1
|
Mahase V, Sobitan A, Yao Q, Shi X, Qin H, Kidane D, Tang Q, Teng S. Impact of Missense Mutations on Spike Protein Stability and Binding Affinity in the Omicron Variant. Viruses 2024; 16:1150. [PMID: 39066312 PMCID: PMC11281596 DOI: 10.3390/v16071150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The global effort to combat the COVID-19 pandemic faces ongoing uncertainty with the emergence of Variants of Concern featuring numerous mutations on the Spike (S) protein. In particular, the Omicron Variant is distinguished by 32 mutations, including 10 within its receptor-binding domain (RBD). These mutations significantly impact viral infectivity and the efficacy of vaccines and antibodies currently in use for therapeutic purposes. In our study, we employed structure-based computational saturation mutagenesis approaches to predict the effects of Omicron missense mutations on RBD stability and binding affinity, comparing them to the original Wuhan-Hu-1 strain. Our results predict that mutations such as G431W and P507W induce the most substantial destabilizations in the Wuhan-Hu-1-S/Omicron-S RBD. Notably, we postulate that mutations in the Omicron-S exhibit a higher percentage of enhancing binding affinity compared to Wuhan-S. We found that the mutations at residue positions G447, Y449, F456, F486, and S496 led to significant changes in binding affinity. In summary, our findings may shed light on the widespread prevalence of Omicron mutations in human populations. The Omicron mutations that potentially enhance their affinity for human receptors may facilitate increased viral binding and internalization in infected cells, thereby enhancing infectivity. This informs the development of new neutralizing antibodies capable of targeting Omicron's immune-evading mutations, potentially aiding in the ongoing battle against the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Adebiyi Sobitan
- Department of Biology, Howard University, Washington, DC 20059, USA
| | - Qiaobin Yao
- Department of Biology, Howard University, Washington, DC 20059, USA
| | - Xinghua Shi
- Department of Computer & Information Sciences, Temple University, Philadelphia, PA 19122, USA
| | - Hong Qin
- Department of Computer Science and Engineering, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| | - Dawit Kidane
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Shaolei Teng
- Department of Biology, Howard University, Washington, DC 20059, USA
| |
Collapse
|
2
|
M L SP, Kumari S, Martinek TA, M ES. De novo design of potential peptide analogs against the main protease of Omicron variant using in silico studies. Phys Chem Chem Phys 2024; 26:14006-14017. [PMID: 38683190 DOI: 10.1039/d4cp01199f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
SARS-CoV-2 and its variants are crossing the immunity barrier induced through vaccination. Recent Omicron sub-variants are highly transmissible and have a low mortality rate. Despite the low severity of Omicron variants, these new variants are known to cause acute post-infectious syndromes. Nowadays, novel strategies to develop new potential inhibitors for SARS-CoV-2 and other Omicron variants have gained prominence. For viral replication and survival the main protease of SARS-CoV-2 plays a vital role. Peptide-like inhibitors that mimic the substrate peptide have already proved to be effective in inhibiting the Mpro of SARS-CoV-2 variants. Our systematic canonical amino acid point mutation analysis on the native peptide has revealed various ways to improve the native peptide of the main protease. Multi mutation analysis has led us to identify and design potent peptide-analog inhibitors that act against the Mpro of the Omicron sub-variants. Our in-depth analysis of all-atom molecular dynamics studies has paved the way to characterize the atomistic behavior of Mpro in Omicron variants. Our goal is to develop potent peptide-analogs that could be therapeutically effective against Omicron and its sub-variants.
Collapse
Affiliation(s)
- Stanly Paul M L
- Institute of Pharmaceutical Analysis, University of Szeged, Eotvos u. 6, G-6720 Szeged, Hungary.
| | - Sonia Kumari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Mohali 160062, India.
| | - Tamás A Martinek
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
- ELKH-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Elizabeth Sobhia M
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Mohali 160062, India.
| |
Collapse
|
3
|
Vigil K, D'Souza N, Bazner J, Cedraz FMA, Fisch S, Rose JB, Aw TG. Long-term monitoring of SARS-CoV-2 variants in wastewater using a coordinated workflow of droplet digital PCR and nanopore sequencing. WATER RESEARCH 2024; 254:121338. [PMID: 38430753 DOI: 10.1016/j.watres.2024.121338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Quantitative polymerase chain reaction (PCR) and genome sequencing are important methods for wastewater surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The reverse transcription-droplet digital PCR (RT-ddPCR) is a highly sensitive method for quantifying SARS-CoV-2 RNA in wastewater samples to track the trends of viral activity levels but cannot identify new variants. It also takes time to develop new PCR-based assays targeting variants of interest. Whole genome sequencing (WGS) can be used to monitor known and new SARS-CoV-2 variants, but it is generally not quantitative. Several short-read sequencing techniques can be expensive and might experience delayed turnaround times when outsourced due to inadequate in-house resources. Recently, a portable nanopore sequencing system offers an affordable and real-time method for sequencing SARS-CoV-2 variants in wastewater. This technology has the potential to enable swift response to disease outbreaks without relying on clinical sequencing results. In addressing concerns related to rapid turnaround time and accurate variant analysis, both RT-ddPCR and nanopore sequencing methods were employed to monitor the emergence of SARS-CoV-2 variants in wastewater. This surveillance was conducted at 23 sewer maintenance hole sites and five wastewater treatment plants in Michigan from 2020 to 2022. In 2020, the wastewater samples were dominated by the parental variants (20A, 20C and 20 G), followed by 20I (Alpha, B.1.1.7) in early 2021 and the Delta variant of concern (VOC) in late 2021. For the year 2022, Omicron variants dominated. Nanopore sequencing has the potential to validate suspected variant cases that were initially undetermined by RT-ddPCR assays. The concordance rate between nanopore sequencing and RT-ddPCR assays in identifying SARS-CoV-2 variants to the clade-level was 76.9%. Notably, instances of disagreement between the two methods were most prominent in the identification of the parental and Omicron variants. We also showed that sequencing wastewater samples with SARS-CoV-2 N gene concentrations of >104 GC/100 ml as measured by RT-ddPCR improve genome recovery and coverage depth using MinION device. RT-ddPCR was better at detecting key spike protein mutations A67V, del69-70, K417N, L452R, N501Y, N679K, and R408S (p-value <0.05) as compared to nanopore sequencing. It is suggested that RT-ddPCR and nanopore sequencing should be coordinated in wastewater surveillance where RT-ddPCR can be used as a preliminary quantification method and nanopore sequencing as the confirmatory method for the detection of variants or identification of new variants. The RT-ddPCR and nanopore sequencing methods reported here can be adopted as a reliable in-house analysis of SARS-CoV-2 in wastewater for rapid community level surveillance and public health response.
Collapse
Affiliation(s)
- Katie Vigil
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, United States
| | - Nishita D'Souza
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States
| | - Julia Bazner
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States
| | - Fernanda Mac-Allister Cedraz
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, United States
| | - Samuel Fisch
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, United States
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, United States.
| |
Collapse
|
4
|
Liu W, Huang Z, Xiao J, Wu Y, Xia N, Yuan Q. Evolution of the SARS-CoV-2 Omicron Variants: Genetic Impact on Viral Fitness. Viruses 2024; 16:184. [PMID: 38399960 PMCID: PMC10893260 DOI: 10.3390/v16020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Over the last three years, the pandemic of COVID-19 has had a significant impact on people's lives and the global economy. The incessant emergence of variant strains has compounded the challenges associated with the management of COVID-19. As the predominant variant from late 2021 to the present, Omicron and its sublineages, through continuous evolution, have demonstrated iterative viral fitness. The comprehensive elucidation of the biological implications that catalyzed this evolution remains incomplete. In accordance with extant research evidence, we provide a comprehensive review of subvariants of Omicron, delineating alterations in immune evasion, cellular infectivity, and the cross-species transmission potential. This review seeks to clarify the underpinnings of biology within the evolution of SARS-CoV-2, thereby providing a foundation for strategic considerations in the post-pandemic era of COVID-19.
Collapse
Affiliation(s)
- Wenhao Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Zehong Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Jin Xiao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Yangtao Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Essaidi-Laziosi M, Pérez-Rodríguez FJ, Alvarez C, Sattonnet-Roche P, Torriani G, Bekliz M, Adea K, Lenk M, Suliman T, Preiser W, Müller MA, Drosten C, Kaiser L, Eckerle I. Distinct phenotype of SARS-CoV-2 Omicron BA.1 in human primary cells but no increased host range in cell lines of putative mammalian reservoir species. Virus Res 2024; 339:199255. [PMID: 38389324 PMCID: PMC10652112 DOI: 10.1016/j.virusres.2023.199255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 02/24/2024]
Abstract
SARS-CoV-2's genetic plasticity has led to several variants of concern (VOCs). Here we studied replicative capacity for seven SARS-CoV-2 isolates (B.1, Alpha, Beta, Gamma, Delta, Zeta, and Omicron BA.1) in primary reconstituted airway epithelia (HAE) and lung-derived cell lines. Furthermore, to investigate the host range of Delta and Omicron compared to ancestral SARS-CoV-2, we assessed replication in 17 cell lines from 11 non-primate mammalian species, including bats, rodents, insectivores and carnivores. Only Omicron's phenotype differed in vitro, with rapid but short replication and efficient production of infectious virus in nasal HAEs, in contrast to other VOCs, but not in lung cell lines. No increased infection efficiency for other species was observed, but Delta and Omicron infection efficiency was increased in A549 cells. Notably replication in A549 and Calu3 cells was lower than in nasal HAE. Our results suggest better adaptation of VOCs towards humans, without an extended host range, and may be relevant to the search for the putative intermediate host and reservoirs prior to the pandemic.
Collapse
Affiliation(s)
- Manel Essaidi-Laziosi
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Francisco J Pérez-Rodríguez
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Catia Alvarez
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Pascale Sattonnet-Roche
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Giulia Torriani
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Meriem Bekliz
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Kenneth Adea
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Matthias Lenk
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Tasnim Suliman
- Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - Wolfgang Preiser
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Division of Medical Virology, Tygerberg Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Marcel A Müller
- Institute of Virology Charité, - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology Charité, - Universitätsmedizin Berlin, Berlin, Germany
| | - Laurent Kaiser
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Isabella Eckerle
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland.
| |
Collapse
|
6
|
Zaman N, Parvaiz N, Gul F, Yousaf R, Gul K, Azam SS. Dynamics of water-mediated interaction effects on the stability and transmission of Omicron. Sci Rep 2023; 13:20894. [PMID: 38017052 PMCID: PMC10684572 DOI: 10.1038/s41598-023-48186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
SARS-Cov-2 Omicron variant and its highly transmissible sublineages amidst news of emerging hybrid variants strengthen the evidence of its ability to rapidly spread and evolve giving rise to unprecedented future waves. Owing to the presence of isolated RBD, monomeric and trimeric Cryo-EM structures of spike protein in complex with ACE2 receptor, comparative analysis of Alpha, Beta, Gamma, Delta, and Omicron assist in a rational assessment of their probability to evolve as new or hybrid variants in future. This study proposes the role of hydration forces in mediating Omicron function and dynamics based on a stronger interplay between protein and solvent with each Covid wave. Mutations of multiple hydrophobic residues into hydrophilic residues underwent concerted interactions with water leading to variations in charge distribution in Delta and Omicron during molecular dynamics simulations. Moreover, comparative analysis of interacting moieties characterized a large number of mutations lying at RBD into constrained, homologous and low-affinity groups referred to as mutational drivers inferring that the probability of future mutations relies on their function. Furthermore, the computational findings reveal a significant difference in angular distances among variants of concern due 3 amino acid insertion (EPE) in Omicron variant that not only facilitates tight domain organization but also seems requisite for characterization of mutational processes. The outcome of this work signifies the possible relation between hydration forces, their impact on conformation and binding affinities, and viral fitness that will significantly aid in understanding dynamics of drug targets for Covid-19 countermeasures. The emerging scenario is that hydration forces and hydrophobic interactions are crucial variables to probe in mutational analysis to explore conformational landscape of macromolecules and reveal the molecular origins of protein behaviors.
