1
|
Stücker S, Koßlowski F, Buchholz A, Lohmann CH, Bertrand J. High frequency of BCP, but less CPP crystal-mediated calcification in cartilage and synovial membrane of osteoarthritis patients. Osteoarthritis Cartilage 2024; 32:1542-1551. [PMID: 38735362 DOI: 10.1016/j.joca.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE Ectopic articular calcification is a common phenomenon of osteoarthritic joints, and closely related to disease progression. Identification of the involved calcium crystal types represents an important topic in research and clinical practice. Difficulties in accurate detection and crystal type identification have led to inconsistent data on the prevalence and spatial distribution of Basic calcium phosphate (BCP) and calcium pyrophosphate (CPP) deposition. METHOD Combining multiple imaging methods including conventional radiography, histology and Raman spectroscopy, this study provides a comprehensive analysis of BCP and CPP-based calcification, its frequency and distribution in cartilage and synovial membrane samples of 92 osteoarthritis patients undergoing knee replacement surgery. RESULTS Conventional radiography showed calcifications in 35% of patients. Von Kossa staining detected calcified deposits in 88% and 57% of cartilage and synovial samples, respectively. BCP crystals presented as brittle deposits on top of the cartilage surface or embedded in synovial tissue. CPP deposits appeared as larger granular needle-shaped clusters or dense circular pockets below the cartilage surface or within synovial tissue. Spectroscopic analysis detected BCP crystals in 75% of cartilage and 43% of synovial samples. CPP deposition was only detected in 18% of cartilage and 15% of synovial samples, often coinciding with BCP deposits. CONCLUSION BCP is the predominant crystal type in calcified cartilage and synovium while CPP deposition is rare, often coinciding with BCP. Distinct and qualitative information on BCP and CPP deposits in joint tissues gives rise to the speculation that different disease entities are involved that might need different treatment strategies.
Collapse
MESH Headings
- Humans
- Synovial Membrane/pathology
- Synovial Membrane/metabolism
- Synovial Membrane/diagnostic imaging
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Cartilage, Articular/diagnostic imaging
- Calcium Phosphates/metabolism
- Aged
- Male
- Female
- Calcium Pyrophosphate/metabolism
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/pathology
- Osteoarthritis, Knee/diagnostic imaging
- Middle Aged
- Chondrocalcinosis/metabolism
- Chondrocalcinosis/pathology
- Chondrocalcinosis/diagnostic imaging
- Spectrum Analysis, Raman
- Calcinosis/pathology
- Calcinosis/metabolism
- Aged, 80 and over
- Arthroplasty, Replacement, Knee
Collapse
Affiliation(s)
- Sina Stücker
- Department of Orthopaedic Surgery, Otto-von-Guericke-University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Franziska Koßlowski
- Department of Orthopaedic Surgery, Otto-von-Guericke-University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Adrian Buchholz
- Department of Orthopaedic Surgery, Otto-von-Guericke-University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke-University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke-University, Leipziger Straße 44, 39120 Magdeburg, Germany.
| |
Collapse
|
2
|
Cheng G, Wang X, Zhang F, Wang K, Li Y, Guo T, Xu N, Wei W, Yan S. Reparative homing of bone mesenchymal stem cells induced by iMSCs via the SDF-1/CXCR4 axis for articular cartilage defect restoration. Biomed Pharmacother 2024; 181:117649. [PMID: 39536539 DOI: 10.1016/j.biopha.2024.117649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The intrinsic healing ability of articular cartilage is poor after injury or illness, and untreated injury could lead to cartilage degeneration and ultimately osteoarthritis. iMSCs are derived from embryonic induced pluripotent stem cells and have strong therapeutic capabilities in the repair of cartilage defects, while the mechanism of action is unclear. The aim of this study is to clarify the repair mode of iMSCs on cartilage defects in rat knee joints, elucidate the chemotactic effect of iMSCs on autologous BMSCs in rats, and provide a basis for the treatment of cartilage defects and endogenous regeneration with iMSCs. METHODS Based on the establishment of the rat cartilage defect model, the reparative effect of iMSCs on the rat cartilage defect was evaluated. The cartilage repair was evaluated by quantitative score, H&E staining, Masson staining and Safranin-O staining, and the metabolic changes of iMSCs in the joint cavity were detected in vivo. The expression of SOX9, CD29, CD90, ColⅠ, ColⅡ, PCNA, SDF-1, and CXCR4 was detected by immunohistochemistry (IHC), IF, flow cytometry, respectively. After co-culturing iMSCs with BMSCs in vitro, the expression of CXCR4/SDF-1 on the cell membrane surface of BMSCs was detected by western blotting.; The level of p-Akt and p-Erk1/2 in total protein of BMSCs were detected by western blotting. SIGNIFICANCE Our research results provide experimental evidence for the treatment of cartilage defects and endogenous regeneration with iMSCs; This also provides new ideas for the clinical treatment of cartilage defects using iMSCs.
Collapse
Affiliation(s)
- Gang Cheng
- Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Xulei Wang
- Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Laboratory Animal Center, Anhui Medical University, Hefei 230032, China
| | - Feng Zhang
- Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Kang Wang
- Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Ying Li
- Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Tingting Guo
- Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Nuo Xu
- Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Wei Wei
- Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| | - Shangxue Yan
- Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Laboratory Animal Center, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
3
|
Matsukura K, Kondo M, Metzler NF, Ford AJ, Maak TG, Hutchinson DT, Wang AA, Sato M, Grainger DW, Okano T. Regenerative Variability of Human Juvenile Chondrocyte Sheets From Different Cell Donors in an Athymic Rat Knee Chondral Defect Model. Cartilage 2024:19476035241277946. [PMID: 39319855 PMCID: PMC11556591 DOI: 10.1177/19476035241277946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
PURPOSE This study aimed to establish a combined histological assessment system of neo-cartilage outcomes and to evaluate variations in an established rat defect model treated with human juvenile cartilage-derived chondrocyte (JCC) sheets fabricated from various donors. METHODS JCCs were isolated from the polydactylous digits of eight patients. Passage 2 (P2) JCC sheets from all donors were transplanted into nude rat chondral defects for 4 weeks (27 nude rats in total). Defect-only group served as control. Histological samples were stained for safranin O, collagen 1 (COL1), and collagen 2 (COL2). (1) All samples were scored, and correlation coefficients for each score were calculated. (2) Donors were divided into "more effective" and "less effective" groups based on these scores. Then, differences between each group in each category of modified O'Driscoll scoring were evaluated. RESULTS (1) Modified O'Driscoll scores were negatively correlated with %COL1 area, and positively correlated with %COL2 area and COL2/1 ratio. (2) Four of 8 donors exhibited significantly higher modified O'Driscoll scores and %COL2 areas. JCC donors were divided into two groups by average score values. Significant differences between the two groups were observed in modified O'Driscoll categories of "Nature of predominant tissue," "Reconstruction of subchondral bone," and "Safranin O staining." CONCLUSION The combined histological evaluation method is useful for detailed in vivo efficacy assessments of cartilage defect regeneration models. Variations in histological scores among juvenile cartilage-derived chondrocyte donors were correlated to the quality of regenerated cartilage hyaline structure and subchondral bone remodeling observed in the nude rat defect model.
Collapse
Affiliation(s)
- Keisuke Matsukura
- Cell Sheet Tissue Engineering Center, Department of Molecular Pharmaceutics, Health Sciences, The University of Utah, Utah, USA
- Department of Orthopedic, Asahikawa Medical University, Asahikawa, Japan
| | - Makoto Kondo
- Cell Sheet Tissue Engineering Center, Department of Molecular Pharmaceutics, Health Sciences, The University of Utah, Utah, USA
| | - Nicolas F. Metzler
- Cell Sheet Tissue Engineering Center, Department of Molecular Pharmaceutics, Health Sciences, The University of Utah, Utah, USA
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, USA
| | - Adam J. Ford
- Cell Sheet Tissue Engineering Center, Department of Molecular Pharmaceutics, Health Sciences, The University of Utah, Utah, USA
| | - Travis G. Maak
- Department of Orthopaedics, School of Medicine, The University of Utah, Salt Lake City, UT, USA
| | - Douglas T. Hutchinson
- Department of Orthopaedics, School of Medicine, The University of Utah, Salt Lake City, UT, USA
- Pediatric Orthopaedic Surgery, Intermountain Primary Children’s Hospital, Salt Lake City, UT, USA
| | - Angela A. Wang
- Department of Orthopaedics, School of Medicine, The University of Utah, Salt Lake City, UT, USA
- Pediatric Orthopaedic Surgery, Intermountain Primary Children’s Hospital, Salt Lake City, UT, USA
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - David W. Grainger
- Cell Sheet Tissue Engineering Center, Department of Molecular Pharmaceutics, Health Sciences, The University of Utah, Utah, USA
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center, Department of Molecular Pharmaceutics, Health Sciences, The University of Utah, Utah, USA
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Shinjuku-ku, Japan
| |
Collapse
|
4
|
Cao S, Wei Y, Yue Y, Chen Y, Qian J, Wang D, Xiong A, Liu P, Zeng H. Rosiglitazone retards the progression of iron overload-induced osteoarthritis by impeding chondrocyte ferroptosis. iScience 2024; 27:110526. [PMID: 39224514 PMCID: PMC11366908 DOI: 10.1016/j.isci.2024.110526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/03/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Ferroptosis is implicated in several diseases, including iron overload-induced osteoarthritis (IOOA), which is marked by oxidative stress, iron imbalance, and lipid peroxidation. Given rosiglitazone's (RSG) ability to inhibit lipid peroxidation and ferroptosis, this study aims to assess its therapeutic potential for treating IOOA. Our in vitro results show that RSG targets acyl-CoA synthetase long-chain family member 4 to mitigate impairments induced by interleukin-1 beta and ferric ammonium citrate, including cell apoptosis, senescence, inflammatory responses, extracellular matrix degradation, and ferroptosis. RSG reduced intracellular iron content, alleviated oxidative stress and lipid peroxidation, mitigated damage to membrane-bound organelles, and enhanced glucose transport. Additionally, pre-treatment with RSG imparted anti-ferroptotic properties to chondrocytes. In vivo, RSG alleviated cartilage degradation, inflammatory responses, and ferroptosis in mice with IOOA. In conclusion, RSG exhibits chondroprotective and anti-ferroptotic effects by suppressing lipid peroxidation and restoring iron homeostasis, highlighting its potential for treating IOOA.
Collapse
Affiliation(s)
- Siyang Cao
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
| | - Yihao Wei
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
| | - Yaohang Yue
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
| | - Yingqi Chen
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
| | - Junyu Qian
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
| | - Deli Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
| | - Ao Xiong
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
| | - Peng Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
| |
Collapse
|
5
|
Pande S, Pati F, Chakraborty P. Harnessing Peptide-Based Hydrogels for Enhanced Cartilage Tissue Engineering. ACS APPLIED BIO MATERIALS 2024; 7:5885-5905. [PMID: 39159490 DOI: 10.1021/acsabm.4c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Cartilage tissue engineering remains a formidable challenge due to its complex, avascular structure and limited regenerative capacity. Traditional approaches, such as microfracture, autografts, and stem cell delivery, often fail to restore functional tissue adequately. Recently, there has been a surge in the exploration of new materials that mimic the extracellular microenvironment necessary to guide tissue regeneration. This review investigates the potential of peptide-based hydrogels as an innovative solution for cartilage regeneration. These hydrogels, formed via supramolecular self-assembly, exhibit excellent properties, including biocompatibility, ECM mimicry, and controlled biodegradation, making them highly suitable for cartilage tissue engineering. This review explains the structure of cartilage and the principles of supramolecular and peptide hydrogels. It also delves into their specific properties relevant to cartilage regeneration. Additionally, this review presents recent examples and a comparative analysis of various peptide-based hydrogels used for cartilage regeneration. The review also addresses the translational challenges of these materials, highlighting regulatory hurdles and the complexities of clinical application. This comprehensive investigation provides valuable insights for biomedical researchers, tissue engineers, and clinical professionals aiming to enhance cartilage repair methodologies.
Collapse
Affiliation(s)
- Shreya Pande
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
6
|
Cui M, Sun Y, Zhang X, Yang P, Jiang W. Osteochondral tissue engineering in translational practice: histological assessments and scoring systems. Front Bioeng Biotechnol 2024; 12:1434323. [PMID: 39157444 PMCID: PMC11327087 DOI: 10.3389/fbioe.2024.1434323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Osteochondral lesions are common pathological alterations in synovial joints. Different techniques have been designed to achieve osteochondral repair, and tissue-engineered osteochondral grafts have shown the most promise. Histological assessments and related scoring systems are crucial for evaluating the quality of regenerated tissue, and the interpretation and comparison of various repair techniques require the establishment of a reliable and widely accepted histological method. To date, there is still no consensus on the type of histological assessment and scoring system that should be used for osteochondral repair. In this review, we summarize common osteochondral staining methods, discuss the criteria regarding high-quality histological images, and assess the current histological scoring systems for osteochondral regeneration. Safranin O/Fast green is the most widely used staining method for the cartilage layer, whereas Gomori and Van Gieson staining detect new bone formation. We suggest including the graft-host interface and more sections together with the basic histological information for images. An ideal scoring system should analyze both the cartilage and bone regions, especially for the subchondral bone plate. Furthermore, histological assessments should be performed over a longer period of time to minimize discrepancies caused by defect size and animal species.
