: 10.1016/j.cmet.2022.09.017] [Citation(s) in RCA: 244] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 02/07/2023]
Abstract
Bidirectional crosstalk along the gut-liver axis controls gastrointestinal health and disease and exploits environmental and host mediators. Nutrients, microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the gut and liver, which reciprocally shape microbial community structure and function. Perturbation of such host-microbe interactions is observed in a variety of experimental liver diseases and is facilitated by an impaired intestinal barrier, which is fueling hepatic inflammation and disease progression. Clinical evidence describes perturbation of the gut-liver crosstalk in non-alcoholic fatty liver disease, alcoholic liver disease, and primary sclerosing cholangitis. In liver cirrhosis, a common sequela of these diseases, the intestinal microbiota and microbial pathogen-associated molecular patterns constitute liver inflammation and clinical complications, such as hepatic encephalopathy. Understanding the intricate metabolic interplay between the gut and liver in health and disease opens an avenue for targeted therapies in the future, which is probed in controlled clinical trials.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University, Innsbruck, Austria.
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University, Innsbruck, Austria
| | - Michael Trauner
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University, Vienna, Austria
| |
Collapse
|
28
|
Arnone D, Chabot C, Heba AC, Kökten T, Caron B, Hansmannel F, Dreumont N, Ananthakrishnan AN, Quilliot D, Peyrin-Biroulet L. Sugars and Gastrointestinal Health. Clin Gastroenterol Hepatol 2022; 20:1912-1924.e7. [PMID: 34902573 DOI: 10.1016/j.cgh.2021.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/18/2022]
Abstract
Sugar overconsumption is linked to a rise in the incidence of noncommunicable diseases such as diabetes, cardiovascular diseases, and cancer. This increased incidence is becoming a real public health problem that is more severe than infectious diseases, contributing to 35 million deaths annually. Excessive intake of free sugars can cause many of the same health problems as excessive alcohol consumption. Many recent international recommendations have expressed concerns about sugar consumption in Westernized societies, as current consumption levels represent quantities with no precedent during hominin evolution. In both adults and children, the World Health Organization strongly recommends reducing free sugar intake to <10% of total energy intake and suggests a further reduction to below 5%. Most studies have focused on the deleterious effects of Western dietary patterns on global health and the intestine. Whereas excessive dietary fat consumption is well studied, the specific impact of sugar is poorly described, while refined sugars represent up to 40% of caloric intake within industrialized countries. However, high sugar intake is associated with multiple tissue and organ dysfunctions. Both hyperglycemia and excessive sugar intake disrupt the intestinal barrier, thus increasing gut permeability and causing profound gut microbiota dysbiosis, which results in a disturbance in mucosal immunity that enhances infection susceptibility. This review aims to highlight the roles of different types of dietary carbohydrates and the consequences of their excessive intake for intestinal homeostasis.
Collapse
Affiliation(s)
- Djésia Arnone
- Délégation à la Recherche Clinique et de l'Innovation, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France; Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Caroline Chabot
- Inserm U1256, Pediatric Hepato-Gastroenterology and Nutrition Unit, Department of Child Medicine and Clinical Genetics, Université de Lorraine, Nancy, France
| | - Anne-Charlotte Heba
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Tunay Kökten
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Bénédicte Caron
- Department of Gastroenterology, Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Nancy, France
| | - Franck Hansmannel
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Natacha Dreumont
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | | | - Didier Quilliot
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France; Department of Diabetology-Endocrinology-Nutrition, Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Nancy, France
| | - Laurent Peyrin-Biroulet
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France; Department of Gastroenterology, Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Nancy, France.
| |
Collapse
|
29
|
Kim ER, Park JS, Kim JH, Oh JY, Oh IJ, Choi DH, Lee YS, Park IS, Kim S, Lee DH, Cheon JH, Bae JW, Lee M, Cho JW, An IB, Nam EJ, Yang SI, Lee MS, Bae SH, Lee YH. A GLP-1/GLP-2 receptor dual agonist to treat NASH: Targeting the gut-liver axis and microbiome. Hepatology 2022; 75:1523-1538. [PMID: 34773257 DOI: 10.1002/hep.32235] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/23/2021] [Accepted: 11/07/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Currently there is no Food and Drug Administration-approved drug to treat NAFLD and NASH, the rates of which are increasing worldwide. Although NAFLD/NASH are highly complex and heterogeneous conditions, most pharmacotherapy pipelines focus on a single mechanistic target. Considering the importance of the gut-liver axis in their pathogenesis, we investigated the therapeutic effect of a long-acting dual agonist of glucagon-like peptide (GLP)-1 and GLP-2 receptors in mice with NAFLD/NASH. APPROACH AND RESULTS C57BL/6J mice were fed a choline-deficient high-fat diet/high fructose and sucrose solution. After 16 weeks, mice were randomly allocated to receive vehicle, GLP1-Fc, GLP2-Fc, or GLP1/2-Fc fusion (GLP1/2-Fc) subcutaneously every 2 days for 4 weeks. Body weight was monitored, insulin/glucose tolerance tests were performed, feces were collected, and microbiome profiles were analyzed. Immobilized cell systems were used to evaluate direct peptide effect. Immunohistochemistry, quantitative PCR, immunoblot analysis, tunnel assay, and biochemical assays were performed to assess drug effects on inflammation, hepatic fibrosis, cell death, and intestinal structures. The mice had well-developed NASH phenotypes. GLP1/2-Fc reduced body weight, glucose levels, hepatic triglyceride levels, and cellular apoptosis. It improved liver fibrosis, insulin sensitivity, and intestinal tight junctions, and increased microvillus height, crypt depth, and goblet cells of intestine compared with a vehicle group. Similar effects of GLP1/2-Fc were found in in vitro cell systems. GLP1/2-Fc also changed microbiome profiles. We applied fecal microbiota transplantation (FMT) gain further insight into the mechanism of GLP1/2-Fc-mediated protection. We confirmed that FMT exerted an additive effect on GLP1-Fc group, including the body weight change, liver weight, hepatic fat accumulation, inflammation, and hepatic fibrosis. CONCLUSIONS A long-acting dual agonist of GLP-1 and GLP-2 receptors is a promising therapeutic strategy to treat NAFLD/NASH.