Collapse
Affiliation(s)
- Naila Zaman
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nousheen Parvaiz
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fouzia Gul
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rimsha Yousaf
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Kainat Gul
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
7
|
Ma Y, Lei M, Chen H, Huang P, Sun J, Sun Q, Hu Y, Shi J. Susceptibility of bovine to SARS-CoV-2 variants of concern: insights from ACE2, AXL, and NRP1 receptors. Virol J 2023; 20:276. [PMID: 38012648 PMCID: PMC10680262 DOI: 10.1186/s12985-023-02222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
The possibilities of cross-species transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between humans and important livestock species are not yet known. Herein, we used the structural and genetic alignment and surface potential analysis of the amino acid (aa) in angiotensin-converting enzyme 2 (ACE2), tyrosine kinase receptor UFO (AXL), and neuropilin 1 (NRP1) in different species with substantial public health importance. The residues interfacing with the N-terminal domain (NTD) or receptor-binding domain (RBD) of S were aligned to screen the critical aa sites that determined the susceptibility of the SARS-CoV-2 to the host. We found that AXL and NRP1 proteins might be used as the receptors of SARS-CoV-2 in bovines. However, ACE2 protein may not be considered to be involved in the cross-species transmission of SARS-CoV-2 VOCs in cattle because the key residues of the ACE2-S-binding interface were different from those in known susceptible species. This study indicated that emerging SARS-CoV-2 variants potentially expand species tropism to bovines through AXL and NRP1 proteins.
Collapse
Affiliation(s)
- Ying Ma
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China
| | - Mengyue Lei
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China
| | - Hongli Chen
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China
- Kunming Medical University, Kunming, Yunnan Province, China
| | - Pu Huang
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China
| | - Jing Sun
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China.
| | - Qiangming Sun
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China.
| | - Yunzhang Hu
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China.
| | - Jiandong Shi
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China.
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China.
| |
Collapse
|
8
|
Mykytyn AZ, Fouchier RA, Haagmans BL. Antigenic evolution of SARS coronavirus 2. Curr Opin Virol 2023; 62:101349. [PMID: 37647851 DOI: 10.1016/j.coviro.2023.101349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
SARS coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, emerged in China in December 2019. Vaccines developed were very effective initially, however, the virus has shown remarkable evolution with multiple variants spreading globally over the last three years. Nowadays, newly emerging Omicron lineages are gaining substitutions at a fast rate, resulting in escape from neutralization by antibodies that target the Spike protein. Tools to map the impact of substitutions on the further antigenic evolution of SARS-CoV-2, such as antigenic cartography, may be helpful to update SARS-CoV-2 vaccines. In this review, we focus on the antigenic evolution of SARS-CoV-2, highlighting the impact of Spike protein substitutions individually and in combination on immune escape.
Collapse
Affiliation(s)
- Anna Z Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron Am Fouchier
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
9
|
Ma H, Ma Y, Chiu JSY, Christensen M. Psychological experience of home-quarantined older women with COVID-19 in Hong Kong: A qualitative study. Int J Older People Nurs 2023; 18:e12559. [PMID: 37408163 DOI: 10.1111/opn.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/11/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The surge of positive COVID-19 cases taxed the local health care system and left many older adults initiating home self-care practices. The study aimed to explore the psychological experiences of home-quarantined older women diagnosed with COVID-19 in Hong Kong. METHODS Ten semi-structured telephone interviews were held among older women from March to April 2022. Inductive thematic analysis was used to analyse the data. RESULTS Older women experienced psychological distress, anxiety and depression after being infected with COVID-19. The source of their psychological difficulties included fear of losing control over one's health and dignity, feeling a burden to one's family, conflict in balancing risks and responsibilities, and being overwhelmed by the tragic news reported in media. Meanwhile, the participants demonstrated resilience following the infection and found meaning in their experiences, and grew mentally. CONCLUSIONS The older women in this study have identified the negative impact having a diagnosis and being home-quarantine means to them and their family. Yet, they were also able to take some positives from this. Importantly, the older women report being able to build greater resilience, optimism and wisdom towards COVID-19 in general and feel better prepared for the potential of future positive diagnoses.
Collapse
Affiliation(s)
- Haixia Ma
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Ho Man Tin, Hong Kong, China
| | - Yajing Ma
- School of Public Policy and Management, China University of Mining and Technology, Xuzhou, China
| | - Jonie Sum Yu Chiu
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Martin Christensen
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Interdisciplinary Centre for Qualitative Research, School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
10
|
Heitmann JS, Tandler C, Marconato M, Nelde A, Habibzada T, Rittig SM, Tegeler CM, Maringer Y, Jaeger SU, Denk M, Richter M, Oezbek MT, Wiesmüller KH, Bauer J, Rieth J, Wacker M, Schroeder SM, Hoenisch Gravel N, Scheid J, Märklin M, Henrich A, Klimovich B, Clar KL, Lutz M, Holzmayer S, Hörber S, Peter A, Meisner C, Fischer I, Löffler MW, Peuker CA, Habringer S, Goetze TO, Jäger E, Rammensee HG, Salih HR, Walz JS. Phase I/II trial of a peptide-based COVID-19 T-cell activator in patients with B-cell deficiency. Nat Commun 2023; 14:5032. [PMID: 37596280 PMCID: PMC10439231 DOI: 10.1038/s41467-023-40758-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
T-cell immunity is central for control of COVID-19, particularly in patients incapable of mounting antibody responses. CoVac-1 is a peptide-based T-cell activator composed of SARS-CoV-2 epitopes with documented favorable safety profile and efficacy in terms of SARS-CoV-2-specific T-cell response. We here report a Phase I/II open-label trial (NCT04954469) in 54 patients with congenital or acquired B-cell deficiency receiving one subcutaneous CoVac-1 dose. Immunogenicity in terms of CoVac-1-induced T-cell responses and safety are the primary and secondary endpoints, respectively. No serious or grade 4 CoVac-1-related adverse events have been observed. Expected local granuloma formation has been observed in 94% of study subjects, whereas systemic reactogenicity has been mild or absent. SARS-CoV-2-specific T-cell responses have been induced in 86% of patients and are directed to multiple CoVac-1 peptides, not affected by any current Omicron variants and mediated by multifunctional T-helper 1 CD4+ T cells. CoVac-1-induced T-cell responses have exceeded those directed to the spike protein after mRNA-based vaccination of B-cell deficient patients and immunocompetent COVID-19 convalescents with and without seroconversion. Overall, our data show that CoVac-1 induces broad and potent T-cell responses in patients with B-cell/antibody deficiency with a favorable safety profile, which warrants advancement to pivotal Phase III safety and efficacy evaluation. ClinicalTrials.gov identifier NCT04954469.
Collapse
Affiliation(s)
- Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Claudia Tandler
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Maddalena Marconato
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Timorshah Habibzada
- Institute of Clinical Cancer Research, Krankenhaus Nordwest, UCT-University Cancer Center, Frankfurt, Germany
| | - Susanne M Rittig
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité -Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin, Germany
| | - Christian M Tegeler
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Obstetrics and Gynecology, University Hospital Tübingen, Tübingen, Germany
| | - Yacine Maringer
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Simon U Jaeger
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Monika Denk
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Marion Richter
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Melek T Oezbek
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | | | - Jens Bauer
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Jonas Rieth
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Marcel Wacker
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Sarah M Schroeder
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Naomi Hoenisch Gravel
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Jonas Scheid
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Annika Henrich
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Boris Klimovich
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Kim L Clar
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Martina Lutz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Samuel Holzmayer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Sebastian Hörber
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Christoph Meisner
- Robert Bosch Hospital, Robert Bosch Society for Medical Research, Stuttgart, Germany
| | - Imma Fischer
- Institute for Clinical Epidemiology and Applied Biometry, University Hospital Tübingen, Tübingen, Germany
| | - Markus W Löffler
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Caroline Anna Peuker
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité -Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin, Germany
| | - Stefan Habringer
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité -Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin, Germany
| | - Thorsten O Goetze
- Institute of Clinical Cancer Research, Krankenhaus Nordwest, UCT-University Cancer Center, Frankfurt, Germany
| | - Elke Jäger
- Department for Oncology and Hematology, Krankenhaus Nordwest, UCT-University Cancer Center, Frankfurt, Germany
| | - Hans-Georg Rammensee
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
Holland SC, Holland LA, Smith MF, Lee MB, Hu JC, Lim ES. Digital PCR Discriminates between SARS-CoV-2 Omicron Variants and Immune Escape Mutations. Microbiol Spectr 2023; 11:e0525822. [PMID: 37306573 PMCID: PMC10434287 DOI: 10.1128/spectrum.05258-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, mutations arise that will allow the virus to evade immune defenses and therapeutics. Assays that can identify these mutations can be used to guide personalized patient treatment plans. Digital PCR (dPCR) is a fast and reliable complement to whole-genome sequencing that can be used to discriminate single nucleotide polymorphisms (SNPs) in template molecules. Here, we developed a panel of SARS-CoV-2 dPCR assays and demonstrate its applications for typing variant lineages and therapeutic monoclonal antibody resistance. We first designed multiplexed dPCR assays for SNPs located at residue 3395 in the orf1ab gene that differentiate the Delta, Omicron BA.1, and Omicron BA.2 lineages. We demonstrate their effectiveness on 596 clinical saliva specimens that were sequence verified using Illumina whole-genome sequencing. Next, we developed dPCR assays for spike mutations R346T, K444T, N460K, F486V, and F486S, which are associated with host immune evasion and reduced therapeutic monoclonal antibody efficacy. We demonstrate that these assays can be run individually or multiplexed to detect the presence of up to 4 SNPs in a single assay. We perform these dPCR assays on 81 clinical saliva SARS-CoV-2-positive specimens and properly identify mutations in Omicron subvariants BA.2.75.2, BM.1.1, BN.1, BF.7, BQ.1, BQ.1.1, and XBB. Thus, dPCR could serve as a useful tool to determine if clinical specimens contain therapeutically relevant mutations and inform patient treatment. IMPORTANCE Spike mutations in the SARS-CoV-2 genome confer resistance to therapeutic monoclonal antibodies. Authorization for treatment options is typically guided by general trends of variant prevalence. For example, bebtelovimab is no longer authorized for emergency use in the United States due to the increased prevalence of antibody-resistant BQ.1, BQ.1.1, and XBB Omicron subvariants. However, this blanket approach limits access to life-saving treatment options to patients who are otherwise infected with susceptible variants. Digital PCR assays targeting specific mutations can complement whole-genome sequencing approaches to genotype the virus. In this study, we demonstrate the proof of concept that dPCR can be used to type lineage defining and monoclonal antibody resistance-associated mutations in saliva specimens. These findings show that digital PCR could be used as a personalized diagnostic tool to guide individual patient treatment.
Collapse
Affiliation(s)
- Steven C. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Matthew F. Smith
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Mihyun B. Lee
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - James C. Hu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
12
|
Tan CS, Bandak DB, Habeebur-Rahman SP, Tan LT, Lim LLA. Serosurveillance of SARS-CoV-2 in companion animals in Sarawak, Malaysia. Virol J 2023; 20:176. [PMID: 37550752 PMCID: PMC10408157 DOI: 10.1186/s12985-023-02133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023] Open
Abstract
SARS-CoV-2 is a zoonotic betacoronavirus that was first reported at the dawn of 2019 in Wuhan, China and has since spread globally, causing an ongoing pandemic. Anthroponotic transmission was reported early, with confirmed infections reported in 26 species to date, including dogs and cats. However, there is a paucity of reports on the transmission of SARS-CoV-2 to companion animals, and thus, we aimed to estimate the seroprevalence of SARS-CoV-2 in dogs and cats in Sarawak, Malaysia. From August 2022 to 2023, we screened plasma samples of 172 companion animals in Sarawak, Malaysia, using a species-independent surrogate virus neutralization test. Our findings revealed the presence of neutralizing antibodies of SARS-CoV-2 in 24.5% (27/110) of dogs and 24.2% (15/62) of cats. To the best of our knowledge, this is the first report of the seroprevalence of SARS-CoV-2 in companion animals in Malaysia. Our findings emphasize the need for pet owners to distance themselves from their pets when unwell, and a strategy must be in place to monitor SARS-CoV-2 in companion animals to assess the potential impact of the virus on companion animals.
Collapse
Affiliation(s)
- Cheng Siang Tan
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | | | | | - Lee Tung Tan
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, 93350, Kuching, Sarawak, Malaysia
| | - Li Li Andrea Lim
- Department of Veterinary Services Sarawak, 93250, Kuching, Sarawak, Malaysia
| |
Collapse
|
13
|
Zhiyanov A, Shkurnikov M, Nersisyan A, Hui C, Baranova A, Tonevitsky A. The signature of SARS-CoV-2 evolution reflects selective pressures within human guts. J Med Virol 2023; 95:e28996. [PMID: 37515485 DOI: 10.1002/jmv.28996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
In somatic cells, microRNAs (miRNAs) bind to the genomes of RNA viruses and influence their translation and replication. In London and Berlin samples represented in GISAID database, we traced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages and divided these sequenced in two groups, "Ancestral variants" and "Omicrons," and analyzed them through the prism of the tissue-specific binding between host miRNAs and viral messenger RNAs. We demonstrate a significant number of miRNA-binding sites in the NSP4 region of the SARS-CoV-2 genome, with evidence of evolutionary pressure within this region exerted by human intestinal miRNAs. Notably, in infected cells, NSP4 promotes the formation of double-membrane vesicles, which serve as the scaffolds for replication-transcriptional complexes and protect viral RNA from intracellular destruction. In 3 years of selection, the loss of many miRNA-binding sites in general and those within the NSP4 in particular has shaped the SARS-CoV-2 genomes. With that, the descendants of the BA.2 variants were promoted as dominant strains, which define current momentum of the pandemics.