Collapse
Affiliation(s)
- Mengying Cui
- The Second Hospital of Jilin University, Jilin, China
| | - Yang Sun
- Orthopedic Medical Center, The Second Hospital of Jilin University, Jilin, China
| | | | - Pengju Yang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Jilin, China
| | - Weibo Jiang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Jilin, China
| |
Collapse
|
7
|
Xu L, Kazezian Z, Pitsillides AA, Bull AMJ. A synoptic literature review of animal models for investigating the biomechanics of knee osteoarthritis. Front Bioeng Biotechnol 2024; 12:1408015. [PMID: 39132255 PMCID: PMC11311206 DOI: 10.3389/fbioe.2024.1408015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Osteoarthritis (OA) is a common chronic disease largely driven by mechanical factors, causing significant health and economic burdens worldwide. Early detection is challenging, making animal models a key tool for studying its onset and mechanically-relevant pathogenesis. This review evaluate current use of preclinical in vivo models and progressive measurement techniques for analysing biomechanical factors in the specific context of the clinical OA phenotypes. It categorizes preclinical in vivo models into naturally occurring, genetically modified, chemically-induced, surgically-induced, and non-invasive types, linking each to clinical phenotypes like chronic pain, inflammation, and mechanical overload. Specifically, we discriminate between mechanical and biological factors, give a new explanation of the mechanical overload OA phenotype and propose that it should be further subcategorized into two subtypes, post-traumatic and chronic overloading OA. This review then summarises the representative models and tools in biomechanical studies of OA. We highlight and identify how to develop a mechanical model without inflammatory sequelae and how to induce OA without significant experimental trauma and so enable the detection of changes indicative of early-stage OA in the absence of such sequelae. We propose that the most popular post-traumatic OA biomechanical models are not representative of all types of mechanical overloading OA and, in particular, identify a deficiency of current rodent models to represent the chronic overloading OA phenotype without requiring intraarticular surgery. We therefore pinpoint well standardized and reproducible chronic overloading models that are being developed to enable the study of early OA changes in non-trauma related, slowly-progressive OA. In particular, non-invasive models (repetitive small compression loading model and exercise model) and an extra-articular surgical model (osteotomy) are attractive ways to present the chronic natural course of primary OA. Use of these models and quantitative mechanical behaviour tools such as gait analysis and non-invasive imaging techniques show great promise in understanding the mechanical aspects of the onset and progression of OA in the context of chronic knee joint overloading. Further development of these models and the advanced characterisation tools will enable better replication of the human chronic overloading OA phenotype and thus facilitate mechanically-driven clinical questions to be answered.
Collapse
Affiliation(s)
- Luyang Xu
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| | - Zepur Kazezian
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Anthony M. J. Bull
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Pamiry A, Gökmen MY, Tekin M. Intra-articular administration of extra-virgin olive oil in degenerative osteoarthritis. J Orthop Surg Res 2024; 19:338. [PMID: 38849876 PMCID: PMC11162008 DOI: 10.1186/s13018-024-04818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND We aimed to analyze the outcomes of intraarticular extra virgin olive oil (EVOO) injection on mechanically induced rabbit knee osteoarthritis (OA) by studying the morphological, histological, and radiological findings. METHODS The study was conducted on 32 New Zealand White rabbits. The randomly numbered subjects were divided into two main groups. The rabbits numbered 1 to 16 were selected to be the group to receive EVOO, and the remaining were selected into a control group. Both groups were separated into two subgroups for short-term (five weeks) and long-term (10 weeks) follow-up. Anterior cruciate ligament transection was applied on the left knees of all the rabbits via medial parapatellar arthrotomy to simulate knee instability. Immediately after the surgical procedure, 0.2 cc of EVOO was injected into the knee joint of rabbits numbered 1-16, and the control group received 0.2 cc of sterile saline. On the 14th day, long-term group subjects were administered another dose of 0.2 cc EVOO intraarticularly. RESULTS The gross morphological scores of the control group subjects were significantly different from the EVOO group for both short-term (p = 0,055) and long-term (p = 0,041) scores. In parallel, the MRI results of the EVOO subjects were significantly different from the control group for both short-term and long-term follow-up assessment scores (p = 0.017, p = 0.014, respectively). The Mankin scoring results showed that there were statistically significant differences between the EVOO and control group in the comparison of both total scores (p = 0.001 for short-term and p = 0.004 for long-term) and subgroup scoring, including macroscopic appearance, chondrocyte cell number, staining, and Tidemark integrity in both short-term (p = 0.005, p = 0.028, p = 0.001, p = 0.005, respectively) and long-term assessments (p = 0.002, p = 0.014, p < 0.001, p = 0. 200, respectively). CONCLUSIONS We have observed promising outcomes of intra-articular application of extra virgin olive oil in the treatment of acute degenerative osteoarthritis in rabbit knees. Due to its potential cartilage restorative and regenerative effects, EVOO, when administered intra-articularly, may be a promising agent to consider for further research in the treatment of OA.
Collapse
Affiliation(s)
- Ahmet Pamiry
- Department of Orthopedics and Traumatology, University of Health Sciences, Adana City Training and Research Hospital, Adana, Türkiye
| | - Mehmet Yiğit Gökmen
- Department of Orthopedics and Traumatology, University of Health Sciences, Adana City Training and Research Hospital, Adana, Türkiye.
| | - Mustafa Tekin
- Department of Orthopedics and Traumatology, Çukurova University Faculty of Medicine, Adana, Türkiye
| |
Collapse
|
9
|
Wu D, Zheng K, Yin W, Hu B, Yu M, Yu Q, Wei X, Deng J, Zhang C. Enhanced osteochondral regeneration with a 3D-Printed biomimetic scaffold featuring a calcified interfacial layer. Bioact Mater 2024; 36:317-329. [PMID: 38496032 PMCID: PMC10940945 DOI: 10.1016/j.bioactmat.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
The integrative regeneration of both articular cartilage and subchondral bone remains an unmet clinical need due to the difficulties of mimicking spatial complexity in native osteochondral tissues for artificial implants. Layer-by-layer fabrication strategies, such as 3D printing, have emerged as a promising technology replicating the stratified zonal architecture and varying microstructures and mechanical properties. However, the dynamic and circulating physiological environments, such as mass transportation or cell migration, usually distort the pre-confined biological properties in the layered implants, leading to undistinguished spatial variations and subsequently inefficient regenerations. This study introduced a biomimetic calcified interfacial layer into the scaffold as a compact barrier between a cartilage layer and a subchondral bone layer to facilitate osteogenic-chondrogenic repair. The calcified interfacial layer consisting of compact polycaprolactone (PCL), nano-hydroxyapatite, and tasquinimod (TA) can physically and biologically separate the cartilage layer (TA-mixed, chondrocytes-load gelatin methacrylate) from the subchondral bond layer (porous PCL). This introduction preserved the as-designed independent biological environment in each layer for both cartilage and bone regeneration, successfully inhibiting vascular invasion into the cartilage layer and preventing hyaluronic cartilage calcification owing to devascularization of TA. The improved integrative regeneration of cartilage and subchondral bone was validated through gross examination, micro-computed tomography (micro-CT), and histological and immunohistochemical analyses based on an in vivo rat model. Moreover, gene and protein expression studies identified a key role of Caveolin (CAV-1) in promoting angiogenesis through the Wnt/β-catenin pathway and indicated that TA in the calcified layer blocked angiogenesis by inhibiting CAV-1.
Collapse
Affiliation(s)
- Di Wu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Wenjing Yin
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Mingzhao Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Qingxiao Yu
- Shanghai Uniorlechnology Corporation, No. 258 Xinzhuan Road, Shanghai, 201612, China
| | - Xiaojuan Wei
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Jue Deng
- Academy for Engineering & Technology, Fudan University, No. 220 Handan Road, Shanghai, 200433, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
10
|
Vreeken JT, Dahmen J, Stornebrink T, Emanuel KS, Walinga AB, Stufkens SAS, Kerkhoffs GMMJ. Second-Look Arthroscopy Shows Inferior Cartilage after Bone Marrow Stimulation Compared with Other Operative Techniques for Osteochondral Lesions of the Talus: A Systematic Review and Meta-Analysis. Cartilage 2024:19476035241227332. [PMID: 38323533 DOI: 10.1177/19476035241227332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
OBJECTIVE To compare cartilage quality after different surgical interventions for osteochondral lesions of the talus (OLT), evaluated by second-look arthroscopy. Secondary aims were to report concomitant diagnoses, and to correlate cartilage quality with clinical and radiological outcomes. This review hypothesizes that the cartilage repair after bone marrow stimulation (BMS) is inferior to the other available treatment options. METHODS PROSPERO ID: CRD42022311489. Studies were retrieved through PubMed, EMBASE (Ovid), and Cochrane Library. Studies were included if they reported cartilage quality after second-look investigation after surgical treatment of OLT. The primary outcome measure was the cartilage quality success and failure rates (%) per surgical intervention group. Correlations between the cartilage quality and clinical or radiological outcomes were calculated. RESULTS Twenty-nine studies were included, comprising 586 ankles that had undergone second-look arthroscopy on average 16 months after initial surgery. The success rate for BMS was 57% (95% confidence interval [CI] = 48%-65%), for fixation (FIX) 86% (95% CI = 70%-94%), for osteo(chondral) transplantation (OCT) 91% (95% CI = 80%-96%), for cartilage implementation techniques (CITs) 80% (95% CI = 69%-88%), and for retrograde drilling 100% (95% CI = 66%-100%). The success rate of BMS was significantly lower than FIX, OCT, and CIT (P < 0.01). There were no significant differences between other treatment groups. A moderate positive significant correlation between the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score and the International Cartilage Repair Society score (ICRS) was found (ρ = 0.51, P < 0.001). CONCLUSIONS Successful restoration of cartilage quality was found in the majority of surgically treated OLTs. However, BMS yields inferior cartilage quality compared with FIX, OCT, and CIT. Study Design. Systematic review and meta-analysis. Level of evidence. Level IV, systematic review and meta-analysis.
Collapse
Affiliation(s)
- Jelmer T Vreeken
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Academic Center for Evidence-based Sports Medicine (ACES), Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health & Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jari Dahmen
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Academic Center for Evidence-based Sports Medicine (ACES), Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health & Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tobias Stornebrink
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Academic Center for Evidence-based Sports Medicine (ACES), Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health & Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kaj S Emanuel
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Academic Center for Evidence-based Sports Medicine (ACES), Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health & Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alex B Walinga
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Academic Center for Evidence-based Sports Medicine (ACES), Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health & Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sjoerd A S Stufkens
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Academic Center for Evidence-based Sports Medicine (ACES), Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health & Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gino M M J Kerkhoffs
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Academic Center for Evidence-based Sports Medicine (ACES), Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health & Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Yoo JC, Kim MS, Sohn S, Woo SH, Choi YR, Kwak AS, Lee DS. Atelocollagen Scaffold Enhances Cartilage Regeneration in Osteochondral Defects: A Study in Rabbits. Tissue Eng Regen Med 2024; 21:329-339. [PMID: 37853285 PMCID: PMC10825099 DOI: 10.1007/s13770-023-00589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND To enhance articular cartilage healing, microfractures (Mfx) and bone marrow aspirate concentrate (BMAC) are commonly used, and some form of scaffold is often used together to increase its efficacy. Herein, we compared the efficacy of atelocollagen scaffold to that of collagen scaffold when used with Mfx or BMAC on osteochondral defect of animal. METHODS This experiment was designed in two stages, and therapeutic effects of Mfx and BMAC were respectively evaluated when used with atelocollagen or collagen scaffold. Femoral condyle defects were artificially created in male New Zealand White rabbits, and in each stage, 12 rabbits were randomly allocated into three treatment groups: test group with additional atelocollagen scaffold, the positive control group with collagen scaffold, and the negative control group. Then, for 12 weeks, macroscopic and histological evaluations were performed. RESULTS At 12 weeks, defects in the test group were fully regenerated with normal cartilage-like tissue, and were well integrated with the surrounding cartilage at both stages experiment, whereas defects in the control groups were not fully filled with regenerated tissue, and the tissue appeared as fibrous tissue. Histologically, the regenerated tissue in the test group showed a statistically significant improvement compared to the positive and negative control groups, achieving a similar structure as normal articular cartilage. CONCLUSION The results showed that implantation of the atelocollagen scaffold enhanced cartilage regeneration following osteochondral defects in rabbits. This suggests that the atelocollagen scaffold can be used with Mfx or BMAC for effective regeneration of osteochondral defects.
Collapse
Affiliation(s)
- Ji-Chul Yoo
- R&D Division, Cellontech Co., Ltd, 04783, Seoul, Republic of Korea.
| | - Man Soo Kim
- Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University, Seoul, Republic of Korea
| | - Sueen Sohn
- Department of Orthopaedic Surgery, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Sang Hun Woo
- R&D Division, Cellontech Co., Ltd, 04783, Seoul, Republic of Korea
| | - Yu Ri Choi
- R&D Division, Cellontech Co., Ltd, 04783, Seoul, Republic of Korea
| | - Andrew S Kwak
- R&D Division, Cellontech Co., Ltd, 04783, Seoul, Republic of Korea
| | - Dong Shin Lee
- R&D Division, Cellontech Co., Ltd, 04783, Seoul, Republic of Korea
| |
Collapse
|
12
|
Chen YC, Huang HP. Ultraviolet-Visible-Near Infrared Spectroscopy May Aid in the Qualitative Assessment of Early-Stage Cartilage Degradation. Arthrosc Sports Med Rehabil 2024; 6:100842. [PMID: 38414840 PMCID: PMC10897593 DOI: 10.1016/j.asmr.2023.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/07/2023] [Indexed: 02/29/2024] Open
Abstract
Purpose To assess the potential of ultraviolet-visible near-infrared spectroscopy to provide quantitative information on the cartilage surface at early osteoarthritis. Methods We used a similar source and optical path to a standard arthroscope and constraining input to the range available to a standard detector/camera, further capturing and analyzing spectral information quantitatively in terms of specific electronic absorbance bands and scattering from the cartilage surface, with a focus on the early stages of degradation. Results The ratio of the 320-nm and longer than 500-nm absorbances produced a distinct change from the normal to diseased states. The slopes between the wavelengths of 600 and 980 nm may show the transition of the single fibril to fibril bundles that occurs during early stages disease. Conclusions Ultraviolet-visible near-infrared spectroscopy has good potential for use in integrated arthroscopic assessment. Clinical Relevance This raises the possibility of advancing arthroscopy from a qualitative to a quantitative tool, without requiring modification of either the radiation (the light source and path) or instrumentation (the arthroscope itself) delivered to the patient, thus allowing a low-cost yet potentially high-value technology.
