1
|
Tain YL, Hou CY, Chang-Chien GP, Lin SF, Hsu CN. Chondroitin Sulfate Ameliorates Hypertension in Male Offspring Rat Born to Mothers Fed an Adenine Diet. Antioxidants (Basel) 2024; 13:944. [PMID: 39199190 PMCID: PMC11351932 DOI: 10.3390/antiox13080944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Pregnant women with chronic kidney disease (CKD) face increased risks of adverse outcomes in their adult offspring. Offspring rats born to dams fed an adenine diet develop hypertension, coinciding with dysregulated hydrogen sulfide (H2S) and nitric oxide (NO) pathways, as well as alterations in gut microbiota. Chondroitin sulfate (CS) is a multifunctional food known for its diverse bioactivities. As a sulfate prebiotic, CS has shown therapeutic potential in various diseases. Here, we investigated the protective effects of maternal CS supplementation against hypertension in offspring induced by an adenine diet. Mother rats were administered regular chow, 0.5% adenine, 3% CS, or a combination throughout gestation and lactation. Maternal CS supplementation effectively protected offspring from hypertension induced by the adenine diet. These beneficial effects of CS were connected with increased renal mRNA and protein levels of 3-mercaptopyruvate sulfurtransferase, an enzyme involved in H2S production. Furthermore, maternal CS treatment significantly enhanced alpha diversity and altered beta diversity of gut microbiota in adult offspring. Specifically, perinatal CS treatment promoted the abundance of beneficial microbes such as Roseburia hominis and Ruminococcus gauvreauii. In conclusion, perinatal CS treatment mitigates offspring hypertension associated with maternal adenine diet, suggesting that early administration of sulfate prebiotics may hold preventive potential. These findings warrant further translational research to explore their clinical implications.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Guo-Ping Chang-Chien
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.-F.L.)
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Shu-Fen Lin
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.-F.L.)
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
2
|
Xu L, Li M, Ma F, Zhang H, Liang X, Cheng G, Li Y, Ruiz-Ortega LI, Sun D, Tang B, Qin C. Surface bioactivation of Polyetheretherketone (PEEK) by magnesium chondroitin sulfate (MgCS) as orthopedic implants for reconstruction of skeletal defects. Int J Biol Macromol 2024; 274:133435. [PMID: 38936580 DOI: 10.1016/j.ijbiomac.2024.133435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Polyether-ether-ketone (PEEK) is clinically used as a bio-implant for the healing of skeletal defects. However, the osseointegration of clinical-sized bone grafts remains limited. In this study, surface-porous PEEK was created by using a sulfonation method and a metal-polysaccharide complex MgCS was introduced on the surface of sulfonated PEEK to form MgCS@SPEEK. The as-prepared MgCS@SPEEK was found to have a porous surface with good hydrophilicity and bioactivity. This was followed by an investigation into whether MgCS loaded onto sulfonated PEEK surfaces could promote osseointegration and angiogenesis. The in vitro results showed that MgCS@SPEEK had a positive effect on reducing the expression levels of inflammatory genes and promoting osteogenesis and angiogenesis-related genes expression levels. Furthermore, porous MgCS@SPEEK was implanted in critical-sized rat tibial defects for in vivo evaluation of osseointegration. The micro-computed tomography evaluation results revealed substantial bone formation at 4 and 8 weeks. Collectively, these findings indicate that MgCS@SPEEK could provide improved osseointegration and an attractive strategy for orthopaedic applications.
Collapse
Affiliation(s)
- Lei Xu
- Department of Orthopaedics and Traumatology, The affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Meixin Li
- Department of Orthopaedics and Traumatology, The affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Fenbo Ma
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, PR China
| | - Hongan Zhang
- Department of Orthopaedics and Traumatology, The affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Xiajun Liang
- Department of Orthopaedics and Traumatology, The affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Guoyun Cheng
- Department of Orthopaedics and Traumatology, The affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Ying Li
- Department of Orthopaedics and Traumatology, The affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - L I Ruiz-Ortega
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Ingeniería Biomédica, Universidad Estatal de Sonora (UES), Hermosillo, Sonora, Mexico
| | - Dawei Sun
- Department of Orthopaedics and Traumatology, The affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China.
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, PR China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, PR China; Shenzhen Key Laboratory of Cell Microenvironment, PR China.
| | - Chenghe Qin
- Department of Orthopaedics and Traumatology, The affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China; Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Guangzhou, PR China.
| |
Collapse
|
3
|
Siddiqui B, Ur Rehman A, Gul R, Chaudhery I, Shah KU, Ahmed N. Folate decorated chitosan-chondroitin sulfate nanoparticles loaded hydrogel for targeting macrophages against rheumatoid arthritis. Carbohydr Polym 2024; 327:121683. [PMID: 38171692 DOI: 10.1016/j.carbpol.2023.121683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/14/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Inflammatory cell infiltration, particularly macrophages, plays a major contribution to the pathogenesis of Rheumatoid Arthritis (RA). Exploiting the overexpression of folate receptors (FR-β) on these recruited macrophages has gained significant attraction for ligand-targeted delivery. Leflunomide (LEF), being an immunomodulatory agent is considered the cornerstone of the therapy, however, its oral efficacy is impeded by low solubility and escalating adverse effects profile. Therefore, in the present work, we developed Folate-conjugated chitosan-chondroitin sulfate nanoparticles encapsulating LEF for selective targeting at inflammatory sites in RA. For this purpose, the folate group was first conjugated with the chitosan polymer. After which, Folate Leflunomide Nanoparticles (FA-LEF-NPs) were synthesized through the ionotropic gelation method by employing FA-CHI and CHS. The polymers CHI and CHS were also presented with innate anti-inflammatory and anti-rheumatic attributes that were helpful in provision of synergistic effects to the formulation. These nanoparticles were further fabricated into a hydrogel, employing almond oil (A.O) as a permeation enhancer. The in vivo studies justified the preferential accumulation of FA-conjugated nanoparticles at inflamed joints more than any other organ in comparison to the free LEF and LEF-NPs formulation. The FA-LEF-NPs loaded hydrogel also ascertained a minimal adverse effect profile with an improvement of inflammatory cytokines expression.