Collapse
Affiliation(s)
- Anton Zhiyanov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Maxim Shkurnikov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Ashot Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Cai Hui
- Department of Nanoengineering, Sun Yat-Sen University, Shenzhen, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, Virginia, USA
- Research Centre for Medical Genetics, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Art Photonics GmbH, Berlin, Germany
| |
Collapse
|
14
|
Rau K, von Heeringen E, Bühler N, Wagenpfeil S, Becker SL, Schneitler S. Recipient-Reported Reactogenicity of Different SARS-CoV-2 Vaccination Regimens among Healthcare Professionals and Police Staff in Germany. Vaccines (Basel) 2023; 11:1147. [PMID: 37514963 PMCID: PMC10386135 DOI: 10.3390/vaccines11071147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
The rapid availability of effective vaccines against SARS-CoV-2 was key during the COVID-19 pandemic. However, vaccine hesitancy and relatively low vaccine coverage rates among the general population and particularly vulnerable populations such as healthcare staff reduced the potential benefits of these vaccines. During the early phase of the pandemic, fear of vaccine-related adverse events was common among individuals who refused vaccination. Between March and May 2021, we comparatively assessed the self-reported reactogenicity of different SARS-CoV-2 prime-boost regimens using mRNA-based (BNT162b2 and mRNA-1273) and vector-based vaccines (ChAdOx1 nCoV-19) in (a) healthcare workers (HCW), and (b) police staff from southwest Germany. The majority of participants (71.8%; 1564/2176) received a homologous vaccination. Among HCW, 75.0% were female, whereas 70.0% of police staff were male. The most frequently reported reactions following the first vaccine administration were pain at the injection site (77.94%; 1696/2176), tiredness (51.75%; 1126/2176), and headache (40.44%; 880/2176), which were more commonly reported by HCW as compared to police staff. In homologous, mRNA-based and heterologous vaccination schedules, more reactions were reported after the second vaccine dose. We conclude that the frequency and intensity of self-perceived vaccine reactogenicity may differ between specific population groups and might be mitigated by tailored communication strategies.
Collapse
Affiliation(s)
- Katharina Rau
- Center for Infectious Diseases, Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
| | | | - Nina Bühler
- Center for Infectious Diseases, Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
| | - Stefan Wagenpfeil
- Institute for Medical Biometry, Epidemiology and Medical Informatics, Saarland University, 66421 Homburg, Germany
| | - Sören L Becker
- Center for Infectious Diseases, Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
| | - Sophie Schneitler
- Center for Infectious Diseases, Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
- Bethanien Hospital, Clinic of Pneumology and Allergology, Center for Sleep Medicine and Respiratory Care, Institute of Pneumology at the University of Cologne, 42699 Solingen, Germany
| |
Collapse
|
15
|
Patil R, Palkar S, Mishra A, Patil R, Arankalle V. Variable neutralizing antibody responses to 10 SARS-CoV-2 variants in natural infection with wild- type (B.1) virus, Kappa (B.1.617.1), and Delta (B.1.617.2) variants and COVISHIELD vaccine immunization in India: utility of the MSD platform. Front Immunol 2023; 14:1181991. [PMID: 37342350 PMCID: PMC10277512 DOI: 10.3389/fimmu.2023.1181991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/17/2023] [Indexed: 06/22/2023] Open
Abstract
For the efficacy of COVID-19 vaccines, emergence of variants accumulating immune-escape mutations remains a major concern. We analyzed the anti-variant (n = 10) neutralization activity of sera from COVID-19 patients infected with Wuhan (B.1), Kappa, and Delta variants and COVISHIELD vaccine recipients with (prepositives) or without (prenegatives) prior antibody positivity using V- PLEX ACE2 Neutralization Kit from MSD. MSD and PRNT50 correlated well (r = 0.76-0.83, p < 0.0001). Despite the least antibody positivity in Kappa patients, anti-variant neutralizing antibody (Nab) levels in the responders were comparable with Delta patients. Vaccinees sampled at 1 month (PD2-1) and 6 months (PD2-6) post-second dose showed the highest seropositivity and Nab levels against the Wuhan strain. At PD2-1, the responder rate was variant-dependent and 100% respectively in prenegatives and prepositives. Nab levels against B.1.135.1, B.1.620, B.1.1.7+E484K (both groups), AY.2 (prenegatives), and B.1.618 (prepositives) were lower than that of Wuhan. At PD2-6, positivity decreased to 15.6%-68.8% in the prenegatives; 3.5%-10.7% of prepositives turned negative for the same four variants. As against the decline in Nab levels in 9/10 variants (prenegatives), a further reduction was seen against the same four variants in the prepositives. These variants possess immune-evasion-associated mutations in the RBD/S region. In conclusion, our data show that the Nab response of patients to multiple variants depends on the infecting variant. We confirm superiority of hybrid immunity in neutralizing multiple variants. Depending on the infecting variant pre- or postvaccination, immune response to different vaccines in different populations will vary and impact protection against emerging variants. The MSD platform provides an excellent alternative to live virus/pseudovirus neutralization tests.
Collapse
Affiliation(s)
- Rajashree Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Sonali Palkar
- Department of Pediatrics, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Akhileshchandra Mishra
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Rahul Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Vidya Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| |
Collapse
|
16
|
Italiya J, Bhavsar T, Černý J. Assessment and strategy development for SARS-CoV-2 screening in wildlife: A review. Vet World 2023; 16:1193-1200. [PMID: 37577208 PMCID: PMC10421538 DOI: 10.14202/vetworld.2023.1193-1200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/04/2023] [Indexed: 08/15/2023] Open
Abstract
Coronaviruses (members of the Coronaviridae family) are prominent in veterinary medicine, with several known infectious agents commonly reported. In contrast, human medicine has disregarded coronaviruses for an extended period. Within the past two decades, coronaviruses have caused three major outbreaks. One such outbreak was the coronavirus disease 2019 (COVID-19) caused by the coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Over the 3-year COVID-19 outbreak, several instances of zooanthroponosis have been documented, which pose risks for virus modifications and possible re-emergence of the virus into the human population, causing a new epidemic and possible threats for vaccination or treatment failure. Therefore, widespread screening of animals is an essential technique for mitigating future risks and repercussions. However, mass detection of SARS-CoV-2 in wild animals might be challenging. In silico prediction modeling, experimental studies conducted on various animal species, and natural infection episodes recorded in various species might provide information on the potential threats to wildlife. They may be useful for diagnostic and mass screening purposes. In this review, the possible methods of wildlife screening, based on experimental data and environmental elements that might play a crucial role in its effective implementation, are reviewed.
Collapse
Affiliation(s)
- Jignesh Italiya
- Centre for Infectious Animal Diseases, Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague – Suchdol, Czechia
| | - Tanvi Bhavsar
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Jiří Černý
- Centre for Infectious Animal Diseases, Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague – Suchdol, Czechia
| |
Collapse
|
17
|
Duette G, Lee E, Martins Costa Gomes G, Tungatt K, Doyle C, Stylianou VV, Lee A, Maddocks S, Taylor J, Khanna R, Bull RA, Martinello M, Sandgren KJ, Cunningham AL, Palmer S. Highly Networked SARS-CoV-2 Peptides Elicit T Cell Responses with Enhanced Specificity. Immunohorizons 2023; 7:508-527. [PMID: 37358499 PMCID: PMC10580120 DOI: 10.4049/immunohorizons.2300034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
Identifying SARS-CoV-2-specific T cell epitope-derived peptides is critical for the development of effective vaccines and measuring the duration of specific SARS-CoV-2 cellular immunity. In this regard, we previously identified T cell epitope-derived peptides within topologically and structurally essential regions of SARS-CoV-2 spike and nucleocapsid proteins by applying an immunoinformatics pipeline. In this study, we selected 30 spike- and nucleocapsid-derived peptides and assessed whether these peptides induce T cell responses and avoid major mutations found in SARS-CoV-2 variants of concern. Our peptide pool was highly specific, with only a single peptide driving cross-reactivity in people unexposed to SARS-COV-2, and immunogenic, inducing a polyfunctional response in CD4+ and CD8+ T cells from COVID-19 recovered individuals. All peptides were immunogenic and individuals recognized broad and diverse peptide repertoires. Moreover, our peptides avoided most mutations/deletions associated with all four SARS-CoV-2 variants of concern while retaining their physicochemical properties even when genetic changes are introduced. This study contributes to an evolving definition of individual CD4+ and CD8+ T cell epitopes that can be used for specific diagnostic tools for SARS-CoV-2 T cell responses and is relevant to the development of variant-resistant and durable T cell-stimulating vaccines.
Collapse
Affiliation(s)
- Gabriel Duette
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Katie Tungatt
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Chloe Doyle
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Vicki V. Stylianou
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ashley Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Susan Maddocks
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Janette Taylor
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Rowena A. Bull
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Marianne Martinello
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
- Blacktown & Mount Druitt Hospital, Blacktown, New South Wales, Australia
| | - Kerrie J. Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Akaishi T, Fujiwara K. Insertion and deletion mutations preserved in SARS-CoV-2 variants. Arch Microbiol 2023; 205:154. [PMID: 37000302 PMCID: PMC10064622 DOI: 10.1007/s00203-023-03493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 04/01/2023]
Abstract
The insertion/deletion (indel) mutation profiles of SARS-CoV-2 variants, including Omicron, remain unclear. We compared whole-genome sequences from various lineages and used preserved indels to infer the ancestral relationships between different lineages. Thirteen indel patterns from twelve sites were seen in ≥ 2 sequences; six of these sites were located in the N-terminal domain of the viral spike gene. Preserved indels in the coding regions were also identified in the non-structural protein 3 (Nsp3), Nsp6, and nucleocapsid genes. Seven of the thirteen indel patterns were specific to the Omicron variants, four of which were observed in BA.1, making it the most mutated variant. Other preserved indels observed in the Omicron variants were also seen in Alpha and/or Gamma, but not Delta, suggesting that Omicron is phylogenetically more proximal to Alpha. We demonstrated distinct profiles of preserved indels among SARS-CoV-2 variants and sublineages, suggesting the importance of indels in viral evolution.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Education and Support for Regional Medicine, Tohoku University, Seiryo-Machi 1-1, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan.
- COVID-19 Testing Center, Tohoku University, Sendai, Japan.
| | - Kei Fujiwara
- Department of Gastroenterology and Metabolism, Nagoya City University, Nagoya, Japan
| |
Collapse
|
19
|
Mohapatra RK, Verma S, Kandi V, Sarangi AK, Seidel V, Das SN, Behera A, Tuli HS, Sharma AK, Dhama K. The SARS‐CoV‐2 Omicron Variant and its Multiple Sub‐lineages: Transmissibility, Vaccine Development, Antiviral Drugs, Monoclonal Antibodies, and Strategies for Infection Control – a Review. ChemistrySelect 2023. [DOI: 10.1002/slct.202201380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Ranjan K. Mohapatra
- Department of Chemistry Government College of Engineering Keonjhar 758002 Odisha India
| | - Sarika Verma
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute Bhopal MP 462026 India
- Academy of council Scientific and Industrial Research - Advanced Materials and Processes Research Institute (AMPRI) Hoshangabad Road Bhopal (M.P) 462026 India
| | - Venkataramana Kandi
- Department of Microbiology Prathima Institute of Medical Sciences Karimnagar 505417 Telangana India
| | - Ashish K. Sarangi
- Department of Chemistry School of Applied Sciences Centurion University of Technology and Management Odisha India
| | - Veronique Seidel
- Strathclyde Institute of Pharmacy and Biomedical Sciences University of Strathclyde Glasgow G4 0RE United Kingdom
| | - Subrata Narayan Das
- Department of Mining Engineering Government College of Engineering Keonjhar 758002 Odisha India
| | - Ajit Behera
- Department of Metallurgical & Materials Engineering National Institute of Technology Rourkela 769008 India
| | - Hardeep Singh Tuli
- Department of Biotechnology Maharishi MarkandeshwarEngineering College Maharishi MarkandeshwarDeemed to be University, Mullana Ambala, 133207 Haryana India
| | - Ashwani K. Sharma
- Department of Chemistry Government Digvijay (Autonomous) Post-Graduate College Rajnandgaon (C.G. India
| | - Kuldeep Dhama
- Division of Pathology ICAR-Indian Veterinary Research Institute Bareilly
| |
Collapse
|
20
|
Lewis J, Zhan S, Vilander AC, Fagre AC, Aboellail TA, Kiaris H, Schountz T. SARS-CoV-2 infects multiple species of North American deer mice and causes clinical disease in the California mouse. FRONTIERS IN VIROLOGY 2023. [DOI: 10.3389/fviro.2023.1114827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus that causes coronavirus disease-19 (COVID-19), emerged in late 2019 in Wuhan, China and its rapid global spread has resulted in millions of deaths. An important public health consideration is the potential for SARS-CoV-2 to establish endemicity in secondary animal reservoirs outside of Asia or acquire adaptations that result in new variants with the ability to evade the immune response and reinfect the human population. Previous work has shown that North American deer mice (Peromyscus maniculatus) are susceptible and can transmit SARS-CoV-2 to naïve conspecifics, indicating its potential to serve as a wildlife reservoir for SARS-CoV-2 in North America. In this study, we report experimental SARS-CoV-2 susceptibility of two additional subspecies of the North American deer mouse and two additional deer mouse species, with infectious virus and viral RNA present in oral swabs and lung tissue of infected deer mice and neutralizing antibodies present at 15 days post-challenge. Moreover, some of one species, the California mouse (P. californicus) developed clinical disease, including one that required humane euthanasia. California mice often develop spontaneous liver disease, which may serve as a comorbidity for SARS-CoV-2 severity. The results of this study suggest broad susceptibility of rodents in the genus Peromyscus and further emphasize the potential of SARS-CoV-2 to infect a wide array of North American rodents.