Collapse
Affiliation(s)
- Ying-chun Chen
- Botnar Research Centre, NDORMS, University of Oxford, Oxford, United Kingdom
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hsing-Po Huang
- Department of Mechanical Engineering, National Taipei University of Technology. Taipei, Taiwan
| |
Collapse
|
13
|
Gris AH, Piva MM, Schwertz CI, Mori AP, Saremba C, Simon DM, Sonne L, Pavarini SP, Driemeier D. Auricular and laryngeal chondritis in nursery and finishing pigs. Vet Pathol 2024; 61:88-94. [PMID: 37470276 DOI: 10.1177/03009858231186101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
This work aimed to characterize the clinic-pathological presentation of an outbreak of auricular and laryngeal chondritis in pigs. Visits were made to pig farms, where the clinical history was obtained, and clinical and postmortem examinations were performed. In those farms, 3% to 4% of pigs presented otohematomas, which started in the nursery and extended to the finishing phase. Moreover, some finishing pigs presented with respiratory distress, initially characterized as inspiratory dyspnea, associated by an uncommon respiratory stridor and culminating in death. Grossly, nursery piglets had enlarged ears, and on the cut surface, the cartilage was fragmented and associated with blood clots. In the finishing phase, in addition to auricular lesions, the epiglottis and arytenoid cartilages were thickened and distorted, which partially occluded the lumen. Microscopically, the laryngeal and auricular cartilages were fragmented, displayed a loss of matrix basophilia, and were surrounded by lymphohistiocytic inflammatory infiltrate, with occasional multinucleated giant cells and fibrosis. The lesions exclusively affected elastic cartilages. The disease in finishing pigs led to increased mortality and was a differential diagnosis to respiratory challenges. It was not possible to determine the factor that triggered this condition; however, a nutritional association is suspected. To the authors' knowledge, this is the first report of primary auricular and laryngeal chondritis in pigs.
Collapse
Affiliation(s)
- Anderson H Gris
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Manoela M Piva
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton I Schwertz
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Inata Produtos Biológicos, Uberlândia, Brazil
| | - Ana P Mori
- Inata Produtos Biológicos, Uberlândia, Brazil
| | | | | | - Luciana Sonne
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - David Driemeier
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
14
|
Chen X, Huang S, Niu Y, Luo M, Liu H, Jiao Y, Huang J. Transplantation of Gelatin Microspheres Loaded with Wharton's Jelly Derived Mesenchymal Stem Cells Facilitates Cartilage Repair in Mice. Tissue Eng Regen Med 2024; 21:171-183. [PMID: 37688747 PMCID: PMC10764672 DOI: 10.1007/s13770-023-00574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a prevalent chronic joint disease caused by various factors. Mesenchymal stem cells (MSCs) therapy is an increasingly promising therapeutic option for osteoarthritis. However, the chronic inflammation of knee joint can severely impede the therapeutic effects of transplanted cells. Gelatin microspheres (GMs) are degradable biomaterial that have various porosities for cell adhesion and cell-cell interaction. Excellent elasticity and deformability of GMs make it an excellent injectable vehicle for cell delivery. METHODS We created Wharton's jelly derived mesenchymal stem cells (WJMSCs)-GMs complexes and assessed the effects of GMs on cell activity, proliferation and chondrogenesis. Then, WJMSCs loaded in GMs were transplanted in the joint of osteoarthritis mice. After four weeks, joint tissue was collected for histological analysis. Overexpressing-luciferase WJMSCs were performed to explore cell retention in mice. RESULTS In vitro experiments demonstrated that WJMSCs loaded with GMs maintained cell viability and proliferative potential. Moreover, GMs enhanced the chondrogenesis differentiation of WJMSCs while alleviated cell hypertrophy. In KOA mice model, transplantation of WJMSCs-GMs complexes promoted cartilage regeneration and cartilage matrix formation, contributing to the treatment of KOA. Compared with other groups, in WJMSCs+GMs group, there were fewer cartilage defects and with a more integrated tibia structure. Tracking results of stable-overexpressing luciferase WJMSCs demonstrated that GMs significantly extended the retention time of WJMSCs in knee joint cavity. CONCLUSION Our results indicated that GMs facilitate WJMSCs mediated knee osteoarthritis healing in mice by promoting cartilage regeneration and prolonging cell retention. It might potentially provide an optimal strategy for the biomaterial-stem cell based therapy for knee osteoarthritis.
Collapse
Affiliation(s)
- Xiaolin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Sunxing Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yongxia Niu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Mingxun Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yiren Jiao
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
15
|
Shi W, Meng Q, Hu X, Cheng J, Shao Z, Yang Y, Ao Y. Using a Xenogeneic Acellular Dermal Matrix Membrane to Enhance the Reparability of Bone Marrow Mesenchymal Stem Cells for Cartilage Injury. Bioengineering (Basel) 2023; 10:916. [PMID: 37627801 PMCID: PMC10451227 DOI: 10.3390/bioengineering10080916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Due to its avascular organization and low mitotic ability, articular cartilage possesses limited intrinsic regenerative capabilities. The aim of this study is to achieve one-step cartilage repair in situ via combining bone marrow stem cells (BMSCs) with a xenogeneic Acellular dermal matrix (ADM) membrane. The ADM membranes were harvested from Sprague-Dawley (SD) rats through standard decellularization procedures. The characterization of the scaffolds was measured, including the morphology and physical properties of the ADM membrane. The in vitro experiments included the cell distribution, chondrogenic matrix quantification, and viability evaluation of the scaffolds. Adult male New Zealand white rabbits were used for the in vivo evaluation. Isolated microfracture was performed in the control (MF group) in the left knee and the tested ADM group was included as an experimental group when an ADM scaffold was implanted through matching with the defect after microfracture in the right knee. At 6, 12, and 24 weeks post-surgery, the rabbits were sacrificed for further research. The ADM could adsorb water and had excellent porosity. The bone marrow stem cells (BMSCs) grew well when seeded on the ADM scaffold, demonstrating a characteristic spindle-shaped morphology. The ADM group exhibited an excellent proliferative capacity as well as the cartilaginous matrix and collagen production of the BMSCs. In the rabbit model, the ADM group showed earlier filling, more hyaline-like neo-tissue formation, and better interfacial integration between the defects and normal cartilage compared with the microfracture (MF) group at 6, 12, and 24 weeks post-surgery. In addition, neither intra-articular inflammation nor a rejection reaction was observed after the implantation of the ADM scaffold. This study provides a promising biomaterial-based strategy for cartilage repair and is worth further investigation in large animal models.
Collapse
Affiliation(s)
- Weili Shi
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingyang Meng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin Cheng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenxing Shao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuping Yang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingfang Ao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
16
|
Molinos M, Fiordalisi MF, Caldeira J, Almeida CR, Barbosa MA, Gonçalves RM. Alterations of bovine nucleus pulposus cells with aging. Aging Cell 2023; 22:e13873. [PMID: 37254638 PMCID: PMC10410011 DOI: 10.1111/acel.13873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 06/01/2023] Open
Abstract
Aging is one of the major etiological factors driving intervertebral disc (IVD) degeneration, the main cause of low back pain. The nucleus pulposus (NP) includes a heterogeneous cell population, which is still poorly characterized. Here, we aimed to uncover main alterations in NP cells with aging. For that, bovine coccygeal discs from young (12 months) and old (10-16 years old) animals were dissected and primary NP cells were isolated. Gene expression and proteomics of fresh NP cells were performed. NP cells were labelled with propidium iodide and analysed by flow cytometry for the expression of CD29, CD44, CD45, CD146, GD2, Tie2, CD34 and Stro-1. Morphological cell features were also dissected by imaging flow cytometry. Elder NP cells (up-regulated bIL-6 and bMMP1 gene expression) presented lower percentages of CD29+, CD44+, CD45+ and Tie2+ cells compared with young NP cells (upregulated bIL-8, bCOL2A1 and bACAN gene expression), while GD2, CD146, Stro-1 and CD34 expression were maintained with age. NP cellulome showed an upregulation of proteins related to endoplasmic reticulum (ER) and melanosome independently of age, whereas proteins upregulated in elder NP cells were also associated with glycosylation and disulfide bonds. Flow cytometry analysis of NP cells disclosed the existence of 4 subpopulations with distinct auto-fluorescence and size with different dynamics along aging. Regarding cell morphology, aging increases NP cell area, diameter and vesicles. These results contribute to a better understanding of NP cells aging and highlighting potential anti-aging targets that can help to mitigate age-related disc disease.
Collapse
Affiliation(s)
- Maria Molinos
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Morena F. Fiordalisi
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Joana Caldeira
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
| | - Catarina R. Almeida
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- iBiMED – Institute of Biomedicine, Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Mário A. Barbosa
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Raquel M. Gonçalves
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| |
Collapse
|
17
|
Khader A, Alquran H. Automated Prediction of Osteoarthritis Level in Human Osteochondral Tissue Using Histopathological Images. Bioengineering (Basel) 2023; 10:764. [PMID: 37508791 PMCID: PMC10376879 DOI: 10.3390/bioengineering10070764] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is the most common arthritis and the leading cause of lower extremity disability in older adults. Understanding OA progression is important in the development of patient-specific therapeutic techniques at the early stage of OA rather than at the end stage. Histopathology scoring systems are usually used to evaluate OA progress and the mechanisms involved in the development of OA. This study aims to classify the histopathological images of cartilage specimens automatically, using artificial intelligence algorithms. Hematoxylin and eosin (HE)- and safranin O and fast green (SafO)-stained images of human cartilage specimens were divided into early, mild, moderate, and severe OA. Five pre-trained convolutional networks (DarkNet-19, MobileNet, ResNet-101, NasNet) were utilized to extract the twenty features from the last fully connected layers for both scenarios of SafO and HE. Principal component analysis (PCA) and ant lion optimization (ALO) were utilized to obtain the best-weighted features. The support vector machine classifier was trained and tested based on the selected descriptors to achieve the highest accuracies of 98.04% and 97.03% in HE and SafO, respectively. Using the ALO algorithm, the F1 scores were 0.97, 0.991, 1, and 1 for the HE images and 1, 0.991, 0.97, and 1 for the SafO images for the early, mild, moderate, and severe classes, respectively. This algorithm may be a useful tool for researchers to evaluate the histopathological images of OA without the need for experts in histopathology scoring systems or the need to train new experts. Incorporating automated deep features could help to improve the characterization and understanding of OA progression and development.
Collapse
Affiliation(s)
- Ateka Khader
- Department of Biomedical Systems and Informatics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid 21163, Jordan
| | - Hiam Alquran
- Department of Biomedical Systems and Informatics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
18
|
Cho GH, Bae HC, Cho WY, Jeong EM, Park HJ, Yang HR, Wang SY, Kim YJ, Shin DM, Chung HM, Kim IG, Han HS. High-glutathione mesenchymal stem cells isolated using the FreSHtracer probe enhance cartilage regeneration in a rabbit chondral defect model. Biomater Res 2023; 27:54. [PMID: 37259149 PMCID: PMC10233867 DOI: 10.1186/s40824-023-00398-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are a promising cell source for cartilage regeneration. However, the function of MSC can vary according to cell culture conditions, donor age, and heterogeneity of the MSC population, resulting in unregulated MSC quality control. To overcome these limitations, we previously developed a fluorescent real-time thiol tracer (FreSHtracer) that monitors cellular levels of glutathione (GSH), which are known to be closely associated with stem cell function. In this study, we investigated whether using FreSHtracer could selectively separate high-functioning MSCs based on GSH levels and evaluated the chondrogenic potential of MSCs with high GSH levels to repair cartilage defects in vivo. METHODS Flow cytometry was conducted on FreSHtracer-loaded MSCs to select cells according to their GSH levels. To determine the function of FreSHtracer-isolated MSCs, mRNA expression, migration, and CFU assays were conducted. The MSCs underwent chondrogenic differentiation, followed by analysis of chondrogenic-related gene expression. For in vivo assessment, MSCs with different cellular GSH levels or cell culture densities were injected in a rabbit chondral defect model, followed by histological analysis of cartilage-regenerated defect sites. RESULTS FreSHtracer successfully isolated MSCs according to GSH levels. MSCs with high cellular GSH levels showed enhanced MSC function, including stem cell marker mRNA expression, migration, CFU, and oxidant resistance. Regardless of the stem cell tissue source, FreSHtracer selectively isolated MSCs with high GSH levels and high functionality. The in vitro chondrogenic potential was the highest in pellets generated by MSCs with high GSH levels, with increased ECM formation and chondrogenic marker expression. Furthermore, the MSCs' function was dependent on cell culture conditions, with relatively higher cell culture densities resulting in higher GSH levels. In vivo, improved cartilage repair was achieved by articular injection of MSCs with high levels of cellular GSH and MSCs cultured under high-density conditions, as confirmed by Collagen type 2 IHC, Safranin-O staining and O'Driscoll scores showing that more hyaline cartilage was formed on the defects. CONCLUSION FreSHtracer selectively isolates highly functional MSCs that have enhanced in vitro chondrogenesis and in vivo hyaline cartilage regeneration, which can ultimately overcome the current limitations of MSC therapy.