Collapse
Affiliation(s)
- Bazla Siddiqui
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Rabia Gul
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Iqra Chaudhery
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Kifayat Ullah Shah
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan.
| |
Collapse
|
4
|
Ago Y, Rintz E, Musini KS, Ma Z, Tomatsu S. Molecular Mechanisms in Pathophysiology of Mucopolysaccharidosis and Prospects for Innovative Therapy. Int J Mol Sci 2024; 25:1113. [PMID: 38256186 PMCID: PMC10816168 DOI: 10.3390/ijms25021113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are a group of inborn errors of the metabolism caused by a deficiency in the lysosomal enzymes required to break down molecules called glycosaminoglycans (GAGs). These GAGs accumulate over time in various tissues and disrupt multiple biological systems, including catabolism of other substances, autophagy, and mitochondrial function. These pathological changes ultimately increase oxidative stress and activate innate immunity and inflammation. We have described the pathophysiology of MPS and activated inflammation in this paper, starting with accumulating the primary storage materials, GAGs. At the initial stage of GAG accumulation, affected tissues/cells are reversibly affected but progress irreversibly to: (1) disruption of substrate degradation with pathogenic changes in lysosomal function, (2) cellular dysfunction, secondary/tertiary accumulation (toxins such as GM2 or GM3 ganglioside, etc.), and inflammatory process, and (3) progressive tissue/organ damage and cell death (e.g., skeletal dysplasia, CNS impairment, etc.). For current and future treatment, several potential treatments for MPS that can penetrate the blood-brain barrier and bone have been proposed and/or are in clinical trials, including targeting peptides and molecular Trojan horses such as monoclonal antibodies attached to enzymes via receptor-mediated transport. Gene therapy trials with AAV, ex vivo LV, and Sleeping Beauty transposon system for MPS are proposed and/or underway as innovative therapeutic options. In addition, possible immunomodulatory reagents that can suppress MPS symptoms have been summarized in this review.
Collapse
Affiliation(s)
- Yasuhiko Ago
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Krishna Sai Musini
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Zhengyu Ma
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1112, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
5
|
Golovach I, Rekalov D, Akimov OY, Kostenko H, Kostenko V, Mishchenko A, Solovyova N, Kostenko V. Molecular mechanisms and potential applications of chondroitin sulphate in managing post-traumatic osteoarthritis. Reumatologia 2023; 61:395-407. [PMID: 37970120 PMCID: PMC10634410 DOI: 10.5114/reum/172211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/06/2023] [Indexed: 11/17/2023] Open
Abstract
Post-traumatic osteoarthritis (PTOA), a disorder of the synovium, subchondral bone, and cartilage that affects the entire joint, constitutes approximately 12% of all cases of symptomatic osteoarthritis. This review summarizes the pathogenetic mechanisms that underlie the positive influence of chondroitin sulphates (CSs) on PTOA as means of preventive and therapeutic treatment. Mechanisms of PTOA development involve chondrocytes undergoing various forms of cell death (apoptosis, pyroptosis, necroptosis, ferroptosis and/or necrosis). Chondroitin sulphates are a class of glycosaminoglycans that improve the structure and function of cartilage and subchondral bone, which is associated with their ability to decrease the activation of NF-κB and p38 MAPK, and up-regulate Nrf2. Standardized small fish extract (SSFE) is an example of the drugs that can attenuate NF-κB-mediated systemic inflammation, potentially helping to reduce joint inflammation and cartilage degradation, improve joint function, and alleviate pain and disability in patients with these conditions.
Collapse
Affiliation(s)
- Iryna Golovach
- Centre for Rheumatology, Osteoporosis and Immunobiological Therapy, Feofania Clinical Hospital of the State Affairs Administration, Kyiv, Ukraine
| | - Dmytro Rekalov
- Department of Internal Diseases No 3, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine
| | - Oleh Ye Akimov
- Department of Pathophysiology, Poltava State Medical University, Ukraine
| | - Heorhii Kostenko
- Department of Pathophysiology, Poltava State Medical University, Ukraine
| | - Viktoriia Kostenko
- Department of Foreign Languages with Latin and Medical Terminology, Poltava State Medical University, Ukraine
| | - Artur Mishchenko
- Department of Pathophysiology, Poltava State Medical University, Ukraine
| | - Natalia Solovyova
- Department of Pathophysiology, Poltava State Medical University, Ukraine
| | - Vitalii Kostenko
- Department of Pathophysiology, Poltava State Medical University, Ukraine
| |
Collapse
|
6
|
Vassallo V, Di Meo C, Toro G, Alfano A, Iolascon G, Schiraldi C. Hyaluronic Acid-Based Injective Medical Devices: In Vitro Characterization of Novel Formulations Containing Biofermentative Unsulfated Chondroitin or Extractive Sulfated One with Cyclodextrins. Pharmaceuticals (Basel) 2023; 16:1429. [PMID: 37895900 PMCID: PMC10610477 DOI: 10.3390/ph16101429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Currently, chondroitin sulfate (CS) and hyaluronic acid (HA) pharma-grade forms are used for osteoarthritis (OA) management, CS as an oral formulations component, and HA as intra-articular injective medical devices. Recently, unsulfated chondroitin, obtained through biofermentative (BC) manufacturing, has been proposed for thermally stabilized injective preparation with HA. This study aimed to highlight the specific properties of two commercial injective medical devices, one based on HA/BC complexes and the other containing HA, extractive CS, and cyclodextrins, in order to provide valuable information for joint disease treatments. Their biophysical and biomechanical features were assayed; in addition, biological tests were performed on human pathological chondrocytes. Rheological measurements displayed similar behavior, with a slightly higher G' for HA/BC, which also proved superior stability to the hyaluronidase attack. Both samples reduced the expression of specific OA-related biomarkers such as NF-kB, interleukin 6 (IL-6), and metalloprotease-13 (MMP-13). Moreover, HA/BC better ensured chondrocyte phenotype maintenance by up-regulating collagen type 2A1 (COLII) and aggrecan (AGN). Notwithstanding, the similarity of biomolecule components, the manufacturing process, raw materials characteristics, and specific concentration resulted in affecting the biomechanical and, more interestingly, the biochemical properties, suggesting potential better performances of HA/BC in joint disease treatment.