Collapse
|
21
|
Beguir K, Skwark MJ, Fu Y, Pierrot T, Carranza NL, Laterre A, Kadri I, Korched A, Lowegard AU, Lui BG, Sänger B, Liu Y, Poran A, Muik A, Şahin U. Early computational detection of potential high-risk SARS-CoV-2 variants. Comput Biol Med 2023; 155:106618. [PMID: 36774893 PMCID: PMC9892295 DOI: 10.1016/j.compbiomed.2023.106618] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/12/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
The ongoing COVID-19 pandemic is leading to the discovery of hundreds of novel SARS-CoV-2 variants daily. While most variants do not impact the course of the pandemic, some variants pose an increased risk when the acquired mutations allow better evasion of antibody neutralisation or increased transmissibility. Early detection of such high-risk variants (HRVs) is paramount for the proper management of the pandemic. However, experimental assays to determine immune evasion and transmissibility characteristics of new variants are resource-intensive and time-consuming, potentially leading to delays in appropriate responses by decision makers. Presented herein is a novel in silico approach combining spike (S) protein structure modelling and large protein transformer language models on S protein sequences to accurately rank SARS-CoV-2 variants for immune escape and fitness potential. Both metrics were experimentally validated using in vitro pseudovirus-based neutralisation test and binding assays and were subsequently combined to explore the changing landscape of the pandemic and to create an automated Early Warning System (EWS) capable of evaluating new variants in minutes and risk-monitoring variant lineages in near real-time. The system accurately pinpoints the putatively dangerous variants by selecting on average less than 0.3% of the novel variants each week. The EWS flagged all 16 variants designated by the World Health Organization (WHO) as variants of interest (VOIs) if applicable or variants of concern (VOCs) otherwise with an average lead time of more than one and a half months ahead of their designation as such.
Collapse
Affiliation(s)
- Karim Beguir
- InstaDeep Ltd, 5 Merchant Square, London, W2 1AY, UK.
| | | | - Yunguan Fu
- InstaDeep Ltd, 5 Merchant Square, London, W2 1AY, UK
| | | | | | | | | | - Abir Korched
- InstaDeep Ltd, 5 Merchant Square, London, W2 1AY, UK
| | | | | | - Bianca Sänger
- BioNTech SE, An der Goldgrube 12, 55131, Mainz, Germany
| | - Yunpeng Liu
- BioNTech US, 40 Erie Street, Cambridge, MA, 02139, USA
| | - Asaf Poran
- BioNTech US, 40 Erie Street, Cambridge, MA, 02139, USA
| | | | - Uğur Şahin
- BioNTech SE, An der Goldgrube 12, 55131, Mainz, Germany.
| |
Collapse
|
22
|
Sabzian-Molaei F, Hosseini S, Alipour A, Ghaderi H, Fotouhi-Chahouki F, Hadi A, Shahsavarani H. Urtica dioica agglutinin (UDA) as a potential candidate for inhibition of SARS-CoV-2 Omicron variants: In silico prediction and experimental validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154648. [PMID: 36681052 PMCID: PMC9815882 DOI: 10.1016/j.phymed.2023.154648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The high number of mutations and consequent structure modifications in a Receptor-Binding Domain (RBD) of the spike protein of the Omicron variant of SARS-CoV-2 increased concerns about evading neutralization by antibodies induced by previous infection or vaccination. Thus, developing novel drugs with potent inhibitory activity can be considered an alternative for treating this highly transmissible variant. Considering that Urtica dioica agglutinin (UDA) displays antiviral activity against SARS-CoV-2, the potency of this lectin to inhibit the Receptor Binding Domain of the Omicron variant (RBDOmic) was examined in this study. PURPOSE This study examines how UDA inhibits the Omicron variant of SARS-CoV-2 by blocking its RBD, using a combination of in silico and experimental methods. METHODS To investigate the interaction between UDA and RBDOmic, the CLUSPRO 2.0 web server was used to dock the RBDOmic-UDA complex, and molecular dynamics simulations were performed by the Gromacs 2020.2 software to confirm the stability of the selected docked complex. Finally, the binding affinity (ΔG) of the simulation was calculated using MM-PBSA. In addition, ELISA and Western blot tests were used to examine UDA's binding to RBDOmic. RESULTS Based on the docking results, UDA forms five hydrogen bonds with the RBDOmic active site, which contains mutated residues Tyr501, Arg498, Arg493, and His505. According to MD simulations, the UDA-RBDOmic complex is stable over 100 ns, and its average binding energy during the simulation is -87.201 kJ/mol. Also, the ELISA test showed that UDA significantly binds to RBDOmic, and by increasing the concentration of UDA protein, the attachment to RBDOmic became stronger. In Western blotting, RBDOmic was able to attach to and detect UDA. CONCLUSION This study indicates that UDA interaction with RBDOmic prevents virus attachment to Angiotensin-converting enzyme 2 (ACE2) and, therefore, its entry into the host cell. Altogether, UDA exhibited a significant suppression effect on the Omicron variant and can be considered a new candidate to improve protection against severe infection of this variant.
Collapse
Affiliation(s)
- Fatemeh Sabzian-Molaei
- Laboratory of Regenerative Medicine & Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | | | - Atefeh Alipour
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran.
| | - Hajarossadat Ghaderi
- Laboratory of Regenerative Medicine & Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | | | - Amin Hadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hosein Shahsavarani
- Laboratory of Regenerative Medicine & Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran; Department of Cell and Molecular Biology, Faculty of Life science and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
23
|
Philip AM, Ahmed WS, Biswas KH. Reversal of the unique Q493R mutation increases the affinity of Omicron S1-RBD for ACE2. Comput Struct Biotechnol J 2023; 21:1966-1977. [PMID: 36936816 PMCID: PMC10006685 DOI: 10.1016/j.csbj.2023.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The SARS-CoV-2 Omicron variant containing 15 mutations, including the unique Q493R, in the spike protein receptor binding domain (S1-RBD) is highly infectious. While comparison with previously reported mutations provide some insights, the mechanism underlying the increased infections and the impact of the reversal of the unique Q493R mutation seen in BA.4, BA.5, BA.2.75, BQ.1 and XBB lineages is not yet completely understood. Here, using structural modelling and molecular dynamics (MD) simulations, we show that the Omicron mutations increases the affinity of S1-RBD for ACE2, and a reversal of the unique Q493R mutation further increases the ACE2-S1-RBD affinity. Specifically, we performed all atom, explicit solvent MD simulations using a modelled structure of the Omicron S1-RBD-ACE2 and compared the trajectories with the WT complex revealing a substantial reduction in the Cα-atom fluctuation in the Omicron S1-RBD and increased hydrogen bond and other interactions. Residue level analysis revealed an alteration in the interaction between several residues including a switch in the interaction of ACE2 D38 from S1-RBD Y449 in the WT complex to the mutated R residue (Q493R) in Omicron complex. Importantly, simulations with Revertant (Omicron without the Q493R mutation) complex revealed further enhancement of the interaction between S1-RBD and ACE2. Thus, results presented here not only provide insights into the increased infectious potential of the Omicron variant but also a mechanistic basis for the reversal of the Q493R mutation seen in some Omicron lineages and will aid in understanding the impact of mutations in SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Angelin M. Philip
- Division of Genomics and Translational Biomedicine, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Wesam S. Ahmed
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| |
Collapse
|
24
|
Obeid D, Al-Qahtani A, Almaghrabi R, Alghamdi S, Alsanea M, Alahideb B, Almutairi S, Alsuwairi F, Al-Abdulkareem M, Asiri M, Alshukairi A, Alkahtany J, Altamimi S, Mutabagani M, Althawadi S, Alanzi F, Alhamlan F. Analysis of SARS-CoV-2 genomic surveillance data during the Delta and Omicron waves at a Saudi tertiary referral hospital. J Infect Public Health 2023; 16:171-181. [PMID: 36543031 PMCID: PMC9747229 DOI: 10.1016/j.jiph.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Studying the genomic evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may help determine outbreak clusters and virus transmission advantages to aid public health efforts during the pandemic. Thus, we tracked the evolution of SARS-CoV-2 by variant epidemiology, breakthrough infection, and patient characteristics as the virus spread during the Delta and Omicron waves. We also conducted phylogenetic analyses to assess modes of transmission. METHODS Nasopharyngeal samples were collected from a cohort of 900 patients with positive polymerase chain reaction (PCR) test results confirming COVID-19 disease. Samples underwent real-time PCR detection using TaqPath assays. Sequencing was performed with Ion GeneStudio using the Ion AmpliSeq™ SARS-CoV-2 panel. Variant calling was performed with Torrent Suite™ on the Torrent Server. For phylogenetic analyses, the MAFFT tool was used for alignment and the maximum likelihood method with the IQ-TREE tool to build the phylogenetic tree. Data were analyzed using SAS statistical software. Analysis of variance or t tests were used to assess continuous variables, and χ2 tests were used to assess categorical variables. Univariate and multivariate logistic regression analyses were preformed to estimate odds ratios (ORs). RESULTS The predominant variants in our cohort of 900 patients were non-variants of concern (11.1 %), followed by Alpha (4.1 %), Beta (5.6 %), Delta (21.2 %), and Omicron (58 %). The Delta wave had more male than female cases (112 vs. 78), whereas the Omicron wave had more female than male cases (311 vs. 208). The oldest patients (mean age, 43.4 years) were infected with non-variants of concern; the youngest (mean age, 33.7 years), with Omicron. Younger patients were mostly unvaccinated, whereas elderly patients were mostly vaccinated, a statistically significant difference. The highest risk for breakthrough infection by age was for patients aged 30-39 years (OR = 12.4, CI 95 %: 6.6-23.2), followed by patients aged 40-49 years (OR = 11.2, CI 95 %: 6.1-23.1) and then 20-29 years (OR = 8.2, CI 95 %: 4.4-15.4). Phylogenetic analyses suggested the interaction of multiple cases related to outbreaks for breakthrough infections, healthcare workers, and intensive care unit admission. CONCLUSION The findings of this study highlighted several major public health ramifications, including the distribution of variants over a wide range of demographic and clinical variables and by vaccination status.
Collapse
Affiliation(s)
- D Obeid
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; Public Health Laboratories, Public Health Authority, Riyadh, Saudi Arabia
| | - A Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - R Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - S Alghamdi
- Infection Control & Hospital Epidemiology Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - M Alsanea
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - B Alahideb
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - S Almutairi
- Infection Control & Hospital Epidemiology Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - F Alsuwairi
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - M Al-Abdulkareem
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - M Asiri
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - A Alshukairi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - J Alkahtany
- Infection Control & Hospital Epidemiology Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - S Altamimi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - M Mutabagani
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - S Althawadi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - F Alanzi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Paediatric Critical Care, Paediatric Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - F Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
25
|
Porter AF, Purcell DFJ, Howden BP, Duchene S. Evolutionary rate of SARS-CoV-2 increases during zoonotic infection of farmed mink. Virus Evol 2023; 9:vead002. [PMID: 36751428 PMCID: PMC9896948 DOI: 10.1093/ve/vead002] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/11/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
To investigate genetic signatures of adaptation to the mink host, we characterised the evolutionary rate heterogeneity in mink-associated severe acute respiratory syndrome coronaviruses (SARS-CoV-2). In 2020, the first detected anthropozoonotic spillover event of SARS-CoV-2 occurred in mink farms throughout Europe and North America. Both spill-back of mink-associated lineages into the human population and the spread into the surrounding wildlife were reported, highlighting the potential formation of a zoonotic reservoir. Our findings suggest that the evolutionary rate of SARS-CoV-2 underwent an episodic increase upon introduction into the mink host before returning to the normal range observed in humans. Furthermore, SARS-CoV-2 lineages could have circulated in the mink population for a month before detection, and during this period, evolutionary rate estimates were between 3 × 10-3 and 1.05 × 10-2 (95 per cent HPD, with a mean rate of 6.59 × 10-3) a four- to thirteen-fold increase compared to that in humans. As there is evidence for unique mutational patterns within mink-associated lineages, we explored the emergence of four mink-specific Spike protein amino acid substitutions Y453F, S1147L, F486L, and Q314K. We found that mutation Y453F emerged early in multiple mink outbreaks and that mutations F486L and Q314K may co-occur. We suggest that SARS-CoV-2 undergoes a brief, but considerable, increase in evolutionary rate in response to greater selective pressures during species jumps, which may lead to the occurrence of mink-specific mutations. These findings emphasise the necessity of ongoing surveillance of zoonotic SARS-CoV-2 infections in the future.