Collapse
Affiliation(s)
- Gun Hee Cho
- Department of Orthopedic Surgery, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - Hyun Cheol Bae
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - Won Young Cho
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - Eui Man Jeong
- Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju Special Self-Governing Province, Jeju-do, Republic of Korea
| | - Hee Jung Park
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - Ha Ru Yang
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - Sun Young Wang
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - You Jung Kim
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - Dong Myung Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olymic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - In Gyu Kim
- Laboratory for Cellular Response to Oxidative Stress, Cell2in, Inc, Seoul, 03127, Republic of Korea
| | - Hyuk-Soo Han
- Department of Orthopedic Surgery, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea.
| |
Collapse
|
19
|
Li G, Liu S, Chen Y, Zhao J, Xu H, Weng J, Yu F, Xiong A, Udduttula A, Wang D, Liu P, Chen Y, Zeng H. An injectable liposome-anchored teriparatide incorporated gallic acid-grafted gelatin hydrogel for osteoarthritis treatment. Nat Commun 2023; 14:3159. [PMID: 37258510 DOI: 10.1038/s41467-023-38597-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
Intra-articular injection of therapeutics is an effective strategy for treating osteoarthritis (OA), but it is hindered by rapid drug diffusion, thereby necessitating high-frequency injections. Hence, the development of a biofunctional hydrogel for improved delivery is required. In this study, we introduce a liposome-anchored teriparatide (PTH (1-34)) incorporated into a gallic acid-grafted gelatin injectable hydrogel (GLP hydrogel). We show that the GLP hydrogel can form in situ and without affecting knee motion after intra-articular injection in mice. We demonstrate controlled, sustained release of PTH (1-34) from the GLP hydrogel. We find that the GLP hydrogel promotes ATDC5 cell proliferation and protects the IL-1β-induced ATDC5 cells from further OA progression by regulating the PI3K/AKT signaling pathway. Further, we show that intra-articular injection of hydrogels into an OA-induced mouse model promotes glycosaminoglycans synthesis and protects the cartilage from degradation, supporting the potential of this biomaterial for OA treatment.
Collapse
Affiliation(s)
- Guoqing Li
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Su Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Yixiao Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Jin Zhao
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Huihui Xu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Ao Xiong
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Anjaneyulu Udduttula
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Deli Wang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Peng Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
| | - Yingqi Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen, Guangdong Province, PR China.
| |
Collapse
|
20
|
Karami P, Stampoultzis T, Guo Y, Pioletti DP. A guide to preclinical evaluation of hydrogel-based devices for treatment of cartilage lesions. Acta Biomater 2023; 158:12-31. [PMID: 36638938 DOI: 10.1016/j.actbio.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
The drive to develop cartilage implants for the treatment of major defects in the musculoskeletal system has resulted in a major research thrust towards developing biomaterial devices for cartilage repair. Investigational devices for the restoration of articular cartilage are considered as significant risk materials by regulatory bodies and therefore proof of efficacy and safety prior to clinical testing represents a critical phase of the multidisciplinary effort to bridge the gap between bench and bedside. To date, review articles have thoroughly covered different scientific facets of cartilage engineering paradigm, but surprisingly, little attention has been given to the preclinical considerations revolving around the validation of a biomaterial implant. Considering hydrogel-based cartilage products as an example, the present review endeavors to provide a summary of the critical prerequisites that such devices should meet for cartilage repair, for successful implantation and subsequent preclinical validation prior to clinical trials. Considerations pertaining to the choice of appropriate animal model, characterization techniques for the quantitative and qualitative outcome measures, as well as concerns with respect to GLP practices are also extensively discussed. This article is not meant to provide a systematic review, but rather to introduce a device validation-based roadmap to the academic investigator, in anticipation of future healthcare commercialization. STATEMENT OF SIGNIFICANCE: There are significant challenges around translation of in vitro cartilage repair strategies to approved therapies. New biomaterial-based devices must undergo exhaustive investigations to ensure their safety and efficacy prior to clinical trials. These considerations are required to be applied from early developmental stages. Although there are numerous research works on cartilage devices and their in vivo evaluations, little attention has been given into the preclinical pathway and the corresponding approval processes. With a focus on hydrogel devices to concretely illustrate the preclinical path, this review paper intends to highlight the various considerations regarding the preclinical validation of hydrogel devices for cartilage repair, from regulatory considerations, to implantation strategies, device performance aspects and characterizations.
Collapse
Affiliation(s)
- Peyman Karami
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Theofanis Stampoultzis
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Yanheng Guo
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Dominique P Pioletti
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland.
| |
Collapse
|
21
|
Qiu F, Fan X, Chen W, Xu C, Li Y, Xie R. Recent Progress in Hydrogel-Based Synthetic Cartilage: Focus on Lubrication and Load-Bearing Capacities. Gels 2023; 9:gels9020144. [PMID: 36826314 PMCID: PMC9957070 DOI: 10.3390/gels9020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Articular cartilage (AC), which covers the ends of bones in joints, particularly the knee joints, provides a robust interface to maintain frictionless movement during daily life due to its remarkable lubricating and load-bearing capacities. However, osteoarthritis (OA), characterized by the progressive degradation of AC, compromises the properties of AC and thus leads to frayed and rough interfaces between the bones, which subsequently accelerates the progression of OA. Hydrogels, composed of highly hydrated and interconnected polymer chains, are potential candidates for AC replacement due to their physical and chemical properties being similar to those of AC. In this review, we summarize the recent progress of hydrogel-based synthetic cartilage, or cartilage-like hydrogels, with a particular focus on their lubrication and load-bearing properties. The different formulations, current limitations, and challenges of such hydrogels are also discussed. Moreover, we discuss the future directions of hydrogel-based synthetic cartilage to repair and even regenerate the damaged AC.
Collapse
Affiliation(s)
- Fei Qiu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Ganzhou 341000, China
| | - Xiaopeng Fan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Wen Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Ganzhou 341000, China
| | - Chunming Xu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Ganzhou 341000, China
| | - Yumei Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Ganzhou 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
- Correspondence: (Y.L.); (R.X.)
| | - Renjian Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
- Correspondence: (Y.L.); (R.X.)
| |
Collapse
|
22
|
A composite hydrogel scaffold based on collagen and carboxymethyl chitosan for cartilage regeneration through one-step chemical crosslinking. Int J Biol Macromol 2023; 226:706-715. [PMID: 36526059 DOI: 10.1016/j.ijbiomac.2022.12.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
The number of cases of cartilage damage worldwide is increasing annually and this problem severely limits an individual's physical activities, subsequently contributing to additional medical problems. Hydrogels can repair cartilage defects and promote cartilage regeneration. In this study, a composite hydrogel scaffold was prepared with collagen (COL), carboxymethyl chitosan (CMC), and the Arg-Gly-Asp (RGD) peptide through one-step chemical crosslinking, in which the three compositions ratio was especially investigated. The hydrogel scaffold performed well in cell adhesion and biocompatibility experiments, mainly due to the favorable porosity (the aperture was concentrated at 100 μm and the porosity was >70 %) and RGD concentration (2 mM RGD was the optimal concentration, which could effectively improve the attachment of BMSCs to the stent). Moreover, bone marrow mesenchymal stem cells (BMSCs) filled in the hydrogel scaffold, together with transforming growth factor TGF-β3, which was applied to evaluate the feasibility on the repair of the injured cartilage of the rat. In vitro and in vivo study, according to the results of cell proliferation and cytotoxicity, the hydrogel material had no toxic effect on cells, and the COL2/CMC1 hydrogel scaffold had the most obvious role in promoting cell proliferation. The results of pathological section showed that the cell scaffold complex group provided good mechanical properties for the wound and supplemented the stem cells derived from chondrocytes and showed good cartilage defect repair effect; In the scaffold group, the surface fibrosis of the injured area was mainly filled with fibrocartilage and other collagen fibers The hydrogel/BMSCs complex based on COL and CMC can be beneficial for the regeneration of cartilage.
Collapse
|
23
|
Gao J, Ren P, Gong H. Morphological and mechanical alterations in articular cartilage and subchondral bone during spontaneous hip osteoarthritis in guinea pigs. Front Bioeng Biotechnol 2023; 11:1080241. [PMID: 36756384 PMCID: PMC9900117 DOI: 10.3389/fbioe.2023.1080241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Objectives: This study aimed to investigate the morphological and mechanical changes in articular cartilage and subchondral bone during spontaneous hip osteoarthritis in guinea pigs. Materials and methods: Hip joints of guinea pigs were investigated at 1, 3, 6, and 9 months of age (hereafter denoted as 1 M, 3 M, 6 M, and 9 M, respectively; n = 7 in each group). Morphological and mechanical alterations during spontaneous hip osteoarthritis in guinea pigs were investigated. The alterations included the micromechanical properties of articular cartilage (stiffness and creep deformation), microstructure of the subchondral bone (bone mineral density, bone volume fraction, trabecular thickness, trabecular number, and trabecular separation), micromorphology of the articular cartilage, and surface nanostructure (grain size and roughness) of the articular cartilage and subchondral bone. Results: Micromechanical properties of articular cartilage in 1 M showed the lowest stiffness and highest creep deformation with no significant differences in stiffness or creep deformation amongst 3 M, 6 M, and 9 M. Articular cartilage thickness decreased with age. The earliest degeneration of articular cartilage occurred at 6 months of age, characterised by surface unevenness and evident chondrocytes reduction in micromorphology, as well as increased grain size and decreased roughness in nanostructure. No degeneration at micro- or nanostructure of subchondral bone was observed before 9 months. Conclusion: Morphological degeneration of cartilage occurred before degeneration of mechanical properties. Meanwhile, degeneration of cartilage occurred before degeneration of subchondral bone during hip osteoarthritis. The current study provided novel insights into the structural and micromechanical interaction of hip osteoarthritis, which can serve as a theoretical basis for understanding the formation and progression of osteoarthritis.
Collapse
Affiliation(s)
- Jiazi Gao
- Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun, China
| | - Pengling Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - He Gong
- Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun, China,*Correspondence: He Gong,
| |
Collapse
|
24
|
Ha MY, Yang DH, You SJ, Kim HJ, Chun HJ. In-situ forming injectable GFOGER-conjugated BMSCs-laden hydrogels for osteochondral regeneration. NPJ Regen Med 2023; 8:2. [PMID: 36609447 PMCID: PMC9822921 DOI: 10.1038/s41536-022-00274-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
The collagen-mimetic peptide GFOGER possesses the chondrogenic potential and has been used as a cell adhesion peptide or chondrogenic inducer. Here, we prepared an injectable in situ forming composite hydrogel system comprising methoxy polyethylene glycol-b-polycaprolactone (MPEG-PCL) and GFOGER-conjugated PEG-PCL (GFOGER-PEG-PCL) with various GFOGER concentrations based on our recently patented technology. The conjugation of GFOGER to PEG-PCL was confirmed by 1H NMR, and the particle size distribution and rheological properties for the sol-gel transition behavior of the samples with respect to the GFOGER content were evaluated systemically. In vitro experiments using rat bone marrow-derived mesenchymal stem cells (BMSCs) revealed that the GFOGER-PEG-PCL hydrogel significantly enhanced expression of integrins (β1, α2, and α11), increased expression of FAK, and induced downstream signaling of ERK and p38. Overexpression of chondrogenic markers suggested that BMSCs have the potential to differentiate into chondrogenic lineages within GFOGER-PEG-PCL samples. In vivo studies using a rat osteochondral defect model revealed that transplanted BMSCs with GFOGER0.8-PEG-PCL survived at the defect with strong chondrogenic expression after 4 weeks. The stem cell-laden GFOGER0.8-PEG-PCL hydrogel produced remarkable osteochondral regeneration at 8 weeks of transplantation, as determined by histological findings and micro-CT analysis. The histomorphological score in the GFOGER0.8-PEG-PCL + BMSCs group was ~1.7-, 2.6-, and 5.3-fold higher than that in the GFOGER0.8-PEG-PCL, MPEG-PCL, and defect groups, respectively. Taken together, these results provide an important platform for further advanced GFOGER-based stem cell research for osteochondral repair.
Collapse
Affiliation(s)
- Mi Yeon Ha
- grid.411947.e0000 0004 0470 4224Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591 Republic of Korea ,grid.411947.e0000 0004 0470 4224Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591 Republic of Korea
| | - Dae Hyeok Yang
- grid.411947.e0000 0004 0470 4224Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591 Republic of Korea
| | - Su Jung You
- grid.411947.e0000 0004 0470 4224Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591 Republic of Korea
| | - Hyun Joo Kim
- grid.411947.e0000 0004 0470 4224Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591 Republic of Korea
| | - Heung Jae Chun
- grid.411947.e0000 0004 0470 4224Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591 Republic of Korea ,grid.411947.e0000 0004 0470 4224Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591 Republic of Korea ,grid.411947.e0000 0004 0470 4224Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591 Republic of Korea
| |
Collapse
|
25
|
Alcaide-Ruggiero L, Molina-Hernández V, Morgaz J, Fernández-Sarmiento JA, Granados MM, Navarrete-Calvo R, Pérez J, Quirós-Carmona S, Carrillo JM, Cugat R, Domínguez JM. Particulate cartilage and platelet-rich plasma treatment for knee chondral defects in sheep. Knee Surg Sports Traumatol Arthrosc 2023:10.1007/s00167-022-07295-7. [PMID: 36598512 DOI: 10.1007/s00167-022-07295-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Articular cartilage is vulnerable to multiple types of damage and it has limited reparative and regenerative capacities due to its absence of vascularity. Although a large number of therapeutic strategies exist to treat chondral defects, they have some limitations, such as fibrocartilage formation. Therefore, the goal of the present study was to evaluate the chondrogenic regenerative properties of an autologous-made matrix of particulated cartilage and platelet-rich plasma (PACI + PRP) implantation for the treatment of full-thickness chondral defects in sheep. METHODS A full-thickness 8 mm diameter cartilage defect was created in the weight-bearing area of the medial femoral condyle in both knees of 16 sheep. The right knees of all animals were treated with particulated autograft cartilage implantation and platelet-rich plasma, while the left knees were injected with Ringer's lactate solution or hyaluronic acid. The sheep were killed 9 or 18 months after surgery. Macroscopic evaluations were performed using three different scoring systems, and histopathological evaluations were performed using a modified scoring system based on different scoring systems. RESULTS The PACI + PRP groups showed statistically significant differences in the percentage of defect repair and chondrocytes in the newly formed cartilage tissue at 18 months compared to 9 months. CONCLUSIONS The results suggest that macroscopic appearance, histological structure and chondrocyte repair were improved when using PACI + PRP treatment for chondral defects, producing an outcome similar to the surrounding healthy cartilage. PACI + PRP is a totally autologous, easy, and unexpensive treatment that can be performed in one-step procedure and is useful as a therapeutic option for knee chondral defects.