Collapse
Affiliation(s)
- Eun Ran Kim
- Severance Biomedical Science InstituteYonsei Biomedical Research InstituteYonsei University College of MedicineSeoulKorea
| | - Jeong Su Park
- Severance Biomedical Science InstituteYonsei Biomedical Research InstituteYonsei University College of MedicineSeoulKorea
| | - Jin Hee Kim
- Graduate SchoolYonsei University College of MedicineSeoulKorea
- Department of Internal MedicineYonsei University College of MedicineSeoulKorea
- Institute of Endocrine ResearchYonsei University College of MedicineSeoulKorea
| | - Ji Young Oh
- Department of Internal MedicineYonsei University College of MedicineSeoulKorea
- Institute of Endocrine ResearchYonsei University College of MedicineSeoulKorea
| | - In Jeong Oh
- Department of Internal MedicineYonsei University College of MedicineSeoulKorea
| | - Da Hyun Choi
- Department of Internal MedicineYonsei University College of MedicineSeoulKorea
| | - Yu Seol Lee
- Severance Biomedical Science InstituteYonsei Biomedical Research InstituteYonsei University College of MedicineSeoulKorea
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 ProjectYonsei University College of MedicineSeoulKorea
| | - I Seul Park
- Department of Internal Medicine and Institute of GastroenterologyYonsei University College of MedicineSeoulKorea
- Brain Korea 21 PLUS Project for Medical ScienceYonsei UniversitySeoulKorea
| | - SeungWon Kim
- Severance Biomedical Science InstituteYonsei Biomedical Research InstituteYonsei University College of MedicineSeoulKorea
- Department of Internal Medicine and Institute of GastroenterologyYonsei University College of MedicineSeoulKorea
- Brain Korea 21 PLUS Project for Medical ScienceYonsei UniversitySeoulKorea
| | - Da Hyun Lee
- Severance Biomedical Science InstituteYonsei Biomedical Research InstituteYonsei University College of MedicineSeoulKorea
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 ProjectYonsei University College of MedicineSeoulKorea
| | - Jae Hee Cheon
- Severance Biomedical Science InstituteYonsei Biomedical Research InstituteYonsei University College of MedicineSeoulKorea
- Department of Internal Medicine and Institute of GastroenterologyYonsei University College of MedicineSeoulKorea
- Brain Korea 21 PLUS Project for Medical ScienceYonsei UniversitySeoulKorea
| | - Jin-Woo Bae
- Department of Biology and Department of Life and Nanopharmaceutical SciencesKyung Hee UniversitySeoulKorea
| | - Minyoung Lee
- Department of Internal MedicineYonsei University College of MedicineSeoulKorea
| | - Jin Won Cho
- Department of Systems BiologyGlycosylation Network Research CenterYonsei UniversitySeoulKorea
| | - In Bok An
- Research InstituteSL MetaGenSeoulKorea
| | | | | | - Myung-Shik Lee
- Severance Biomedical Science InstituteYonsei Biomedical Research InstituteYonsei University College of MedicineSeoulKorea
- Department of Internal MedicineYonsei University College of MedicineSeoulKorea
- Institute of Endocrine ResearchYonsei University College of MedicineSeoulKorea
| | - Soo Han Bae
- Severance Biomedical Science InstituteYonsei Biomedical Research InstituteYonsei University College of MedicineSeoulKorea
- Graduate SchoolYonsei University College of MedicineSeoulKorea
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 ProjectYonsei University College of MedicineSeoulKorea
| | - Yong-Ho Lee
- Graduate SchoolYonsei University College of MedicineSeoulKorea
- Department of Internal MedicineYonsei University College of MedicineSeoulKorea
- Institute of Endocrine ResearchYonsei University College of MedicineSeoulKorea
- Brain Korea 21 PLUS Project for Medical ScienceYonsei UniversitySeoulKorea
- Department of Systems BiologyGlycosylation Network Research CenterYonsei UniversitySeoulKorea
| |
Collapse
|
30
|
High fructose diet: A risk factor for immune system dysregulation. Hum Immunol 2022; 83:538-546. [DOI: 10.1016/j.humimm.2022.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/05/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022]
|
31
|
Niwano Y, Kohzaki H, Shirato M, Shishido S, Nakamura K. Putative Mechanisms Underlying the Beneficial Effects of Polyphenols in Murine Models of Metabolic Disorders in Relation to Gut Microbiota. Curr Issues Mol Biol 2022; 44:1353-1375. [PMID: 35723314 PMCID: PMC8947480 DOI: 10.3390/cimb44030091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
The beneficial effects of polyphenols on metabolic disorders have been extensively reported. The interaction of these compounds with the gut microbiota has been the focus of recent studies. In this review, we explored the fundamental mechanisms underlying the beneficial effects of polyphenols in relation to the gut microbiota in murine models of metabolic disorders. We analyzed the effects of polyphenols on three murine models of metabolic disorders, namely, models of a high-fat diet (HFD)-induced metabolic disorder, dextran sulfate sodium (DSS)-induced colitis, and a metabolic disorder not associated with HFD or DSS. Regardless of the model, polyphenols ameliorated the effects of metabolic disorders by alleviating intestinal oxidative stress, improving inflammatory status, and improving intestinal barrier function, as well as by modulating gut microbiota, for example, by increasing the abundance of short-chain fatty acid-producing bacteria. Consequently, polyphenols reduce circulating lipopolysaccharide levels, thereby improving inflammatory status and alleviating oxidative imbalance at the lesion sites. In conclusion, polyphenols likely act by regulating intestinal functions, including the gut microbiota, and may be a safe and suitable therapeutic agent for various metabolic disorders.