Collapse
Affiliation(s)
- Ashleigh F Porter
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sebastian Duchene
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
26
|
Verstraete MM, Heinkel F, Li J, Cao S, Tran A, Halverson EC, Gene R, Stangle E, Silva-Moreno B, Arrafi S, Bavananthasivam J, Fung M, Eji-Lasisi M, Masterman S, Xanthoudakis S, Dixit S, Babcook J, Clavette B, Fogg M, Escobar-Cabrera E. Multivalent IgM scaffold enhances the therapeutic potential of variant-agnostic ACE2 decoys against SARS-CoV-2. MAbs 2023; 15:2212415. [PMID: 37229608 DOI: 10.1080/19420862.2023.2212415] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
As immunological selection for escape mutants continues to give rise to future SARS-CoV-2 variants, novel universal therapeutic strategies against ACE2-dependent viruses are needed. Here we present an IgM-based decavalent ACE2 decoy that has variant-agnostic efficacy. In immuno-, pseudovirus, and live virus assays, IgM ACE2 decoy had potency comparable or superior to leading SARS-CoV-2 IgG-based mAb therapeutics evaluated in the clinic, which were variant-sensitive in their potency. We found that increased ACE2 valency translated into increased apparent affinity for spike protein and superior potency in biological assays when decavalent IgM ACE2 was compared to tetravalent, bivalent, and monovalent ACE2 decoys. Furthermore, a single intranasal dose of IgM ACE2 decoy at 1 mg/kg conferred therapeutic benefit against SARS-CoV-2 Delta variant infection in a hamster model. Taken together, this engineered IgM ACE2 decoy represents a SARS-CoV-2 variant-agnostic therapeutic that leverages avidity to drive enhanced target binding, viral neutralization, and in vivo respiratory protection against SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | - Anh Tran
- Department of Human Health Therapeutics, National Research Council Canada, Ottawa, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tallei TE, Alhumaid S, AlMusa Z, Fatimawali, Kusumawaty D, Alynbiawi A, Alshukairi AN, Rabaan AA. Update on the omicron sub-variants BA.4 and BA.5. Rev Med Virol 2023; 33:e2391. [PMID: 36017597 PMCID: PMC9539252 DOI: 10.1002/rmv.2391] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 01/28/2023]
Abstract
Several nations have recently begun to relax their public health protocols, particularly regarding the use of face masks when engaging in outdoor activities. This is because there has been a general trend towards fewer cases of coronavirus disease 2019 (COVID-19). However, new Omicron sub-variants (designated BA.4 and BA.5) have recently emerged. These two subvariants are thought to be the cause of an increase in COVID-19 cases in South Africa, the United States, and Europe. They have also begun to spread throughout Asia. They evolved from the Omicron lineage with characteristics that make them even more contagious and which allow them to circumvent immunity from a previous infection or vaccination. This article reviews a number of scientific considerations about these new variants, including their apparently reduced clinical severity.
Collapse
Affiliation(s)
- Trina Ekawati Tallei
- Department of BiologyFaculty of Mathematics and Natural SciencesSam Ratulangi UniversityManadoNorth SulawesiIndonesia
| | - Saad Alhumaid
- Administration of Pharmaceutical CareAl‐Ahsa Health ClusterMinistry of HealthAl‐AhsaSaudi Arabia
| | - Zainab AlMusa
- Infectious Disease SectionInternal Medicine DepartmentKing Fahad Specialist HospitalDammamSaudi Arabia
| | - Fatimawali
- Pharmacy Study ProgramFaculty of Mathematics and Natural SciencesSam Ratulangi UniversityManadoNorth SulawesiIndonesia
| | - Diah Kusumawaty
- Department of BiologyFaculty of Mathematics and Natural Sciences EducationUniversitas Pendidikan IndonesiaBandungIndonesia
| | - Ahlam Alynbiawi
- Infectious Diseases SectionMedical Specialties DepartmentKing Fahad Medical CityRiyadhSaudi Arabia
| | - Abeer N. Alshukairi
- Department of MedicineKing Faisal Specialist Hospital and Research CenterJeddahSaudi Arabia
- College of MedicineAlfaisal UniversityRiyadhSaudi Arabia
| | - Ali A. Rabaan
- College of MedicineAlfaisal UniversityRiyadhSaudi Arabia
- Molecular Diagnostic LaboratoryJohns Hopkins Aramco HealthcareDhahranSaudi Arabia
- Department of Public Health and NutritionThe University of HaripurHaripurPakistan
| |
Collapse
|
28
|
Dhama K, Nainu F, Frediansyah A, Yatoo MI, Mohapatra RK, Chakraborty S, Zhou H, Islam MR, Mamada SS, Kusuma HI, Rabaan AA, Alhumaid S, Mutair AA, Iqhrammullah M, Al-Tawfiq JA, Mohaini MA, Alsalman AJ, Tuli HS, Chakraborty C, Harapan H. Global emerging Omicron variant of SARS-CoV-2: Impacts, challenges and strategies. J Infect Public Health 2023; 16:4-14. [PMID: 36446204 PMCID: PMC9675435 DOI: 10.1016/j.jiph.2022.11.024] [Citation(s) in RCA: 109] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
Newly emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are continuously posing high global public health concerns and panic resulting in waves of coronavirus disease 2019 (COVID-19) pandemic. Depending on the extent of genomic variations, mutations and adaptation, few of the variants gain the ability to spread quickly across many countries, acquire higher virulency and ability to cause severe disease, morbidity and mortality. These variants have been implicated in lessening the efficacy of the current COVID-19 vaccines and immunotherapies resulting in break-through viral infections in vaccinated individuals and recovered patients. Altogether, these could hinder the protective herd immunity to be achieved through the ongoing progressive COVID-19 vaccination. Currently, the only variant of interest of SARS-CoV-2 is Omicron that was first identified in South Africa. In this review, we present the overview on the emerging SARS-CoV-2 variants with a special focus on the Omicron variant, its lineages and hybrid variants. We discuss the hypotheses of the origin, genetic change and underlying molecular mechanism behind higher transmissibility and immune escape of Omicron variant. Major concerns related to Omicron including the efficacy of the current available immunotherapeutics and vaccines, transmissibility, disease severity, and mortality are discussed. In the last part, challenges and strategies to counter Omicron variant, its lineages and hybrid variants amid the ongoing COVID-19 pandemic are presented.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India.
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Andri Frediansyah
- Research Division for Natural Product Technology (BPTBA), National Research and Innovation Agency (BRIN), Gunungkidul, Yogyakarta 55861, Indonesia
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry Shuhama, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 190006, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, R.K. Nagar, West Tripura, Tripura, India
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Microbiology, NYU Grossman School of Medicine, New York 10016, USA
| | - Md Rabiul Islam
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka 1205, Bangladesh
| | - Sukamto S Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Hendrix Indra Kusuma
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia; Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; Biology Education Department, Faculty of Tarbiyah and Teacher Training, Universitas Islam Negeri Ar-Raniry, Jl. Syeikh Abdur Rauf, Kopelma Darussalaml, Banda Aceh 23111, Indonesia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia; College of Nursing, Prince Nora University, Riyadh 11564, Saudi Arabia; School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia; Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Muhammad Iqhrammullah
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Jaffar A Al-Tawfiq
- Specialty Internal Medicine and Quality Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Infectious Disease Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Infectious Disease Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Al-Ahsa 31982, Saudi Arabia; King Abdullah International Medical Research Center, Al-Ahsa 31982, Saudi Arabia
| | - Abdulkhaliq J Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala 133207, Haryana, India
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia; Tropical Diseases Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia; Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia.
| |
Collapse
|
29
|
Adeyemi OO, Ndodo ND, Sulaiman MK, Ayansola OT, Buhari OIN, Akanbi OA, Bolarinwa OA, Chukwu C, Joel IY, Omoare AA, Wahab KW, Obiekea C, Buhari MO, Ahumibe A, Kolawole CF, Okoi C, Omotesho OB, Mba N, Adeniyi O, Babatunde O, Akintunde N, Ayinla G, Akande OW, Odunola RA, Saka MJ, Musa OI, Durotoye IA, Ihekweazu C, Adetifa IM, Fadeyi A. SARS-CoV-2 variants-associated outbreaks of COVID-19 in a tertiary institution, North-Central Nigeria: Implications for epidemic control. PLoS One 2023; 18:e0280756. [PMID: 36696405 PMCID: PMC9876355 DOI: 10.1371/journal.pone.0280756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
The COVID-19 global pandemic is being driven by evolving SARS-CoV-2 variants with consequential implications on virus transmissibility, host immunity, and disease severity. Continuous molecular and genomic surveillance of the SARS-CoV-2 variants is therefore necessary for public health interventions toward the management of the pandemic. This study is a retrospective analysis of COVID-19 cases reported in a Nigerian tertiary institution from July to December 2021. In total, 705 suspected COVID-19 cases that comprised 547 students and 158 non-students were investigated by real time PCR (RT-PCR); of which 372 (~52.8%) tested positive for COVID-19. Using a set of selection criteria, 74 (~19.9%) COVID-19 positive samples were selected for next generation sequencing. Data showed that there were two outbreaks of COVID-19 within the university community over the study period, during which more females (56.8%) tested positive than males (47.8%) (p<0.05). Clinical data together with phylogenetic analysis suggested community transmission of SARS-CoV-2 through mostly asymptomatic and/or pre-symptomatic individuals. Confirmed COVID-19 cases were mostly mild, however, SARS-CoV-2 delta (77%) and omicron (4.1%) variants were implicated as major drivers of respective waves of infections during the study period. This study highlights the importance of integrated surveillance of communicable disease during outbreaks.
Collapse
Affiliation(s)
- Oluwapelumi Olufemi Adeyemi
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Molecular Diagnostic and Research Laboratory, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Mariam Kehinde Sulaiman
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Molecular Diagnostic and Research Laboratory, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Oluwabunmi Idera Nimat Buhari
- Department of Behavioural Sciences, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Oladimeji Akeem Bolarinwa
- Department of Epidemiology and Community Health, Faculty of Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Chimaobi Chukwu
- National Reference Laboratory, Nigeria Centre for Disease Control, Abuja, Nigeria
| | - Ireoluwa Yinka Joel
- Molecular Diagnostic and Research Laboratory, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Kolawole Wasiu Wahab
- Department of Medicine, Faculty of Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Celestina Obiekea
- National Reference Laboratory, Nigeria Centre for Disease Control, Abuja, Nigeria
| | - Mikhail Olayinka Buhari
- Department of Pathology, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Anthony Ahumibe
- National Reference Laboratory, Nigeria Centre for Disease Control, Abuja, Nigeria
| | | | - Catherine Okoi
- National Reference Laboratory, Nigeria Centre for Disease Control, Abuja, Nigeria
| | | | - Nwando Mba
- National Reference Laboratory, Nigeria Centre for Disease Control, Abuja, Nigeria
| | | | - Olajumoke Babatunde
- National Reference Laboratory, Nigeria Centre for Disease Control, Abuja, Nigeria
| | | | - Ganiu Ayinla
- Health Services, University of Ilorin, Ilorin, Nigeria
| | | | | | - Mohammed Jimoh Saka
- Department of Epidemiology and Community Health, Faculty of Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Omotosho Ibrahim Musa
- Department of Epidemiology and Community Health, Faculty of Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Idayat Adenike Durotoye
- Department of Haematology, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Chikwe Ihekweazu
- National Reference Laboratory, Nigeria Centre for Disease Control, Abuja, Nigeria
- Office of the Director General, Nigeria Centre for Disease Control, Abuja, Nigeria
| | - Ifedayo Morayo Adetifa
- National Reference Laboratory, Nigeria Centre for Disease Control, Abuja, Nigeria
- Office of the Director General, Nigeria Centre for Disease Control, Abuja, Nigeria
| | - Abayomi Fadeyi
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Molecular Diagnostic and Research Laboratory, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- * E-mail:
| |
Collapse
|
30
|
Zhao X, Qin L, Ding X, Zhang Y, Niu X, Gao F, Jiang T, Chen L. Origin and Reversion of Omicron Core Mutations in the Evolution of SARS-CoV-2 Genomes. Viruses 2022; 15:30. [PMID: 36680069 PMCID: PMC9865174 DOI: 10.3390/v15010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Genetic analyses showed nearly 30 amino acid mutations occurred in the spike protein of the Omicron variant of SARS-CoV-2. However, how these mutations occurred and changed during the generation and development of Omicron remains unclear. In this study, 6.7 million (all publicly available data from 2020/04/01 to 2022/04/01) SARS-CoV-2 genomes were analyzed to track the origin and evolution of Omicron variants and to reveal the genetic pathways of the generation of core mutations in Omicron. The haplotype network visualized the pre-Omicron, intact-Omicron, and post-Omicron variants and revealed their evolutionary direction. The correlation analysis showed the correlation feature of the core mutations in Omicron. Moreover, we found some core mutations, such as 142D, 417N, 440K, and 764K, reversed to ancestral residues (142G, 417K, 440N, and 764N) in the post-Omicron variant, suggesting the reverse mutations provided sources for the emergence of new variants. In summary, our analysis probed the origin and further evolution of Omicron sub-variants, which may add to our understanding of new variants and facilitate the control of the pandemic.
