1
|
Wu H, Liao X, Wu T, Xie B, Ding S, Chen Y, Song L, Wei B. Mechanism of MiR-145a-3p/Runx2 pathway in dexamethasone impairment of MC3T3-E1 osteogenic capacity in mice. PLoS One 2024; 19:e0309951. [PMID: 39561180 PMCID: PMC11575826 DOI: 10.1371/journal.pone.0309951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/21/2024] [Indexed: 11/21/2024] Open
Abstract
OBJECTIVE In this experiment, we screened key miRNAs involved in the dexamethasone-induced decrease in osteogenic capacity of mouse precursor osteoblasts MC3T3-E1 over and investigated their specific regulatory mechanisms. METHODS In this experiment, cell counting kit assay was utilized to act on MC3T3-E1 cells at 0, 5μM, 10μM, 15μM concentrations of dexamethasone for 24h, 48h and 72h to observe the changes in cell viability in order to select the appropriate dexamethasone concentration. Apoptosis and reactive oxygen species were detected by flow cytometry. The transcription of osteogenesis-related genes (Runx2, ALP, OCN, OPN, OPG, COL1A1) and protein expression levels (Runx2, ALP, OCN, OPN) were detected by Western Blot and qRT-PCR to validate the changes in cellular osteogenesis. The differentially expressed miRNAs related to MC3T3-E1 osteogenic differentiation after dexamethasone action were screened out. The expression levels of selected target miRNAs were verified in the experimental group and the control group by qRT-PCR. The miRNA inhibitor was transfected to knock down miRNA in dexamethasone-induced MC3T3-E1 injury. Alkaline phosphatase staining and flow cytometry were performed to detect apoptosis and reactive oxygen species changes. transcript and protein expression levels of osteogenesis-related genes in mouse MC3T3-E1 were detected by qRT-PCR and Western blot experiments. By miRNA target gene prediction, luciferase reporter gene experiments, qRT-PCR and Western blot experiments were used to verify whether the selected target miRNAs targeted the target gene. RESULTS First, it was determined that 10μM dexamethasone solution was effective in inducing a decrease in osteogenic function in mouse MC3T3-E1 by CCK8 experiments, which showed a significant decrease in alkaline phosphatase activity, a decrease in calcium nodules as shown by alizarin red staining, an increase in apoptosis and reactive oxygen species as detected by flow cytometry, as well as a decrease in the expression of osteogenesis-related genes and proteins. Five target miRNAs were identified: miR-706, miR-296-3p, miR-7011-5p, miR-145a-3p, and miR-149-3p. miR-145a-3p, which had the most pronounced and stable expression trend and was the most highly expressed miRNA, was chosen as the target of this experiment by qRT-PCR analysis. -145a-3p, as the subject of this experiment. Knockdown of miR-145a-3p in MC3T3-E1 cells after dexamethasone action significantly improved the expression of their impaired osteogenic indicators. It was shown that after knocking down the target miRNA, alkaline phosphatase staining was significantly increased compared with the dexamethasone-stimulated group and approached the level of the blank control group. Meanwhile, the expression of osteogenic function-related proteins and genes also increased in the dexamethasone-stimulated group after knocking down miR-145a-3p, and approached the level of the blank control group. A direct targeting relationship between miR-145a-3p and Runx2 was indeed confirmed by luciferase reporter gene assays, qRT-PCR and Western blot experiments. CONCLUSIONS The results indicated that dexamethasone impaired the osteogenic differentiation ability of MC3T3-E1 cells by inducing the up-regulation of miR-145a-3p expression. MiR-145a-3p inhibited the osteogenic differentiation ability of MC3T3-E1 cells by targeting and suppressing the expression level of Runx2 protein. Inhibition of miR-145a-3p levels significantly improved the osteogenic differentiation ability of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Hang Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xinghua Liao
- Central People's Hospital of Zhanjiang, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingrui Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Xie
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Sicheng Ding
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yiren Chen
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
2
|
Capetini VC, Quintanilha BJ, Garcia BREV, Rogero MM. Dietary modulation of microRNAs in insulin resistance and type 2 diabetes. J Nutr Biochem 2024; 133:109714. [PMID: 39097171 DOI: 10.1016/j.jnutbio.2024.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
The prevalence of type 2 diabetes is increasing worldwide. Various molecular mechanisms have been proposed to interfere with the insulin signaling pathway. Recent advances in proteomics and genomics indicate that one such mechanism involves the post-transcriptional regulation of insulin signaling by microRNA (miRNA). These noncoding RNAs typically induce messenger RNA (mRNA) degradation or translational repression by interacting with the 3' untranslated region (3'UTR) of target mRNA. Dietary components and patterns, which can either enhance or impair the insulin signaling pathway, have been found to regulate miRNA expression in both in vitro and in vivo studies. This review provides an overview of the current knowledge of how dietary components influence the expression of miRNAs related to the control of the insulin signaling pathway and discusses the potential application of these findings in precision nutrition.
Collapse
Affiliation(s)
- Vinícius Cooper Capetini
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil; Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, Institute of Pharmaceutical Science, Department of Pharmacology, King's College London, London, United Kingdom.
| | - Bruna Jardim Quintanilha
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil
| | - Bruna Ruschel Ewald Vega Garcia
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Marcelo Macedo Rogero
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil
| |
Collapse
|
3
|
Huang S, Xiao X, Wu H, Zhou F, Fu C. MicroRNA-582-3p knockdown alleviates non-alcoholic steatohepatitis by altering the gut microbiota composition and moderating TMBIM1. Ir J Med Sci 2024; 193:909-916. [PMID: 37823951 DOI: 10.1007/s11845-023-03529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND The gut dysbiosis correlates with non-alcoholic steatohepatitis (NASH), involving the moderation of miRNAs. AIMS This study was aimed to investigate the correlation between gut microbiota and miR-582-3p in patients with non-alcoholic steatohepatitis (NASH) and to explore the possible regulation of miR-582-3p in the function of the activated hepatic stellate cells (HSCs). METHODS GSE69670 and GSE14435 datasets were analyzed by GEO2R. Plasma and fecal samples were obtained from the subjects, non-steatosis (n = 35), simple steatosis (n = 35), and NASH (n = 35). The variations in intestinal microbiota in the non-steatosis and NASH groups were analyzed using 16S rRNA sequencing. The expression of miR-582-3p among the groups was detected using RT-qPCR. Correlations between top-changed intestinal microbiota and miR-582-3p expression were analyzed using the Pearson correlation coefficient. Target gene identification was performed by prediction and dual-luciferase reporter assay. The effect of miR-582-3p on the cell function of TGF-β1-induced HSCs was assessed in vitro. RESULTS miR-582-3p was the common differentially expressed miRNA between GSE69670 and GSE14435. miR-582-3p was upregulated in NASH patients' plasma, as well as in TGF-β1-induced LX-2 cells. The non-steatosis and NASH groups showed significantly different intestinal microbiota distribution. miR-582-3p was positively correlated with specific microbiota populations. TMBIM1 was a target gene for miR-582-3p. Knockdown of miR-582-3p suppressed HSC proliferation and myofibroblast markers' expression but induced cell apoptosis, via TMBIM1. CONCLUSIONS This present study suggests that miR-582-3p promotes the progression of NASH. Knockdown of miR-582-3p may alleviate NASH by altering the gut microbiota composition and moderating TMBIM1.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Internal Medicine, Hunan Maternal and Child Health Hospital, Changsha, Hunan, 410013, China
| | - Xia Xiao
- Department of Internal Medicine, Hunan Maternal and Child Health Hospital, Changsha, Hunan, 410013, China
| | - Hongman Wu
- Department of Infection Control Center, Xiangya Hospital of Central South University, NO.87, Xiangya Road, Changsha, Hunan, 410008, China
| | - Feng Zhou
- Department of Infection Control Center, Xiangya Hospital of Central South University, NO.87, Xiangya Road, Changsha, Hunan, 410008, China
| | - Chenchao Fu
- Department of Infection Control Center, Xiangya Hospital of Central South University, NO.87, Xiangya Road, Changsha, Hunan, 410008, China.
| |
Collapse
|
4
|
Carvalho GB, Payolla TB, Brandão-Lima PN, Sarti FM, Fisberg RM, Rogero MM. Association between circulating micro-ribonucleic acids and metabolic syndrome in older adults from a population-based study. Clin Nutr ESPEN 2023; 58:320-325. [PMID: 38057022 DOI: 10.1016/j.clnesp.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND AND AIMS Aging is a major factor in development of chronic non-communicable diseases (NCD). Epigenetic causes are risk factors in NCD development since studies indicate that the expression of micro-ribonucleic acids (miRs) is altered under different clinical conditions. This study aimed to analyze the expression profile of circulating miRs and investigate their association with biomarkers of cardiometabolic risk in older adults living in São Paulo municipality, Brazil. METHODS A cross-sectional study was conducted based on the analysis of data from 200 older adults, with a mean age of 69.1 (0.5) years old participating in the ISA-Nutrition. The expression profiles of 21 plasma miRs related to glycemic and lipid metabolism, adiposity, and inflammation were evaluated in relation to cardiometabolic risk. Individuals were distributed into groups according to diagnosis of metabolic syndrome (MetS). The Stata Somersd module was used to calculate confidence intervals for Kendall's tau-a to estimate the correlations among variables. RESULTS Differences in the plasma expression were observed in two of the 21 miRs evaluated according to the MetS presence in participants. Individuals with MetS showed higher expression of miR-30a and miR-122 than individuals without MetS. CONCLUSIONS Considering that miR-30, and miR-122 were altered due to MetS, these miRs may be potential biomarkers for MetS in older adults.
Collapse
Affiliation(s)
- Gabrielli B Carvalho
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr Arnaldo Avenue, Pacaembu, ZIP Code 01246-904, São Paulo, SP, Brazil
| | - Tanyara B Payolla
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr Arnaldo Avenue, Pacaembu, ZIP Code 01246-904, São Paulo, SP, Brazil
| | - Paula N Brandão-Lima
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr Arnaldo Avenue, Pacaembu, ZIP Code 01246-904, São Paulo, SP, Brazil
| | - Flávia M Sarti
- School of Arts, Sciences and Humanities, University of São Paulo, 1000 Arlindo Bettio Avenue, ZIP Code 03828-000, São Paulo, SP, Brazil
| | - Regina M Fisberg
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr Arnaldo Avenue, Pacaembu, ZIP Code 01246-904, São Paulo, SP, Brazil
| | - Marcelo M Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr Arnaldo Avenue, Pacaembu, ZIP Code 01246-904, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Lin C, Wang W, Zhang D, Huang K, Zhang Y, Li X, Zhao Y, Zhao L, Wang J, Zhou B, Cheng J, Xu D, Li W, Zhang X, Zheng W. Analysis of liver miRNA in Hu sheep with different residual feed intake. Front Genet 2023; 14:1113411. [PMID: 37928243 PMCID: PMC10620975 DOI: 10.3389/fgene.2023.1113411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Feed efficiency (FE), an important economic trait in sheep production, is indirectly assessed by residual feed intake (RFI). However, RFI in sheep is varied, and the molecular processes that regulate RFI are unclear. It is thus vital to investigate the molecular mechanism of RFI to developing a feed-efficient sheep. The miRNA-sequencing (RNA-Seq) was utilized to investigate miRNAs in liver tissue of 6 out of 137 sheep with extreme RFI phenotypic values. In these animals, as a typical metric of FE, RFI was used to distinguish differentially expressed miRNAs (DE_miRNAs) between animals with high (n = 3) and low (n = 3) phenotypic values. A total of 247 miRNAs were discovered in sheep, with four differentially expressed miRNAs (DE_miRNAs) detected. Among these DE_miRNAs, three were found to be upregulated and one was downregulated in animals with low residual feed intake (Low_RFI) compared to those with high residual feed intake (High_RFI). The target genes of DE_miRNAs were primarily associated with metabolic processes and biosynthetic process regulation. Furthermore, they were also considerably enriched in the FE related to glycolysis, protein synthesis and degradation, and amino acid biosynthesis pathways. Six genes were identified by co-expression analysis of DE_miRNAs target with DE_mRNAs. These results provide a theoretical basis for us to understand the sheep liver miRNAs in RFI molecular regulation.