Collapse
Affiliation(s)
- Yoshimi Niwano
- Faculty of Nursing, Shumei University, Yachiyo 276-0003, Japan;
- Correspondence: ; Tel.: +81-47-411-7862
| | | | - Midori Shirato
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (M.S.); (S.S.); (K.N.)
| | - Shunichi Shishido
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (M.S.); (S.S.); (K.N.)
| | - Keisuke Nakamura
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (M.S.); (S.S.); (K.N.)
| |
Collapse
|
32
|
Preventing Bacterial Translocation in Patients with Leaky Gut Syndrome: Nutrition and Pharmacological Treatment Options. Int J Mol Sci 2022; 23:ijms23063204. [PMID: 35328624 PMCID: PMC8949204 DOI: 10.3390/ijms23063204] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
Leaky gut syndrome is a medical condition characterized by intestinal hyperpermeability. Since the intestinal barrier is one of the essential components maintaining homeostasis along the gastrointestinal tract, loss of its integrity due to changes in bacterial composition, decreased expression levels of tight junction proteins, and increased concentration of pro-inflammatory cytokines may lead to intestinal hyperpermeability followed by the development of gastrointestinal and non-gastrointestinal diseases. Translocation of microorganisms and their toxic metabolites beyond the gastrointestinal tract is one of the fallouts of the leaky gut syndrome. The presence of intestinal bacteria in sterile tissues and distant organs may cause damage due to chronic inflammation and progression of disorders, including inflammatory bowel diseases, liver cirrhosis, and acute pancreatitis. Currently, there are no medical guidelines for the treatment or prevention of bacterial translocation in patients with the leaky gut syndrome; however, several studies suggest that dietary intervention can improve barrier function and restrict bacteria invasion. This review contains current literature data concerning the influence of diet, dietary supplements, probiotics, and drugs on intestinal permeability and bacterial translocation.
Collapse
|
33
|
Karkucinska-Wieckowska A, Simoes ICM, Kalinowski P, Lebiedzinska-Arciszewska M, Zieniewicz K, Milkiewicz P, Górska-Ponikowska M, Pinton P, Malik AN, Krawczyk M, Oliveira PJ, Wieckowski MR. Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship. Eur J Clin Invest 2022; 52:e13622. [PMID: 34050922 DOI: 10.1111/eci.13622] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023]
Abstract
According to the 'multiple-hit' hypothesis, several factors can act simultaneously in nonalcoholic fatty liver disease (NAFLD) progression. Increased nitro-oxidative (nitroso-oxidative) stress may be considered one of the main contributors involved in the development and risk of NAFLD progression to nonalcoholic steatohepatitis (NASH) characterized by inflammation and fibrosis. Moreover, it has been repeatedly postulated that mitochondrial abnormalities are closely related to the development and progression of liver steatosis and NAFLD pathogenesis. However, it is difficult to determine with certainty whether mitochondrial dysfunction or oxidative stress are primary events or a simple consequence of NAFLD development. On the one hand, increasing lipid accumulation in hepatocytes could cause a wide range of effects from mild to severe mitochondrial damage with a negative impact on cell fate. This can start the cascade of events, including an increase of cellular reactive nitrogen species (RNS) and reactive oxygen species (ROS) production that promotes disease progression from simple steatosis to more severe NAFLD stages. On the other hand, progressing mitochondrial bioenergetic catastrophe and oxidative stress manifestation could be considered accompanying events in the vast spectrum of abnormalities observed during the transition from NAFL to NASH and cirrhosis. This review updates our current understanding of NAFLD pathogenesis and clarifies whether mitochondrial dysfunction and ROS/RNS are culprits or bystanders of NAFLD progression.
Collapse
Affiliation(s)
| | - Ines C M Simoes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Lebiedzinska-Arciszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland.,Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland
| | | | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Afshan N Malik
- Department of Diabetes, School of Life Course, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.,Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
34
|
Abstract
Fructophilic lactic acid bacteria (FLAB) are heterofermentative and related to the genera Fructilactobacillus, Convivina, Leuconostoc, Oenococcus and Weissella. Although they generally prefer fructose above glucose, obligate heterofermentative species will ferment glucose in the presence of external electron acceptors such as pyruvate and fructose. Little is known about the presence of FLAB in the human gut, let alone probiotic properties. In this review we discuss the possible role FLAB may have in the human gastro-intestinal tract (GIT) and highlight the advantages and disadvantages these bacteria may have in individuals with a diet high in fructose.
Collapse
Affiliation(s)
- L M T Dicks
- Department of Microbiology, University of Stellenbosch, Matieland, Stellenbosch, 7602, South Africa
| | - A Endo
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Hokkaido 099-2493, Japan
| |
Collapse
|
35
|
Baumann A, Rajcic D, Brandt A, Sánchez V, Jung F, Staltner R, Nier A, Trauner M, Staufer K, Bergheim I. Alterations of nitric oxide homeostasis as trigger of intestinal barrier dysfunction in non-alcoholic fatty liver disease. J Cell Mol Med 2022; 26:1206-1218. [PMID: 35029027 PMCID: PMC8831936 DOI: 10.1111/jcmm.17175] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Changes in intestinal nitric oxide metabolism are discussed to contribute for the development of intestinal barrier dysfunction in non‐alcoholic fatty liver disease (NAFLD). To induce steatosis, female C57BL/6J mice were pair‐fed with a liquid control diet (C) or a fat‐, fructose‐ and cholesterol‐rich diet (FFC) for 8 weeks. Mice received the diets ± 2.49 g L‐arginine/kg bw/day for additional 5 weeks. Furthermore, mice fed C or FFC ± L‐arginine/kg bw/day for 8 weeks were concomitantly treated with the arginase inhibitor Nω‐hydroxy‐nor‐L‐arginine (nor‐NOHA, 0.01 g/kg bw). Liver damage, intestinal barrier function, nitric oxide levels and arginase activity in small intestine were assessed. Also, arginase activity was measured in serum from 13 patients with steatosis (NAFL) and 14 controls. The development of steatosis with beginning inflammation was associated with impaired intestinal barrier function, increased nitric oxide levels and a loss of arginase activity in small intestine in mice. L‐arginine supplementation abolished the latter along with an improvement of intestinal barrier dysfunction; nor‐NOHA attenuated these effects. In patients with NAFL, arginase activity in serum was significantly lower than in healthy controls. Our data suggest that increased formation of nitric oxide and a loss of intestinal arginase activity is critical in NAFLD‐associated intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Dragana Rajcic