Collapse
Affiliation(s)
- Lourdes Alcaide-Ruggiero
- Departamento de Medicina y Cirugía Animal. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.,Fundación García Cugat para Investigación Biomédica, Barcelona, Spain
| | - Verónica Molina-Hernández
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain.
| | - Juan Morgaz
- Departamento de Medicina y Cirugía Animal. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | | | - María M Granados
- Departamento de Medicina y Cirugía Animal. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Rocío Navarrete-Calvo
- Departamento de Medicina y Cirugía Animal. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Setefilla Quirós-Carmona
- Departamento de Medicina y Cirugía Animal. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - José M Carrillo
- Fundación García Cugat para Investigación Biomédica, Barcelona, Spain.,Departamento de Medicina y Cirugía Animal, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Ramón Cugat
- Fundación García Cugat para Investigación Biomédica, Barcelona, Spain.,Instituto Cugat y Mutualidad de Futbolistas Españoles, Delegación Catalana, Barcelona, Spain
| | - Juan M Domínguez
- Departamento de Medicina y Cirugía Animal. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.,Fundación García Cugat para Investigación Biomédica, Barcelona, Spain
| |
Collapse
|
26
|
Darwiche SE, Tegelkamp M, Nuss K, von Rechenberg B. Histological Preparation and Evaluation of Cartilage Specimens. Methods Mol Biol 2023; 2598:227-263. [PMID: 36355296 DOI: 10.1007/978-1-0716-2839-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this chapter, an introduction is given into histological techniques to research related to hyaline cartilage and subchondral bone. Emphasis is placed on the importance to investigate cartilage and bone as a unit, which includes the transition zone of the calcified cartilage and tidemark. Reasons for the appropriate selection of histological methods are presented such as when to use (decalcified) specimens for routine paraffin embedding including immunohistology, cryosections of cartilage alone, or non-decalcified specimens for embedding in polymethylmethacrylate with or without additional biomaterials. Appropriate staining methods are also outlined. Apart from detailed laboratory protocols for different embedding and staining methods including open communication about difficulties related to the various techniques, also practical instructions for state-of-the-art evaluation methods and their strengths and weaknesses are given. Sample figures for scoring methods are included.
Collapse
Affiliation(s)
- Salim E Darwiche
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Milena Tegelkamp
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Katja Nuss
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
- Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
27
|
Armstrong JPK, Pchelintseva E, Treumuth S, Campanella C, Meinert C, Klein TJ, Hutmacher DW, Drinkwater BW, Stevens MM. Tissue Engineering Cartilage with Deep Zone Cytoarchitecture by High-Resolution Acoustic Cell Patterning. Adv Healthc Mater 2022; 11:e2200481. [PMID: 35815530 PMCID: PMC7614068 DOI: 10.1002/adhm.202200481] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/10/2022] [Indexed: 01/28/2023]
Abstract
The ultimate objective of tissue engineering is to fabricate artificial living constructs with a structural organization and function that faithfully resembles their native tissue counterparts. For example, the deep zone of articular cartilage possesses a distinctive anisotropic architecture with chondrocytes organized in aligned arrays ≈1-2 cells wide, features that are oriented parallel to surrounding extracellular matrix fibers and orthogonal to the underlying subchondral bone. Although there are major advances in fabricating custom tissue architectures, it remains a significant technical challenge to precisely recreate such fine cellular features in vitro. Here, it is shown that ultrasound standing waves can be used to remotely organize living chondrocytes into high-resolution anisotropic arrays, distributed throughout the full volume of agarose hydrogels. It is demonstrated that this cytoarchitecture is maintained throughout a five-week course of in vitro tissue engineering, producing hyaline cartilage with cellular and extracellular matrix organization analogous to the deep zone of native articular cartilage. It is anticipated that this acoustic cell patterning method will provide unprecedented opportunities to interrogate in vitro the contribution of chondrocyte organization to the development of aligned extracellular matrix fibers, and ultimately, the design of new mechanically anisotropic tissue grafts for articular cartilage regeneration.
Collapse
Affiliation(s)
- James P. K. Armstrong
- Department of Translational Health SciencesUniversity of BristolBristolBS1 3NYUK
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Ekaterina Pchelintseva
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Sirli Treumuth
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Cristiana Campanella
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Christoph Meinert
- Centre for Biomedical TechnologiesQueensland University of TechnologyBrisbaneQueensland4059Australia
- Australian Research Council Training Centre in Additive BiomanufacturingQueensland University of TechnologyBrisbaneQueensland4059Australia
| | - Travis J. Klein
- Centre for Biomedical TechnologiesQueensland University of TechnologyBrisbaneQueensland4059Australia
- Australian Research Council Training Centre in Additive BiomanufacturingQueensland University of TechnologyBrisbaneQueensland4059Australia
| | - Dietmar W. Hutmacher
- Australian Research Council (ARC) Training Centre for Multiscale 3D ImagingModelling and Manufacturing (M3D Innovation)Queensland University of TechnologyBrisbaneQueensland4000Australia
- ARC Training Centre for Cell and Tissue Engineering TechnologiesQueensland University of Technology (QUT)BrisbaneQueensland4000Australia
- Max Planck Queensland Center for the Materials Science of Extracellular MatricesQueensland University of TechnologyBrisbaneQueensland4000Australia
| | | | - Molly M. Stevens
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
28
|
Yang L, Martin JA, Brouillette MJ, Buckwalter JA, Goetz JE. Objective evaluation of chondrocyte density & cloning after joint injury using convolutional neural networks. J Orthop Res 2022; 40:2609-2619. [PMID: 35171527 PMCID: PMC9378771 DOI: 10.1002/jor.25295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/01/2021] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Variations in chondrocyte density and organization in cartilage histology sections are associated with osteoarthritis progression. Rapid, accurate quantification of these two features can facilitate the evaluation of cartilage health and advance the understanding of their significance. The goal of this work was to adapt deep-learning-based methods to detect articular chondrocytes and chondrocyte clones from safranin-O-stained cartilage to evaluate chondrocyte cellularity and organization. The U-net and "you-only-look-once" (YOLO) models were trained and validated for identifying chondrocytes and chondrocyte clones, respectively. Validated models were then used to quantify chondrocyte and clone density in talar cartilage from Yucatan minipigs sacrificed 1 week, 3, 6, and 12 months after fixation of an intra-articular fracture of the hock joint. There was excellent/good agreement between expert researchers and the developed models in identifying chondrocytes/clones (U-net: R2 = 0.93, y = 0.90x-0.69; median F1 score: 0.87/YOLO: R2 = 0.79, y = 0.95x; median F1 score: 0.67). Average chondrocyte density increased 1 week after fracture (from 774 to 856 cells/mm2 ), decreased substantially 3 months after fracture (610 cells/mm2 ), and slowly increased 6 and 12 months after fracture (638 and 683 cells/mm2 , respectively). Average detected clone density 3, 6, and 12 months after fracture (11, 11, 9 clones/mm2 ) was higher than the 4-5 clones/mm2 detected in normal tissue or 1 week after fracture and show local increases in clone density that varied across the joint surface with time. The accurate evaluation of cartilage cellularity and organization provided by this deep learning approach will increase objectivity of cartilage injury and regeneration assessments.
Collapse
Affiliation(s)
- Linjun Yang
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
- Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| | - James A. Martin
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
- Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| | - Marc J. Brouillette
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
| | | | - Jessica E. Goetz
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
- Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
29
|
Ding SL, Liu X, Zhao XY, Wang KT, Xiong W, Gao ZL, Sun CY, Jia MX, Li C, Gu Q, Zhang MZ. Microcarriers in application for cartilage tissue engineering: Recent progress and challenges. Bioact Mater 2022; 17:81-108. [PMID: 35386447 PMCID: PMC8958326 DOI: 10.1016/j.bioactmat.2022.01.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Successful regeneration of cartilage tissue at a clinical scale has been a tremendous challenge in the past decades. Microcarriers (MCs), usually used for cell and drug delivery, have been studied broadly across a wide range of medical fields, especially the cartilage tissue engineering (TE). Notably, microcarrier systems provide an attractive method for regulating cell phenotype and microtissue maturations, they also serve as powerful injectable carriers and are combined with new technologies for cartilage regeneration. In this review, we introduced the typical methods to fabricate various types of microcarriers and discussed the appropriate materials for microcarriers. Furthermore, we highlighted recent progress of applications and general design principle for microcarriers. Finally, we summarized the current challenges and promising prospects of microcarrier-based systems for medical applications. Overall, this review provides comprehensive and systematic guidelines for the rational design and applications of microcarriers in cartilage TE.
Collapse
Affiliation(s)
- Sheng-Long Ding
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xin Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xi-Yuan Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ke-Tao Wang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wei Xiong
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zi-Li Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng-Yi Sun
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Min-Xuan Jia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regeneration, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming-Zhu Zhang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
30
|
Chondrogenic Potential of Human Umbilical Cord Mesenchymal Stem Cells Cultured with Exosome-Depleted Fetal Bovine Serum in an Osteoarthritis Mouse Model. Biomedicines 2022; 10:biomedicines10112773. [PMID: 36359292 PMCID: PMC9687487 DOI: 10.3390/biomedicines10112773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Osteoarthritis (OA) is characterized by the loss of articular cartilage and is also an age-related disease. Recently, stem cell therapy for cartilage repair has emerged. The stem cells need to be cultured with a fetal bovine serum (FBS)-supplemented medium. The effect of FBS-containing exosomes on the differentiation of human umbilical cord mesenchymal stem cells (HUCMSCs) is unknown. The morphology, proliferation, surface marker expressions, and trilineage differentiation ability of two groups of HUCMSCs, cultured with conventional (FBS) and exosome-depleted FBS (Exo(-)FBS), were evaluated. In a mouse OA model after two groups of HUCMSCs transplantation, the rotarod activity, histology, and immunohistochemistry (type II collagen, aggrecan, IL-1β, and MMP13) of the cartilage were evaluated. The Exo(-)FBS-cultured HUCMSCs, like FBS-cultured HUCMSCs, displayed classic MSC characteristics, including spindle-shaped morphology, surface marker expression (positive for CD44, CD73, CD90, CD105, and HLA-ABC and negative for CD34, CD45, and HLA-DR), and trilineage differentiation (chondrogenesis, osteogenesis, and adipogenesis). The Exo(-)FBS-cultured HUCMSCs proliferated significantly slower than those of the FBS-cultured HUCMSCs (p < 0.01). The trilineage gene expression of PPAR-γ, FABP4, APAL, type II collagen, aggrecan, and SOX9 was significantly increased in the Exo(-)FBS-cultured HUCMSCs than in the FBS-cultured HUCMSCs and undifferentiated controls. The Exo(-)FBS- and FBS-cultured HUCMSCs-transplanted mice showed a better rotarod activity than in the control OA mice (n = 3 in each group). A significant histological improvement in hyaline cartilage destruction after the transplantation of both types of FBS-cultured HUCMSCs was noted when compared with the OA knees. The Exo(-)FBS-cultured HUCMSCs-transplanted knees showed a higher International Cartilage Repair Society histological score (p < 0.05), staining intensity of type II collagen (p < 0.01), and aggrecan (p < 0.01) than in the control knees. Moreover, both types of the FBS-cultured HUCMSCs-transplanted knees significantly decreased the expression of MMP13 and IL-1β compared to that in the OA knees (p < 0.01). The Exo(-)FBS-cultured HUCMSCs harbor chondrogenic potential and attenuated cartilage destruction in a mouse OA model. Our study provides a basis for future clinical trials using Exo(-)FBS-cultured stem cells to treat OA.
Collapse
|
31
|
Özkan AÇ, Kozanoğlu E, Bilgili AM, Öngüt C, Agbulut O. An Advantageous Donor Site Alternative for Preparing Crushed Cartilage Graft: The Postero-inferior Part of the Septal Cartilage. Indian J Otolaryngol Head Neck Surg 2022; 74:842-848. [PMID: 36452550 PMCID: PMC9702006 DOI: 10.1007/s12070-020-01897-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/05/2020] [Indexed: 11/26/2022] Open
Abstract
Crushed cartilage is used in rhinoplasties and crushing carry the risk of devitalization. The most infero-posterior part of the septal cartilage has a rough surface compared with the smooth surface of the remaining parts. This cartilage may be more convenient for crushing with lesser pressure requirements, increasing the viability. Twenty-six patients underwent septorhinoplasty and the infero-posterior part of the septal cartilage was harvested. The rough cartilage was utilized in nine patients (excluded from the study). Seventeen patients were included in the study. The mean age of the patients was 28 (19-37y). Two pairs of grafts were utilized for histological study. In fifteen patients crushing experiment was performed. The smooth-surfaced cartilages were the control group, the rough-surfaced cartilages were the study group. For each case, grafts were reduced to the same dimensions and placed over millimetric-paper and photographed. The grafts were crushed simultaneously. The crushed cartilages were also placed on millimetric-paper and photographed. The data were evaluated statistically. The mean surface increment ratio was 2.26 ± 0.28 for the control and 2.94 ± 0.25 for the study group. The difference was statistically significant (p < 0.0048). In two specimen, after applying hematoxylin & eosin stain, the extracellular matrix of the rough cartilage specimen stained darker due to more abundant proteoglycan content. The rough septal cartilage widens more compared with the smooth cartilage under the same crushing pressure. Thus, the rough cartilage requires lesser pressure for widening which may increase the viability. The rough septal cartilage contains more proteoglycan which may explain its softness.