Collapse
Affiliation(s)
- Xinwei Zhao
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Luyao Qin
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Xiao Ding
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Yudi Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Feng Gao
- Institute of Molecular and Medical Virology, Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Taijiao Jiang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
- Guangzhou Laboratory, Guangzhou 510005, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Guangzhou Laboratory, Guangzhou 510005, China
| |
Collapse
|
31
|
Boer JC, Pan Q, Holien JK, Nguyen TB, Ascher DB, Plebanski M. A bias of Asparagine to Lysine mutations in SARS-CoV-2 outside the receptor binding domain affects protein flexibility. Front Immunol 2022; 13:954435. [PMID: 36569921 PMCID: PMC9788125 DOI: 10.3389/fimmu.2022.954435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction COVID-19 pandemic has been threatening public health and economic development worldwide for over two years. Compared with the original SARS-CoV-2 strain reported in 2019, the Omicron variant (B.1.1.529.1) is more transmissible. This variant has 34 mutations in its Spike protein, 15 of which are present in the Receptor Binding Domain (RBD), facilitating viral internalization via binding to the angiotensin-converting enzyme 2 (ACE2) receptor on endothelial cells as well as promoting increased immune evasion capacity. Methods Herein we compared SARS-CoV-2 proteins (including ORF3a, ORF7, ORF8, Nucleoprotein (N), membrane protein (M) and Spike (S) proteins) from multiple ancestral strains. We included the currently designated original Variant of Concern (VOC) Omicron, its subsequent emerged variants BA.1, BA2, BA3, BA.4, BA.5, the two currently emerging variants BQ.1 and BBX.1, and compared these with the previously circulating VOCs Alpha, Beta, Gamma, and Delta, to better understand the nature and potential impact of Omicron specific mutations. Results Only in Omicron and its subvariants, a bias toward an Asparagine to Lysine (N to K) mutation was evident within the Spike protein, including regions outside the RBD domain, while none of the regions outside the Spike protein domain were characterized by this mutational bias. Computational structural analysis revealed that three of these specific mutations located in the central core region, contribute to a preference for the alteration of conformations of the Spike protein. Several mutations in the RBD which have circulated across most Omicron subvariants were also analysed, and these showed more potential for immune escape. Conclusion This study emphasizes the importance of understanding how specific N to K mutations outside of the RBD region affect SARS-CoV-2 conformational changes and the need for neutralizing antibodies for Omicron to target a subset of conformationally dependent B cell epitopes.
Collapse
Affiliation(s)
- Jennifer C. Boer
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology, Melbourne, VIC, Australia
| | - Qisheng Pan
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jessica K. Holien
- School of Science, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Thanh-Binh Nguyen
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David B. Ascher
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology, Melbourne, VIC, Australia,*Correspondence: Magdalena Plebanski,
| |
Collapse
|
32
|
Rana R, Kant R, Huirem RS, Bohra D, Ganguly NK. Omicron variant: Current insights and future directions. Microbiol Res 2022; 265:127204. [PMID: 36152612 PMCID: PMC9482093 DOI: 10.1016/j.micres.2022.127204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023]
Abstract
The global COVID-19 outbreak has returned with the identification of the SARS-CoV-2 Omicron variant (B.1.1.529) after appearing to be persistently spreading for the more than past two years. In comparison to prior SARS-CoV-2 variants, this new variant revealed a significant amount of mutation. This novel variety may have a greater rate of transmissibility which might impede the effectiveness of current diagnostic equipment as well as vaccination efficacy and also impede immunotherapies (Antibody / monoclonal antibody based). WHO designated B.1.1.529 as a variant of concern on November 26, 2021, identified as Omicron. The Omicron variant transmission method and severity, on the other hand, are well defined. The global spread of Omicron, which has now seized many nations, has resulted in numerous speculations regarding its origin and degree of infectivity. The following sections will go over its potential for transmission, omicron structure, and impact on COVID-19 vaccines, how it is different from delta variant and diagnostics.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, Delhi, India.
| | - Ravi Kant
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
| | | | - Deepika Bohra
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
| | | |
Collapse
|
33
|
Sun Y, Wang M, Lin W, Dong W, Xu J. "Mutation blacklist" and "mutation whitelist" of SARS-CoV-2. JOURNAL OF BIOSAFETY AND BIOSECURITY 2022; 4:114-120. [PMID: 35845149 PMCID: PMC9273572 DOI: 10.1016/j.jobb.2022.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 01/26/2023] Open
Abstract
Over the past two years, scientists throughout the world have completed more than 6 million SARS-CoV-2 genome sequences. Today, the number of SARS-CoV-2 genomes exceeds the total number of all other viral genomes. These genomes are a record of the evolution of SARS-CoV-2 in the human host, and provide information on the emergence of mutations. In this study, analysis of these sequenced genomes identified 296,728 de novo mutations (DNMs), and found that six types of base substitutions reached saturation in the sequenced genome population. Based on this analysis, a "mutation blacklist" of SARS-CoV-2 was compiled. The loci on the "mutation blacklist" are highly conserved, and these mutations likely have detrimental effects on virus survival, replication, and transmission. This information is valuable for SARS-CoV-2 research on gene function, vaccine design, and drug development. Through association analysis of DNMs and viral transmission rates, we identified 185 DNMs that positively correlated with the SARS-CoV-2 transmission rate, and these DNMs where classified as the "mutation whitelist" of SARS-CoV-2. The mutations on the "mutation whitelist" are beneficial for SARS-CoV-2 transmission and could therefore be used to evaluate the transmissibility of new variants. The occurrence of mutations and the evolution of viruses are dynamic processes. To more effectively monitor the mutations and variants of SARS-CoV-2, we built a SARS-CoV-2 mutation and variant monitoring and pre-warning system (MVMPS), which can monitor the occurrence and development of mutations and variants of SARS-CoV-2, as well as provide pre-warning for the prevention and control of SARS-CoV-2 (https://www.omicx.cn/). Additionally, this system could be used in real-time to update the "mutation whitelist" and "mutation blacklist" of SARS-CoV-2.
Collapse
Affiliation(s)
- Yamin Sun
- Research Institute of Public Health, Nankai University, Tianjin, PR China
- Research Center for Functional Genomics and Biochip, Tianjin, PR China
| | - Min Wang
- Research Center for Functional Genomics and Biochip, Tianjin, PR China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, PR China
| | - Wenchao Lin
- Research Center for Functional Genomics and Biochip, Tianjin, PR China
| | - Wei Dong
- Research Center for Functional Genomics and Biochip, Tianjin, PR China
| | - Jianguo Xu
- Research Institute of Public Health, Nankai University, Tianjin, PR China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 202206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| |
Collapse
|
34
|
Popovic M. Strain wars 5: Gibbs energies of binding of BA.1 through BA.4 variants of SARS-CoV-2. MICROBIAL RISK ANALYSIS 2022; 22:100231. [PMID: 36034590 PMCID: PMC9392893 DOI: 10.1016/j.mran.2022.100231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/01/2023]
Abstract
This paper reports, for the first time, standard Gibbs energies of binding of the BA.1, BA.2, BA.3, BA.2.13, BA.2.12.1 and BA.4 Omicron variants of SARS-CoV-2, to the Human ACE2 receptor. Variants BA.1 through BA.3 exhibit a trend of decreasing standard Gibbs energy of binding and hence increased infectivity. The BA.4 variant exhibits a less negative standard Gibbs energy of binding, but also more efficient evasion of the immune response. Therefore, it was concluded that all the analyzed strains evolve in accordance with expectations of the theory of evolution, albeit using different strategies.
Collapse
Affiliation(s)
- Marko Popovic
- School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
35
|
Thakur N, Das S, Kumar S, Maurya VK, Dhama K, Paweska JT, Abdel‐Moneim AS, Jain A, Tripathi AK, Puri B, Saxena SK. Tracing the origin of Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): A systematic review and narrative synthesis. J Med Virol 2022; 94:5766-5779. [PMID: 35945190 PMCID: PMC9538017 DOI: 10.1002/jmv.28060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 01/06/2023]
Abstract
The aim of the study was to trace and understand the origin of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through various available literatures and accessible databases. Although the world enters the third year of the coronavirus disease 2019 pandemic, health and socioeconomic impacts continue to mount, the origin and mechanisms of spill-over of the SARS-CoV-2 into humans remain elusive. Therefore, a systematic review of the literature was performed that showcased the integrated information obtained through manual searches, digital databases (PubMed, CINAHL, and MEDLINE) searches, and searches from legitimate publications (1966-2022), followed by meta-analysis. Our systematic analysis data proposed three postulated hypotheses concerning the origin of the SARS-CoV-2, which include zoonotic origin (Z), laboratory origin (L), and obscure origin (O). Despite the fact that the zoonotic origin for SARS-CoV-2 has not been conclusively identified to date, our data suggest a zoonotic origin, in contrast to some alternative concepts, including the probability of a laboratory incident or leak. Our data exhibit that zoonotic origin (Z) has higher evidence-based support as compared to laboratory origin (L). Importantly, based on all the studies included, we generated the forest plot with 95% confidence intervals (CIs) of the risk ratio estimates. Our meta-analysis further supports the zoonotic origin of SARS/SARS-CoV-2 in the included studies.
Collapse
Affiliation(s)
- Nagendra Thakur
- Department of Microbiology, School of Life SciencesSikkim UniversityTadong GangtokIndia
| | - Sayak Das
- Department of Microbiology, School of Life SciencesSikkim UniversityTadong GangtokIndia
| | - Swatantra Kumar
- Centre for Advanced Research (CFAR), Faculty of MedicineKing George's Medical University (KGMU)LucknowIndia
| | - Vimal K. Maurya
- Centre for Advanced Research (CFAR), Faculty of MedicineKing George's Medical University (KGMU)LucknowIndia
| | - Kuldeep Dhama
- Division of PathologyICAR‐Indian Veterinary Research InstituteIzatnagar, BareillyIndia
| | - Janusz T. Paweska
- Centre for Emerging Zoonotic and Parasitic DiseasesNational Institute for Communicable Diseases of the National Health Laboratory ServicePB X4Sandringham‐JohannesburgSouth Africa
| | | | - Amita Jain
- Centre for Advanced Research (CFAR), Faculty of MedicineKing George's Medical University (KGMU)LucknowIndia
| | - Anil K. Tripathi
- Centre for Advanced Research (CFAR), Faculty of MedicineKing George's Medical University (KGMU)LucknowIndia
| | - Bipin Puri
- Centre for Advanced Research (CFAR), Faculty of MedicineKing George's Medical University (KGMU)LucknowIndia
| | - Shailendra K. Saxena
- Centre for Advanced Research (CFAR), Faculty of MedicineKing George's Medical University (KGMU)LucknowIndia
| |
Collapse
|
36
|
Popovic M. Beyond COVID-19: Do biothermodynamic properties allow predicting the future evolution of SARS-CoV-2 variants? MICROBIAL RISK ANALYSIS 2022; 22:100232. [PMID: 36061411 PMCID: PMC9428117 DOI: 10.1016/j.mran.2022.100232] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/01/2023]
Abstract
During the COVID-19 pandemic, many statistical and epidemiological studies have been published, trying to predict the future development of the SARS-CoV-2 pandemic. However, it would be beneficial to have a specific, mechanistic biophysical model, based on the driving forces of processes performed during virus-host interactions and fundamental laws of nature, allowing prediction of future evolution of SARS-CoV-2 and other viruses. In this paper, an attempt was made to predict the development of the pandemic, based on biothermodynamic parameters: Gibbs energy of binding and Gibbs energy of growth. Based on analysis of biothermodynamic parameters of various variants of SARS-CoV-2, SARS-CoV and MERS-CoV that appeared during evolution, an attempt was made to predict the future directions of evolution of SARS-CoV-2 and potential occurrence of new strains that could lead to new pandemic waves. Possible new mutations that could appear in the future could lead to changes in chemical composition, biothermodynamic properties (driving forces of new virus strains) and biological properties of SARS CoV-2 that represent a risk for humanity.