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Victor Sánchez
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Finn Jung
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anika Nier
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Katharina Staufer
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Department of Surgery Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H, Li Y. Macrophage Polarization and Its Role in Liver Disease. Front Immunol 2022; 12:803037. [PMID: 34970275 PMCID: PMC8712501 DOI: 10.3389/fimmu.2021.803037] [Citation(s) in RCA: 266] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are important immune cells in innate immunity, and have remarkable heterogeneity and polarization. Under pathological conditions, in addition to the resident macrophages, other macrophages are also recruited to the diseased tissues, and polarize to various phenotypes (mainly M1 and M2) under the stimulation of various factors in the microenvironment, thus playing different roles and functions. Liver diseases are hepatic pathological changes caused by a variety of pathogenic factors (viruses, alcohol, drugs, etc.), including acute liver injury, viral hepatitis, alcoholic liver disease, metabolic-associated fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Recent studies have shown that macrophage polarization plays an important role in the initiation and development of liver diseases. However, because both macrophage polarization and the pathogenesis of liver diseases are complex, the role and mechanism of macrophage polarization in liver diseases need to be further clarified. Therefore, the origin of hepatic macrophages, and the phenotypes and mechanisms of macrophage polarization are reviewed first in this paper. It is found that macrophage polarization involves several molecular mechanisms, mainly including TLR4/NF-κB, JAK/STATs, TGF-β/Smads, PPARγ, Notch, and miRNA signaling pathways. In addition, this paper also expounds the role and mechanism of macrophage polarization in various liver diseases, which aims to provide references for further research of macrophage polarization in liver diseases, contributing to the therapeutic strategy of ameliorating liver diseases by modulating macrophage polarization.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
37
|
Zhang X, Monnoye M, Mariadassou M, Beguet-Crespel F, Lapaque N, Heberden C, Douard V. Glucose but Not Fructose Alters the Intestinal Paracellular Permeability in Association With Gut Inflammation and Dysbiosis in Mice. Front Immunol 2021; 12:742584. [PMID: 35024040 PMCID: PMC8744209 DOI: 10.3389/fimmu.2021.742584] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
A causal correlation between the metabolic disorders associated with sugar intake and disruption of the gastrointestinal (GI) homeostasis has been suggested, but the underlying mechanisms remain unclear. To unravel these mechanisms, we investigated the effect of physiological amounts of fructose and glucose on barrier functions and inflammatory status in various regions of the GI tract and on the cecal microbiota composition. C57BL/6 mice were fed chow diet and given 15% glucose or 15% fructose in drinking water for 9 weeks. We monitored caloric intake, body weight, glucose intolerance, and adiposity. The intestinal paracellular permeability, cytokine, and tight junction protein expression were assessed in the jejunum, cecum, and colon. In the cecum, the microbiota composition was determined. Glucose-fed mice developed a marked increase in total adiposity, glucose intolerance, and paracellular permeability in the jejunum and cecum while fructose absorption did not affect any of these parameters. Fructose-fed mice displayed increased circulation levels of IL6. In the cecum, both glucose and fructose intake were associated with an increase in Il13, Ifnγ, and Tnfα mRNA and MLCK protein levels. To clarify the relationships between monosaccharides and barrier function, we measured the permeability of Caco-2 cell monolayers in response to IFNγ+TNFα in the presence of glucose or fructose. In vitro, IFNγ+TNFα-induced intestinal permeability increase was less pronounced in response to fructose than glucose. Mice treated with glucose showed an enrichment of Lachnospiracae and Desulfovibrionaceae while the fructose increased relative abundance of Lactobacillaceae. Correlations between pro-inflammatory cytokine gene expression and bacterial abundance highlighted the potential role of members of Desulfovibrio and Lachnospiraceae NK4A136 group genera in the inflammation observed in response to glucose intake. The increase in intestinal inflammation and circulating levels of IL6 in response to fructose was observed in the absence of intestinal permeability modification, suggesting that the intestinal permeability alteration does not precede the onset of metabolic outcome (low-grade inflammation, hyperglycemia) associated with chronic fructose consumption. The data also highlight the deleterious effects of glucose on gut barrier function along the GI tract and suggest that Desulfovibrionaceae and Lachnospiraceae play a key role in the onset of GI inflammation in response to glucose.
Collapse
Affiliation(s)
- Xufei Zhang
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | | | | | - Nicolas Lapaque
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | - Christine Heberden
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | - Veronique Douard
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| |
Collapse
|
38
|
Córdova-Gallardo J, Keaveny AP, Qi X, Méndez-Sánchez N. Metabolic associated fatty liver disease and acute-on-chronic liver failure: common themes for common problems. Eur J Gastroenterol Hepatol 2021; 33:e84-e93. [PMID: 34985050 DOI: 10.1097/meg.0000000000002335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metabolic associated fatty liver disease (MAFLD) affects 20-30% of the worldwide population and is becoming the most common cause of chronic liver disease, cirrhosis and hepatocellular carcinoma (HCC). MAFLD is the hepatic expression of metabolic dysfunction correlated with a variety of metabolic comorbidities including obesity, dyslipidemia, hypertension and type 2 diabetes (T2DM). Obesity, altered gut permeability, chronic inflammation and dysbiosis related to MAFLD might predispose patients with cirrhosis to the development of acute-on-chronic liver failure (ACLF); however, this relationship remains unclear. ACLF is a syndrome with high short-term mortality, presenting with acute hepatic decompensation associated with organ failures in patients with underlying chronic liver disease with or without an identifiable precipitating event. While this syndrome can occur in any patient with cirrhosis, the increasing prevalence of cirrhosis due to MAFLD is of great concern because, in a recent analysis, MAFLD was the fastest rising cause of cirrhosis associated with ACLF among patients listed for LT in the US. In this review, we will discuss the current knowledge on MAFLD and the development of ACLF.