Collapse
Affiliation(s)
- Aret Çerçi Özkan
- Health Sciences Department, European Vocational High School, Istanbul, Turkey
| | - Erol Kozanoğlu
- Department of Plastic and Reconstructive Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmet Mert Bilgili
- ENT Department, Medical Faculty, International Cyprus University, Famagusta, Cyprus
| | - Cüneyt Öngüt
- Pathology Laboratory and Technical Department, Ayvansaray University Plato Vocational High School, Istanbul, Turkey
| | - Onnik Agbulut
- Biological Adaptation and Ageing Department, Institute of Biology, Sorbonne University, Paris, France
| |
Collapse
|
32
|
Liang RP, Zhang XX, Zhao J, Lu QW, Zhu RT, Wang WJ, Li J, Bo K, Zhang CX, Sun YL. RING finger and WD repeat domain 3 regulates proliferation and metastasis through the Wnt/β-catenin signalling pathways in hepatocellular carcinoma. World J Gastroenterol 2022; 28:3435-3454. [PMID: 36158256 PMCID: PMC9346462 DOI: 10.3748/wjg.v28.i27.3435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/16/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) exhibits high invasiveness and mortality rates, and the molecular mechanisms of HCC have gained increasing research interest. The abnormal DNA damage response has long been recognized as one of the important factors for tumor occurrence and development. Recent studies have shown the potential of the protein RING finger and WD repeat domain 3 (RFWD3) that positively regulates p53 stability in response to DNA damage as a therapeutic target in cancers.
AIM To investigate the relationship between HCC and RFWD3 in vitro and in vivo and explored the underlying molecular signalling transduction pathways.
METHODS RFWD3 gene expression was analyzed in HCC tissues and adjacent normal tissues. Lentivirus was used to stably knockdown RFWD3 expression in HCC cell lines. After verifying the silencing efficiency, Celigo/cell cycle/apoptosis and MTT assays were used to evaluate cell proliferation and apoptosis. Subsequently, cell migration and invasion were assessed by wound healing and transwell assays. In addition, transduced cells were implanted subcutaneously and injected into the tail vein of nude mice to observe tumor growth and metastasis. Next, we used lentiviral-mediated rescue of RFWD3 shRNA to verify the phenotype. Finally, the microarray, ingenuity pathway analysis, and western blot analysis were used to analyze the regulatory network underlying HCC.
RESULTS Compared with adjacent tissues, RFWD3 expression levels were significantly higher in clinical HCC tissues and correlated with tumor size and TNM stage (P < 0.05), which indicated a poor prognosis state. RFWD3 silencing in BEL-7404 and HCC-LM3 cells increased apoptosis, decreased growth, and inhibited the migration in shRNAi cells compared with those in shCtrl cells (P < 0.05). Furthermore, the in vitro results were supported by the findings of the in vivo experiments with the reduction of tumor cell invasion and migration. Moreover, the rescue of RFWD3 shRNAi resulted in the resumption of invasion and metastasis in HCC cell lines. Finally, gene expression profiling and subsequent experimental verification revealed that RFWD3 might influence the proliferation and metastasis of HCC via the Wnt/β-catenin signalling pathway.
CONCLUSION We provide evidence for the expression and function of RFWD3 in HCC. RFWD3 affects the prognosis, proliferation, invasion, and metastasis of HCC by regulating the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Ruo-Peng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Xiao-Xue Zhang
- Department of Physical Examination, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jie Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Qin-Wei Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Rong-Tao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Wei-Jie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Kai Bo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Chi-Xian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yu-Ling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
33
|
Rashidi A, Theruvath AJ, Huang CH, Wu W, Mahmoud EE, Jesu Raj JG, Marycz K, Daldrup-Link HE. Vascular injury of immature epiphyses impair stem cell engraftment in cartilage defects. Sci Rep 2022; 12:11696. [PMID: 35810189 PMCID: PMC9271080 DOI: 10.1038/s41598-022-15721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/28/2022] [Indexed: 11/09/2022] Open
Abstract
The purpose of our study was to investigate if vascular injury in immature epiphyses affects cartilage repair outcomes of matrix-associated stem cell implants (MASI). Porcine bone marrow mesenchymal stromal stem cells (BMSCs) suspended in a fibrin glue scaffold were implanted into 24 full-thickness cartilage defects (5 mm ø) of the bilateral distal femur of six Göttingen minipigs (n = 12 defects in 6 knee joints of 3 immature pigs; age 3.5-4 months; n = 12 defects in 6 knee joints of 3 mature control pigs; age, 21-28 months). All pigs underwent magnetic resonance imaging (MRI) at 2, 4, 12 (n = 24 defects), and 24 weeks (n = 12 defects). After the last imaging study, pigs were sacrificed, joints explanted and evaluated with VEGF, H&E, van Gieson, Mallory, and Safranin O stains. Results of mature and immature cartilage groups were compared using the Wilcoxon signed-rank test. Quantitative scores for subchondral edema at 2 weeks were correlated with quantitative scores for cartilage repair (MOCART score and ICRS score) at 12 weeks as well as Pineda scores at end of the study, using linear regression analysis. On serial MRIs, mature joints demonstrated progressive healing of cartilage defects while immature joints demonstrated incomplete healing and damage of the subchondral bone. The MOCART score at 12 weeks was significantly higher for mature joints (79.583 ± 7.216) compared to immature joints (30.416 ± 10.543, p = 0.002). Immature cartilage demonstrated abundant microvessels while mature cartilage did not contain microvessels. Accordingly, cartilage defects in immature joints showed a significantly higher number of disrupted microvessels, subchondral edema, and angiogenesis compared to mature cartilage. Quantitative scores for subchondral edema at 2 weeks were negatively correlated with MOCART scores (r = - 0.861) and ICRS scores (r = - 0.901) at 12 weeks and positively correlated with Pineda scores at the end of the study (r = 0.782). Injury of epiphyseal blood vessels in immature joints leads to subchondral bone defects and limits cartilage repair after MASI.
Collapse
Affiliation(s)
- Ali Rashidi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ashok J Theruvath
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ching-Hsin Huang
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Wei Wu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Elhussein E Mahmoud
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA.,Department of Surgery, Veterinary School, South Valley University, Qena, Egypt
| | - Joe Gerald Jesu Raj
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Krzysztof Marycz
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA.,International Institute of Translational Medicine (MIMT), Malin, Wisznia Mała, Poland
| | - Heike E Daldrup-Link
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA. .,Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA. .,Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
34
|
Panja N, Maji S, Choudhuri S, Ali KA, Hossain CM. 3D Bioprinting of Human Hollow Organs. AAPS PharmSciTech 2022; 23:139. [PMID: 35536418 PMCID: PMC9088731 DOI: 10.1208/s12249-022-02279-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/09/2022] [Indexed: 01/12/2023] Open
Abstract
3D bioprinting is a rapidly evolving technique that has been found to have extensive applications in disease research, tissue engineering, and regenerative medicine. 3D bioprinting might be a solution to global organ shortages and the growing aversion to testing cell patterning for novel tissue fabrication and building superior disease models. It has the unrivaled capability of layer-by-layer deposition using different types of biomaterials, stem cells, and biomolecules with a perfectly regulated spatial distribution. The tissue regeneration of hollow organs has always been a challenge for medical science because of the complexities of their cell structures. In this mini review, we will address the status of the science behind tissue engineering and 3D bioprinting of epithelialized tubular hollow organs. This review will also cover the current challenges and prospects, as well as the application of these complicated 3D-printed organs.
Collapse
|
35
|
Regeneration of Articular Cartilage Using Membranes of Polyester Scaffolds in a Rabbit Model. Pharmaceutics 2022; 14:pharmaceutics14051016. [PMID: 35631602 PMCID: PMC9143412 DOI: 10.3390/pharmaceutics14051016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
One promising method for cartilage regeneration involves combining known methods, such as the microfracture technique with biomaterials, e.g., scaffolds (membranes). The most important feature of such implants is their appropriate rate of biodegradation, without the production of toxic metabolites. This study presents work on two different membranes made of polyester (L-lactide-co-ε-caprolactone-PLCA) named “PVP and “Z”. The difference between them was the use of different pore precursors—polyvinylpyrrolidone in the “PVP” scaffold and gelatin in the “Z” scaffold. These were implemented in the articular cartilage defects of rabbit knee joints (defects were created for the purpose of the study). After 8, 16, and 24 weeks of observation, and the subsequent termination of the animals, histopathology and gel permeation chromatography (GPC) examinations were performed. Statistical analysis proved that the membranes support the regeneration process. GPC testing proved that the biodegradation process is progressing exponentially, causing the membranes to degrade at the appropriate time. The surgical technique we used meets all the requirements without causing the membrane to migrate after implantation. The “PVP” membrane is better due to the fact that after 24 weeks of observation there was a statistical trend for higher histological ratings. It is also better because it is easier to implant due to its lower fragility then membrane “Z”. We conclude that the selected membranes seem to support the regeneration of articular cartilage in the rabbit model.
Collapse
|
36
|
Abd El-Rahman SS, Amer MS, Hassan MH, Fahmy HM, Shamaa AA. Repair of experimentally induced femoral chondral defect in a rabbit model using Lyophilized growth promoting factor extracted from horse blood platelets (L-GF equina). Injury 2022; 53:1375-1384. [PMID: 35144808 DOI: 10.1016/j.injury.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/02/2023]
Abstract
Lyophilized equine platelet derived growth factors (LGF) is a novel advanced platelet rich protein growth factor. It has been successfully applied in various fields of regenerative medicine to treat a variety of inflammatory and degenerative musculoskeletal conditions. Our study aimed to evaluate the efficacy of intraarticularly injected LGF for the remedy of articular cartilage injury, commonly characterized by progressive pain and loss of joint function in osteoarthritic rabbits. Full-thickness cylindrical cartilage defects were generated in both femoral condylar articular surfaces in twenty rabbits. The left joint of all animals was injected with the adjuvant as a self-control negative, while the right joint was injected by LGF. Four- and eight-weeks post-surgery, the femoral condyles were harvested, and assessed grossly, microscopically and immunohistochemically. Cytokines (TNF-α, IL-1β, PDGF and TGF-β1) contents of the chondral defects were quantified by ELISA as well as the gene expression of Col I and Col II via RT-qPCR. The LGF treated defects showed significant higher ICRS (International cartilage repair society) healing scores of cartilaginous regeneration with a significant higher histological healing score on using O'Driscoll histological scoring system. Additionally, LGF significantly lowered the levels of the pro-inflammatory cytokines TNF-α and IL-1β. It also significantly increased the anabolic and angiogenic growth factors (PDGF and TGF-β1), and significantly elevated the expression of chondrogenic-related marker genes; Col I and Col II. The current study reveals that LGF improves chondral healing and thus it can be a superior nominee as an adjunctive therapy to positively influence regeneration of chondral defects in osteoarthritic patients.
Collapse
Affiliation(s)
| | - Mohammed S Amer
- Surgery, Anesthesiology and Radiology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Marwa H Hassan
- Surgery, Anesthesiology and Radiology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Hossam M Fahmy
- Clinical Laboratory and Blood Bank Department, Faculty of Medicine, Ain Shams University, Egypt
| | - Ashraf A Shamaa
- Surgery, Anesthesiology and Radiology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
37
|
Syed Sulaiman SZ, Tan WM, Radzi R, Shafie INF, Ajat M, Mansor R, Mohamed S, Rahmad N, Ng AMH, Lau SF. Synovial fluid proteome profile of surgical versus chemical induced osteoarthritis in rabbits. PeerJ 2022; 10:e12897. [PMID: 35228907 PMCID: PMC8881915 DOI: 10.7717/peerj.12897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/16/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Animal models are significant for understanding human osteoarthritis (OA). This study compared the synovial fluid proteomics changes in surgical and chemical induced OA models. METHODS Thirty rabbits either had anterior cruciate ligament transection (ACLT) procedure or injected intra-articularly with monosodium iodoacetate (MIA, 8 mg) into the right knee. The joints were anatomically assessed, and the synovial fluid proteins analyzed using two-dimensional polyacrylamide gel electrophoresis (2DGE) and MALDI TOF/TOF mass spectrometry analysis at 4, 8 and 12 weeks. The proteins' upregulation and downregulation were compared with control healthy knees. RESULTS Seven proteins (histidine-rich glycoprotein, beta-actin-like protein 2 isoform X1, retinol-binding protein-4, alpha-1-antiproteinase, gelsolin isoform, serotransferrin, immunoglobulin kappa-b4 chain-C-region) were significantly expressed by the surgical induction. They characterized cellular process (27%), organization of cellular components or biogenesis (27%), localization (27%) and biological regulation (18%), which related to synovitis, increased cellularity, and subsequently cartilage damage. Three proteins (apolipoprotein I-IV precursor, serpin peptidase inhibitor and haptoglobin precursor) were significantly modified by the chemical induction. They characterized stimulus responses (23%), immune responses (15%), biological regulations (15%), metabolism (15%), organization of cellular components or biogenesis (8%), cellular process (8%), biological adhesions (8%) and localization (8%), which related to chondrocytes glycolysis/death, neovascularization, subchondral bone necrosis/collapse and inflammation. CONCLUSIONS The surgical induced OA model showed a wider range of protein changes, which were most upregulated at week 12. The biological process proteins expressions showed the chemical induced joints had slower OA progression compared to surgical induced joints. The chemical induced OA joints showed early inflammatory changes, which later decreased.