Collapse
Affiliation(s)
- Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Kai Huang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yukun Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaolong Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yuan Zhao
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Liming Zhao
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jiangbo Cheng
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenxin Zheng
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
6
|
Zhu S, Zhang B, Zhu T, Wang D, Liu C, Liu Y, He Y, Liang W, Li W, Han R, Li D, Yan F, Tian Y, Li G, Kang X, Li Z, Jiang R, Sun G. miR-128-3p inhibits intramuscular adipocytes differentiation in chickens by downregulating FDPS. BMC Genomics 2023; 24:540. [PMID: 37700222 PMCID: PMC10496186 DOI: 10.1186/s12864-023-09649-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Intramuscular fat (IMF) content is the major indicator for evaluating chicken meat quality due to its positive correlation with tenderness, juiciness, and flavor. An increasing number of studies are focusing on the functions of microRNAs (miRNAs) in intramuscular adipocyte differentiation. However, little is known about the association of miR-128-3p with intramuscular adipocyte differentiation. Our previous RNA-seq results indicated that miR-128-3p was differentially expressed at different periods in chicken intramuscular adipocytes, revealing a possible association with intramuscular adipogenesis. The purpose of this research was to investigate the biological functions and regulatory mechanism of miR-128-3p in chicken intramuscular adipogenesis. RESULTS The results of a series of assays confirmed that miR-128-3p could promote the proliferation and inhibit the differentiation of intramuscular adipocytes. A total of 223 and 1,050 differentially expressed genes (DEGs) were identified in the mimic treatment group and inhibitor treatment group, respectively, compared with the control group. Functional enrichment analysis revealed that the DEGs were involved in lipid metabolism-related pathways, such as the MAPK and TGF-β signaling pathways. Furthermore, target gene prediction analysis showed that miR-128-3p can target many of the DEGs, such as FDPS, GGT5, TMEM37, and ASL2. The luciferase assay results showed that miR-128-3p targeted the 3' UTR of FDPS. The results of subsequent functional assays demonstrated that miR-128-3p acted as an inhibitor of intramuscular adipocyte differentiation by targeting FDPS. CONCLUSION miR-128-3p inhibits chicken intramuscular adipocyte differentiation by downregulating FDPS. Our findings provide a theoretical basis for the study of lipid metabolism and reveal a potential target for molecular breeding to improve meat quality.
Collapse
Affiliation(s)
- Shuaipeng Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Binbin Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Tingqi Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Dongxue Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Cong Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Yixuan Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Yuehua He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Wenjie Liang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Fengbin Yan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China.
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China.
| |
Collapse
|
7
|
Guo Y, Zhang Y, Yu J, Dong Y, Chen Z, Zhu C, Hong X, Xie Z, Zhang M, Wang S, Liang Y, He X, Ju W, Chen M. Novel ceRNA network construction associated with programmed cell death in acute rejection of heart allograft in mice. Front Immunol 2023; 14:1184409. [PMID: 37753085 PMCID: PMC10518384 DOI: 10.3389/fimmu.2023.1184409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Background T cell-mediated acute rejection(AR) after heart transplantation(HT) ultimately results in graft failure and is a common indication for secondary transplantation. It's a serious threat to heart transplant recipients. This study aimed to explore the novel lncRNA-miRNA-mRNA networks that contributed to AR in a mouse heart transplantation model. Methods The donor heart from Babl/C mice was transplanted to C57BL/6 mice with heterotopic implantation to the abdominal cavity. The control group was syngeneic heart transplantation with the same kind of mice donor. The whole-transcriptome sequencing was performed to obtain differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs) and lncRNAs (DElncRNAs) in mouse heart allograft. The biological functions of ceRNA networks was analyzed by GO and KEGG enrichment. Differentially expressed ceRNA involved in programmed cell death were further verified with qRT-PCR testing. Results Lots of DEmRNAs, DEmiRNAs and DElncRNAs were identified in acute rejection and control after heart transplantation, including up-regulated 4754 DEmRNAs, 1634 DElncRNAs, 182 DEmiRNAs, and down-regulated 4365 DEmRNAs, 1761 DElncRNAs, 132 DEmiRNAs. Based on the ceRNA theory, lncRNA-miRNA-mRNA regulatory networks were constructed in allograft acute rejection response. The functional enrichment analysis indicate that the down-regulated mRNAs are mainly involved in cardiac muscle cell contraction, potassium channel activity, etc. and the up-regulated mRNAs are mainly involved in T cell differentiation and mononuclear cell migration, etc. The KEGG pathway enrichment analysis showed that the down-regulated DEmRNAs were mainly enriched in adrenergic signaling, axon guidance, calcium signaling pathway, etc. The up-regulated DEmRNAs were enriched in the adhesion function, chemokine signaling pathway, apoptosis, etc. Four lncRNA-mediated ceRNA regulatory pathways, Pvt1/miR-30c-5p/Pdgfc, 1700071M16Rik/miR-145a-3p/Pdgfc, 1700071M16Rik/miR-145a-3p/Tox, 1700071M16Rik/miR-145a-3p/Themis2, were finally validated. In addition, increased expression of PVT1, 1700071M16Rik, Tox and Themis2 may be considered as potential diagnostic gene biomarkers in AR. Conclusion We speculated that Pvt1/miR-30c-5p/Pdgfc, 1700071M16Rik/miR-145a-3p/Pdgfc, 1700071M16Rik/miR-145a-3p/Tox and 1700071M16Rik/miR-145a-3p/Themis2 interaction pairs may serve as potential biomarkers in AR after HT.
Collapse
Affiliation(s)
- Yiwen Guo
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yixi Zhang
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia Yu
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yuqi Dong
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhitao Chen
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Chuchen Zhu
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xitao Hong
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhonghao Xie
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Min Zhang
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Shuai Wang
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yichen Liang
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Weiqiang Ju
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Maogen Chen
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
8
|
Ortega R, Liu B, Persaud SJ. Effects of miR-33 Deficiency on Metabolic and Cardiovascular Diseases: Implications for Therapeutic Intervention. Int J Mol Sci 2023; 24:10777. [PMID: 37445956 DOI: 10.3390/ijms241310777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally inhibit gene expression. These small molecules are involved in several biological conditions such as inflammation, cell growth and proliferation, and regulation of energy metabolism. In the context of metabolic and cardiovascular diseases, miR-33 is of particular interest as it has been implicated in the regulation of lipid and glucose metabolism. This miRNA is located in introns harboured in the genes encoding sterol regulatory element-binding protein (SREBP)-1 and SREBP-2, which are key transcription factors involved in lipid biosynthesis and cholesterol efflux. This review outlines the role of miR-33 in a range of metabolic and cardiovascular pathologies, such as dyslipidaemia, nonalcoholic fatty liver disease (NAFLD), obesity, diabetes, atherosclerosis, and abdominal aortic aneurysm (AAA), and it provides discussion about the effectiveness of miR-33 deficiency as a possible therapeutic strategy to prevent the development of these diseases.
Collapse
Affiliation(s)
- Rebeca Ortega
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Bo Liu
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Shanta J Persaud
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
9
|
Khalifeh M, Santos RD, Oskuee RK, Badiee A, Aghaee-Bakhtiari SH, Sahebkar A. A novel regulatory facet for hypertriglyceridemia: The role of microRNAs in the regulation of triglyceride-rich lipoprotein biosynthesis. Prog Lipid Res 2023; 89:101197. [PMID: 36400247 DOI: 10.1016/j.plipres.2022.101197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the major leading global causes of death. Genetic and epidemiological studies strongly support the causal association between triacylglycerol-rich lipoproteins (TAGRL) and atherogenesis, even in statin-treated patients. Recent genetic evidence has clarified that variants in several key genes implicated in TAGRL metabolism are strongly linked to the increased ASCVD risk. There are several triacylglycerol-lowering agents; however, new therapeutic options are in development, among which are miRNA-based therapeutic approaches. MicroRNAs (miRNAs) are small non-coding RNAs (18-25 nucleotides) that negatively modulate gene expression through translational repression or degradation of target mRNAs, thereby reducing the levels of functional genes. MiRNAs play a crucial role in the development of hypertriglyceridemia as several miRNAs are dysregulated in both synthesis and clearance of TAGRL particles. MiRNA-based therapies in ASCVD have not yet been applied in human trials but are attractive. This review provides a concise overview of current interventions for hypertriglyceridemia and the development of novel miRNA and siRNA-based drugs. We summarize the miRNAs involved in the regulation of key genes in the TAGRLs synthesis pathway, which has gained attention as a novel target for therapeutic applications in CVD.
Collapse
Affiliation(s)
- Masoumeh Khalifeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Heianza Y, Xue Q, Rood J, Bray GA, Sacks FM, Qi L. Circulating thrifty microRNA is related to insulin sensitivity, adiposity, and energy metabolism in adults with overweight and obesity: the POUNDS Lost trial. Am J Clin Nutr 2023; 117:121-129. [PMID: 36789931 PMCID: PMC10196610 DOI: 10.1016/j.ajcnut.2022.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/27/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND MicroRNA 128-1 (miR-128-1) was recently linked to the evolutionary adaptation to famine and identified as a thrifty microRNA that controls energy expenditure, contributing to obesity and impaired glucose metabolism. OBJECTIVES We investigated whether circulating miR-128-1-5p and its temporal changes in response to weight-loss diet interventions were related to regulating insulin resistance, adiposity, and energy expenditure in adults with overweight and obesity. We also examined whether habitual physical activity (PA) and different macronutrient intakes modified associations of changes in miR-128-1-5p with improved metabolic outcomes. METHODS This study included 495 adults who consumed weight-loss diets with different macronutrient intakes. Circulating levels of miR-128-1-5p were assessed at baseline and 6 mo after the interventions. Outcome measurements included changes in insulin resistance HOMA-IR, adiposity, and resting energy expenditure. RESULTS We observed significant relations between circulating miR-128-1-5p and the positive selection signals at the 2q21.3 locus assessed by the single nucleotide polymorphisms rs1446585 and rs4988235. Higher miR-128-1-5p levels were associated with greater HOMA-IR (β per 1 SD: 0.08 [SE 0.03]; P = 0.009), waist circumference (β, 1.16 [0.55]; P = 0.036), whole-body total % fat mass (β, 0.75 [0.30]; P = 0.013), and REE (β, 23 [11]; P = 0.037). In addition, higher miR-128-1-5p level was related to lower total PA index (β, -0.23 [0.07]; P = 0.001) and interacted with PA (Pinteraction < 0.05) on changes in HOMA-IR and adiposity. We found that greater increases in miR-128-1-5p levels after the interventions were associated with lesser improvements in HOMA-IR and adiposity in participants with no change/decreases in PA. Furthermore, we found that dietary fat (Pinteraction = 0.027) and protein (Pinteraction= 0.055) intakes modified relations between changes in miR-128-1-5p and REE. CONCLUSIONS Circulating thrifty miRNA was linked to regulating body fat, insulin resistance, and energy metabolism. Temporal changes in circulating miR-128-1-5p were associated with better weight-loss outcomes during the interventions; habitual PA and dietary macronutrient intake may modify such relations. This trial was registered at clinicaltrials.gov as NCT00072995.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
| | - Qiaochu Xue
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Jennifer Rood
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
11
|
Petito G, Giacco A, Cioffi F, Mazzoli A, Magnacca N, Iossa S, Goglia F, Senese R, Lanni A. Short-term fructose feeding alters tissue metabolic pathways by modulating microRNAs expression both in young and adult rats. Front Cell Dev Biol 2023; 11:1101844. [PMID: 36875756 PMCID: PMC9977821 DOI: 10.3389/fcell.2023.1101844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Dietary high fructose (HFrD) is known as a metabolic disruptor contributing to the development of obesity, diabetes, and dyslipidemia. Children are more sensitive to sugar than adults due to the distinct metabolic profile, therefore it is especially relevant to study the metabolic alterations induced by HFrD and the mechanisms underlying such changes in animal models of different ages. Emerging research suggests the fundamental role of epigenetic factors such as microRNAs (miRNAs) in metabolic tissue injury. In this perspective, the aim of the present study was to investigate the involvement of miR-122-5p, miR-34a-5p, and miR-125b-5p examining the effects induced by fructose overconsumption and to evaluate whether a differential miRNA regulation exists between young and adult animals. We used young rats (30 days) and adult rats (90 days) fed on HFrD for a short period (2 weeks) as animal models. The results indicate that both young and adult rats fed on HFrD exhibit an increase in systemic oxidative stress, the establishment of an inflammatory state, and metabolic perturbations involving the relevant miRNAs and their axes. In the skeletal muscle of adult rats, HFrD impair insulin sensitivity and triglyceride accumulation affecting the miR-122-5p/PTP1B/P-IRS-1(Tyr612) axis. In liver and skeletal muscle, HFrD acts on miR-34a-5p/SIRT-1: AMPK pathway resulting in a decrease of fat oxidation and an increase in fat synthesis. In addition, liver and skeletal muscle of young and adult rats exhibit an imbalance in antioxidant enzyme. Finally, HFrD modulates miR-125b-5p expression levels in liver and white adipose tissue determining modifications in de novo lipogenesis. Therefore, miRNA modulation displays a specific tissue trend indicative of a regulatory network that contributes in targeting genes of various pathways, subsequently yielding extensive effects on cell metabolism.