Collapse
Affiliation(s)
- Jacqueline Córdova-Gallardo
- Department of Hepatology, Service of Surgery and Obesity Clinic, General Hospital "Dr. Manuel Gea González"
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Andrew P Keaveny
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| | - Xingshun Qi
- General Hospital of Northern Theater Command
- Shenyang Pharmaceutical University, Shenyang, China
| | - Nahum Méndez-Sánchez
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
39
|
Fanaei H, Mard SA, Sarkaki A, Goudarzi G, Khorsandi L. Gallic acid protects the liver against NAFLD induced by dust exposure and high-fat diet through inhibiting oxidative stress and repressing the inflammatory signaling pathways NF-kβ/TNF-α/IL-6 in Wistar rats. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:527-540. [PMID: 34745924 PMCID: PMC8554286 DOI: 10.22038/ajp.2021.17835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/03/2022]
Abstract
Objective: The burden of diseases and death related to environmental pollution is becoming a major public health challenge. This study was designed to evaluate the deleterious effects of a combination of dust exposure and high-fat diet on liver function. Gallic acid as a potent antioxidant was used to prevent/alleviate non-alcoholic fatty liver disease (NAFLD) in rats exposed to dust and HFD. Materials and Methods: 24 rats were randomly divided into 3 experimental groups: HFD+Clean air, HFD+N/S+Dust and HFD+gallic acid+Dust. Animals were exposed to CA/ dust for six weeks on alternate days. At the end of the experiments, rats were anesthetized and samples were taken to perform molecular, biomedical, and histopathological evaluations. Results: Dust exposure induced NAFLD features in rats under HFD. Dust exposure and HFD disrupted liver enzymes and lipid profile. Dust exposure and HFD increased liver MDA level, mRNA expression of NF-Kβ, TNF-α, IL-6, Nrf2, HO1 and miRs122, and 34a. Dust+HFD also decreased liver total antioxidant capacity level. Pretreatment with GA improved almost studied variables in the HFD+GA+Dust group. Conclusion: The present study showed that HFD given for 6 weeks and dust exposure induced NAFLD in Wistar rats through inducing oxidative stress. Oxidative stress through activating the inflammatory pathways caused NAFLD features. GA pretreatment by inhibiting oxidative stress, effectively protected liver functions against HFD+Dust induced inflammation.
Collapse
Affiliation(s)
- Hafseh Fanaei
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Iran
| |
Collapse
|
40
|
Chi Y, Youn DY, Xiaoli AM, Liu L, Qiu Y, Kurland IJ, Pessin JB, Yang F, Pessin JE. Comparative impact of dietary carbohydrates on the liver transcriptome in two strains of mice. Physiol Genomics 2021; 53:456-472. [PMID: 34643091 PMCID: PMC8616594 DOI: 10.1152/physiolgenomics.00053.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
Excessive long-term consumption of dietary carbohydrates, including glucose, sucrose, or fructose, has been shown to have significant impact on genome-wide gene expression, which likely results from changes in metabolic substrate flux. However, there has been no comprehensive study on the acute effects of individual sugars on the genome-wide gene expression that may reveal the genetic changes altering signaling pathways, subsequent metabolic processes, and ultimately physiological/pathological responses. Considering that gene expressions in response to acute carbohydrate ingestion might be different in nutrient sensitive and insensitive mammals, we conducted comparative studies of genome-wide gene expression by deep mRNA sequencing of the liver in nutrient sensitive C57BL/6J and nutrient insensitive BALB/cJ mice. Furthermore, to determine the temporal responses, we compared livers from mice in the fasted state and following ingestion of standard laboratory mouse chow supplemented with plain drinking water or water containing 20% glucose, sucrose, or fructose. Supplementation with these carbohydrates induced unique extents and temporal changes in gene expressions in a strain specific manner. Fructose and sucrose stimulated gene changes peaked at 3 h postprandial, whereas glucose effects peaked at 12 h and 6 h postprandial in C57BL/6J and BABL/cJ mice, respectively. Network analyses revealed that fructose changed genes were primarily involved in lipid metabolism and were more complex in C57BL/6J than in BALB/cJ mice. These data demonstrate that there are qualitative and antitative differences in the normal physiological responses of the liver between these two strains of mice and C57BL/6J is more sensitive to sugar intake than BALB/cJ.
Collapse
Affiliation(s)
- Yuling Chi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- The Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York
| | - Dou Yeon Youn
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- The Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York
| | - Alus M Xiaoli
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- The Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Li Liu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- The Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York
| | - Yunping Qiu
- Einstein Stable Isotope and Metabolomics Core, Albert Einstein College of Medicine, Bronx, New York
| | - Irwin J Kurland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Einstein Stable Isotope and Metabolomics Core, Albert Einstein College of Medicine, Bronx, New York
| | - Jacob B Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Fajun Yang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- The Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey E Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- The Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
41
|
Basu S, Liu C, Zhou XK, Nishiguchi R, Ha T, Chen J, Johncilla M, Yantiss RK, Montrose DC, Dannenberg AJ. GLUT5 is a determinant of dietary fructose-mediated exacerbation of experimental colitis. Am J Physiol Gastrointest Liver Physiol 2021; 321:G232-G242. [PMID: 34133236 DOI: 10.1152/ajpgi.00059.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Western diet has been suggested to contribute to the rising incidence of inflammatory bowel diseases. This has led to the hypothesis that fructose, a component of the Western diet, could play a role in the pathogenesis of inflammatory bowel diseases. A high-fructose diet is known to exacerbate experimental colitis. This study tested whether the expression of GLUT5, the fructose transporter, is a determinant of the severity of experimental colitis during elevated fructose consumption and whether ileal inflammation is associated with altered GLUT5 expression in Crohn's disease. Studies in genetically engineered mice showed that in comparison to Glut5+/+ mice, feeding a 15 kcal% fructose diet to Glut5-/- mice led to worse dextran sodium sulfate (DSS)-induced colitis. This effect was associated with elevated levels of colonic fructose and a shift in the fecal microbiota in Glut5-/- mice. Importantly, treatment with broad-spectrum antibiotics protected against the worsening of colitis mediated by dietary fructose in Glut5-/- mice. Gene expression analysis revealed that GLUT5 levels are reduced in the intestines of patients with ileal Crohn's disease. Moreover, levels of GLUT5 negatively correlated with expression of proinflammatory mediators in these samples. Collectively, these results demonstrate that dietary constituent (fructose)-host gene (GLUT5) interactions can shape the colonic microbiota, thereby impacting the severity of colitis.NEW & NOTEWORTHY This study provides the first evidence that reduced levels of GLUT5, the fructose transporter, worsen experimental colitis upon fructose feeding, an effect mediated by changes in the gut microbiota. Moreover, GLUT5 expression is reduced in Crohn's ileitis. Overall, these findings demonstrate the importance of interactions between dietary fructose and host GLUT5 as determinants of both the composition of colonic microbiota and severity of experimental colitis.