Collapse
Affiliation(s)
- Valentina Vassallo
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.V.); (C.D.M.); (A.A.)
| | - Celeste Di Meo
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.V.); (C.D.M.); (A.A.)
| | - Giuseppe Toro
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (G.I.)
| | - Alberto Alfano
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.V.); (C.D.M.); (A.A.)
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (G.I.)
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.V.); (C.D.M.); (A.A.)
| |
Collapse
|
7
|
Song X, Huang Q, Yang Y, Ma L, Liu W, Ou C, Chen Q, Zhao T, Xiao Z, Wang M, Jiang Y, Yang Y, Zhang J, Nan Y, Wu W, Ai K. Efficient Therapy of Inflammatory Bowel Disease (IBD) with Highly Specific and Durable Targeted Ta 2 C Modified with Chondroitin Sulfate (TACS). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301585. [PMID: 37224059 DOI: 10.1002/adma.202301585] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/06/2023] [Indexed: 05/26/2023]
Abstract
Non-invasive localization of lesions and specific targeted therapy are still the main challenges for inflammatory bowel disease (IBD). Ta, as a medical metal element, has been widely used in the treatment of different diseases because of its excellent physicochemical properties but is still far from being explored in IBD. Here, Ta2 C modified with chondroitin sulfate (CS) (TACS) is evaluated as a highly targeted therapy nanomedicine for IBD. Specifically, TACS is modified with dual targeting CS functions due to IBD lesion-specific positive charges and high expression of CD44 receptors. Thanks to the acid stability, sensitive CT imaging function, and strong reactive oxygen species (ROS) elimination ability, oral TACS can accurately locate and delineate IBD lesions through non-invasive CT imaging, and specifically targeted treat IBD effectively because high levels of ROS are a central factor in the progression of IBD. As expected, TACS has much better imaging and therapeutic effects than clinical CT contrast agent and first-line drug 5-aminosalicylic acid, respectively. The mechanism of TACS treatment mainly involves protection of mitochondria, elimination of oxidative stress, inhibiting macrophage M1 polarization, protection of intestinal barrier, and restoration of intestinal flora balance. Collectively, this work provides unprecedented opportunities for oral nanomedicines to targeted therapy of IBD.
Collapse
Affiliation(s)
- Xiangping Song
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Huang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Yuqi Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wenguang Liu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Mingyuan Wang
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Yunrong Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Jinping Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Wei Wu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment., Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
8
|
Hsiao CW, Cheng H, Ghafouri R, Ferko NC, Ayres BD. Corneal Outcomes Following Cataract Surgery Using Ophthalmic Viscosurgical Devices Composed of Chondroitin Sulfate-Hyaluronic Acid: A Systematic Review and Meta-Analysis. Clin Ophthalmol 2023; 17:2083-2096. [PMID: 37521151 PMCID: PMC10378560 DOI: 10.2147/opth.s419863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Background Ophthalmic viscosurgical devices (OVDs) are commonly used during cataract surgery to protect the corneal endothelium. A systematic literature review and meta-analysis were conducted to assess the clinical evidence of OVDs composed of chondroitin sulfate-hyaluronic acid (CS-HA) versus other OVDs in maintaining endothelial cell density (ECD) and corneal thickness (CT). Methods MEDLINE and EMBASE databases were searched from 2000 to 2020. Randomized controlled trials (RCTs, N ≥ 20 per group) comparing an OVD containing CS-HA (ie, VISCOAT®, DuoVisc® or DisCoVisc®) to any other OVD were included. The identified comparators were limited to the OVDs found in the literature, which included those composed of HA-only or hydroxypropyl methylcellulose (HPMC). Outcomes of focus included changes in ECD (baseline to 3 months) and CT (baseline to 24 hours). Meta-analyses were performed using R software, to assess mean differences (MD) in ECD and CT change between CS-HA OVDs and HA-only or HPMC OVDs. Results A total of 966 abstracts were screened, and data were extracted from 12 RCTs. Meta-analyses using a random-effects model revealed significantly lower percent (%) decrease in ECD for CS-HA OVDs compared to both HA-only (MD: -4.10%; 95% CI: -5.81 to -2.40; p < 0.0001; 9 studies) and HPMC (MD: -6.47%; 95% CI: -10.41 to -2.52; p = 0.001; 2 studies) products. Similarly, % CT increase was significantly lower with CS-HA than with HA-only OVDs (MD: -3.22%; 95% CI: -6.24% to -0.20%; p = 0.04; 4 studies). However, there were no significant differences when comparing % CT change between CS-HA and HPMC OVDs (MD: 2.65%; 95% CI: -0.43% to 0.95%; p = 0.4; 2 studies). Conclusion CS-HA OVDs lead to less postoperative loss of endothelial cells and may better protect corneal endothelium during cataract surgery, relative to other OVDs. Future randomized studies may be needed to solidify these findings.