Collapse
Affiliation(s)
| | - Wei Miao Tan
- Department of Veterinary Clinical Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rozanaliza Radzi
- Department of Veterinary Clinical Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Intan Nur Fatiha Shafie
- Department of Veterinary Clinical Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rozaihan Mansor
- Department of Farm and Exotic Animals Medicine and Surgery, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Suhaila Mohamed
- Laboratory of Cancer Research UPM-MAKNA (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Angela Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Seng Fong Lau
- Department of Veterinary Clinical Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Laboratory of Cancer Research UPM-MAKNA (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
38
|
Yang J, Zhang X, Chen J, Heng BC, Jiang Y, Hu X, Ge Z. Macrophages promote cartilage regeneration in a time- and phenotype-dependent manner. J Cell Physiol 2022; 237:2258-2270. [PMID: 35147979 DOI: 10.1002/jcp.30694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
Immune regulation of osteochondral defect regeneration has not yet been rigorously characterized. Although macrophages have been demonstrated to regulate the regeneration process in various tissues, their direct contribution to cartilage regeneration remains to be investigated, particularly the functions of polarized macrophage subpopulations. In this study, we investigated the origins and functions of macrophages during healing of osteochondral injury in the murine model. Upon osteochondral injury, joint macrophages are predominantly derived from circulating monocytes. Macrophages are essential for spontaneous cartilage regeneration in juvenile C57BL/6 mice, by modulating proliferation and apoptosis around the injury site. Exogeneous macrophages also exhibit therapeutic potential in promoting cartilage regeneration in adult mice with poor regenerative capacity, possibly via regulation of PDGFRα+ stem cells, with this process being influenced by initial phenotype and administration timing. Only M2c macrophages are able to promote regeneration of both cartilage tissues and subchondral bone. Overall, we reveal the direct link between macrophages and osteochondral regeneration and highlight the key roles of relevant immunological niches in successful regeneration.
Collapse
Affiliation(s)
- Jiabei Yang
- Department of Biomedical Engineering, Peking University, Beijing, China
| | - Xuewei Zhang
- Department of Biomedical Engineering, Peking University, Beijing, China
| | - Jiaqing Chen
- Department of Biomedical Engineering, Peking University, Beijing, China
| | | | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Centre for Life Sciences, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Zigang Ge
- Department of Biomedical Engineering, Peking University, Beijing, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
39
|
Puhakka J, Salonius E, Paatela T, Muhonen V, Meller A, Vasara A, Kautiainen H, Kosola J, Kiviranta I. Comparison Between Arthroscopic and Histological International Cartilage Repair Society Scoring Systems in Porcine Cartilage Repair Model. Cartilage 2022; 13:19476035211069246. [PMID: 35098743 PMCID: PMC9137296 DOI: 10.1177/19476035211069246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE The arthroscopic and histological International Cartilage Repair Society (ICRS) scores are designed to evaluate cartilage repair quality. Arthroscopic ICRS score can give a maximum score of 12 and the histological score can give values between 0% and 100% for each of its 14 subscores. This study compares these methods in an animal cartilage repair model. This study hypothesizes that there is a significant correlation between these methods. DESIGN A chondral defect was made in the medial femoral condyle of 18 pigs. Five weeks later, 9 pigs were treated with a novel recombinant human type III collagen/polylactide scaffold and 9 were left untreated to heal spontaneously. After 4 months, the medial condyles were evaluated with a simulated arthroscopy using the ICRS scoring system followed by a histological ICRS scoring. RESULTS This porcine cartilage repair model produced repaired cartilage tissue ranging from good to poor repair tissue quality. The mean arthroscopic ICRS total score was 6.8 (SD = 2.2). Histological ICRS overall assessment subscore was 38.2 (SD = 31.1) and histological ICRS average points were 60.5 (SD = 19.5). Arthroscopic ICRS compared with histological ICRS average points or its overall assessment subscore showed moderate correlation (r = 0.49 and r = 0.50, respectively). The interrater reliability with the intraclass correlation coefficients for arthroscopic ICRS total scores, histological ICRS overall assessment subscore, and ICRS average points showed moderate to excellent reliability. CONCLUSIONS Arthroscopic and histological ICRS scoring methods for repaired articular cartilage show a moderate correlation in the animal cartilage repair model.
Collapse
Affiliation(s)
- Jani Puhakka
- University of Helsinki, Helsinki, Finland,Jani Puhakka, University of Helsinki, Topeliuksenkatu 5, Helsinki 00260, Finland.
| | | | | | | | | | - Anna Vasara
- Helsinki University Hospital, Helsinki, Finland
| | | | - Jussi Kosola
- Kanta-Hämeen keskussairaala, Hameenlinna, Finland
| | | |
Collapse
|
40
|
Yuan W, Velasquez SC, Wu CW, Fulgar CC, Zhang Q, Young DE, Bein KJ, Vogel CFA, Li W, Cui L, Wei H, Pinkerton KE. Pulmonary health effects of wintertime particulate matter from California and China following repeated exposure and cessation. Toxicol Lett 2022; 354:33-43. [PMID: 34757175 PMCID: PMC8671358 DOI: 10.1016/j.toxlet.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022]
Abstract
Epidemiological studies show strong associations between fine particulate matter (PM2.5) air pollution and adverse pulmonary effects. In the present study, wintertime PM2.5 samples were collected from three geographically similar regions-Sacramento, California, USA; Jinan, Shandong, China; and Taiyuan, Shanxi, China-and extracted to form PMCA, PMSD, and PMSX, respectively, for comparison in a BALB/c mouse model. Each of four groups was oropharyngeally administered Milli-Q water vehicle control (50 μL) or one type of PM extract (20 μg/50 μL) five times over two weeks. Mice were necropsied on post-exposure days 1, 2, and 4 and examined using bronchoalveolar lavage (BAL), histopathology, and assessments of cytokine/chemokine mRNA and protein expression. Chemical analysis demonstrated all three extracts contained black carbon, but PMSX contained more sulfates and polycyclic aromatic hydrocarbons (PAHs) associated with significantly greater neutrophil numbers and greater alveolar/bronchiolar inflammation on post-exposure days 1 and 4. On day 4, PMSX-exposed mice also exhibited significant increases in interleukin-1 beta, tumor necrosis factor-alpha, and chemokine C-X-C motif ligands-3 and -5 mRNA, and monocyte chemoattractant protein-1 protein. These combined findings suggest greater sulfate and PAH content contributed to a more intense and progressive inflammatory response with repeated PMSX compared to PMCA or PMSD exposure.
Collapse
Affiliation(s)
- Wanjun Yuan
- University of California, Davis, Center for Health and the Environment, Davis, USA; Shanxi University, College of Environmental and Resource Sciences, Taiyuan, China.
| | - Sandra C Velasquez
- University of California, Davis, Center for Health and the Environment, Davis, USA
| | - Ching-Wen Wu
- University of California, Davis, Center for Health and the Environment, Davis, USA
| | - Ciara C Fulgar
- University of California, Davis, Center for Health and the Environment, Davis, USA
| | - Qi Zhang
- University of California, Davis, Department of Environmental Toxicology, Davis, USA
| | - Dominique E Young
- University of California, Davis, Department of Environmental Toxicology, Davis, USA
| | - Keith J Bein
- University of California, Davis, Center for Health and the Environment, Davis, USA; University of California, Davis, Air Quality Research Center, Davis, USA
| | - Christoph F A Vogel
- University of California, Davis, Center for Health and the Environment, Davis, USA; University of California, Davis, Department of Environmental Toxicology, Davis, USA
| | - Wei Li
- Shandong University, Biomedical Engineering Institute, School of Control Science and Engineering, Jinan, China
| | - Liangliang Cui
- Jinan Municipal Center for Disease Control and Prevention, Jinan, China
| | - Haiying Wei
- Shanxi University, College of Environmental and Resource Sciences, Taiyuan, China.
| | - Kent E Pinkerton
- University of California, Davis, Center for Health and the Environment, Davis, USA.
| |
Collapse
|
41
|
Small Ruminant Models for Articular Cartilage Regeneration by Scaffold-Based Tissue Engineering. Stem Cells Int 2021; 2021:5590479. [PMID: 34912460 PMCID: PMC8668357 DOI: 10.1155/2021/5590479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/10/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
Animal models play an important role in preclinical studies, especially in tissue engineering scaffolds for cartilage repair, which require large animal models to verify the safety and effectiveness for clinical use. The small ruminant models are most widely used in this field than other large animals because they are cost-effective, easy to raise, not to mention the fact that the aforementioned animal presents similar anatomical features to that of humans. This review discusses the experimental study of tissue engineering scaffolds for knee articular cartilage regeneration in small ruminant models. Firstly, the selection of these scaffold materials and the preparation process in vitro that have been already used in vivo are briefly reviewed. Moreover, the major factors influencing the rational design and the implementation as well as advantages and limitations of small ruminants are also demonstrated. As regards methodology, this paper applies principles and methods followed by most researchers in the process of experimental design and operation of this kind. By summarizing and comparing different therapeutic concepts, this paper offers suggestions aiming to increase the effectiveness of preclinical research using small ruminant models and improve the process of developing corresponding therapies.
Collapse
|
42
|
Main and Minor Types of Collagens in the Articular Cartilage: The Role of Collagens in Repair Tissue Evaluation in Chondral Defects. Int J Mol Sci 2021; 22:ijms222413329. [PMID: 34948124 PMCID: PMC8706311 DOI: 10.3390/ijms222413329] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/15/2022] Open
Abstract
Several collagen subtypes have been identified in hyaline articular cartilage. The main and most abundant collagens are type II, IX and XI collagens. The minor and less abundant collagens are type III, IV, V, VI, X, XII, XIV, XVI, XXII, and XXVII collagens. All these collagens have been found to play a key role in healthy cartilage, regardless of whether they are more or less abundant. Additionally, an exhaustive evaluation of collagen fibrils in a repaired cartilage tissue after a chondral lesion is necessary to determine the quality of the repaired tissue and even whether or not this repaired tissue is considered hyaline cartilage. Therefore, this review aims to describe in depth all the collagen types found in the normal articular cartilage structure, and based on this, establish the parameters that allow one to consider a repaired cartilage tissue as a hyaline cartilage.
Collapse
|
43
|
Mantripragada V, Gao W, Piuzzi N, Hoemann C, Muschler G, Midura R. Comparative Assessment of Primary Osteoarthritis Progression Using Conventional Histopathology, Polarized Light Microscopy, and Immunohistochemistry. Cartilage 2021; 13:1494S-1510S. [PMID: 32659115 PMCID: PMC8808935 DOI: 10.1177/1947603520938455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Evaluation of collagen orientation and arrangement in articular cartilage can improve our understanding of primary osteoarthritis (OA) progression and targeted therapies. Our goal was to determine if polarized light microscopy (PLM) for collagen organization is useful in identifying early primary OA features in comparison to current standard histopathological methods. DESIGN Osteochondral specimens from 90 total knee arthroplasty patients with relatively preserved lateral femoral condyle were scored using (1) histological-histochemical grading system (HHGS); (2) Osteoarthritis Research Society International (OARSI); (3) PLM-Changoor system for repair cartilage, scores ranging between 0 (totally disorganized cartilage) and 5 (healthy adult cartilage); and (4) new PLM system for primary OA cartilage with superficial zone PLM (PLM-SZ) and deep zone PLM (PLM-DZ) scores, each ranging between 0 (healthy adult SZ and DZ collagen organization) and 4 (total loss of collagen organization). Serial sections were stained for collagen I and II antibodies. Spearman correlation coefficients (rs) were determined. RESULTS The associations between: (1) PLM-Changoor and HHGS or OARSI were weak (rs = -0.36) or moderate (rs = -0.56); (2) PLM-SZ and HHGS or OARSI were moderate (rs = 0.46 or rs = 0.53); and (3) PLM-DZ and HHGS or OARSI were poor (rs = 0.31 or rs = 0.21), respectively. Specimens exhibiting early and mild OA (HHGS < 5 and OARSI < 8.6) had PLM-SZ and PLM-DZ scores between 0 and 4 and between 0 and 3, respectively, and indicated new histopathological features not currently considered by HHGS/OARSI. CONCLUSIONS PLM was effective at identifying early SZ and DZ collagen alterations that were not evident in the traditional scoring systems. Incorporating PLM scores and/or additional HHGS/OARSI features can help improve characterization of early primary OA cartilage.
Collapse
Affiliation(s)
- V.P. Mantripragada
- Department of Biomedical Engineering,
Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA,V.P. Mantripragada, Department of Biomedical
Engineering, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH
44195, USA.
| | - W. Gao
- Department of Biomedical Engineering,
Cornell University, Ithaca, NY, USA
| | - N.S. Piuzzi
- Department of Biomedical Engineering,
Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA,Department of Orthopedic Surgery,
Cleveland Clinic, Cleveland, OH, USA
| | - C.D. Hoemann
- Department of Bioengineering, George
Mason University, Manassas, VA, USA
| | - G.F. Muschler
- Department of Biomedical Engineering,
Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA,Department of Orthopedic Surgery,
Cleveland Clinic, Cleveland, OH, USA
| | - R.J. Midura
- Department of Biomedical Engineering,
Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
44
|
Specificities of Scanning Electron Microscopy and Histological Methods in Assessing Cell-Engineered Construct Effectiveness for the Recovery of Hyaline Cartilage. Methods Protoc 2021; 4:mps4040077. [PMID: 34842796 PMCID: PMC8628887 DOI: 10.3390/mps4040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/18/2022] Open
Abstract
Damage to the hyaline layer of the articular surface is an urgent problem for millions of people around the world. At present, a large number of experimental methods are being developed to address this problem, including the transplantation of a cell-engineered construct (CEC) composed of a biodegradable scaffold with a premixed cell culture into the damaged area of the articular surface. However, current methods for analyzing the effectiveness of such CECs have significant limitations. This study aimed to compare the SEM technique, classical histology, and cryosectioning for the analysis of CECs transplanted to hyaline cartilage.