Collapse
Affiliation(s)
- Srijani Basu
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Catherine Liu
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Xi Kathy Zhou
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| | | | - Taehoon Ha
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| | - Justin Chen
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Melanie Johncilla
- Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Rhonda K Yantiss
- Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - David C Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York.,Stony Brook Cancer Center, Stony Brook, New York
| | | |
Collapse
|
42
|
Bariatric Surgery and Liver Disease: General Considerations and Role of the Gut-Liver Axis. Nutrients 2021; 13:nu13082649. [PMID: 34444807 PMCID: PMC8399840 DOI: 10.3390/nu13082649] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Weight loss is a therapeutic solution for many metabolic disorders, such as obesity and its complications. Bariatric surgery aims to achieve lasting weight loss in all patients who have failed after multiple dietary attempts. Among its many benefits, it has been associated with the regression of non-alcoholic fatty liver disease (NAFLD), which is often associated with obesity, with evidence of substantial improvement in tissue inflammation and fibrosis. These benefits are mediated not only by weight loss, but also by favorable changes in systemic inflammation and in the composition of the gut microbiota. Changes in microbial metabolites such as short-chain fatty acids (SCFAs), capable of acting as endocrine mediators, and bile acids (BAs) as well as modifications of the gut-brain axis, are among the involved mechanisms. However, not all bariatric surgeries show beneficial effects on the liver; those leading to malabsorption can cause liver failure or a marked worsening of fibrosis and the development of cirrhosis. Nevertheless, there are still many unclear aspects, including the extent of the benefits and the magnitude of the risks of bariatric surgery in cirrhotic patients. In addition, the usefulness and the safety of these procedures in patients who are candidates to or who have undergone liver transplant need solid supporting evidence. This paper aims to review literature data on the use of bariatric surgery in the setting of chronic liver disease.
Collapse
|
43
|
Cheng WL, Li SJ, Lee TI, Lee TW, Chung CC, Kao YH, Chen YJ. Sugar Fructose Triggers Gut Dysbiosis and Metabolic Inflammation with Cardiac Arrhythmogenesis. Biomedicines 2021; 9:728. [PMID: 34201938 PMCID: PMC8301417 DOI: 10.3390/biomedicines9070728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Fructose is a main dietary sugar involved in the excess sugar intake-mediated progression of cardiovascular diseases and cardiac arrhythmias. Chronic intake of fructose has been the focus on the possible contributor to the metabolic diseases and cardiac inflammation. Recently, the small intestine was identified to be a major organ in fructose metabolism. The overconsumption of fructose induces dysbiosis of the gut microbiota, which, in turn, increases intestinal permeability and activates host inflammation. Endotoxins and metabolites of the gut microbiota, such as lipopolysaccharide, trimethylamine N-oxide, and short-chain fatty acids, also influence the host inflammation and cardiac biofunctions. Thus, high-fructose diets cause heart-gut axis disorders that promote cardiac arrhythmia. Understanding how gut microbiota dysbiosis-mediated inflammation influences the pathogenesis of cardiac arrhythmia may provide mechanisms for cardiac arrhythmogenesis. This narrative review updates our current understanding of the roles of excessive intake of fructose on the heart-gut axis and proposes potential strategies for inflammation-associated cardiac vascular diseases.
Collapse
Affiliation(s)
- Wan-Li Cheng
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (W.-L.C.); (S.-J.L.)
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan;
| | - Shao-Jung Li
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (W.-L.C.); (S.-J.L.)
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan;
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (T.-I.L.); (T.-W.L.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (T.-I.L.); (T.-W.L.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Cheng-Chih Chung
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan;
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Yu-Hsun Kao
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Yi-Jen Chen
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan;
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
44
|
Chronowski C, Akhanov V, Chan D, Catic A, Finegold M, Sahin E. Fructose Causes Liver Damage, Polyploidy, and Dysplasia in the Setting of Short Telomeres and p53 Loss. Metabolites 2021; 11:metabo11060394. [PMID: 34204343 PMCID: PMC8234056 DOI: 10.3390/metabo11060394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/01/2023] Open
Abstract
Studies in humans and model systems have established an important role of short telomeres in predisposing to liver fibrosis through pathways that are incompletely understood. Recent studies have shown that telomere dysfunction impairs cellular metabolism, but whether and how these metabolic alterations contribute to liver fibrosis is not well understood. Here, we investigated whether short telomeres change the hepatic response to metabolic stress induced by fructose, a sugar that is highly implicated in non-alcoholic fatty liver disease. We find that telomere shortening in telomerase knockout mice (TKO) imparts a pronounced susceptibility to fructose as reflected in the activation of p53, increased apoptosis, and senescence, despite lower hepatic fat accumulation in TKO mice compared to wild type mice with long telomeres. The decreased fat accumulation in TKO is mediated by p53 and deletion of p53 normalizes hepatic fat content but also causes polyploidy, polynuclearization, dysplasia, cell death, and liver damage. Together, these studies suggest that liver tissue with short telomers are highly susceptible to fructose and respond with p53 activation and liver damage that is further exacerbated when p53 is lost resulting in dysplastic changes.
Collapse
Affiliation(s)
- Christopher Chronowski
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; (C.C.); (V.A.); (A.C.)
| | - Viktor Akhanov
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; (C.C.); (V.A.); (A.C.)
| | - Doug Chan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Andre Catic
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; (C.C.); (V.A.); (A.C.)
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Milton Finegold
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Ergün Sahin
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; (C.C.); (V.A.); (A.C.)
- Department of Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-798-6685; Fax: +1-713-798-4146
| |
Collapse
|
45
|
Alemán JO, Henderson WA, Walker JM, Ronning A, Jones DR, Walter PJ, Daniel SG, Bittinger K, Vaughan R, MacArthur R, Chen K, Breslow JL, Holt PR. Excess dietary fructose does not alter gut microbiota or permeability in humans: A pilot randomized controlled study. J Clin Transl Sci 2021; 5:e143. [PMID: 34422323 PMCID: PMC8358846 DOI: 10.1017/cts.2021.801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is an increasing cause of chronic liver disease that accompanies obesity and the metabolic syndrome. Excess fructose consumption can initiate or exacerbate NAFLD in part due to a consequence of impaired hepatic fructose metabolism. Preclinical data emphasized that fructose-induced altered gut microbiome, increased gut permeability, and endotoxemia play an important role in NAFLD, but human studies are sparse. The present study aimed to determine if two weeks of excess fructose consumption significantly alters gut microbiota or permeability in humans. METHODS We performed a pilot double-blind, cross-over, metabolic unit study in 10 subjects with obesity (body mass index [BMI] 30-40 mg/kg/m2). Each arm provided 75 grams of either fructose or glucose added to subjects' individual diets for 14 days, substituted isocalorically for complex carbohydrates, with a 19-day wash-out period between arms. Total fructose intake provided in the fructose arm of the study totaled a mean of 20.1% of calories. Outcome measures included fecal microbiota distribution, fecal metabolites, intestinal permeability, markers of endotoxemia, and plasma metabolites. RESULTS Routine blood, uric acid, liver function, and lipid measurements were unaffected by the fructose intervention. The fecal microbiome (including Akkermansia muciniphilia), fecal metabolites, gut permeability, indices of endotoxemia, gut damage or inflammation, and plasma metabolites were essentially unchanged by either intervention. CONCLUSIONS In contrast to rodent preclinical findings, excess fructose did not cause changes in the gut microbiome, metabolome, and permeability as well as endotoxemia in humans with obesity fed fructose for 14 days in amounts known to enhance NAFLD.