Collapse
Affiliation(s)
- Marko Popovic
- School of Life Sciences, Technical University of Munich, Freising 85354 , Germany
| |
Collapse
|
37
|
Li H, Arcalas C, Song J, Rahmati M, Park S, Koyanagi A, Lee SW, Yon DK, Shin JI, Smith L. Genetics, structure, transmission, epidemiology, immune response, and vaccine efficacies of the SARS‐CoV‐2 Delta variant: A comprehensive review. Rev Med Virol 2022; 33:e2408. [PMID: 36420676 DOI: 10.1002/rmv.2408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant (B.1.617.2) was the predominant variant behind the surges of COVID-19 in the United States, Europe, and India in the second half of 2021. The information available regarding the defining mutations and their effects on the structure, transmission, and vaccine efficacy of SARS-CoV-2 is constantly evolving. With waning vaccine immunity and relaxation of social distancing policies across the globe driving the increased spread of the Delta variant, there is a great need for a resource aggregating the most recent information for clinicians and researchers concerning the Delta variant. Accordingly, this narrative review comprehensively reviews the genetics, structure, epidemiology, clinical course, and vaccine efficacy of the Delta variant. Comparison with the omicron variant is also discussed. The Delta variant is defined by 15 mutations in the Spike protein, most of which increase affinity for the ACE-2 receptor or enhance immune escape. The Delta variant causes similar symptoms to prototypical COVID-19, but it is more likely to be severe, with a greater inflammatory phenotype and viral load. The reproduction number is estimated to be approximately twice the prototypical strains present during the early pandemic, and numerous breakthrough infections have been reported. Despite studies demonstrating breakthrough infection and reduced antibody neutralisation, full vaccination effectively reduces the likelihood of severe illness and hospitalisation.
Collapse
Affiliation(s)
- Han Li
- University of Florida College of Medicine Gainesville Florida USA
| | | | - Junmin Song
- Keimyung University School of Medicine Daegu Republic of Korea
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences Faculty of Literature and Human Sciences Lorestan University Khoramabad Iran
| | - Seoyeon Park
- Yonsei University College of Medicine Seoul Republic of Korea
| | - Ai Koyanagi
- Parc Sanitari Sant Joan de Deu/CIBERSAM Fundacio Sant Joan de Deu Universitat de Barcelona Sant Boi de Llobregat, Barcelona Spain
- ICREA (Catalan Institution for Research and Advanced Studies) Barcelona Spain
| | - Seung Won Lee
- Department of Precision Medicine Sungkyunkwan University School of Medicine Suwon Republic of Korea
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute Kyung Hee University College of Medicine Seoul Republic of Korea
- Department of Pediatrics Kyung Hee University Medical Center Kyung Hee University College of Medicine Seoul Republic of Korea
| | - Jae Il Shin
- Department of Pediatrics Yonsei University College of Medicine Seoul Republic of Korea
| | - Lee Smith
- Centre for Health, Performance, and Wellbeing Anglia Ruskin University Cambridge UK
| |
Collapse
|
38
|
Saied AA, Metwally AA. SARS-CoV-2 variants of concerns in animals: An unmonitored rising health threat. Virusdisease 2022; 33:466-476. [PMID: 36405954 PMCID: PMC9648878 DOI: 10.1007/s13337-022-00794-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022] Open
Abstract
Recent findings have highlighted the urgency for rapidly detecting and characterizing SARS-CoV-2 variants of concern in companion and wild animals. The significance of active surveillance and genomic investigation on these animals could pave the way for more understanding of the viral circulation and how the variants emerge. It enables us to predict the next viral challenges and prepare for or prevent these challenges. Horrible neglect of this issue could make the COVID-19 pandemic a continuous threat. Continuing to monitor the animal-origin SARS-CoV-2, and tailoring prevention and control measures to avoid large-scale community transmission in the future caused by the virus leaping from animals to humans, is essential. The reliance on only developing vaccines with ignoring this strategy could cost us many lives. Here, we discuss the most recent data about the transmissibility of SARS-CoV-2 variants of concern (VOCs) among animals and humans.
Collapse
Affiliation(s)
- AbdulRahman A. Saied
- National Food Safety Authority (NFSA), Aswan Branch, 81511 Aswan, Egypt
- Ministry of Tourism and Antiquities, Aswan Office, 81511 Aswan, Egypt
| | - Asmaa A. Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, 81528 Aswan, Egypt
| |
Collapse
|
39
|
Zeng G, Wang X. Ending the COVID-19 pandemic: We still have a long way to go. J Med Virol 2022; 94:5075-5076. [PMID: 35798567 DOI: 10.1002/jmv.27980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/07/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022]
Abstract
Spread of the severe acute respiratory syndrome coronavirus 2 B.1.1.529 (Omicron) variant, which led to increased global hospitalizations for coronavirus disease 2019, generated concern about immune evasion and the duration of protection from vaccines, and undermined humanity's confidence in ending the epidemic. The sudden mutation and origin of Omicron is even more of a mystery. The article highlights the virological characteristics and possible origins of Omicron and the global threats and challenges it poses, as well as strategies to deal with it.
Collapse
Affiliation(s)
- Guangting Zeng
- Department of Pharmacy, The First People's Hospital of Chenzhou, Xiangnan University, Chenzhou, China
| | - Xia Wang
- Department of Pharmacy, The First People's Hospital of Chenzhou, Xiangnan University, Chenzhou, China
| |
Collapse
|
40
|
A rational strategy for the maintenance of antiviral immunity to new SARS-CoV-2 strains. КЛИНИЧЕСКАЯ ПРАКТИКА 2022. [DOI: 10.17816/clinpract111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
New variants of SARS-CoV-2 such as Omicron BA.2, BA.4/5, BA.2.12.1 and BA 2.75 are characterized by higher infectivity and the ability to escape virus-neutralizing antibodies against previous coronavirus variants. The S-trimer of BA.2 and its phylogenetic derivatives are characterized by a predominant Up-conformation, which facilitates the interaction with ACE2 on target cells and promotes the resistance to neutralizing antibodies. The immunity acquired from the infection with earlier strains is non-sterile for both early and later strains; the booster systemic immunization does not significantly affect the effectiveness of antiviral immunity, and its feasibility is currently being questioned. Studies of the mucosal immune response have shown that intranasal immunization with adenovirus vaccines provides more pronounced protective immunity than systemic reimmunization does. A promising approach is the creation of multivalent inhaled next generation vaccines containing immunoadjuvants that activate B- and T-cell mucosal immunity. Currently, a large number of intranasal vaccines are undergoing phase I/II trials, while the preclinical and preliminary clinical results indicate that this method of vaccination provides a better mucosal immune response at the entry site of the virus than systemic immunization does. This strategy may provide a long-term immune protection against the currently existing and yet unknown new strains of SARS-CoV-2.
Collapse
|
41
|
Caputo E, Mandrich L. SARS-CoV-2: Searching for the Missing Variants. Viruses 2022; 14:v14112364. [PMID: 36366461 PMCID: PMC9697249 DOI: 10.3390/v14112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 01/31/2023] Open
Abstract
Structural and phylogenetic analysis of the spike glycoprotein highlighted that the last variants, annotated as omicron, have about 30 mutations compared to the initial version reported in China, while the delta variant, supposed to be the omicron ancestor, shows only 7 mutations. Moreover, the five omicron variants were isolated between November 2021 and January 2022, and the last variant BA.2.75, unofficially named centaurus, was isolated in May 2022. It appears that, since the isolation of the delta variant (October 2020) to the omicron BA.1 (November 2021), there was an interval of one year, whereas the five omicron variants were isolated in three months, and after a successive four months period, the BA.2.75 variant was isolated. So, what is the temporal and phylogenetic correlation among all these variants? The analysis of common mutations among delta and the omicron variants revealed: (i) a phylogenetic correlation among these variants; (ii) the existence of BA.1 and BA.2 omicron variants a few months before being isolated; (iii) at least three possible intermediate variants during the evolution of omicron; (iv) the evolution of the BA.2.12.1, BA.4 and BA.5 variants from omicron BA.2; (v) the centaurus variant evolution from omicron BA.2.12.1.
Collapse
Affiliation(s)
- Emilia Caputo
- Institute of Genetics and Biophysics-IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Luigi Mandrich
- Research Institute on Terrestrial Ecosystems-IRET-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
42
|
Soni V, Paital S, Raizada P, Ahamad T, Khan AAP, Thakur S, Singh P, Hussain CM, Sharma S, Nadda AK. Surveillance of omicron variants through wastewater epidemiology: Latest developments in environmental monitoring of pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156724. [PMID: 35716753 PMCID: PMC9197784 DOI: 10.1016/j.scitotenv.2022.156724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
WBE has been a monitoring system that can give purposeful and inclusive real-time assessments of civic society as well as environmental health. This concept review introduces WBE as a surveillance scheme and initial warning outbreaks of contagious diseases caused by harmful SARS-CoV-2 with pandemic potential. Examining biomarkers of contagious diseases as evidence in polluted water taken from wastewater treatment plants suggests that these systems can be examined to get epidemiological data for checking the transmission of infectious B.1.1.529 to different areas. Thereafter, various benefits of surveillance are provided to analyse health information and pinpoint different problems that may be occurring in the workstation. Surveillance is followed by intervention steps that improved the work environment and prevent further progression of the disease. This information will help to improve early detection strategies, designing a prevention strategy to reduce their spread, infection control and therapies, thus, strengthening our global preparedness to fight future epidemics. In the end, a comprehensive discussion on the remaining challenges and opportunities for epidemiology has been given for future research perspectives.
Collapse
Affiliation(s)
- Vatika Soni
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173212, India
| | - Shilpa Paital
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173212, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173212, India
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia.
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173212, India.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Swati Sharma
- University Institute of Biotechnology, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, Himachal Pradesh, India
| |
Collapse
|
43
|
Li X, Liu H, Tong Y. Concerns on cross-species transmission of SARS-CoV-2 between pets and humans. Front Microbiol 2022; 13:985528. [PMID: 36212862 PMCID: PMC9532748 DOI: 10.3389/fmicb.2022.985528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Xingguang Li
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- *Correspondence: Xingguang Li
| | - Haizhou Liu
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Yigang Tong
| |
Collapse
|
44
|
Bignon E, Monari A. Modeling the Enzymatic Mechanism of the SARS-CoV-2 RNA-Dependent RNA Polymerase by DFT/MM-MD: An Unusual Active Site Leading to High Replication Rates. J Chem Inf Model 2022; 62:4261-4269. [PMID: 35982544 PMCID: PMC9437665 DOI: 10.1021/acs.jcim.2c00802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Viral infection relies on the hijacking of cellular machineries to enforce the reproduction of the infecting virus and its subsequent diffusion. In this context, the replication of the viral genome is a key step performed by specific enzymes, i.e., polymerases. The replication of SARS-CoV-2, the causative agent of the COVID-19 pandemics, is based on the duplication of its RNA genome, an action performed by the viral RNA-dependent RNA polymerase. In this contribution, by using highly demanding DFT/MM-MD computations coupled to 2D-umbrella sampling techniques, we have determined the chemical mechanisms leading to the inclusion of a nucleotide in the nascent viral RNA strand. These results highlight the high efficiency of the polymerase, which lowers the activation free energy to less than 10 kcal/mol. Furthermore, the SARS-CoV-2 polymerase active site is slightly different from those usually found in other similar enzymes, and in particular, it lacks the possibility to enforce a proton shuttle via a nearby histidine. Our simulations show that this absence is partially compensated by lysine whose proton assists the reaction, opening up an alternative, but highly efficient, reactive channel. Our results present the first mechanistic resolution of SARS-CoV-2 genome replication at the DFT/MM-MD level and shed light on its unusual enzymatic reactivity paving the way for the future rational design of antivirals targeting emerging RNA viruses.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Antonio Monari
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
- Université
de Paris, CNRS, ITODYS, F-75006 Paris, France
| |
Collapse
|
45
|
Khemiri H, Ayouni K, Triki H, Haddad-Boubaker S. SARS-CoV-2 infection in pediatric population before and during the Delta (B.1.617.2) and Omicron (B.1.1.529) variants era. Virol J 2022; 19:144. [PMID: 36076271 PMCID: PMC9452867 DOI: 10.1186/s12985-022-01873-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/27/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND COVID-19, the coronavirus disease that emerged in December 2019, caused drastic damage worldwide. At the beginning of the pandemic, available data suggested that the infection occurs more frequently in adults than in infants. In this review, we aim to provide an overview of SARS-CoV-2 infection in children before and after B.1.617.2 Delta and B.1.1.529 Omicron variants emergence in terms of prevalence, transmission dynamics, clinical manifestations, complications and risk factors. METHODS Our method is based on the literature search on PubMed, Science Direct and Google Scholar. From January 2020 to July 2022, a total of 229 references, relevant for the purpose of this review, were considered. RESULTS The incidence of SARS-CoV-2 infection in infants was underestimated. Up to the first half of May, most of the infected children presented asymptomatic or mild manifestations. The prevalence of COVID-19 varied from country to another: the highest was reported in the United States (22.5%). COVID-19 can progress and become more severe, especially with the presence of underlying health conditions. It can also progress into Kawasaki or Multisystem Inflammatory Syndrome (MIS) manifestations, as a consequence of exacerbating immune response. With the emergence of the B.1.617.2 Delta and B.1.1.529 Omicron variants, it seems that these variants affect a large proportion of the younger population with the appearance of clinical manifestations similar to those presented by adults with important hospitalization rates. CONCLUSION The pediatric population constitutes a vulnerable group that requires particular attention, especially with the emergence of more virulent variants. The increase of symptomatic SARS-CoV-2 infection and hospitalization rate among children highlights the need to extend vaccination to the pediatric population.