Collapse
|
9
|
Menezes R, Vincent R, Osorno L, Hu P, Arinzeh TL. Biomaterials and tissue engineering approaches using glycosaminoglycans for tissue repair: Lessons learned from the native extracellular matrix. Acta Biomater 2023; 163:210-227. [PMID: 36182056 PMCID: PMC10043054 DOI: 10.1016/j.actbio.2022.09.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 01/30/2023]
Abstract
Glycosaminoglycans (GAGs) are an important component of the extracellular matrix as they influence cell behavior and have been sought for tissue regeneration, biomaterials, and drug delivery applications. GAGs are known to interact with growth factors and other bioactive molecules and impact tissue mechanics. This review provides an overview of native GAGs, their structure, and properties, specifically their interaction with proteins, their effect on cell behavior, and their mechanical role in the ECM. GAGs' function in the extracellular environment is still being understood however, promising studies have led to the development of medical devices and therapies. Native GAGs, including hyaluronic acid, chondroitin sulfate, and heparin, have been widely explored in tissue engineering and biomaterial approaches for tissue repair or replacement. This review focuses on orthopaedic and wound healing applications. The use of GAGs in these applications have had significant advances leading to clinical use. Promising studies using GAG mimetics and future directions are also discussed. STATEMENT OF SIGNIFICANCE: Glycosaminoglycans (GAGs) are an important component of the native extracellular matrix and have shown promise in medical devices and therapies. This review emphasizes the structure and properties of native GAGs, their role in the ECM providing biochemical and mechanical cues that influence cell behavior, and their use in tissue regeneration and biomaterial approaches for orthopaedic and wound healing applications.
Collapse
Affiliation(s)
- Roseline Menezes
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Richard Vincent
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Laura Osorno
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Phillip Hu
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Treena Livingston Arinzeh
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States; Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
10
|
Chiu A, Sharma D, Zhao F. Tissue Engineering-Based Strategies for Diabetic Foot Ulcer Management. Adv Wound Care (New Rochelle) 2023; 12:145-167. [PMID: 34939837 PMCID: PMC9810358 DOI: 10.1089/wound.2021.0081] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023] Open
Abstract
Significance: Diabetic foot ulcers (DFU) are a mounting problem with the increasingly frail population. Injuries that would otherwise heal are kept open by risk factors such as diabetes, obesity, and age-related conditions, which interferes with the natural wound healing processes. Recent Advances: This review summarizes recent advancements in the field of tissue engineering for the treatment of DFUs. FDA-approved approaches, including signaling-based therapies, stem cell therapies, and skin substitutes are summarized and cutting-edge experimental technologies that have the potential to manage chronic wounds, such as skin printing, skin organogenesis, skin self-assembly, and prevascularization, are discussed. Critical Issues: The standard of care for chronic wounds involves wound debridement, wound dressings, and resolving the underlying cause such as lowering the glycemic index and reducing wound pressure. Current DFU treatments are limited by low wound closure rates and poor regrown skin quality. New adjuvant therapies that facilitate wound closure in place of or in conjunction with standard care are critically needed. Future Directions: Tissue engineering strategies are limited by the plasticity of adult human cells. In addition to traditional techniques, genetic modification, although currently an emerging technology, has the potential to unlock human regeneration and can be incorporated in future therapeutics.
Collapse
Affiliation(s)
- Alvis Chiu
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Dhavan Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
11
|
Moghadam NA, Bagheri F, Eslaminejad MB. Chondroitin sulfate modified chitosan nanoparticles as an efficient and targeted gene delivery vehicle to chondrocytes. Colloids Surf B Biointerfaces 2022; 219:112786. [PMID: 36049252 DOI: 10.1016/j.colsurfb.2022.112786] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022]
Abstract
Conventional treatments for osteoarthritis (OA), including drug delivery and tissue engineering approaches, could not offer a high yield of cartilage repair due to the compact and exclusive structure of cartilage. Targeted and high-efficiency delivery of gene sequences is necessary to rebalance the lost homeostatic properties of the cartilage in OA. Herein, we synthesized chitosan (CH)-chondroitin sulfate (CS) nanoparticles (NPs) as a platform for delivering gene sequences. These new nanoparticles benefit from two natural polymers that minimize the toxicity, and the presence of CS can be in favor of targeted delivery. The CAG-GFP plasmid was used as a gene sequence model, and the nanoparticles could successfully encapsulate approximately all of them in their structure. Loaded nanoparticles were characterized in terms of morphology, size, zeta potential, the efficiency of encapsulation and, DNA release pattern. Cell viability and uptake of new nanoparticles were compared to the chitosan nanoparticles and Lipofectamine. After substituting TPP with CS, NPs exhibited a significant decrease in size. In addition, there was little difference in zeta potential between nanoparticles. Furthermore, a tremendous increase in plasmid uptake and cell viability was observed by CH-CS NPs compared to CH-TPP NPs and Lipofectamine. In the final stage, the knockdown level of MMP13 was evaluated with real-time RT-PCR for confirming the potential uptake of CH-CS NPs. The results revealed cellular uptake of siRNA loaded NPs and effective knockdown of MMP13 in chondrocytes. In conclusion, CH-CS nanoparticles can be considered as a candidate for gene therapy purposes in cartilage diseases.