Collapse
Affiliation(s)
- José O. Alemán
- Laboratory of Biochemical Genetics and Metabolism, Rockefeller University, New York, NY, USA
- New York University Langone Health Metabolomics Core Resource Laboratory, New York, NY, USA
| | - Wendy A. Henderson
- Institute for Collaboration on Health, Intervention and Policy, University of Connecticut, Storrs, CT, USA
| | - Jeanne M. Walker
- Clinical Research, The Rockefeller University Hospital, New York, NY, USA
| | - Andrea Ronning
- Bionutrition, The Rockefeller University Hospital, New York, NY, USA
| | - Drew R. Jones
- New York University Langone Health Metabolomics Core Resource Laboratory, New York, NY, USA
| | - Peter J. Walter
- NIDDK Clinical Mass Spectrometry Core, National Institutes of Health, Bethesda, MD, USA
| | - Scott G. Daniel
- PennCHOP Microbiome Program, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyle Bittinger
- PennCHOP Microbiome Program, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Roger Vaughan
- Biostatistics, The Rockefeller University, New York, NY, USA
| | - Robert MacArthur
- Research Pharmacy, The Rockefeller University Hospital, New York, NY, USA
| | - Kun Chen
- Institute for Collaboration on Health, Intervention and Policy, University of Connecticut, Storrs, CT, USA
| | - Jan L. Breslow
- Laboratory of Biochemical Genetics and Metabolism, Rockefeller University, New York, NY, USA
| | - Peter R. Holt
- Laboratory of Biochemical Genetics and Metabolism, Rockefeller University, New York, NY, USA
| |
Collapse
|
46
|
Cho YE, Kim DK, Seo W, Gao B, Yoo SH, Song BJ. Fructose Promotes Leaky Gut, Endotoxemia, and Liver Fibrosis Through Ethanol-Inducible Cytochrome P450-2E1-Mediated Oxidative and Nitrative Stress. Hepatology 2021; 73:2180-2195. [PMID: 30959577 PMCID: PMC6783321 DOI: 10.1002/hep.30652] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Fructose intake is known to induce obesity, insulin resistance, metabolic syndrome, and nonalcoholic fatty liver disease (NAFLD). We aimed to evaluate the effects of fructose drinking on gut leakiness, endotoxemia, and NAFLD and study the underlying mechanisms in rats, mice, and T84 colon cells. Levels of ileum junctional proteins, oxidative stress markers, and apoptosis-related proteins in rodents, T84 colonic cells, and human ileums were determined by immunoblotting, immunoprecipitation, and immunofluorescence analyses. Fructose drinking caused microbiome change, leaky gut, and hepatic inflammation/fibrosis with increased levels of nitroxidative stress marker proteins cytochrome P450-2E1 (CYP2E1), inducible nitric oxide synthase, and nitrated proteins in small intestine and liver of rodents. Fructose drinking significantly elevated plasma bacterial endotoxin levels, likely resulting from decreased levels of intestinal tight junction (TJ) proteins (zonula occludens 1, occludin, claudin-1, and claudin-4), adherent junction (AJ) proteins (β-catenin and E-cadherin), and desmosome plakoglobin, along with α-tubulin, in wild-type rodents, but not in fructose-exposed Cyp2e1-null mice. Consistently, decreased intestinal TJ/AJ proteins and increased hepatic inflammation with fibrosis were observed in autopsied obese people compared to lean individuals. Furthermore, histological and biochemical analyses showed markedly elevated hepatic fibrosis marker proteins in fructose-exposed rats compared to controls. Immunoprecipitation followed by immunoblot analyses revealed that intestinal TJ proteins were nitrated and ubiquitinated, leading to their decreased levels in fructose-exposed rats. Conclusion: These results showed that fructose intake causes protein nitration of intestinal TJ and AJ proteins, resulting in increased gut leakiness, endotoxemia, and steatohepatitis with liver fibrosis, at least partly, through a CYP2E1-dependent manner.
Collapse
Affiliation(s)
- Young-Eun Cho
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA,,Department of Food and Nutrition, Andong National University, Andong, Kyungpook, South Korea
| | - Do-Kyun Kim
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1881, USA
| | - Wonhyo Seo
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seong-Ho Yoo
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA,,To whom correspondence should be addressed: Dr. B. J. Song, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892-9410, USA.
| |
Collapse
|
47
|
Park G, Jung S, Wellen KE, Jang C. The interaction between the gut microbiota and dietary carbohydrates in nonalcoholic fatty liver disease. Exp Mol Med 2021; 53:809-822. [PMID: 34017059 PMCID: PMC8178320 DOI: 10.1038/s12276-021-00614-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/24/2021] [Indexed: 02/04/2023] Open
Abstract
Imbalance between fat production and consumption causes various metabolic disorders. Nonalcoholic fatty liver disease (NAFLD), one such pathology, is characterized by abnormally increased fat synthesis and subsequent fat accumulation in hepatocytes1,2. While often comorbid with obesity and insulin resistance, this disease can also be found in lean individuals, suggesting specific metabolic dysfunction2. NAFLD has become one of the most prevalent liver diseases in adults worldwide, but its incidence in both children and adolescents has also markedly increased in developed nations3,4. Progression of this disease into nonalcoholic steatohepatitis (NASH), cirrhosis, liver failure, and hepatocellular carcinoma in combination with its widespread incidence thus makes NAFLD and its related pathologies a significant public health concern. Here, we review our understanding of the roles of dietary carbohydrates (glucose, fructose, and fibers) and the gut microbiota, which provides essential carbon sources for hepatic fat synthesis during the development of NAFLD.