Collapse
Affiliation(s)
- Haifa Khemiri
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Kaouther Ayouni
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Henda Triki
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia
| | - Sondes Haddad-Boubaker
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia.
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
46
|
Le Gars M, Hendriks J, Sadoff J, Ryser M, Struyf F, Douoguih M, Schuitemaker H. Immunogenicity and efficacy of Ad26.COV2.S: An adenoviral vector-based COVID-19 vaccine. Immunol Rev 2022; 310:47-60. [PMID: 35689434 PMCID: PMC9349621 DOI: 10.1111/imr.13088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 12/26/2022]
Abstract
Since its emergence in late 2019, the coronavirus disease 2019 (COVID-19) pandemic has caused substantial morbidity and mortality. Despite the availability of efficacious vaccines, new variants with reduced sensitivity to vaccine-induced protection are a troubling new reality. The Ad26.COV2.S vaccine is a recombinant, replication-incompetent human adenovirus type 26 vector encoding a full-length, membrane-bound severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein in a prefusion-stabilized conformation. This review discusses the immunogenicity and efficacy of Ad26.COV2.S as a single-dose primary vaccination and as a homologous or heterologous booster vaccination. Ad26.COV2.S elicits broad humoral and cellular immune responses, which are associated with protective efficacy/effectiveness against SARS-CoV-2 infection, moderate to severe/critical COVID-19, and COVID-19-related hospitalization and death, including against emerging SARS-CoV-2 variants. The humoral immune responses elicited by Ad26.COV2.S vaccination are durable, continue to increase for at least 2-3 months postvaccination, and involve a range of functional antibodies. Ad26.COV2.S given as a heterologous booster to mRNA vaccine-primed individuals markedly increases humoral and cellular immune responses. The use of Ad26.COV2.S as primary vaccination and as part of booster regimens is supporting the ongoing efforts to control and mitigate the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Jenny Hendriks
- Janssen Vaccines and Prevention, Leiden, The Netherlands
| | - Jerald Sadoff
- Janssen Vaccines and Prevention, Leiden, The Netherlands
| | - Martin Ryser
- Janssen Research and Development, Beerse, Belgium
| | - Frank Struyf
- Janssen Research and Development, Beerse, Belgium
| | | | | |
Collapse
|
47
|
Boeger WA, Brooks DR, Trivellone V, Agosta SJ, Hoberg EP. Ecological super-spreaders drive host-range oscillations: Omicron and risk space for emerging infectious disease. Transbound Emerg Dis 2022; 69:e1280-e1288. [PMID: 35411706 PMCID: PMC9115439 DOI: 10.1111/tbed.14557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022]
Abstract
The unusual genetic diversity of the Omicron strain has led to speculation about its origin. The mathematical modelling platform developed for the Stockholm Paradigm (SP) indicates strongly that it has retro-colonized humans from an unidentified nonhuman mammal, likely originally infected by humans. The relationship between Omicron and all other SARS-CoV-2 variants indicates oscillations among hosts, a core part of the SP. Such oscillations result from the emergence of novel variants following colonization of new hosts, replenishing and expanding the risk space for disease emergence. The SP predicts that pathogens colonize new hosts using pre-existing capacities. Those events are thus predictable to a certain extent. Novel variants emerge after a colonization and are not predictable. This makes it imperative to take proactive measures for anticipating emerging infectious diseases (EID) and mitigating their impact. The SP suggests a policy protocol, DAMA, to accomplish this goal. DAMA comprises: DOCUMENT to detect pathogens before they emerge in new places or colonize new hosts; ASSESS to determine risk; MONITOR to detect changes in pathogen populations that increase the risk of outbreaks and ACT to prevent outbreaks when possible and minimize their impact when they occur.
Collapse
Affiliation(s)
- Walter A. Boeger
- Biological InteractionsUniversidade Federal do ParanáCuritibaBrazil
| | - Daniel R. Brooks
- Eötvös Loránd Research NetworkCentre for Ecological ResearchInstitute of EvolutionBudapestHungary
- Stellenbosch Institute for Advanced StudyStellenboschSouth Africa
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Valeria Trivellone
- Illinois Natural History SurveyPrairie Research InstituteUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
| | - Salvatore J. Agosta
- Stellenbosch Institute for Advanced StudyStellenboschSouth Africa
- Center for Environmental StudiesVCU Life SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Eric P. Hoberg
- Department of Pathobiological SciencesSchool of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Museum of Southwestern BiologyDepartment of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| |
Collapse
|
48
|
Shrestha LB, Foster C, Rawlinson W, Tedla N, Bull RA. Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: Implications for immune escape and transmission. Rev Med Virol 2022; 32:e2381. [PMID: 35856385 PMCID: PMC9349777 DOI: 10.1002/rmv.2381] [Citation(s) in RCA: 264] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022]
Abstract
The first dominant SARS-CoV-2 Omicron variant BA.1 harbours 35 mutations in its Spike protein from the original SARS-CoV-2 variant that emerged late 2019. Soon after its discovery, BA.1 rapidly emerged to become the dominant variant worldwide and has since evolved into several variants. Omicron is of major public health concern owing to its high infectivity and antibody evasion. This review article examines the theories that have been proposed on the evolution of Omicron including zoonotic spillage, infection in immunocompromised individuals and cryptic spread in the community without being diagnosed. Added to the complexity of Omicron's evolution are the multiple reports of recombination events occurring between co-circulating variants of Omicron with Delta and other variants such as XE. Current literature suggests that the combination of the novel mutations in Omicron has resulted in the variant having higher infectivity than the original Wuhan-Hu-1 and Delta variant. However, severity is believed to be less owing to the reduced syncytia formation and lower multiplication in the human lung tissue. Perhaps most challenging is that several studies indicate that the efficacy of the available vaccines have been reduced against Omicron variant (8-127 times reduction) as compared to the Wuhan-Hu-1 variant. The administration of booster vaccine, however, compensates with the reduction and improves the efficacy by 12-35 fold. Concerningly though, the broadly neutralising monoclonal antibodies, including those approved by FDA for therapeutic use against previous SARS-CoV-2 variants, are mostly ineffective against Omicron with the exception of Sotrovimab and recent reports suggest that the Omicron BA.2 is also resistant to Sotrovimab. Currently two new Omicron variants BA.4 and BA.5 are emerging and are reported to be more transmissible and resistant to immunity generated by previous variants including Omicron BA.1 and most monoclonal antibodies. As new variants of SARS-CoV-2 will likely continue to emerge it is important that the evolution, and biological consequences of new mutations, in existing variants be well understood.
Collapse
Affiliation(s)
- Lok Bahadur Shrestha
- School of Medical SciencesFaculty of MedicineUNSWSydneyNew South WalesAustralia
- The Kirby InstituteUNSWSydneyNew South WalesAustralia
| | - Charles Foster
- School of Medical SciencesFaculty of MedicineUNSWSydneyNew South WalesAustralia
- Serology and Virology DivisionDepartment of MicrobiologyNew South Wales Health PathologySydneyNew South WalesAustralia
| | - William Rawlinson
- School of Medical SciencesFaculty of MedicineUNSWSydneyNew South WalesAustralia
- Serology and Virology DivisionDepartment of MicrobiologyNew South Wales Health PathologySydneyNew South WalesAustralia
| | - Nicodemus Tedla
- School of Medical SciencesFaculty of MedicineUNSWSydneyNew South WalesAustralia
| | - Rowena A. Bull
- School of Medical SciencesFaculty of MedicineUNSWSydneyNew South WalesAustralia
- The Kirby InstituteUNSWSydneyNew South WalesAustralia
| |
Collapse
|
49
|
Lewis J, Zhan S, Vilander AC, Fagre AC, Kiaris H, Schountz T. SARS-CoV-2 infects multiple species of North American deer mice and causes clinical disease in the California mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.22.504888. [PMID: 36052372 PMCID: PMC9435398 DOI: 10.1101/2022.08.22.504888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
UNLABELLED Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus that causes coronavirus disease-19 (COVID-19), emerged in late 2019 in Wuhan, China and its rapid global spread has resulted in millions of deaths. An important public health consideration is the potential for SARS-CoV-2 to establish endemicity in a secondary animal reservoir outside of Asia or acquire adaptations that result in new variants with the ability to evade the immune response and reinfect the human population. Previous work has shown that North American deer mice ( Peromyscus maniculatus ) are susceptible and can transmit SARS-CoV-2 to naïve conspecifics, indicating its potential to serve as a wildlife reservoir for SARS-CoV-2 in North America. In this study, we report experimental SARS-CoV-2 susceptibility of two additional subspecies of the North American deer mouse and two additional deer mouse species, with infectious virus and viral RNA present in oral swabs and lung tissue of infected deer mice and neutralizing antibodies present at 15 days post-challenge. Moreover, some of one species, the California mouse ( P. californicus ) developed clinical disease, including one that required humane euthanasia. California mice often develop spontaneous liver disease, which may serve as a comorbidity for SARS-CoV-2 severity. The results of this study suggest broad susceptibility of rodents in the genus Peromyscus and further emphasize the potential of SARS-CoV-2 to infect a wide array of North American rodents. IMPORTANCE A significant concern is the spillback of SARS-CoV-2 into North American wildlife species. We have determined that several species of peromyscine rodents, the most abundant mammals in North America, are susceptible to SARS-CoV-2 and that infection is likely long enough that the virus may be able to establish persistence in local rodent populations. Strikingly, some California mice developed clinical disease that suggests this species may be useful for the study of human co-morbidities often associated with severe and fatal COVID-19 disease.
Collapse
|
50
|
Paul S, Nadendla S, Sobhia ME. Identification of Potential ACE2-Derived Peptide Mimetics in SARS-CoV-2 Omicron Variant Therapeutics using Computational Approaches. J Phys Chem Lett 2022; 13:7420-7428. [PMID: 35929665 PMCID: PMC9396968 DOI: 10.1021/acs.jpclett.2c01155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The COVID-19 pandemic has become a global health challenge because of the emergence of distinct variants. Omicron, a new variant, is recognized as a variant of concern (VOC) by the World Health Organization (WHO) because of its higher mutations and accelerated human infection. The infection rate is strongly dependent on the binding rate of the receptor binding domain (RBD) against human angiotensin converting enzyme-2 (ACE2human) receptor. Inhibition of protein-protein (RBDs(SARS-CoV-2/omicron)-ACE2human) interaction has been already proven to inhibit viral infection. We have systematically designed ACE2human-derived peptides and peptide mimetics that have high binding affinity toward RBDomicron. Our peptide mutational analysis indicated the influence of canonical amino acids on the peptide binding process. Herein, efforts have been made to explore the atomistic details and events of RBDs(SARS-CoV-2/omicron)-ACE2human interactions by using molecular dynamics simulation. Our studies pave a path for developing therapeutic peptidomimetics against omicron.
Collapse
Affiliation(s)
- Stanly Paul
- Institute
of Pharmaceutical Analysis, University of
Szeged, Eotvos u. 6, G-6720 Szeged, Hungary
| | - Swathi Nadendla
- Department
of Pharmacoinformatics, National Institute
of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Mohali 160062, India
| | - M Elizabeth Sobhia
- Department
of Pharmacoinformatics, National Institute
of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Mohali 160062, India
| |
Collapse
|