Collapse
Affiliation(s)
- Naghmeh Akbari Moghadam
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
12
|
Lee FS, Ney KE, Richardson AN, Oberley-Deegan RE, Wachs RA. Encapsulation of Manganese Porphyrin in Chondroitin Sulfate-A Microparticles for Long Term Reactive Oxygen Species Scavenging. Cell Mol Bioeng 2022; 15:391-407. [PMID: 36444349 PMCID: PMC9700555 DOI: 10.1007/s12195-022-00744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Oxidative stress due to excess reactive oxygen species (ROS) is related to many chronic illnesses including degenerative disc disease and osteoarthritis. MnTnBuOE-2-PyP5+ (BuOE), a manganese porphyrin analog, is a synthetic superoxide dismutase mimetic that scavenges ROS and has established good treatment efficacy at preventing radiation-induced oxidative damage in healthy cells. BuOE has not been studied in degenerative disc disease applications and only few studies have loaded BuOE into drug delivery systems. The goal of this work is to engineer BuOE microparticles (MPs) as an injectable therapeutic for long-term ROS scavenging. Methods Methacrylated chondroitin sulfate-A MPs (vehicle) and BuOE MPs were synthesized via water-in-oil polymerization and the size, surface morphology, encapsulation efficiency and release profile were characterized. To assess long term ROS scavenging of BuOE MPs, superoxide scavenging activity was evaluated over an 84-day time course. In vitro cytocompatibility and cellular uptake were assessed on human intervertebral disc cells. Results BuOE MPs were successfully encapsulated in MACS-A MPs and exhibited a slow-release profile over 84 days. BuOE maintained high potency in superoxide scavenging after encapsulation and after 84 days of incubation at 37 °C as compared to naked BuOE. Vehicle and BuOE MPs (100 µg/mL) were non-cytotoxic on nucleus pulposus cells and MPs up to 23 µm were endocytosed. Conclusions BuOE MPs can be successfully fabricated and maintain potent superoxide scavenging capabilities up to 84-days. In vitro assessment reveals the vehicle and BuOE MPs are not cytotoxic and can be taken up by cells. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00744-w.
Collapse
Affiliation(s)
- Fei San Lee
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 4240 Fair St, Lincoln, NE 68583-0900 USA
| | - Kayla E. Ney
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 4240 Fair St, Lincoln, NE 68583-0900 USA
| | - Alexandria N. Richardson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 4240 Fair St, Lincoln, NE 68583-0900 USA
| | - Rebecca E. Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Rebecca A. Wachs
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 4240 Fair St, Lincoln, NE 68583-0900 USA
| |
Collapse
|
13
|
Nowowiejska J, Baran A, Flisiak I. Psoriasis and neurodegenerative diseases—a review. Front Mol Neurosci 2022; 15:917751. [PMID: 36226313 PMCID: PMC9549431 DOI: 10.3389/fnmol.2022.917751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Psoriasis is a chronic skin disease with underlying genetic, inflammatory and immunological background, which is a great medical problem, currently regarded as a systemic condition. Neurodegenerative diseases (NDs) are characterized by a progressive loss of nervous tissue, which affects elderly people more frequently; therefore, it is suspected that, due to society's aging, morbidity is going to increase. We performed a thorough review in order to investigate for the first time whether psoriasis may predispose to different particular neurodegenerative diseases—Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). PubMed search resulted in the retrieval of 833 records, of which 77 eligible were included in the review. Our thorough analysis revealed there are some potential links between psoriasis and NDs (inflammation, oxidative stress, genetics, cardiometabolic disorders), but there is no strong evidence that psoriasis may predispose to NDs. Based on the evidence, it seems that the risk of PD in psoriatics is not increased, and the evidence for increased risk of AD slightly prevails the data that state the opposite. ALS risk does not seem to be increased in psoriatics. The paucity of original studies does not allow for the formulation of definitive conclusions but encourages to perform further investigations.
Collapse
|
14
|
Luan J, Peng X, Lin J, Zhang Y, Tian X, Zhan L, Zhao G. The therapeutic potential of chondroitin sulfate in Aspergillus fumigatus keratitis. Mol Immunol 2022; 147:50-61. [DOI: 10.1016/j.molimm.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/29/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
|
15
|
Yamada J, Maeda S, Soya M, Nishida H, Iinuma KM, Jinno S. Alleviation of cognitive deficits via upregulation of chondroitin sulfate biosynthesis by lignan sesamin in a mouse model of neuroinflammation. J Nutr Biochem 2022; 108:109093. [PMID: 35724814 DOI: 10.1016/j.jnutbio.2022.109093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/09/2022] [Accepted: 05/20/2022] [Indexed: 12/29/2022]
Abstract
Lignans are plant-derived compounds that act as partial estrogen agonists. Chondroitin sulfate proteoglycans (CSPGs) represent one of the major components of the extracellular matrix (ECM). Here we aimed to understand the role of sesamin (SES), a major lignan compound, in the biosynthesis and degradation of CSPGs in the mouse hippocampus because CSPGs play a key role in the regulation of cognitive functions through the promotion of adult neurogenesis. The expression of the pro-inflammatory cytokine interleukin-1β was decreased by SES administration in the hippocampus of lipopolysaccharide (LPS)-treated mice, a model of neuroinflammation-induced cognitive deficits. The expression of genes related to biosynthesis and degradation of CSPGs in the hippocampus of LPS-treated mice was both increased and decreased by SES administration. Further, the diffuse ECM labeling of CSPGs by Wisteria floribunda agglutinin (WFA) in the hippocampus of LPS-treated mice was increased by SES administration. The densities of neural stem cells, late transit-amplifying cells, and newborn-granule cells in the hippocampus of LPS-treated mice were also increased by SES administration. Moreover, SES-induced alterations in gene expression, WFA labeling, and adult neurogenesis in LPS-treated mice were more evident in the dorsal hippocampus (center of cognition) than in the ventral hippocampus (center of emotion). Neither LPS nor SES administration affected locomotor activity, anxiety-like behavior, and depression-related behavior. However, impairments in contextual memory and sensorimotor gating in LPS-treated mice were recovered by SES administration. Our results show that SES can promote adult hippocampal neurogenesis through the upregulation of CSPGs, which may alleviate cognitive deficits induced by neuroinflammation.