Collapse
Affiliation(s)
- Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Antonia Giacco
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Nunzia Magnacca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fernando Goglia
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| |
Collapse
|
12
|
Mohammed DM, Elsayed N, Abou Baker DH, Ahmed KA, Sabry BA. Bioactivity and antidiabetic properties of Malva parviflora L. leaves extract and its nano-formulation in streptozotocin-induced diabetic rats. Heliyon 2022; 8:e12027. [DOI: 10.1016/j.heliyon.2022.e12027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
|
13
|
Yang TY, Yu MH, Wu YL, Hong CC, Chen CS, Chan KC, Wang CJ. Mulberry Leaf ( Morus alba L.) Extracts and Its Chlorogenic Acid Isomer Component Improve Glucolipotoxicity-Induced Hepatic Lipid Accumulation via Downregulating miR-34a and Decreased Inflammation. Nutrients 2022; 14:nu14224808. [PMID: 36432495 PMCID: PMC9695749 DOI: 10.3390/nu14224808] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Mulberry leaf (Morus alba L.) is used as a traditional medicine and potential health food to treat various metabolic diseases, such as hypertension, diabetes, and hyperlipidemia. However, we sought the mechanisms by which functional components of mulberry leaves mediate diabetic steatohepatitis. We applied an in vitro model of HepG2 cells induced by glucolipotoxicity and evaluated the effects of MLE and its major components nCGA, Crp, and CGA. The results showed that MLE and nCGA reduced liver fat accumulation by inhibiting SREBP-1/FASN, SREBP-2/HMG-CoAR, and activating PPARα/CPT-1. Additionally, MLE and nCGA decreased inflammatory responses associated with NF-κB, TNF-α, and IL-6 to alleviate steatohepatitis. Furthermore, we showed that MLE and nCGA exerted anti-glucolipotoxicity effects by downregulating miR-34a, thus activating SIRT1/AMPK signaling, and subsequently suppressing hepatic lipid accumulation.
Collapse
Affiliation(s)
- Tsung-Yuan Yang
- Department of Internal Medicine, Chung-Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
- School of Medicine, Institute of Medicine, Chung-Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
| | - Meng-Hsun Yu
- Department of Health Industry Technology Management, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
- Department of Nutrition, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
| | - Yi-Liang Wu
- Division of Cardiovascular Surgery, Surgical Department, Chung Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
- Department of Surgery, School of Medicine, Chung-Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
| | - Ching-Chun Hong
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Chin-Shuh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Kuei-Chuan Chan
- Department of Internal Medicine, Chung-Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
- School of Medicine, Institute of Medicine, Chung-Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
- Correspondence: (K.-C.C.); (C.-J.W.); Tel.: +886-4-247-30022 (ext. 34704) (K.-C.C. & C.-J.W.)
| | - Chau-Jong Wang
- Department of Health Industry Technology Management, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
- Correspondence: (K.-C.C.); (C.-J.W.); Tel.: +886-4-247-30022 (ext. 34704) (K.-C.C. & C.-J.W.)
| |
Collapse
|
14
|
St Pierre CL, Macias-Velasco JF, Wayhart JP, Yin L, Semenkovich CF, Lawson HA. Genetic, epigenetic, and environmental mechanisms govern allele-specific gene expression. Genome Res 2022; 32:1042-1057. [PMID: 35501130 PMCID: PMC9248887 DOI: 10.1101/gr.276193.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/14/2022] [Indexed: 12/03/2022]
Abstract
Allele-specific expression (ASE) is a phenomenon in which one allele is preferentially expressed over the other. Genetic and epigenetic factors cause ASE by altering the final composition of a gene's product, leading to expression imbalances that can have functional consequences on phenotypes. Environmental signals also impact allele-specific expression, but how they contribute to this cross talk remains understudied. Here, we explored how genotype, parent-of-origin, tissue, sex, and dietary fat simultaneously influence ASE biases. Male and female mice from a F1 reciprocal cross of the LG/J and SM/J strains were fed a high or low fat diet. We harnessed strain-specific variants to distinguish between two ASE classes: parent-of-origin-dependent (unequal expression based on parental origin) and sequence-dependent (unequal expression based on nucleotide identity). We present a comprehensive map of ASE patterns in 2853 genes across three tissues and nine environmental contexts. We found that both ASE classes are highly dependent on tissue and environmental context. They vary across metabolically relevant tissues, between males and females, and in response to dietary fat. We also found 45 genes with inconsistent ASE biases that switched direction across tissues and/or environments. Finally, we integrated ASE and QTL data from published intercrosses of the LG/J and SM/J strains. Our ASE genes are often enriched in QTLs for metabolic and musculoskeletal traits, highlighting how this orthogonal approach can prioritize candidate genes. Together, our results provide novel insights into how genetic, epigenetic, and environmental mechanisms govern allele-specific expression, which is an essential step toward deciphering the genotype-to-phenotype map.
Collapse
Affiliation(s)
| | | | | | - Li Yin
- Washington University in Saint Louis
| | | | | |
Collapse
|
15
|
Mennitti LV, Carpenter AAM, Loche E, Pantaleão LC, Fernandez-Twinn DS, Schoonejans JM, Blackmore HL, Ashmore TJ, Pisani LP, Tadross JA, Hargreaves I, Ozanne SE. Effects of maternal diet-induced obesity on metabolic disorders and age-associated miRNA expression in the liver of male mouse offspring. Int J Obes (Lond) 2022; 46:269-278. [PMID: 34663892 PMCID: PMC8794789 DOI: 10.1038/s41366-021-00985-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE This study investigated the effect of maternal obesity on aged-male offspring liver phenotype and hepatic expression of a programmed miRNA. METHODS A mouse model (C57BL/6 J) of maternal diet-induced obesity was used to investigate fasting-serum metabolites, hepatic lipid content, steatosis, and relative mRNA levels (RT-PCR) and protein expression (Western blotting) of key components involved in hepatic and mitochondrial metabolism in 12-month-old offspring. We also measured hepatic lipid peroxidation, mitochondrial content, fibrosis stage, and apoptosis in the offspring. To investigate potential mechanisms leading to the observed phenotype, we also measured the expression of miR-582 (a miRNA previously implicated in liver cirrhosis) in 8-week-old and 12-month-old offspring. RESULTS Body weight and composition was similar between 8-week-old offspring, however, 12-month-old offspring from obese mothers had increased body weight and fat mass (19.5 ± 0.8 g versus 10.4 ± 0.9 g, p < 0.001), as well as elevated serum levels of LDL and leptin and hepatic lipid content (21.4 ± 2.1 g versus 12.9 ± 1.8 g, p < 0.01). This was accompanied by steatosis, increased Bax/Bcl-2 ratio, and overexpression of p-SAPK/JNK, Tgfβ1, Map3k14, and Col1a1 in the liver. Decreased levels of Bcl-2, p-AMPKα, total AMPKα and mitochondrial complexes were also observed. Maternal obesity was associated with increased hepatic miR-582-3p (p < 0.001) and miR-582-5p (p < 0.05). Age was also associated with an increase in both miR-582-3p and miR-582-5p, however, this was more pronounced in the offspring of obese dams, such that differences were greater in 12-month-old animals (-3p: 7.34 ± 1.35 versus 1.39 ± 0.50, p < 0.0001 and -5p: 4.66 ± 1.16 versus 1.63 ± 0.65, p < 0.05). CONCLUSION Our findings demonstrate that maternal diet-induced obesity has detrimental effects on offspring body composition as well as hepatic phenotype that may be indicative of accelerated-ageing phenotype. These whole-body and cellular phenotypes were associated with age-dependent changes in expression of miRNA-582 that might contribute mechanistically to the development of metabolic disorders in the older progeny.
Collapse
Affiliation(s)
- Laís Vales Mennitti
- Department of Bioscience, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo, Santos, 11015-020, Brazil
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Asha A M Carpenter
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Elena Loche
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Lucas C Pantaleão
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Denise S Fernandez-Twinn
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Josca M Schoonejans
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Heather L Blackmore
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Thomas J Ashmore
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Luciana Pellegrini Pisani
- Department of Bioscience, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo, Santos, 11015-020, Brazil
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - John A Tadross
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, United Kingdom
| | - Iain Hargreaves
- Department of Pharmacy and Biomolecular Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 5UA, United Kingdom
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom.
| |
Collapse
|
16
|
Bourgeois BL, Lin HY, Yeh AY, Levitt DE, Primeaux SD, Ferguson TF, Molina PE, Simon L. Unique circulating microRNA associations with dysglycemia in people living with HIV and alcohol use. Physiol Genomics 2022; 54:36-44. [PMID: 34859690 PMCID: PMC8891241 DOI: 10.1152/physiolgenomics.00085.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
People living with HIV (PLWH) have increased prevalence of comorbid conditions including insulin resistance and at-risk alcohol use. Circulating microRNAs (miRs) may serve as minimally invasive indicators of pathophysiological states. We aimed to identify whether alcohol modulates circulating miR associations with measures of glucose/insulin dynamics in PLWH. PLWH (n = 96; 69.8% males) enrolled in the Alcohol & Metabolic Comorbidities in PLWH: Evidence-Driven Interventions (ALIVE-Ex) study were stratified into negative phosphatidylethanol (PEth < 8 ng/mL, n = 42) and positive PEth (PEth ≥ 8 ng/mL, n = 54) groups. An oral glucose tolerance test (OGTT) was administered, and total RNA was isolated from fasting plasma to determine absolute miR expression. Circulating miRs were selected based on their role in skeletal muscle (miR-133a and miR-206), pancreatic β-cell (miR-375), liver (miR-20a), and adipose tissue (miR-let-7b, miR-146a, and miR-221) function. Correlation and multiple regression analyses between miR expression and adiponectin, 2 h glucose, insulin, and C-peptide values were performed adjusting for body mass index (BMI) category, age, sex, and viral load. miR-133a was negatively associated with adiponectin (P = 0.002) in the negative PEth group, and miR-20a was positively associated with 2 h glucose (P = 0.013) in the positive PEth group. Regression analyses combining miRs demonstrated that miR-133a (P < 0.001) and miR-221 (P = 0.010) together predicted adiponectin in the negative PEth group. miR-20a (P < 0.001) and miR-375 (P = 0.002) together predicted 2 h glucose in the positive PEth group. Our results indicate that associations between miRs and measures of glucose/insulin dynamics differed between PEth groups, suggesting that the pathophysiological mechanisms contributing to altered glucose homeostasis in PLWH are potentially modulated by alcohol use.
Collapse
Affiliation(s)
- Brianna L. Bourgeois
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Hui-Yi Lin
- 2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana,3School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Alice Y. Yeh
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Danielle E. Levitt
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Stefany D. Primeaux
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,4Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Tekeda F. Ferguson
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana,5Department of Epidemiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E. Molina
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Liz Simon
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
17
|
Jeong HW, Lee JH, Choi JK, Rha CS, Lee JD, Park J, Park M. Antihypertriglyceridemia activities of naturally fermented green tea, Heukcha, extract through modulation of lipid metabolism in rats fed a high-fructose diet. Food Sci Biotechnol 2021; 30:1581-1591. [PMID: 34868706 DOI: 10.1007/s10068-021-00992-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/01/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Hypertriglyceridemia, a symptom of elevated triglyceride level in the blood, is a potent risk factor for cardiovascular and metabolic disorders. Among the numerous treatments to regulate circulating triglyceride levels, fibrates are widely used to treat hypertriglyceridemia, although they also have side effects such as hepatotoxicity and gallstone formation. In the present study, we aimed to investigate the blood triglyceride-lowering effects of a naturally fermented green tea extract (NFGT) and the underlying mechanisms on hypertriglyceridemia in vitro and in vivo models. NFGT suppressed the expression of lipogenic genes, while augmented expression of fatty acid oxidation-related genes in cultured cells, leading to the significant decrease of intracellular triglyceride content. NFGT treated group in fructose-induced hypertriglyceridemic rat model significantly decreased plasma and hepatic triglyceride, which was accompanied by an increase in excretion of fecal fat. Taken together, we propose that NFGT could be potentially a novel functional ingredient to prevent or treat hypertriglyceridemia.