Collapse
Affiliation(s)
- Grace Park
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Sunhee Jung
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
48
|
Hernández-Ceballos W, Cordova-Gallardo J, Mendez-Sanchez N. Gut Microbiota in Metabolic-associated Fatty Liver Disease and in Other Chronic Metabolic Diseases. J Clin Transl Hepatol 2021; 9:227-238. [PMID: 34007805 PMCID: PMC8111113 DOI: 10.14218/jcth.2020.00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome plays a key role in the health-disease balance in the human body. Although its composition is unique for each person and tends to remain stable throughout lifetime, it has been shown that certain bacterial patterns may be determining factors in the onset of certain chronic metabolic diseases, such as type 2 diabetes mellitus (T2DM), obesity, metabolic-associated fatty liver disease (MAFLD), and metabolic syndrome. The gut-liver axis embodies the close relationship between the gut and the liver; disturbance of the normal gut microbiota, also known as dysbiosis, may lead to a cascade of mechanisms that modify the epithelial properties and facilitate bacterial translocation. Regulation of gut microbiota is fundamental to maintaining gut integrity, as well as the bile acids composition. In the present review, we summarize the current knowledge regarding the microbiota, bile acids composition and their association with MAFLD, obesity, T2DM and metabolic syndrome.
Collapse
Affiliation(s)
- Winston Hernández-Ceballos
- Plan of Combined Studies in Medicine (PECEM-MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jacqueline Cordova-Gallardo
- Department of Hepatology, Service of Surgery and Obesity Clinic, General Hospital “Dr. Manuel Gea González”, Mexico City, Mexico
- Faculty of Medicine. National Autonomous University of Mexico, Mexico City, Mexico
| | - Nahum Mendez-Sanchez
- Faculty of Medicine. National Autonomous University of Mexico, Mexico City, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Correspondence to: Nahum Méndez-Sánchez, Liver Research Unit, Medica Sur Clinic & Foundation and Faculty of Medicine, National Autonomous University of Mexico, Mexico City 14050, Mexico. ORCID: https://orcid.org/0000-0001-5257-8048. Tel: +525-55424-4629, Fax: +525-55666-4031, E-mail: ,
| |
Collapse
|
49
|
Federico A, Rosato V, Masarone M, Torre P, Dallio M, Romeo M, Persico M. The Role of Fructose in Non-Alcoholic Steatohepatitis: Old Relationship and New Insights. Nutrients 2021; 13:1314. [PMID: 33923525 PMCID: PMC8074203 DOI: 10.3390/nu13041314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the result of hepatic fat overload not due to alcohol consumption and potentially evolving to advanced fibrosis, cirrhosis, and hepatocellular carcinoma. Fructose is a naturally occurring simple sugar widely used in food industry linked to glucose to form sucrose, largely contained in hypercaloric food and beverages. An increasing amount of evidence in scientific literature highlighted a detrimental effect of dietary fructose consumption on metabolic disorders such as insulin resistance, obesity, hepatic steatosis, and NAFLD-related fibrosis as well. An excessive fructose consumption has been associated with NAFLD development and progression to more clinically severe phenotypes by exerting various toxic effects, including increased fatty acid production, oxidative stress, and worsening insulin resistance. Furthermore, some studies in this context demonstrated even a crucial role in liver cancer progression. Despite this compelling evidence, the molecular mechanisms by which fructose elicits those effects on liver metabolism remain unclear. Emerging data suggest that dietary fructose may directly alter the expression of genes involved in lipid metabolism, including those that increase hepatic fat accumulation or reduce hepatic fat removal. This review aimed to summarize the current understanding of fructose metabolism on NAFLD pathogenesis and progression.
Collapse
Affiliation(s)
- Alessandro Federico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.D.); (M.R.)
| | - Valerio Rosato
- Internal Medicine and Hepatology Division, Department of Medicine, Surgery and Odontostomatology, “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.R.); (M.M.); (P.T.); (M.P.)
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Mario Masarone
- Internal Medicine and Hepatology Division, Department of Medicine, Surgery and Odontostomatology, “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.R.); (M.M.); (P.T.); (M.P.)
| | - Pietro Torre
- Internal Medicine and Hepatology Division, Department of Medicine, Surgery and Odontostomatology, “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.R.); (M.M.); (P.T.); (M.P.)
| | - Marcello Dallio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.D.); (M.R.)
| | - Mario Romeo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.D.); (M.R.)
| | - Marcello Persico
- Internal Medicine and Hepatology Division, Department of Medicine, Surgery and Odontostomatology, “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.R.); (M.M.); (P.T.); (M.P.)
| |
Collapse
|
50
|
Gut microbiota, determined by dietary nutrients, drive modification of the plasma lipid profile and insulin resistance. iScience 2021; 24:102445. [PMID: 33997711 PMCID: PMC8105675 DOI: 10.1016/j.isci.2021.102445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/13/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota metabolizes the nutrients to produce various metabolites that play crucial roles in host metabolism. However, the links between the microbiota established by different nutrients and the microbiota-influenced changes in the plasma lipids remain unclear. Diets rich in cornstarch, fructose, branched chain amino acids, soybean oil (SO), or lard established a unique microbiota and had influence on glucose metabolism, which was partially reproduced by transferring the microbiota. Comparison of plasma lipidomic analysis between germ-free and colonized mice revealed significant impacts of the microbiota on various lipid classes, and of note, the microbiota established by the SO diet, which was associated with the greatest degree of glucose intolerance, caused the maximum alteration of the plasma lipid profile. Thus, the gut microbiota composed of dietary nutrients was associated with dynamic changes in the lipids potentially having differential effects on glucose metabolism. Diets with different nutrient compositions differentially affect glucose metabolism Gut microbiota established by soybean oil-rich (SO) diet impairs glucose metabolism Gut microbiota established by diets has dynamic effects on the plasma lipid profile SO diet has the greatest impact on the plasma lipid profile through gut microbiota
Collapse
|