Collapse
Affiliation(s)
- Jun Yamada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoichiro Maeda
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mariko Soya
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hidefumi Nishida
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoko M Iinuma
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
16
|
Wang HN, Rong X, Yang LM, Hua WZ, Ni GX. Advances in Stem Cell Therapies for Rotator Cuff Injuries. Front Bioeng Biotechnol 2022; 10:866195. [PMID: 35694228 PMCID: PMC9174670 DOI: 10.3389/fbioe.2022.866195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Rotator cuff injury is a common upper extremity musculoskeletal disease that may lead to persistent pain and functional impairment. Despite the clinical outcomes of the surgical procedures being satisfactory, the repair of the rotator cuff remains problematic, such as through failure of healing, adhesion formation, and fatty infiltration. Stem cells have high proliferation, strong paracrine action, and multiple differentiation potential, which promote tendon remodeling and fibrocartilage formation and increase biomechanical strength. Additionally, stem cell-derived extracellular vesicles (EVs) can increase collagen synthesis and inhibit inflammation and adhesion formation by carrying regulatory proteins and microRNAs. Therefore, stem cell-based therapy is a promising therapeutic strategy that has great potential for rotator cuff healing. In this review, we summarize the advances of stem cells and stem cell-derived EVs in rotator cuff repair and highlight the underlying mechanism of stem cells and stem cell-derived EVs and biomaterial delivery systems. Future studies need to explore stem cell therapy in combination with cellular factors, gene therapy, and novel biomaterial delivery systems.
Collapse
Affiliation(s)
- Hao-Nan Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xiao Rong
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Lu-Ming Yang
- Musculoskeletal Sonography and Occupational Performance Lab, Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Wei-Zhong Hua
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Guo-Xin Ni
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
- *Correspondence: Guo-Xin Ni,
| |
Collapse
|
17
|
Du B, Zheng M, Ma H, Huang J, Jiao Q, Bai Y, Zhao M, Zhou J. Nanozyme-natural enzymes cascade catalyze cholesterol consumption and reverse cancer multidrug resistance. J Nanobiotechnology 2022; 20:209. [PMID: 35501796 PMCID: PMC9063293 DOI: 10.1186/s12951-022-01406-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
Multidrug resistance is still a major obstacle to cancer treatment. The most studies are to inhibit the activity of the drug transporter P-glycoprotein (P-gp), but the effect is not ideal. Herein, a nanosystem was built based on cascade catalytic consumption of cholesterol. Cholesterol oxidase (natural enzyme, COD) was immobilized on the carrier (NH2-MIL-88B, MOF) through amide reaction, COD catalyzed the consumption of cholesterol, the reaction product H2O2 was further produced by the MOF with its peroxidase-like activity to produce hydroxyl radicals (•OH) with killing effect. Due to the high expression of CD44 receptor on the surface of tumor cells, we encapsulated chondroitin sulfate gel shell (CS-shell) with CD44 targeting and apoptosis promoting effect on the surface of DOX@MOF-COD nanoparticles, which can accurately and efficiently deliver the drugs to the tumor site and improve the effect of reversing drug resistance. Taking drug-resistant cell membrane as "breakthrough", this paper will provide a new idea for reversing multidrug resistance of tumor.
Collapse
Affiliation(s)
- Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, 100 Science Road, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Mei Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China
| | - Huizhen Ma
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China
| | - Jingshu Huang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China
| | - Qingqing Jiao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China
| | - Yimeng Bai
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China
| | - Mengmeng Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China
| | - Jie Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China. .,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, 100 Science Road, Zhengzhou, 450001, Henan Province, People's Republic of China.
| |
Collapse
|
18
|
Long-term anti-inflammatory effects of injectable celecoxib nanoparticle hydrogels for Achilles tendon regeneration. Acta Biomater 2022; 144:183-194. [PMID: 35331938 DOI: 10.1016/j.actbio.2022.03.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
Abstract
The treatment of chronic Achilles tendonitis (AT) often requires prolonged therapy and invasive therapeutic methods such as surgery or therapeutic endoscopy. To prevent the progression of chronic AT, excessive inflammation must be alleviated at an early stage. Corticosteroids or nonsteroidal anti-inflammatory drugs are generally prescribed to control inflammation; however, the high doses and long therapeutic periods required may lead to serious side effects. Herein, a local injectable poly(organophosphazene) (PPZ) - celecoxib (CXB) nanoparticle (PCNP) hydrogel system with long-term anti-inflammatory effects was developed for the treatment of tendonitis. The amphiphilic structure and thermosensitive mechanical properties of PPZ means that the hydrophobic CXB can be easily incorporated into the hydrophobic core to form PCNP at 4 °C. Following the injection of PCNP into the AT, PCNP hydrogel formed at body temperature and induced long-term local anti-inflammatory effects via sustained release of the PCNP. The therapeutic effects of the injectable PCNP system can alleviate excessive inflammation during the early stages of tissue damage and boost tissue regeneration. This study suggests that PCNP has significant potential as a long-term anti-inflammatory agent through sustained nonsteroidal anti-inflammatory drugs (NSAIDs) delivery and tissue regeneration boosting. STATEMENT OF SIGNIFICANCE: In the treatment of Achilles tendinitis, a long-term anti-inflammatory effect is needed to alleviate excessive inflammation and induce regeneration of the damaged Achilles tendon. Injectable poly(organophosphazene)(PPZ)-celecoxib(CXB) nanoparticles (PCNP) generated a long-term, localized-anti-inflammatory effect in the injected region, which successfully induced the expression of anti-inflammatory cytokines and suppressed pro-inflammatory cytokines, while the PCNPs degraded completely. Accordingly, regeneration of the damaged Achilles tendon was achieved through the long-term anti-inflammatory effect induced by a single PCNP injection. The PCNP system therefore has great potential in long-term NSAIDs delivery for various tissue engineering applications.
Collapse
|
19
|
Couto MR, Rodrigues JL, Rodrigues LR. Heterologous production of chondroitin. BIOTECHNOLOGY REPORTS 2022; 33:e00710. [PMID: 35242620 PMCID: PMC8858990 DOI: 10.1016/j.btre.2022.e00710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 01/01/2023]
Abstract
Chondroitin sulfate (CS) is a glycosaminoglycan with a growing variety of applications. CS can be produced from microbial fermentation of native or engineered strains. Synthetic biology tools are being used to improve CS yields in different hosts. Integrated polymerization and sulfation can generate cost-effective CS.