Collapse
Affiliation(s)
- Hyun Woo Jeong
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| | - Ji-Hae Lee
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| | - Jin Kyu Choi
- QA Team, Aestura Corporation, Ansung, Republic of Korea
| | - Chan-Su Rha
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| | - Jung Dae Lee
- Osulloc R&D Center, Osulloc Farm Corporation, Jeju, Republic of Korea
| | - Jaehong Park
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| | - Miyoung Park
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| |
Collapse
|
18
|
Zhao F, Ma S, Zhou Y, Wei B, Hao Z, Cui X, Xing L, Liu G, Jin L, Ma T, Shi L. miRNA-223 Suppresses Mouse Gallstone Formation by Targeting Key Transporters in Hepatobiliary Cholesterol Secretion Pathway. Int J Biol Sci 2021; 17:4459-4473. [PMID: 34803510 PMCID: PMC8579439 DOI: 10.7150/ijbs.65485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
miRNA-223 has been previously reported to play an essential role in hepatic cholesterol homeostasis. However, its role in regulation of biliary cholesterol secretion and gallstone formation remains unknown. Hence, mice with conventional knockout (KO), hepatocyte-specific knockout (ΔHepa) / knockdown (KD) or gain expression of miRNA-223 were included in the study and were subjected to lithogenic diet (LD) for various weeks. The gall bladders and liver tissues were harvested for cholesterol crystal imaging, gallstone mass measurement and molecular analysis. Levels of cholesterol, bile salt, phospholipids, and triglyceride were determined in serum, liver tissues, and bile by enzyme color reactive assays. A 3' UTR reporter gene assay was used to verify the direct target genes for miRNA-223. LD-induced gallstone formation was remarkably accelerated in miRNA-223 KO, ΔHepa, and KD mice with concurrent enhancement in total cholesterol levels in liver tissues and bile. Key biliary cholesterol transporters ABCG5 and ABCG8 were identified as direct targets of miRNA-223. Reversely, AAV-mediated hepatocyte-specific miRNA-223 overexpression prevented gallstone progression with reduced targets expression. Therefore, the present study demonstrates a novel role of miRNA-223 in the gallstone formation by targeting ABCG5 and ABCG8 and elevating miRNA-223 would be a potentially novel approach to overcome the sternness of cholesterol gallstone disease.
Collapse
Affiliation(s)
- Feng Zhao
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Shiyu Ma
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Yuling Zhou
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361004, China
| | - Bailing Wei
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Zhen Hao
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Xiaolin Cui
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Lina Xing
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Gang Liu
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Lingling Jin
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Lei Shi
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| |
Collapse
|
19
|
Dong J, Gu W, Yang X, Zeng L, Wang X, Mu J, Wang Y, Li F, Yang M, Yu J. Crosstalk Between Polygonatum kingianum, the miRNA, and Gut Microbiota in the Regulation of Lipid Metabolism. Front Pharmacol 2021; 12:740528. [PMID: 34776961 PMCID: PMC8578870 DOI: 10.3389/fphar.2021.740528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Polygonatum kingianum is a medicinal herb used in various traditional Chinese medicine formulations. The polysaccharide fraction of P. kingianum can reduce insulin resistance and restore the gut microbiota in a rat model of aberrant lipid metabolism by down regulating miR-122. The aim of this study was to further elucidate the effect of P. kingianum on lipid metabolism, and the roles of specific miRNAs and the gut microbiota. Key findings: P. kingianum administration significantly altered the abundance of 29 gut microbes and 27 differentially expressed miRNAs (DEMs). Several aberrantly expressed miRNAs closely related to lipid metabolism were identified, of which some were associated with specific gut microbiota. MiR-484 in particular was identified as the core factor involved in the therapeutic effects of P. kingianum. We hypothesize that the miR-484-Bacteroides/Roseburia axis acts as an important bridge hub that connects the entire miRNA-gut microbiota network. In addition, we observed that Parabacteroides and Bacillus correlated significantly with several miRNAs, including miR-484, miR-122-5p, miR-184 and miR-378b. Summary: P. kingianum alleviates lipid metabolism disorder by targeting the network of key miRNAs and the gut microbiota.
Collapse
Affiliation(s)
- Jincai Dong
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China.,Chenggong Hospital of Kunming Yan'an Hospital, Kunming, China
| | - Wen Gu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Xingxin Yang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Linxi Zeng
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Xi Wang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiankang Mu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Yanfang Wang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Fengjiao Li
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Min Yang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Jie Yu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
20
|
Dong Z, Gu H, Guo Q, Liang S, Xue J, Yao F, Liu X, Li F, Liu H, Sun L, Zhao K. Profiling of Serum Exosome MiRNA Reveals the Potential of a MiRNA Panel as Diagnostic Biomarker for Alzheimer's Disease. Mol Neurobiol 2021; 58:3084-3094. [PMID: 33629272 DOI: 10.1007/s12035-021-02323-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/05/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the older adults. Although much effort has been made in the analyses of diagnostic biomarkers, such as amyloid-β, tau, and neurofilament light chain, identifying peripheral blood-based biomarkers is in extremely urgent need for their minimal invasiveness and more convenience. Here we characterized the miRNA profile by RNA sequencing in human serum exosomes from AD patients and healthy controls (HC) to investigate its potential for AD diagnosis. Subsequently, Gene Ontology analysis and pathway analysis were performed for the targeted genes from the differentially expressed miRNAs. These basic functions were differentially enriched, including cell adhesion, regulation of transcription, and the ubiquitin system. Functional network analysis highlighted the pathways of proteoglycans in cancer, viral carcinogenesis, signaling pathways regulating pluripotency of stem cells, and cellular senescence in AD. A total of 24 miRNAs showed significantly differential expression between AD and HC with more than ± 2.0-fold change at p value < 0.05 and at least 50 reads for each sample. Logistic regression analysis established a model for AD prediction by serum exosomal miR-30b-5p, miR-22-3p, and miR-378a-3p. Sequencing results were validated using quantitative reverse transcription PCR. The data showed that miR-30b-5p, miR-22-3p, and miR-378a-3p were significantly deregulated in AD, with area under the curve (AUC) of 0.668, 0.637, and 0.718, respectively. The combination of the three miRs gained a better diagnostic capability with AUC of 0.880. This finding revealed a miR panel as potential biomarker in the peripheral blood to distinguish AD from HC.
Collapse
Affiliation(s)
- Zhiwu Dong
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China.
| | - Hongjun Gu
- Shanghai Jinshan Zhongren Aged Care Hospital, Shanghai, 201501, China
| | - Qiang Guo
- Department of Ultrasound Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 201599, China
| | - Shuang Liang
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Jian Xue
- Shanghai Jinshan Zhongren Aged Care Hospital, Shanghai, 201501, China
| | - Feng Yao
- Shanghai Jinshan Zhongren Aged Care Hospital, Shanghai, 201501, China
| | - Xianglu Liu
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Feifei Li
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Huiling Liu
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Li Sun
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Kewen Zhao
- Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China
| |
Collapse
|
21
|
Hernández-Díazcouder A, González-Ramírez J, Giacoman-Martínez A, Cardoso-Saldaña G, Martínez-Martínez E, Osorio-Alonso H, Márquez-Velasco R, Sánchez-Gloria JL, Juárez-Vicuña Y, Gonzaga G, Sánchez-Lozada LG, Almanza-Pérez JC, Sánchez-Muñoz F. High fructose exposure modifies the amount of adipocyte-secreted microRNAs into extracellular vesicles in supernatants and plasma. PeerJ 2021; 9:e11305. [PMID: 34055478 PMCID: PMC8140597 DOI: 10.7717/peerj.11305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/29/2021] [Indexed: 11/28/2022] Open
Abstract
Background High fructose exposure induces metabolic and endocrine responses in adipose tissue. Recent evidence suggests that microRNAs in extracellular vesicles are endocrine signals secreted by adipocytes. Fructose exposure on the secretion of microRNA by tissues and cells is poorly studied. Thus, the aim of this study was to evaluate the effect of fructose exposure on the secretion of selected microRNAs in extracellular vesicles from 3T3-L1 cells and plasma from Wistar rats. Methods 3T3-L1 cells were exposed to 550 µM of fructose or standard media for four days, microRNAs levels were determined in extracellular vesicles of supernatants and cells by RT-qPCR. Wistar rats were exposed to either 20% fructose drink or tap water for eight weeks, microRNAs levels were determined in extracellular vesicles of plasma and adipose tissue by RT-qPCR. Results This study showed that fructose exposure increased the total number of extracellular vesicles released by 3T3-L1 cells (p = 0.0001). The levels of miR-143-5p were increased in extracellular vesicles of 3T3-L1 cells exposed to fructose (p = 0.0286), whereas miR-223-3p levels were reduced (p = 0.0286). Moreover, in plasma-derived extracellular vesicles, miR-143-5p was higher in fructose-fed rats (p = 0.001), whereas miR-223-3p (p = 0.022), miR-342-3p (p = 0.0011), miR-140-5p (p = 0.0129) and miR-146b-5p (p = 0.0245) were lower. Conclusion Fructose exposure modifies the levels of microRNAs in extracellular vesicles in vitro and in vivo. In particular, fructose exposure increases miR-143-5p, while decreases miR-223-3p and miR-342-3p.
Collapse
Affiliation(s)
- Adrián Hernández-Díazcouder
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México.,Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Javier González-Ramírez
- Laboratorio de Biología Celular, Facultad de Enfermería, Universidad Autónoma de Baja California Campus Mexicali, Mexicali, Baja California, Mexico
| | - Abraham Giacoman-Martínez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Guillermo Cardoso-Saldaña
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Eduardo Martínez-Martínez
- Laboratorio de Comunicación Celular y Vesículas Extracelulares, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Ricardo Márquez-Velasco
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - José L Sánchez-Gloria
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Yaneli Juárez-Vicuña
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Guillermo Gonzaga
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Julio César Almanza-Pérez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| |
Collapse
|
22
|
Golonka RM, Cooper JK, Issa R, Devarasetty PP, Gokula V, Busken J, Zubcevic J, Hill J, Vijay-Kumar M, Menon B, Joe B. Impact of Nutritional Epigenetics in Essential Hypertension: Targeting microRNAs in the Gut-Liver Axis. Curr Hypertens Rep 2021; 23:28. [PMID: 33961141 PMCID: PMC8105193 DOI: 10.1007/s11906-021-01142-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW To review the current knowledge on interactions between dietary factors and microRNAs (miRNAs) in essential hypertension (EH) pathogenesis. RECENT FINDINGS There exists an integration of maintenance signals generated by genetic, epigenetic, immune, and environmental (e.g., dietary) factors that work to sustain balance in the gut-liver axis. It is well established that an imbalance in this complex, intertwined system substantially increases the risk for EH. As such, pertinent research has been taken to decipher how each signal operates in isolation and together in EH progression. Recent literature indicates that both macro- and micronutrients interrupt regulatory miRNA expressions and thus, alter multiple cellular processes that contribute to EH and its comorbidities. We highlight how carbohydrates, lipids, proteins, salt, and potassium modify miRNA signatures during EH. The disruption in miRNA expression can negatively impact communication systems such as over activating the renin-angiotensin-aldosterone system, modulating the vascular smooth muscle cell phenotype, and promoting angiogenesis to favor EH. We also delineate the prognostic value of miRNAs in EH and discuss the pros and cons of surgical vs dietary prophylactic approaches in EH prevention. We propose that dietary-dependent perturbation of the miRNA profile is one mechanism within the gut-liver axis that dictates EH development.