Collapse
|
45
|
Tamaddon M, Blunn G, Xu W, Alemán Domínguez ME, Monzón M, Donaldson J, Skinner J, Arnett TR, Wang L, Liu C. Sheep condyle model evaluation of bone marrow cell concentrate combined with a scaffold for repair of large osteochondral defects. Bone Joint Res 2021; 10:677-689. [PMID: 34665001 PMCID: PMC8559972 DOI: 10.1302/2046-3758.1010.bjr-2020-0504.r1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aims Minimally manipulated cells, such as autologous bone marrow concentrates (BMC), have been investigated in orthopaedics as both a primary therapeutic and augmentation to existing restoration procedures. However, the efficacy of BMC in combination with tissue engineering is still unclear. In this study, we aimed to determine whether the addition of BMC to an osteochondral scaffold is safe and can improve the repair of large osteochondral defects when compared to the scaffold alone. Methods The ovine femoral condyle model was used. Bone marrow was aspirated, concentrated, and used intraoperatively with a collagen/hydroxyapatite scaffold to fill the osteochondral defects (n = 6). Tissue regeneration was then assessed versus the scaffold-only group (n = 6). Histological staining of cartilage with alcian blue and safranin-O, changes in chondrogenic gene expression, microCT, peripheral quantitative CT (pQCT), and force-plate gait analyses were performed. Lymph nodes and blood were analyzed for safety. Results The results six months postoperatively showed that there were no significant differences in bone regrowth and mineral density between BMC-treated animals and controls. A significant upregulation of messenger RNA (mRNA) for types I and II collagens in the BMC group was observed, but there were no differences in the formation of hyaline-like cartilage between the groups. A trend towards reduced sulphated glycosaminoglycans (sGAG) breakdown was detected in the BMC group but this was not statistically significant. Functional weightbearing was not affected by the inclusion of BMC. Conclusion Our results indicated that the addition of BMC to scaffold is safe and has some potentially beneficial effects on osteochondral-tissue regeneration, but not on the functional endpoint of orthopaedic interest. Cite this article: Bone Joint Res 2021;10(10):677–689.
Collapse
Affiliation(s)
- Maryam Tamaddon
- Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, London, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Wei Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, China
| | | | - Mario Monzón
- Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - James Donaldson
- Knee and Hip Unit, Royal National Orthopaedic Hospital, London, UK
| | - John Skinner
- Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, London, UK.,Knee and Hip Unit, Royal National Orthopaedic Hospital, London, UK
| | - Timothy R Arnett
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Ling Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, London, UK
| |
Collapse
|
46
|
González Vázquez AG, Blokpoel Ferreras LA, Bennett KE, Casey SM, Brama PAJ, O'Brien FJ. Systematic Comparison of Biomaterials-Based Strategies for Osteochondral and Chondral Repair in Large Animal Models. Adv Healthc Mater 2021; 10:e2100878. [PMID: 34405587 PMCID: PMC11468758 DOI: 10.1002/adhm.202100878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/16/2021] [Indexed: 01/10/2023]
Abstract
Joint repair remains a major challenge in orthopaedics. Recent progress in biomaterial design has led to the fabrication of a plethora of promising devices. Pre-clinical testing of any joint repair strategy typically requires the use of large animal models (e.g., sheep, goat, pig or horse). Despite the key role of such models in clinical translation, there is still a lack of consensus regarding optimal experimental design, making it difficult to draw conclusions on their efficacy. In this context, the authors performed a systematic literature review and a risk of bias assessment on large animal models published between 2010 and 2020, to identify key experimental parameters that significantly affect the biomaterial therapeutic outcome and clinical translation potential (including defect localization, animal age/maturity, selection of controls, cell-free versus cell-laden). They determined that mechanically strong biomaterials perform better at the femoral condyles; while highlighted the importance of including native tissue controls to better evaluate the quality of the newly formed tissue. Finally, in cell-laded biomaterials, the pre-culture conditions played a more important role in defect repair than the cell type. In summary, here they present a systematic evaluation on how the experimental design of preclinical models influences biomaterial-based therapeutic outcomes in joint repair.
Collapse
Affiliation(s)
- Arlyng G. González Vázquez
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
| | - Lia A. Blokpoel Ferreras
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
| | | | - Sarah M. Casey
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
| | - Pieter AJ Brama
- School of Veterinary MedicineUniversity College Dublin (UCD)Dublin4 D04 V1W8Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences InstituteTrinity College Dublin (TCD)Dublin2 D02 PN40Ireland
| |
Collapse
|
47
|
Raoof R, Martin Gil C, Lafeber FPJG, de Visser H, Prado J, Versteeg S, Pascha MN, Heinemans ALP, Adolfs Y, Pasterkamp J, Wood JN, Mastbergen SC, Eijkelkamp N. Dorsal Root Ganglia Macrophages Maintain Osteoarthritis Pain. J Neurosci 2021; 41:8249-8261. [PMID: 34400519 PMCID: PMC8482866 DOI: 10.1523/jneurosci.1787-20.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Pain is the major debilitating symptom of osteoarthritis (OA), which is difficult to treat. In OA patients joint tissue damage only poorly associates with pain, indicating other mechanisms contribute to OA pain. Immune cells regulate the sensory system, but little is known about the involvement of immune cells in OA pain. Here, we report that macrophages accumulate in the dorsal root ganglia (DRG) distant from the site of injury in two rodent models of OA. DRG macrophages acquired an M1-like phenotype, and depletion of DRG macrophages resolved OA pain in male and female mice. Sensory neurons innervating the damaged knee joint shape DRG macrophages into an M1-like phenotype. Persisting OA pain, accumulation of DRG macrophages, and programming of DRG macrophages into an M1-like phenotype were independent of Nav1.8 nociceptors. Inhibition of M1-like macrophages in the DRG by intrathecal injection of an IL4-IL10 fusion protein or M2-like macrophages resolved persistent OA pain. In conclusion, these findings reveal a crucial role for macrophages in maintaining OA pain independent of the joint damage and suggest a new direction to treat OA pain.SIGNIFICANCE STATEMENT In OA patients pain poorly correlates with joint tissue changes indicating mechanisms other than only tissue damage that cause pain in OA. We identified that DRG containing the somata of sensory neurons innervating the damaged knee are infiltrated with macrophages that are shaped into an M1-like phenotype by sensory neurons. We show that these DRG macrophages actively maintain OA pain remotely and independent of joint damage. The phenotype of these macrophages is crucial for a pain-promoting role. Targeting the phenotype of DRG macrophages with either M2-like macrophages or a cytokine fusion protein that skews macrophages into an M2-like phenotype resolves OA pain. Our work reveals a mechanism that contributes to the maintenance of OA pain distant from the affected knee joint and suggests that dorsal root ganglia macrophages are a target to treat osteoarthritis chronic pain.
Collapse
Affiliation(s)
- Ramin Raoof
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Christian Martin Gil
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Floris P J G Lafeber
- Department of Rheumatology and Clinical Immunology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Huub de Visser
- Department of Rheumatology and Clinical Immunology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Judith Prado
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Mirte N Pascha
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Anne L P Heinemans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Jeroen Pasterkamp
- Department of Translational Neuroscience, Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - John N Wood
- Molecular Nociception Group, Department of Biology, University College London, London WC1E 6BT, England
| | - Simon C Mastbergen
- Department of Rheumatology and Clinical Immunology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
48
|
Wu CC, Tarng YW, Hsu DZ, Srinivasan P, Yeh YC, Lai YP, Hsieh DJ. Supercritical carbon dioxide decellularized porcine cartilage graft with PRP attenuated OA progression and regenerated articular cartilage in ACLT-induced OA rats. J Tissue Eng Regen Med 2021; 15:1118-1130. [PMID: 34581513 DOI: 10.1002/term.3252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/09/2021] [Accepted: 09/04/2021] [Indexed: 11/06/2022]
Abstract
Knee osteoarthritis (OA) is a common degenerative articular disorder and considered one of the primary causes of pain and functional disability. Knee OA is prevalent in 10% of men and 13% of women aged 60 years above. The study aims to use cartilage tissue engineering that combines the triads of decellularized porcine cartilage graft as "scaffold," plasma rich platelet (PRP) as "signal" and chondrocytes from rat as "cell" to attenuate ACLT-induced OA progression and regenerate the knee cartilage in rats. Decellularization of the porcine cartilage was characterized by hematoxylin and eosin, 4,6-Diamidino-2-phenylindole staining, scanning electron microscopy and residual DNA quantification. The protective effect of decellularized porcine cartilage graft (dPCG) was evaluated by intra-articular administration in surgically induced anterior cruciate ligament transection (ACLT) rat osteoarthritis (OA) model. Supercritical carbon dioxide technology completely decellularized the porcine cartilage. Intra-articular administration of dPCG with or without PRP significantly reduced the ACLT-induced OA symptoms and attenuated the OA progression. Pain-relief by dPCG with or without PRP was assessed by capacitance meter and improved articular cartilage damage in the rat knee was characterized by X-ray and micro-CT. Besides, the histological analysis depicted cartilage protection by dPCG with or without PRP. The repairation and attenuation effect by dPCG with or without PRP in the articular knee cartilage damage were also explored by safranin-O, type II collagen, aggrecan and SOX-9 immuno-staining. To conclude, intra-articular administration of dPCG with or without PRP is efficient in repairing the damaged cartilage in the experimental OA model.
Collapse
Affiliation(s)
- Chia-Chun Wu
- Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yih-Wen Tarng
- Department of Orthopedic, Kaohsiung Veterans General Hospital, Kaohsiung city, Taiwan, ROC
| | - Dur-Zong Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | | | - Yi-Chun Yeh
- R&D Center, ACRO Biomedical Co., Ltd., Kaohsiung City, Taiwan, ROC
| | - Yi-Ping Lai
- R&D Center, ACRO Biomedical Co., Ltd., Kaohsiung City, Taiwan, ROC
| | - Dar-Jen Hsieh
- R&D Center, ACRO Biomedical Co., Ltd., Kaohsiung City, Taiwan, ROC
| |
Collapse
|
49
|
Haeusner S, Herbst L, Bittorf P, Schwarz T, Henze C, Mauermann M, Ochs J, Schmitt R, Blache U, Wixmerten A, Miot S, Martin I, Pullig O. From Single Batch to Mass Production-Automated Platform Design Concept for a Phase II Clinical Trial Tissue Engineered Cartilage Product. Front Med (Lausanne) 2021; 8:712917. [PMID: 34485343 PMCID: PMC8414576 DOI: 10.3389/fmed.2021.712917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Advanced Therapy Medicinal Products (ATMP) provide promising treatment options particularly for unmet clinical needs, such as progressive and chronic diseases where currently no satisfying treatment exists. Especially from the ATMP subclass of Tissue Engineered Products (TEPs), only a few have yet been translated from an academic setting to clinic and beyond. A reason for low numbers of TEPs in current clinical trials and one main key hurdle for TEPs is the cost and labor-intensive manufacturing process. Manual production steps require experienced personnel, are challenging to standardize and to scale up. Automated manufacturing has the potential to overcome these challenges, toward an increasing cost-effectiveness. One major obstacle for automation is the control and risk prevention of cross contaminations, especially when handling parallel production lines of different patient material. These critical steps necessitate validated effective and efficient cleaning procedures in an automated system. In this perspective, possible technologies, concepts and solutions to existing ATMP manufacturing hurdles are discussed on the example of a late clinical phase II trial TEP. In compliance to Good Manufacturing Practice (GMP) guidelines, we propose a dual arm robot based isolator approach. Our novel concept enables complete process automation for adherent cell culture, and the translation of all manual process steps with standard laboratory equipment. Moreover, we discuss novel solutions for automated cleaning, without the need for human intervention. Consequently, our automation concept offers the unique chance to scale up production while becoming more cost-effective, which will ultimately increase TEP availability to a broader number of patients.
Collapse
Affiliation(s)
- Sebastian Haeusner
- Translational Center Regenerative Therapies TLC-RT, Fraunhofer Institute for Silicate Research, Wuerzburg, Germany.,Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Laura Herbst
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Patrick Bittorf
- Translational Center Regenerative Therapies TLC-RT, Fraunhofer Institute for Silicate Research, Wuerzburg, Germany
| | - Thomas Schwarz
- Translational Center Regenerative Therapies TLC-RT, Fraunhofer Institute for Silicate Research, Wuerzburg, Germany
| | - Chris Henze
- Fraunhofer Institute for Process Engineering and Packaging IVV, Dresden, Germany
| | - Marc Mauermann
- Fraunhofer Institute for Process Engineering and Packaging IVV, Dresden, Germany
| | - Jelena Ochs
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Robert Schmitt
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany.,Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University, Aachen, Germany
| | - Ulrich Blache
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Anke Wixmerten
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sylvie Miot
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Oliver Pullig
- Translational Center Regenerative Therapies TLC-RT, Fraunhofer Institute for Silicate Research, Wuerzburg, Germany.,Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
50
|
Identifying Consensus and Open Questions around Assessing or Predicting the Quality and Success of Cartilage Repair: A Delphi Study. SURGERIES 2021. [DOI: 10.3390/surgeries2030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A range of surgical techniques have been developed for the repair or regeneration of lesioned cartilage in the human knee and a corresponding array of scoring systems have been created to assess their outcomes. The published literature displays a wide range of opinions regarding the factors that influence the success of surgical cartilage repair and which parameters are the most useful for measuring the quality of the repair at follow-up. Our objective was to provide some clarity to the field by collating items that were agreed upon by a panel of experts to be important in these areas. A modified, three-round Delphi consensus study was carried out consisting of one idea-generating focus-group and two subsequent, self-completed questionnaire rounds. In each round, items were assessed for their importance and level of consensus against pre-determined threshold levels. In total, 31 items reached consensus, including a hierarchy of tissues in the joint based on their importance in cartilage repair, markers of repair cartilage quality and the implications of environmental and patient-related factors. Items were stratified into those that can be employed for predicting the success of cartilage repair and those that could be used for assessing the structural quality of the resulting repair cartilage. Items that did not reach consensus represent areas where dissent remains and could, therefore, be used to guide future clinical and fundamental scientific research.
Collapse
|