Chondroitin sulfate (CS) is a glycosaminoglycan with a broad range of applications being a popular dietary supplement for osteoarthritis. Usually, CS is extracted from animal sources. However, the known risks of animal products use have been driving the search for alternative methods and sources to obtain this compound. Several pathogenic bacteria naturally produce chondroitin-like polysaccharides through well-known pathways and, therefore, have been the basis for numerous studies that aim to produce chondroitin using non-pathogenic hosts. However, the yields obtained are not enough to meet the high demand for this glycosaminoglycan. Metabolic engineering strategies have been used to construct improved heterologous hosts. The identification of metabolic bottlenecks and regulation points, and the screening for efficient enzymes are key points for constructing microbial cell factories with improved chondroitin yields to achieve industrial CS production. The recent advances on enzymatic and microbial strategies to produce non-animal chondroitin are herein reviewed. Challenges and prospects for future research are also discussed.
Collapse
Affiliation(s)
- Márcia R. Couto
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
| | - Joana L. Rodrigues
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
- Corresponding author.
| | - Lígia R. Rodrigues
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
20
|
Chondroitin sulfate zinc with antibacterial properties and anti-inflammatory effects for skin wound healing. Carbohydr Polym 2022; 278:118996. [PMID: 34973799 DOI: 10.1016/j.carbpol.2021.118996] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022]
Abstract
A chondroitin sulfate zinc (CSZn) complex was prepared by an ion-exchange method. The purified product was characterized by energy-dispersive X-ray spectroscopy, high-performance chromatography, elemental analysis, Fourier transform infrared spectroscopy, inductively coupled mass spectrometry, and nuclear magnetic resonance spectroscopy. The CSZn demonstrated antibacterial activity against Escherichia coli and Staphylococcus aureus and satisfied MTT cell viability (NIH3T3 fibroblasts) at ≤50 μg/mL. RT-PCR demonstrated significant promotion by CSZn of fibroblast growth factor beta (β-FGF), collagen III (COLIIIα1), vascular endothelial growth factor (VEGF) and reduction of cytokines IL-6, IL-1β & TNF-alpha. An in vivo rat full-thickness wound healing model demonstrated significant wound healing of CSZn relative to controls of saline treatment, zinc chloride treatment and chondroitin treatment. CSZn has demonstrated promising antibacterial and wound healing properties making it deserving of consideration for more advanced wound healing applications.
Collapse
|
21
|
Guedes PLR, Carvalho CPF, Carbonel AAF, Simões MJ, Icimoto MY, Aguiar JAK, Kouyoumdjian M, Gazarini ML, Nagaoka MR. Chondroitin Sulfate Protects the Liver in an Experimental Model of Extra-Hepatic Cholestasis Induced by Common Bile Duct Ligation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030654. [PMID: 35163920 PMCID: PMC8839946 DOI: 10.3390/molecules27030654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
During liver fibrogenesis, there is an imbalance between regeneration and wound healing. The current treatment is the withdrawal of the causing agent; thus, investigation of new and effective treatments is important. Studies have highlighted the action of chondroitin sulfate (CS) in different cells; thus, our aim was to analyze its effect on an experimental model of bile duct ligation (BDL). Adult Wistar rats were subjected to BDL and treated with CS for 7, 14, 21, or 28 days intraperitoneally. We performed histomorphometric analyses on Picrosirius-stained liver sections. Cell death was analyzed according to caspase-3 and cathepsin B activity and using a TUNEL assay. Regeneration was evaluated using PCNA immunohistochemistry. BDL led to increased collagen content with corresponding decreased liver parenchyma. CS treatment reduced total collagen and increased parenchyma content after 21 and 28 days. The treatment also promoted changes in the hepatic collagen type III/I ratio. Furthermore, it was observed that CS treatment reduced caspase-3 activity and the percentage of TUNEL-positive cells after 14 days and cathepsin B activity only after 28 days. The regeneration increased after 14, 21, and 28 days of CS treatment. In conclusion, our study showed a promising hepatoprotective action of CS in fibrogenesis induced by BDL.
Collapse
Affiliation(s)
- Pedro L. R. Guedes
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
| | - Carolina P. F. Carvalho
- Department of Biosciences, Instituto Saúde Sociedade, Universidade Federal de São Paulo, Santos 11015-020, Brazil; (C.P.F.C.); (M.L.G.)
| | - Adriana A. F. Carbonel
- Department of Gynecology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-001, Brazil;
| | - Manuel J. Simões
- Department of Morphology and Genetic, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil;
| | - Marcelo Y. Icimoto
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil;
| | - Jair A. K. Aguiar
- Department of Biochemistry, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Brazil;
| | - Maria Kouyoumdjian
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
| | - Marcos L. Gazarini
- Department of Biosciences, Instituto Saúde Sociedade, Universidade Federal de São Paulo, Santos 11015-020, Brazil; (C.P.F.C.); (M.L.G.)
| | - Marcia R. Nagaoka
- Department of Biosciences, Instituto Saúde Sociedade, Universidade Federal de São Paulo, Santos 11015-020, Brazil; (C.P.F.C.); (M.L.G.)