Collapse
Affiliation(s)
- Rachel M Golonka
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA
| | | | - Rochell Issa
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | | | - Veda Gokula
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Joshua Busken
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jasenka Zubcevic
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Jennifer Hill
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA
| | - Matam Vijay-Kumar
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA
| | - Bindu Menon
- Department of Medical Education, University of Toledo College of Medicine and Life Sciences, Room 3105B, CCE Bldg, 2920 Arlington Ave, Toledo, OH, 43614, USA.
| | - Bina Joe
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA.
| |
Collapse
|
23
|
Wang H, Song Y, Wu Y, Kumar V, Mahato RI, Su Q. Activation of dsRNA-Dependent Protein Kinase R by miR-378 Sustains Metabolic Inflammation in Hepatic Insulin Resistance. Diabetes 2021; 70:710-719. [PMID: 33419758 PMCID: PMC7897349 DOI: 10.2337/db20-0181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are noncoding small RNAs that regulate various pathophysiological cellular processes. Here, we report that expression of the miR-378 family was significantly induced by metabolic inflammatory inducers, a high-fructose diet, and inflammatory cytokine tumor necrosis factor-α. Hepatic miRNA profiling revealed that expression of miR-378a was highly upregulated, which, in turn, targeted the 3'-untranslated region of PPARα mRNA, impaired mitochondrial fatty acid β-oxidation, and induced mitochondrial and endoplasmic reticulum stress. More importantly, the upregulated miR-378a can directly bind to and activate the double-strand RNA (dsRNA)-dependent protein kinase R (PKR) to sustain the metabolic stress. In vivo, genetic depletion of miR-378a prevented PKR activation and ameliorated inflammatory stress and insulin resistance. Counterbalancing the upregulated miR-378a using nanoparticles encapsulated with an anti-miR-378a oligonucleotide restored PPARα activity, inhibited PKR activation and ER stress, and improved insulin sensitivity in fructose-fed mice. Our study delineated a novel mechanism of miR-378a in the pathogenesis of metabolic inflammation and insulin resistance through targeting metabolic signaling at both mRNA (e.g., PPARα) and protein (e.g., PKR) molecules. This novel finding of functional interaction between miRNAs (e.g., miR-378a) and cellular RNA binding proteins (e.g., PKR) is biologically significant because it greatly broadens the potential targets of miRNAs in cellular pathophysiological processes.
Collapse
Affiliation(s)
- Hao Wang
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, U.K
| | - Yongyan Song
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Yuxin Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, U.K
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, U.K.
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
24
|
Zhu Y, Zhu Y, Liu Y, Liu Y, Chen X. Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 correlates with microRNA-125b/microRNA-146a/microRNA-203 and predicts 2-year restenosis risk in coronary heart disease patients. Biomark Med 2021; 15:257-271. [PMID: 33565328 DOI: 10.2217/bmm-2020-0715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To investigate correlations of long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (lnc-MALAT1) and its target microRNAs with clinical features and restenosis risk in coronary heart disease (CHD) patients post drug-eluting stent-percutaneous coronary intervention (DES-PCI). Materials & methods: A total of 274 CHD patients undergoing DES-PCI were enrolled, pre-operative plasma samples were obtained to detect lnc-MALAT1, miR-125b, miR-146a, miR-203 by RT-qPCR; 2-year restenosis was determined by quantitative coronary angiography. Results: Lnc-MALAT1 negatively correlated with miR-125b, miR-146a and miR-203. Furthermore, lnc-MALAT1, miR-125b, miR-146a and miR-203 correlated with diabetes mellitus, hyperuricemia, lesion properties, cholesterol, inflammation and cardiac function indexes. Additionally, lnc-MALAT1 was increased, while miR-125b and miR-146a were decreased in patients with 2-year restenosis than patients without 2-year restenosis; however, miR-203 did not differ. Conclusion: Lnc-MALAT1 and its target miRNAs might help manage restenosis risk in CHD patients post DES-PCI.
Collapse
Affiliation(s)
- Yankuo Zhu
- Department of Cardiology, People's Hospital of Mudan, Heze, PR China
| | - Yinchuan Zhu
- Department of Vasculocardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, PR. China
| | - Yingchao Liu
- Department of Clinical Laboratory, The Second People's Hospital of Liaocheng, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Linqing, PR China
| | - Yanru Liu
- Department of Cardiology, People's Hospital of Mudan, Heze, PR China
| | - Xiaoyu Chen
- Department of Clinical Laboratory, People's Hospital of Mudan, Heze, PR China
| |
Collapse
|
25
|
Pan JH, Cha H, Tang J, Lee S, Lee SH, Le B, Redding MC, Kim S, Batish M, Kong BC, Lee JH, Kim JK. The role of microRNA-33 as a key regulator in hepatic lipogenesis signaling and a potential serological biomarker for NAFLD with excessive dietary fructose consumption in C57BL/6N mice. Food Funct 2021; 12:656-667. [PMID: 33404569 DOI: 10.1039/d0fo02286a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Limited studies reported mechanisms by which microRNAs (miRNA) are interlinked in the etiology of fructose-induced non-alcoholic fatty liver disease (NAFLD). Here, we aimed to investigate the significance of miRNAs in fructose-induced NAFLD pathogenesis through unbiased approaches. In experiment I, C57BL/6N mice were fed either water or 34% fructose for six weeks ad libitum. In experiment II, time course effects of fructose intervention were monitored using the same conditions; mice were killed at the baseline, fourth, and sixth weeks. Bioinformatic analyses for hepatic proteomics revealed that SREBP1 is the most significant upstream regulator influenced by fructose; miR-33-5p (miR-33) was identified as the key miRNA responsible for SREBP1 regulation upon fructose intake, which was validated by in vitro transfection assay. In experiment II, we confirmed that the longer mice consumed fructose, the more severe liver injury markers (e.g., serum AST) appeared. Moreover, hepatic Srebp1 mRNA expression was increased depending upon the duration of fructose consumption. Hepatic miR-33 was time-dependently decreased by fructose while serum miR-33 expression was increased; these observations indicated that miR-33 from the liver might be released upon cell damage. Finally we observed that fructose-induced ferroptosis might be a cause of liver toxicity, resulting from oxidative damage. Collectively, our findings suggest that fructose-induced oxidative damage induces ferroptosis, and miR-33 could be used as a serological biomarker of fructose-induced NAFLD.
Collapse
Affiliation(s)
- Jeong Hoon Pan
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Xiong J, Hu H, Guo R, Wang H, Jiang H. Mesenchymal Stem Cell Exosomes as a New Strategy for the Treatment of Diabetes Complications. Front Endocrinol (Lausanne) 2021; 12:646233. [PMID: 33995278 PMCID: PMC8117220 DOI: 10.3389/fendo.2021.646233] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease, now prevalent worldwide, which is characterized by a relative or absolute lack of insulin secretion leading to chronically increased blood glucose levels. Diabetic patients are often accompanied by multiple macrovascular complications, such as coronary heart disease, hypertension, macrovascular arteriosclerosis, and microvascular complications. Microvascular complications include diabetic kidney injury, diabetic encephalopathy, and diabetic foot, which reduce the quality of life and survival status of patients. Mesenchymal stem cell exosomes (MSC-Exos) possess repair functions similar to MSCs, low immunogenicity, and ease of storage and transport. MSC-Exos have been proven to possess excellent repair effects in repairing various organ damages. This study reviews the application of MSC-Exos in the treatment of DM and its common complications. MSC-Exos may be used as an effective treatment for DM and its complications.
Collapse
Affiliation(s)
| | | | | | - Hui Wang
- *Correspondence: Hui Wang, ; Hua Jiang,
| | - Hua Jiang
- *Correspondence: Hui Wang, ; Hua Jiang,
| |
Collapse
|
27
|
Saleem M, Hussain A, Akhtar MF, Saleem A, Sadeeqa S, Naheed S. Ameliorating effect of Malva Neglecta on hyperglycemia and hyperlipidemia in diabetic rats. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-97902020000418901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
28
|
Hadj-Moussa H, Pamenter ME, Storey KB. Hypoxic naked mole-rat brains use microRNA to coordinate hypometabolic fuels and neuroprotective defenses. J Cell Physiol 2020; 236:5080-5097. [PMID: 33305831 DOI: 10.1002/jcp.30216] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022]
Abstract
Naked mole-rats are among the mammalian champions of hypoxia tolerance. They evolved adaptations centered around reducing metabolic rate to overcome the challenges experienced in their underground burrows. In this study, we used next-generation sequencing to investigate one of the factors likely supporting hypoxia tolerance in naked mole-rat brains, posttranscriptional microRNAs (miRNAs). Of the 212 conserved miRNAs identified using small RNA sequencing, 18 displayed significant differential expression during hypoxia. Bioinformatic enrichment revealed that hypoxia-mediated miRNAs were suppressing energy expensive processes including de novo protein translation and cellular proliferation. This suppression occurred alongside the activation of neuroprotective and neuroinflammatory pathways, and the induction of central signal transduction pathways including HIF-1α and NFκB via miR-335, miR-101, and miR-155. MiRNAs also coordinated anaerobic glycolytic fuel sources, where hypoxia-upregulated miR-365 likely suppressed protein levels of ketohexokinase, the enzyme responsible for catalyzing the first committed step of fructose catabolism. This was further supported by a hypoxia-mediated reduction in glucose transporter 5 proteins that import fructose into the cell. Yet, messenger RNA and protein levels of lactate dehydrogenase, which converts pyruvate to lactate in the absence of oxygen, were elevated during hypoxia. Together, this demonstrated the induction of anaerobic glycolysis despite a lack of reliance on fructose as the primary fuel source, suggesting that hypoxic brains are metabolically different than anoxic naked mole-rat brains that were previously found to shift to fructose-based glycolysis. Our findings contribute to the growing body of oxygen-responsive miRNAs "OxymiRs" that facilitate natural miRNA-mediated mechanisms for successful hypoxic exposures.
Collapse
Affiliation(s)
| | - Matthew E Pamenter
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
MiR-582-3p alleviates osteoarthritis progression by targeting YAP1. Mol Immunol 2020; 128:258-267. [DOI: 10.1016/j.molimm.2020.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 12/31/2022]
|
30
|
An T, Zhang XQ, Liu YF, Lian J, Wu YX, Lv BH, Liang C, Chen CY, Yu QS, Ma MH, Wang YQ, Jiang GJ, Fan T. Microarray analysis of aberrant microRNA expression patterns in spinal cord gliomas of different grades. Oncol Lett 2020; 20:371. [PMID: 33154769 PMCID: PMC7640765 DOI: 10.3892/ol.2020.12234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/15/2019] [Indexed: 12/02/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in the development of several types of tumor; however, their role in spinal gliomas remains unknown. The present study aimed to identify potentially novel spinal cord gliomas (SCG)-associated miRNAs and to characterize their roles in the development and progression of SCG. miRNA expression levels in low-grade SCG (classed as stage I–II SCG based on the World Health Organization grading system), high-grade SCG (classed as stage IV SCG based on the World Health Organization grading system) and 5 control cases were measured using a miRNA expression microarray. Subsequently, blood samples from the spinal cord of patients with differing grades of SCG were screened for differentially expressed miRNAs (DEmiRNAs). Compared with the control group, 7 upregulated and 36 downregulated miRNAs were identified in the low-grade SCG group and a total of 70 upregulated and 20 downregulated miRNAs were identified in the high-grade SCG group (P≤0.05, fold change >2). Gene Ontology analysis revealed that the regulation of cellular metabolic processes, negative regulation of biological processes and axon guidance were primarily involved. Moreover, pathway analysis showed that the target genes of DEmiRNAs were enriched in tumor-related signaling pathways, such as the MAPK and Wnt signaling pathway. The results suggest that DEmiRNAs in peripheral blood may serve as novel target markers with high specificity and sensitivity for the diagnosis of SCG.
Collapse
Affiliation(s)
- Tian An
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xin-Qing Zhang
- Department of Neurosurgery, ChuiYangLiu Hospital Affiliated to Tsinghua University, Beijing 100022, P.R. China
| | - Yu-Fei Liu
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, P.R. China
| | - Juan Lian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yan-Xiang Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Bo-Han Lv
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Cong Liang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Chun-You Chen
- Department of Endocrinology, Workers Hospital of Tangshan City, Tangshan, Hebei 063000, P.R. China
| | - Qi-Shuai Yu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Meng-Hua Ma
- Department of Endocrinology, Workers Hospital of Tangshan City, Tangshan, Hebei 063000, P.R. China
| | - Yin-Qian Wang
- Department of Neurosurgery, ChuiYangLiu Hospital Affiliated to Tsinghua University, Beijing 100022, P.R. China
| | - Guang-Jian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Tao Fan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| |
Collapse
|
31
|
Barbalata T, Zhang L, Dulceanu MD, Stancu CS, Devaux Y, Sima AV, Niculescu LS. Regulation of microRNAs in high-fat diet induced hyperlipidemic hamsters. Sci Rep 2020; 10:20549. [PMID: 33239653 PMCID: PMC7688633 DOI: 10.1038/s41598-020-77539-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Dyslipidemia is a documented risk factor for cardiovascular diseases and other metabolic disorders. Therefore, the analysis of hyperlipidemia (HL)-related miRNAs is a potential approach for achieving new prognostic markers in lipid-metabolism related diseases. We aimed to analyze specific distribution of miRNAs in different tissues from HL animals. Golden Syrian hamsters were fed either regular chow (NL) or high-fat diet (HL) for 12 weeks. Microarray miRNAs profiling was performed in liver, heart and small intestine and data analyzed by R-studio software. Functional enrichment bioinformatics analysis was performed using miRWalk and DAVID tools. We observed a dysregulation of miRNAs in HL tissues evidencing a discrete distribution in the heart-liver axis and three lipid metabolism-related miRNAs were identified: hsa-miR-223-3p, hsa-miR-21-5p, and hsa-miR-146a-5p. Expression levels of these miRNAs were increased in HL livers and hearts. Functional bioinformatics analysis showed involvement of these miRNAs in the regulation of biological processes altered in HL conditions such as lipid metabolic process, fat cell differentiation, regulation of smooth muscle cells and cardiac septum development. We identified a set of miRNAs dysregulated in different tissues of HFD-induced HL hamsters. These findings motivate further studies aiming to investigate novel molecular mechanisms of lipid metabolism and atherogenic HL.
Collapse
Affiliation(s)
- Teodora Barbalata
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B. P. Hasdeu Street, 050568, Bucharest, Romania
| | - Lu Zhang
- Cardiovascular Research Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Madalina D Dulceanu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B. P. Hasdeu Street, 050568, Bucharest, Romania.,Synevo Romania, 81, Pache Protopopescu Ave, 021408, Bucharest, Romania
| | - Camelia S Stancu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B. P. Hasdeu Street, 050568, Bucharest, Romania
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Anca V Sima
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B. P. Hasdeu Street, 050568, Bucharest, Romania
| | - Loredan S Niculescu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B. P. Hasdeu Street, 050568, Bucharest, Romania.
| | | |
Collapse
|
32
|
Shang Q, Shen G, Chen G, Zhang Z, Yu X, Zhao W, Zhang P, Chen H, Tang K, Yu F, Tang J, Liang D, Jiang X, Ren H. The emerging role of miR-128 in musculoskeletal diseases. J Cell Physiol 2020; 236:4231-4243. [PMID: 33241566 DOI: 10.1002/jcp.30179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/24/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
MicroRNA-128 (miR-128) is associated with cell proliferation, differentiation, migration, apoptosis, and survival. Genetic analysis studies have demonstrated that miR-128 participates in bone metabolism, which involves bone marrow-derived mesenchymal stem cells, osteoblasts, osteoclasts, and adipocytes. miR-128 also participates in regeneration of skeletal muscles by targeting myoblast-associated proteins. The deregulation of miR-128 could lead to a series of musculoskeletal diseases. In this review, we discuss recent findings of miR-128 in relation to bone metabolism and muscle regeneration to determine its potential therapeutic effects in musculoskeletal diseases, and to propose directions for future research in this significant field.
Collapse
Affiliation(s)
- Qi Shang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guifeng Chen
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglin Chen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Tang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuyong Yu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
33
|
Nutrition and microRNAs: Novel Insights to Fight Sarcopenia. Antioxidants (Basel) 2020; 9:antiox9100951. [PMID: 33023202 PMCID: PMC7601022 DOI: 10.3390/antiox9100951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Sarcopenia is a progressive age-related loss of skeletal muscle mass and strength, which may result in increased physical frailty and a higher risk of adverse events. Low-grade systemic inflammation, loss of muscle protein homeostasis, mitochondrial dysfunction, and reduced number and function of satellite cells seem to be the key points for the induction of muscle wasting, contributing to the pathophysiological mechanisms of sarcopenia. While a range of genetic, hormonal, and environmental factors has been reported to contribute to the onset of sarcopenia, dietary interventions targeting protein or antioxidant intake may have a positive effect in increasing muscle mass and strength, regulating protein homeostasis, oxidative reaction, and cell autophagy, thus providing a cellular lifespan extension. MicroRNAs (miRNAs) are endogenous small non-coding RNAs, which control gene expression in different tissues. In skeletal muscle, a range of miRNAs, named myomiRNAs, are involved in many physiological processes, such as growth, development, and maintenance of muscle mass and function. This review aims to present and to discuss some of the most relevant molecular mechanisms related to the pathophysiological effect of sarcopenia. Besides, we explored the role of nutrition as a possible way to counteract the loss of muscle mass and function associated with ageing, with special attention paid to nutrient-dependent miRNAs regulation. This review will provide important information to better understand sarcopenia and, thus, to facilitate research and therapeutic strategies to counteract the pathophysiological effect of ageing.
Collapse
|
34
|
Nergiz-Unal R, Ulug E, Kisioglu B, Tamer F, Bodur M, Yalcimin H, Yuruk AA. Hepatic cholesterol synthesis and lipoprotein levels impaired by dietary fructose and saturated fatty acids in mice: Insight on PCSK9 and CD36. Nutrition 2020; 79-80:110954. [PMID: 32862122 DOI: 10.1016/j.nut.2020.110954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the uncertain effects of high saturated fatty acids (SFAs) or fructose intake on cholesterol and lipoproteins with an insight of proprotein convertase subtilisin/kexin type 9 (PCSK9)- and cluster of differentiation 36 (CD36)-induced mechanisms. METHODS Forty male C57 BL/6 mice (8 wks of age) were divided into four groups and fed ad libitum with standard chow or three isocaloric diets containing high SFAs (SFA group), monounsaturated fatty acids (MUFA group, vehicle), or fructose for 15 wks. Subsequently, mice were sacrificed and blood, liver, and heart were collected for further analysis. RESULTS Consequently, fructose or SFA intake resulted in higher plasma and liver total cholesterol (TC) levels, plasma low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (HDL-C), apolipoprotein (Apo)-B levels, TC/HDL-C, and LDL-C/HDL-C ratios, and lower plasma levels of HDL-C and Apo-A1 (P < 0.05). Levels of 3-hydroxy-3-methylglutaryl-CoA reductase and acetyl-CoA acetyltransferase 1 enzymes in liver and CD36 levels in plasma were elevated by high SFAs and fructose intake (P < 0.05), whereas plasma PCSK9 levels were not significantly changed. Fructose and SFA intake increased PCSK9 and CD36 levels in the heart, along with increased CD36 levels in the liver (P < 0.05). Furthermore, plasma LDL-C was found to be positively correlated with liver PCSK9 (r = 0.85, P = 0.02), and CD36 (r = 0.70, P = 0.02) in the SFA and fructose groups. CONCLUSION High intakes of dietary SFAs and fructose might induce dysregulations in the cholesterol synthesis and blood lipoprotein levels via proposed nutrient-sensitive biomarkers PCSK9 and CD36 in liver and extrahepatic tissues involved in cholesterol homeostasis.
Collapse
Affiliation(s)
- Reyhan Nergiz-Unal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey.
| | - Elif Ulug
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Betul Kisioglu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Funda Tamer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Mahmut Bodur
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ankara University, Ankara, Turkey
| | - Hacer Yalcimin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Armagan Aytug Yuruk
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
35
|
Nathanael J, Harsono HCA, Wibawa AD, Suardana P, Vianney YM, Dwi Putra SE. The genetic basis of high-carbohydrate and high-monosodium glutamate diet related to the increase of likelihood of type 2 diabetes mellitus: a review. Endocrine 2020; 69:18-29. [PMID: 32172486 DOI: 10.1007/s12020-020-02256-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/03/2020] [Indexed: 12/27/2022]
Abstract
Diabetes is one of the most common metabolic diseases. Aside from the genetic factor, previous studies stated that other factors such as environment, lifestyle, and paternal-maternal condition play critical roles in diabetes through DNA methylation in specific areas of the genome. One of diabetic cases is caused by insulin resistance and changing the homeostasis of blood glucose control so glucose concentration stood beyond normal rate (hyperglycemia). High fat diet has been frequently studied and linked to triggering diabetes. However, most Asians consume rice (or food with high carbohydrate) and food with monosodium glutamate (MSG). This habit could lead to pathophysiology of type 2 diabetes mellitus (T2D). Previous studies showed that high-carbohydrate or high-MSG diet could change gene expression or modify protein activity in body metabolism. This imbalanced metabolism can lead to pleiotropic effects of diabetes mellitus. In this study, the authors have attempted to relate various changes in genes expression or protein activity to the high-carbohydrate and high-MSG-induced diabetes. The authors have also tried to relate several genes that contribute to pathophysiology of T2D and proposed several ideas of genes as markers and target for curing people with T2D. These are done by investigating altered activities of various genes that cause or are caused by diabetes. These genes are selected based on their roles in pathophysiology of T2D.
Collapse
Affiliation(s)
- Joshua Nathanael
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Hans Cristian Adhinatya Harsono
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Aubrey Druce Wibawa
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Putu Suardana
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Yoanes Maria Vianney
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Sulistyo Emantoko Dwi Putra
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia.
| |
Collapse
|
36
|
Pathobiological and molecular connections involved in the high fructose and high fat diet induced diabetes associated nonalcoholic fatty liver disease. Inflamm Res 2020; 69:851-867. [DOI: 10.1007/s00011-020-01373-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/22/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
|
37
|
DiStefano JK. Fructose-mediated effects on gene expression and epigenetic mechanisms associated with NAFLD pathogenesis. Cell Mol Life Sci 2020; 77:2079-2090. [PMID: 31760464 PMCID: PMC7440926 DOI: 10.1007/s00018-019-03390-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic, frequently progressive condition that develops in response to excessive hepatocyte fat accumulation (i.e., steatosis) in the absence of significant alcohol consumption. Liver steatosis develops as a result of imbalanced lipid metabolism, driven largely by increased rates of de novo lipogenesis and hepatic fatty acid uptake and reduced fatty acid oxidation and/or disposal to the circulation. Fructose is a naturally occurring simple sugar, which is most commonly consumed in modern diets in the form of sucrose, a disaccharide comprised of one molecule of fructose covalently bonded with one molecule of glucose. A number of observational and experimental studies have demonstrated detrimental effects of dietary fructose consumption not only on diverse metabolic outcomes such as insulin resistance and obesity, but also on hepatic steatosis and NAFLD-related fibrosis. Despite the compelling evidence that excessive fructose consumption is associated with the presence of NAFLD and may even promote the development and progression of NAFLD to more clinically severe phenotypes, the molecular mechanisms by which fructose elicits effects on dysregulated liver metabolism remain unclear. Emerging data suggest that dietary fructose may directly alter the expression of genes involved in lipid metabolism, including those that increase hepatic fat accumulation or reduce hepatic fat removal. The aim of this review is to summarize the current research supporting a role for dietary fructose intake in the modulation of transcriptomic and epigenetic mechanisms underlying the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA.
| |
Collapse
|
38
|
Cai Q, Chen F, Xu F, Wang K, Zhang K, Li G, Chen J, Deng H, He Q. Epigenetic silencing of microRNA-125b-5p promotes liver fibrosis in nonalcoholic fatty liver disease via integrin α8-mediated activation of RhoA signaling pathway. Metabolism 2020; 104:154140. [PMID: 31926204 DOI: 10.1016/j.metabol.2020.154140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/04/2019] [Accepted: 01/04/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases that may progress to liver fibrosis or cancer. The present study aimed to investigate the role of microRNA-125b-5p (miR-125b-5p) in NAFLD and to further explore underlying molecular mechanisms. METHODS A mouse model of NAFLD was constructed by high cholesterol diet feeding and a cell-model was developed by treating the mouse liver cell line NCTC1469 with palmitic acid. Gain- and loss-of-function experiments were performed to determine the effects of miR-125b-5p, integrin α8 (ITGA8), and the RhoA signaling pathway on liver fibrosis in NAFLD. After the expression levels of miR-125b-5p, ITGA8, and RhoA were determined, liver fibrosis was evaluated in vivo and in vitro. The binding relationship of miR-125b-5p and ITGA8 was then validated. Finally, miR-125b-5p promoter methylation in NAFLD liver tissues and cells was determined. RESULTS In NAFLD clinical samples, mouse model, and cell-model, miR-125b-5p expression was reduced, while ITGA8 expression was increased. Moreover, miR-125b-5p targeted and downregulated ITGA8, leading to inhibition of the RhoA signaling pathway. In NAFLD liver tissues and cells, the CpG island in the miR-125b-5p promoter was methylated, causing epigenetic silencing of miR-125b-5p. Both miR-125b-5p silencing and ITGA8 overexpression promoted in vitro and in vivo liver fibrosis in NAFLD via activation of the RhoA signaling pathway. CONCLUSIONS Collectively, epigenetic silencing of miR-125b-5p upregulates ITGA8 expression to activate the RhoA signaling pathway, leading to liver fibrosis in NAFLD.
Collapse
Affiliation(s)
- Qingxian Cai
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Fengjuan Chen
- Department of Hepatopathy, Guangzhou Eighth People's Hospital, Guangzhou 510080, PR China
| | - Fen Xu
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat-sen University, GuangdongProvincial Key Laboratory of Diabetology, Guangzhou 510630, PR China
| | - Ke Wang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Ka Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Guojun Li
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Jun Chen
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Hong Deng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China.
| | - Qing He
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China.
| |
Collapse
|
39
|
Deodati A, Inzaghi E, Cianfarani S. Epigenetics and In Utero Acquired Predisposition to Metabolic Disease. Front Genet 2020; 10:1270. [PMID: 32082357 PMCID: PMC7000755 DOI: 10.3389/fgene.2019.01270] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/18/2019] [Indexed: 01/21/2023] Open
Abstract
Epidemiological evidence has shown an association between prenatal malnutrition and a higher risk of developing metabolic disease in adult life. An inadequate intrauterine milieu affects both growth and development, leading to a permanent programming of endocrine and metabolic functions. Programming may be due to the epigenetic modification of genes implicated in the regulation of key metabolic mechanisms, including DNA methylation, histone modifications, and microRNAs (miRNAs). The expression of miRNAs in organs that play a key role in metabolism is influenced by in utero programming, as demonstrated by both experimental and human studies. miRNAs modulate multiple pathways such as insulin signaling, immune responses, adipokine function, lipid metabolism, and food intake. Liver is one of the main target organs of programming, undergoing structural, functional, and epigenetic changes following the exposure to a suboptimal intrauterine environment. The focus of this review is to provide an overview of the effects of exposure to an adverse in utero milieu on epigenome with a focus on the molecular mechanisms involved in liver programming.
Collapse
Affiliation(s)
- Annalisa Deodati
- Dipartimento Pediatrico Universitario Ospedaliero "Bambino Gesù" Children's Hospital, Tor Vergata University, Rome, Italy
| | - Elena Inzaghi
- Dipartimento Pediatrico Universitario Ospedaliero "Bambino Gesù" Children's Hospital, Tor Vergata University, Rome, Italy
| | - Stefano Cianfarani
- Dipartimento Pediatrico Universitario Ospedaliero "Bambino Gesù" Children's Hospital, Tor Vergata University, Rome, Italy.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Softic S, Stanhope KL, Boucher J, Divanovic S, Lanaspa MA, Johnson RJ, Kahn CR. Fructose and hepatic insulin resistance. Crit Rev Clin Lab Sci 2020; 57:308-322. [PMID: 31935149 DOI: 10.1080/10408363.2019.1711360] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excessive caloric intake in a form of high-fat diet (HFD) was long thought to be the major risk factor for development of obesity and its complications, such as fatty liver disease and insulin resistance. Recently, there has been a paradigm shift and more attention is attributed to the effects of sugar-sweetened beverages (SSBs) as one of the culprits of the obesity epidemic. In this review, we present the data invoking fructose intake with development of hepatic insulin resistance in human studies and discuss the pathways by which fructose impairs hepatic insulin action in experimental animal models. First, we described well-characterized pathways by which fructose metabolism indirectly leads to hepatic insulin resistance. These include unequivocal effects of fructose to promote de novo lipogenesis (DNL), impair fatty acid oxidation (FAO), induce endoplasmic reticulum (ER) stress and trigger hepatic inflammation. Additionally, we entertained the hypothesis that fructose can directly impede insulin signaling in the liver. This appears to be mediated by reduced insulin receptor and insulin receptor substrate 2 (IRS2) expression, increased protein-tyrosine phosphatase 1B (PTP1b) activity, whereas knockdown of ketohexokinase (KHK), the rate-limiting enzyme of fructose metabolism, increased insulin sensitivity. In summary, dietary fructose intake strongly promotes hepatic insulin resistance via complex interplay of several metabolic pathways, at least some of which are independent of increased weight gain and caloric intake. The current evidence shows that the fructose, but not glucose, component of dietary sugar drives metabolic complications and contradicts the notion that fructose is merely a source of palatable calories that leads to increased weight gain and insulin resistance.
Collapse
Affiliation(s)
- Samir Softic
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Kentucky College of Medicine and Kentucky Children's Hospital, Lexington, KY, USA.,Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, CO, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, CO, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| |
Collapse
|
41
|
Al-attar R, Wu CW, Biggar KK, Storey KB. Carb-Loading: Freeze-Induced Activation of the Glucose-Responsive ChREBP Transcriptional Network in Wood Frogs. Physiol Biochem Zool 2020; 93:49-61. [DOI: 10.1086/706463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Bai Y, Bao X, Jiang G, Ge D, He W, Zhao D, Zhang Y, Dong R, Hua J, Yang N, Mo F, Gao S. Jiang Tang Xiao Ke Granule Protects Hepatic Tissue of Diabetic Mice Through Modulation of Insulin and Ras Signaling - A Bioinformatics Analysis of MicroRNAs and mRNAs Network. Front Pharmacol 2020; 11:173. [PMID: 32210802 PMCID: PMC7067923 DOI: 10.3389/fphar.2020.00173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/07/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To investigate the impact of JTXK granule on the miRNA expression profiles in hepatic tissue of diabetic mice, and to explore the molecular targets and associated signaling pathways of JTXK granule in its anti-diabetic effect. METHODS Eight mice were randomly selected as normal group fed with chow diet. Then high fat diet was used to induce diabetic model, and the mice were subsequently divided into JTXK-treated group (J group, n = 6) and model group (M group, n = 6). After 8 weeks' intervention we examined the fasting blood glucose and observed the histopathologic changes in hepatic tissue between these two groups. Next we screened the differentially expressed miRNAs between the two groups using microRNA sequencing analysis. Finally, miRNA target gene prediction, GO and KEGG analysis were applied to explore the function of DEMs. RESULTS The blood glucose level in J group was significantly lower than M group (P < 0.05). The results from H&E staining showed that the arrangement and structure of hepatocytes from J group were basically normal with fewer ballooning degeneration and less inflammatory cell infiltration. Furthermore, a total of 33 significantly differentiated miRNAs were detected in comparison between the two groups (| log2(fold change) | >0.3, P < 0.05). MiRNA-mRNA analysis showed that mmu-miR-30a-5p, mmu-miR-23b-5p, mmu-miR-199a-5p, mmu-miR-425-5p, and mmu-miR-214-3p are closely related to inflammatory response, histological changes and insulin signal transduction in liver. In addition, KEGG analysis showed that the DEMs were closely related to Ras and insulin signaling pathway. CONCLUSION JTXK granule exerts anti-diabetic effect in hepatic tissue of diabetic mice by modulating miRNAs and mRNAs network.
Collapse
Affiliation(s)
- Ying Bai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueli Bao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guangjian Jiang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dongyu Ge
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Weipeng He
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dandan Zhao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- College of City Management, Beijing Open University, Beijing, China
| | - Ruijuan Dong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Hua
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Nan Yang
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Fangfang Mo
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Fangfang Mo,
| | - Sihua Gao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Sihua Gao,
| |
Collapse
|
43
|
[Basic knowledge about healthy eating in medical graduates]. NUTR HOSP 2020; 37:1226-1231. [PMID: 33155473 DOI: 10.20960/nh.03168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Introduction: the promotion of a healthy lifestyle is an imperative need to both reduce the risk of non-communicable diseases associated with lifestyle, and prevent their progression. Objective: to evaluate the basic knowledge about healthy eating of a cohort of graduates from medical school. Method: a descriptive research was conducted through a review of the inclusion of a nutrition subject matter in the curriculum of medical schools. A food knowledge questionnaire was administered to 80 physicians at the first level of care who had graduated five years before the research. Results: the correct answers to the questionnaire obtained on average 64.96 points out of a possible score of 113. There was a weak association between scores for "diet-disease relationship" and "source of nutrition" (p = 0.016). In the curriculum of the reviewed medical schools, biochemistry courses are privileged over nutrition courses. The nutrition courses imparted in medical schools do not have a minimum of hours, and are not structured to train health promotion capabilities. The participants had low scores in all areas. Conclusions: it is necessary that nutrition courses be reconfigured to face the pandemic of non-communicable diseases and their consequences both in patients and in health systems.
Collapse
|
44
|
Yang YZ, Zhao XJ, Xu HJ, Wang SC, Pan Y, Wang SJ, Xu Q, Jiao RQ, Gu HM, Kong LD. Magnesium isoglycyrrhizinate ameliorates high fructose-induced liver fibrosis in rat by increasing miR-375-3p to suppress JAK2/STAT3 pathway and TGF-β1/Smad signaling. Acta Pharmacol Sin 2019; 40:879-894. [PMID: 30568253 DOI: 10.1038/s41401-018-0194-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/08/2018] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence has demonstrated that excessive fructose intake induces liver fibrosis. Epithelial-mesenchymal transition (EMT) driven by transforming growth factor-β1 (TGF-β1)/mothers against decapentaplegic homolog (Smad) signaling activation promotes the occurrence and development of liver fibrosis. Magnesium isoglycyrrhizinate is clinically used as a hepatoprotective agent to treat liver fibrosis, but its underlying molecular mechanism has not been identified. Using a rat model, we found that high fructose intake reduced microRNA (miR)-375-3p expression and activated the janus-activating kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) cascade and TGF-β1/Smad signaling, which is consistent with the EMT and liver fibrosis. To further verify these observations, BRL-3A cells and/or primary rat hepatocytes were exposed to high fructose and/or transfected with a miR-375-3p mimic or inhibitor or treated with a JAK2 inhibitor, and we found that the low expression of miR-375-3p could induce the JAK2/STAT3 pathway to activate TGF-β1/Smad signaling and promote the EMT. Magnesium isoglycyrrhizinate was found to ameliorate high fructose-induced EMT and liver fibrosis in rats. More importantly, magnesium isoglycyrrhizinate increased miR-375-3p expression to suppress the JAK2/STAT3 pathway and TGF-β1/Smad signaling in these animal and cell models. This study provides evidence showing that magnesium isoglycyrrhizinate attenuates liver fibrosis associated with a high fructose diet.
Collapse
|
45
|
Hernández-Díazcouder A, Romero-Nava R, Carbó R, Sánchez-Lozada LG, Sánchez-Muñoz F. High Fructose Intake and Adipogenesis. Int J Mol Sci 2019; 20:E2787. [PMID: 31181590 PMCID: PMC6600229 DOI: 10.3390/ijms20112787] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
In modern societies, high fructose intake from sugar-sweetened beverages has contributed to obesity development. In the diet, sucrose and high fructose corn syrup are the main sources of fructose and can be metabolized in the intestine and transported into the systemic circulation. The liver can metabolize around 70% of fructose intake, while the remaining is metabolized by other tissues. Several tissues including adipose tissue express the main fructose transporter GLUT5. In vivo, chronic fructose intake promotes white adipose tissue accumulation through activating adipogenesis. In vitro experiments have also demonstrated that fructose alone induces adipogenesis by several mechanisms, including (1) triglycerides and very-low-density lipoprotein (VLDL) production by fructose metabolism, (2) the stimulation of glucocorticoid activation by increasing 11β-HSD1 activity, and (3) the promotion of reactive oxygen species (ROS) production through uric acid, NOX and XOR expression, mTORC1 signaling and Ang II induction. Moreover, it has been observed that fructose induces adipogenesis through increased ACE2 expression, which promotes high Ang-(1-7) levels, and through the inhibition of the thermogenic program by regulating Sirt1 and UCP1. Finally, microRNAs may also be involved in regulating adipogenesis in high fructose intake conditions. In this paper, we propose further directions for research in fructose participation in adipogenesis.
Collapse
Affiliation(s)
- Adrián Hernández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
- Departamento de Ciencias de la Salud, Área de Investigación Médica, Universidad Autónoma Metropolitana Iztapalapa, Mexico city 09340, Mexico.
| | - Rodrigo Romero-Nava
- Departamento de Ciencias de la Salud, Área de Investigación Médica, Universidad Autónoma Metropolitana Iztapalapa, Mexico city 09340, Mexico.
- Laboratorio de investigación en Farmacología, Hospital Infantil de México Federico Gómez, Mexico city 06720, Mexico.
- Sección de Postgraduados, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico.
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
| | - L Gabriela Sánchez-Lozada
- Laboratorio de Fisiopatología Renal, Departamento de Nefrología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
- Sección de Postgraduados, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico.
| |
Collapse
|
46
|
Wang S, Liang C, Ai H, Yang M, Yi J, Liu L, Song Z, Bao Y, Li Y, Sun L, Zhao H. Hepatic miR-181b-5p Contributes to Glycogen Synthesis Through Targeting EGR1. Dig Dis Sci 2019; 64:1548-1559. [PMID: 30627917 DOI: 10.1007/s10620-018-5442-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM The miR-181 family plays an important role in the regulation of various cellular functions. However, whether miR-181b-5p mediates hepatic insulin resistance remains unknown. In this study, we investigated the effect of miR-181b-5p on the regulation of hepatic glycogen synthesis. METHODS The miR-181b-5p levels in the livers of diabetic mice were detected by real-time PCR. The glycogen levels and AKT/GSK pathway activation were examined in human hepatic L02 cells and HepG2 cells transfected with miR-181b-5p mimic or inhibitor. The potential target genes of miR-181b-5p were evaluated using a luciferase reporter assay and Western blot analysis. EGR1-specific siRNA and pCMV-EGR1 were used to further determine the role of miR-181b-5p in hepatic glycogen synthesis in vitro. Hepatic inhibition of miR-181b-5p in mice was performed using adeno-associated virus 8 (AAV8) vectors by tail intravenous injection. RESULTS The miR-181b-5p levels were significantly decreased in the serum and livers of diabetic mice as well as the serum of type 2 diabetes patients. Importantly, inhibition of miR-181b-5p expression impaired the AKT/GSK pathway and reduced glycogenesis in hepatocytes. Moreover, upregulation of miR-181b-5p reversed high-glucose-induced suppression of glycogenesis. Further analysis revealed that early growth response 1 (EGR1) was a downstream target of miR-181b-5p. Silencing of EGR1 expression rescued miR-181b-5p inhibition-reduced AKT/GSK pathway activation and glycogenesis in hepatocytes. Hepatic inhibition of miR-181b-5p led to insulin resistance in C57BL/6 J mice. CONCLUSION We demonstrated that miR-181b-5p contributes to glycogen synthesis by targeting EGR1, thereby regulating PTEN expression to mediate hepatic insulin resistance.
Collapse
Affiliation(s)
- Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Chen Liang
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
| | - Huihan Ai
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
| | - Meiting Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
| | - Jingwen Yi
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
| | - Yuxin Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China.
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Luguo Sun
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Huiying Zhao
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
47
|
Choi H, Koh HWL, Zhou L, Cheng H, Loh TP, Parvaresh Rizi E, Toh SA, Ronnett GV, Huang BE, Khoo CM. Plasma Protein and MicroRNA Biomarkers of Insulin Resistance: A Network-Based Integrative -Omics Analysis. Front Physiol 2019; 10:379. [PMID: 31024340 PMCID: PMC6460474 DOI: 10.3389/fphys.2019.00379] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/19/2019] [Indexed: 12/20/2022] Open
Abstract
Although insulin resistance (IR) is a key pathophysiologic condition underlying various metabolic disorders, impaired cellular glucose uptake is one of many manifestations of metabolic derangements in the human body. To study the systems-wide molecular changes associated with obesity-dependent IR, we integrated information on plasma proteins and microRNAs in eight obese insulin-resistant (OIR, HOMA-IR > 2.5) and nine lean insulin-sensitive (LIS, HOMA-IR < 1.0) normoglycemic males. Of 374 circulating miRNAs we profiled, 65 species increased and 73 species decreased in the OIR compared to the LIS subjects, suggesting that the overall balance of the miRNA secretome is shifted in the OIR subjects. We also observed that 40 plasma proteins increased and 4 plasma proteins decreased in the OIR subjects compared to the LIS subjects, and most proteins are involved in metabolic and endocytic functions. We used an integrative -omics analysis framework called iOmicsPASS to link differentially regulated miRNAs with their target genes on the TargetScan map and the human protein interactome. Combined with tissue of origin information, the integrative analysis allowed us to nominate obesity-dependent and obesity-independent protein markers, along with potential sites of post-transcriptional regulation by some of the miRNAs. We also observed the changes in each -omics platform that are not linked by the TargetScan map, suggesting that proteins and microRNAs provide orthogonal information for the progression of OIR. In summary, our integrative analysis provides a network of elevated plasma markers of OIR and a global shift of microRNA secretome composition in the blood plasma.
Collapse
Affiliation(s)
- Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Hiromi W L Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | | - He Cheng
- MiRXES, Pte. Ltd., Singapore, Singapore
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Ehsan Parvaresh Rizi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sue Anne Toh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gabriele V Ronnett
- Janssen Research & Development US, World Without Disease Accelerator, Spring House, NJ, United States
| | - Bevan E Huang
- Janssen Research & Development US, South San Francisco, CA, United States
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
48
|
Hanousková B, Neprašová B, Skálová L, Maletínská L, Zemanová K, Ambrož M, Matoušková P. High-fructose drinks affect microRNAs expression differently in lean and obese mice. J Nutr Biochem 2019; 68:42-50. [PMID: 31030166 DOI: 10.1016/j.jnutbio.2019.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/17/2018] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
High fructose intake from soft drinks and sweets is assumed to have a negative impact on human health. Yet in spite of intensive research, the molecular mechanisms of these effects have not been fully elucidated yet, for example, the effect of high fructose intake could be different in normal and obese individuals. Four groups of mice were used in this study: control groups of lean mice and mice with obesity induced by a high-fat diet, then both of these groups with or without fructose administration in drinks. In plasma of each group, triacylglycerol, cholesterol, free fatty acids, alanine aminotransferase, insulin and adiponectin were measured. The expression levels of selected microRNAs (miRNAs) in plasma, the liver, white adipose tissue, brown adipose tissue and subcutaneous adipose tissue were quantified. In both lean and obese mice, high fructose intake increased cholesterol amount in the liver, up-regulated hepatic miR-27a, down-regulated miR-33a in white adipose tissue and increased plasmatic level of miR-21. The effect of high fructose intake on other miRNAs in the liver, plasma and adipose tissues differed in normal and obese mice. Fructose intake led to hepatic hypercholesterolemia and aberrant expression of several miRNAs participating in lipid metabolism, adipocytes differentiation and nonalcoholic fatty liver disease promotion. The effect of fructose on miRNAs expression differed in normal and obese mice. Nevertheless, plasmatic miR-21, which was induced by fructose in both lean and obese mice, may be considered as a potential biomarker of excessive fructose intake.
Collapse
Affiliation(s)
- Barbora Hanousková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203/8, Hradec Králové, Czech Republic.
| | - Barbora Neprašová
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 542/2, Prague, Czech Republic.
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203/8, Hradec Králové, Czech Republic.
| | - Lenka Maletínská
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 542/2, Prague, Czech Republic.
| | - Kateřina Zemanová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203/8, Hradec Králové, Czech Republic.
| | - Martin Ambrož
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203/8, Hradec Králové, Czech Republic.
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203/8, Hradec Králové, Czech Republic.
| |
Collapse
|
49
|
Huang S, Zou C, Tang Y, Wa Q, Peng X, Chen X, Yang C, Ren D, Huang Y, Liao Z, Huang S, Zou X, Pan J. miR-582-3p and miR-582-5p Suppress Prostate Cancer Metastasis to Bone by Repressing TGF-β Signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:91-104. [PMID: 30852380 PMCID: PMC6409413 DOI: 10.1016/j.omtn.2019.01.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 02/03/2023]
Abstract
A number of studies have reported that aberrant expression of microRNAs (miRNAs) closely correlates with the bone metastasis of prostate cancer (PCa). However, clinical significance and functional roles of both strands of a single miRNA in bone metastasis of PCa remain undefined. Here, we reported that miR-582-3p and miR-582-5p expression were simultaneously reduced in bone metastatic PCa tissues compared with non-bone metastatic PCa tissues. Downexpression of miR-582-3p and miR-582-5p strongly and positively correlated with advanced clinicopathological characteristics and shorter bone metastasis-free survival in PCa patients. Upregulating miR-582-3p and miR-582-5p inhibited invasion and migration abilities of PCa cells in vitro, as well as repressed bone metastasis in vivo. Our results further revealed that miR-582-3p and miR-582-5p attenuated bone metastasis of PCa via inhibiting transforming growth factor β (TGF-β) signaling by simultaneously targeting several components of TGF-β signaling, including SMAD2, SMAD4, TGF-β receptor I (TGFBRI), and TGFBRII. Moreover, deletion contributes to miR-582-3p and miR-582-5p downexpression in PCa tissues. Finally, clinical negative correlations of miR-582-3p and miR-582-5p with SMAD2, SMAD4, TGFBRI, and TGFBRII were demonstrated in PCa tissues. Thus, our findings explore a novel tumor-suppressive miRNA with its both strands implicated in bone metastasis of PCa, suggesting its potential therapeutic value in treatment of PCa bone metastasis.
Collapse
Affiliation(s)
- Shuai Huang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China; Department of Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, 510080 Guangzhou, China.
| | - Changye Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China; Department of Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, 510080 Guangzhou, China
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China
| | - Qingde Wa
- Department of Orthopaedic Surgery, The Affiliated Hospital of Zunyi Medical College, 563003 Zunyi, China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China; Department of Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, 510080 Guangzhou, China
| | - Xiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China
| | - Chunxiao Yang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dong Ren
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China; Department of Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, 510080 Guangzhou, China
| | - Yan Huang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Zhuangwen Liao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Sheng Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China
| | - Xuenong Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China; Department of Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, 510080 Guangzhou, China.
| | - Jincheng Pan
- Department of Urology Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China.
| |
Collapse
|
50
|
Belhayara MI, Mellouk Z, Hamdaoui MS, Bachaoui M, Kheroua O, Malaisse WJ. Relationship between the insulin resistance and circulating predictive biochemical markers in metabolic syndrome among young adults in western Algeria. Diabetes Metab Syndr 2019; 13:504-509. [PMID: 30641755 DOI: 10.1016/j.dsx.2018.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/02/2018] [Indexed: 01/31/2023]
Abstract
AIM The metabolic syndrome (MetS) becomes increasingly obvious from an early age. The current study aimed at exploring the relationship between insulin resistance and the main biomarkers of MetS in young adult algerian patients. METHODS Glucose, HbA1C, total cholesterol (TC), hjgh bensity lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), insulinemia and C-peptide, adipokins (leptin, adiponectin), inflammatory cytokines (IL-6 and TNF-a), us-CRP and GLP-1 were measured by suitable methods. Homeostasis model assessment (HOMA) was used to detect the degree of insulin resistance. RESULTS The MetS patients displayed higher glucose, insulin, HbA1c values and impaired lipid profile as judged by increasing TC, TG, LDL-C levels and lower HDL-C. Furthermore, adipokines, HDL-C and CRP contents were significantly higher whilst TG and LDL-C were much lower in MetS female group as compared to male patients suggesting most pronounced metabolic perturbation in the latter group. The probability of a significant correlation between HOMA and studied variables was often higher in female than male subjects. Such was the case for total cholesterol, HDL-cholesterol, triglycerides, adiponectin, interleukin-6, TNF-α and hs-CRP. CONCLUSION The high rate of metabolic syndrome among young obese adults is alarming, this requiring extensive investigations in prone subjects.
Collapse
Affiliation(s)
| | - Zoheir Mellouk
- Biology Department, Faculty of Natural and Life Sciences, University of Oran1, Algeria.
| | | | - Malika Bachaoui
- Department of Internal Medicine, University Hospital Institution of Oran, Algeria
| | - Omar Kheroua
- Biology Department, Faculty of Natural and Life Sciences, University of Oran1, Algeria
| | | |
Collapse
|