- Correspondence:
| |
Collapse
|
22
|
Qu J, Cheng Y, Wu W, Yuan L, Liu X. Glycocalyx Impairment in Vascular Disease: Focus on Inflammation. Front Cell Dev Biol 2021; 9:730621. [PMID: 34589494 PMCID: PMC8473795 DOI: 10.3389/fcell.2021.730621] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 02/05/2023] Open
Abstract
The glycocalyx is a complex polysaccharide-protein layer lining the lumen of vascular endothelial cells. Changes in the structure and function of the glycocalyx promote an inflammatory response in blood vessels and play an important role in the pathogenesis of many vascular diseases (e.g., diabetes, atherosclerosis, and sepsis). Vascular endothelial dysfunction is a hallmark of inflammation-related diseases. Endothelial dysfunction can lead to tissue swelling, chronic inflammation, and thrombosis. Therefore, elimination of endothelial inflammation could be a potential target for the treatment of vascular diseases. This review summarizes the key role of the glycocalyx in the inflammatory process and the possible mechanism by which it alleviates this process by interrupting the cycle of endothelial dysfunction and inflammation. Especially, we highlight the roles of different components of the glycocalyx in modulating the inflammatory process, including components that regulate leukocyte rolling, L-selectin binding, inflammasome activation and the signaling interactions between the glycocalyx components and the vascular cells. We discuss how the glycocalyx interferes with the development of inflammation and the importance of preventing glycocalyx impairment. Finally, drawing on current understanding of the role of the glycocalyx in inflammation, we consider a potential strategy for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Jing Qu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Cheng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lixing Yuan
- Public Laboratory of West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Ewald CY. Drug Screening Implicates Chondroitin Sulfate as a Potential Longevity Pill. FRONTIERS IN AGING 2021; 2:741843. [PMID: 35821992 PMCID: PMC9261418 DOI: 10.3389/fragi.2021.741843] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022]
Abstract
Discovering compounds that promote health during aging ("geroprotectors") is key to the retardation of age-related pathologies and the prevention of chronic age-related diseases. In in-silico and model organisms' lifespan screens, chondroitin sulfate has emerged as a geroprotective compound. Chondroitin sulfate is a glycosaminoglycan attached to extracellular matrix proteins and is naturally produced by our body. Oral supplementation of chondroitin sulfate shows a high tolerance in humans, preferable pharmacokinetics, a positive correlation with healthy human longevity, and efficacy in deceleration of age-related diseases in randomized clinical trials. We have recently shown that chondroitin sulfate supplementation increases the lifespan of C. elegans. Thus, chondroitin sulfate holds the potential to become a geroprotective strategy to promote health during human aging. This review discusses the two major potential mechanisms of action, extracellular matrix homeostasis and inhibition of inflammation, that counteract age-related pathologies upon chondroitin sulfate supplementation.
Collapse
|
24
|
Hou J, Yang R, Vuong I, Li F, Kong J, Mao HQ. Biomaterials strategies to balance inflammation and tenogenesis for tendon repair. Acta Biomater 2021; 130:1-16. [PMID: 34082095 DOI: 10.1016/j.actbio.2021.05.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022]
Abstract
Adult tendon tissue demonstrates a limited regenerative capacity, and the natural repair process leaves fibrotic scar tissue with inferior mechanical properties. Surgical treatment is insufficient to provide the mechanical, structural, and biochemical environment necessary to restore functional tissue. While numerous strategies including biodegradable scaffolds, bioactive factor delivery, and cell-based therapies have been investigated, most studies have focused exclusively on either suppressing inflammation or promoting tenogenesis, which includes tenocyte proliferation, ECM production, and tissue formation. New biomaterials-based approaches represent an opportunity to more effectively balance the two processes and improve regenerative outcomes from tendon injuries. Biomaterials applications that have been explored for tendon regeneration include formation of biodegradable scaffolds presenting topographical, mechanical, and/or immunomodulatory cues conducive to tendon repair; delivery of immunomodulatory or tenogenic biomolecules; and delivery of therapeutic cells such as tenocytes and stem cells. In this review, we provide the biological context for the challenges in tendon repair, discuss biomaterials approaches to modulate the immune and regenerative environment during the healing process, and consider the future development of comprehensive biomaterials-based strategies that can better restore the function of injured tendon. STATEMENT OF SIGNIFICANCE: Current strategies for tendon repair focus on suppressing inflammation or enhancing tenogenesis. Evidence indicates that regulated inflammation is beneficial to tendon healing and that excessive tissue remodeling can cause fibrosis. Thus, it is necessary to adopt an approach that balances the benefits of regulated inflammation and tenogenesis. By reviewing potential treatments involving biodegradable scaffolds, biological cues, and therapeutic cells, we contrast how each strategy promotes or suppresses specific repair steps to improve the healing outcome, and highlight the advantages of a comprehensive approach that facilitates the clearance of necrotic tissue and recruitment of cells during the inflammatory stage, followed by ECM synthesis and organization in the proliferative and remodeling stages with the goal of restoring function to the tendon.
Collapse
|
25
|
Dewey MJ, Harley BAC. Biomaterial design strategies to address obstacles in craniomaxillofacial bone repair. RSC Adv 2021; 11:17809-17827. [PMID: 34540206 PMCID: PMC8443006 DOI: 10.1039/d1ra02557k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Biomaterial design to repair craniomaxillofacial defects has largely focused on promoting bone regeneration, while there are many additional factors that influence this process. The bone microenvironment is complex, with various mechanical property differences between cortical and cancellous bone, a unique porous architecture, and multiple cell types that must maintain homeostasis. This complex environment includes a vascular architecture to deliver cells and nutrients, osteoblasts which form new bone, osteoclasts which resorb excess bone, and upon injury, inflammatory cells and bacteria which can lead to failure to repair. To create biomaterials able to regenerate these large missing portions of bone on par with autograft materials, design of these materials must include methods to overcome multiple obstacles to effective, efficient bone regeneration. These obstacles include infection and biofilm formation on the biomaterial surface, fibrous tissue formation resulting from ill-fitting implants or persistent inflammation, non-bone tissue formation such as cartilage from improper biomaterial signals to cells, and voids in bone infill or lengthy implant degradation times. Novel biomaterial designs may provide approaches to effectively induce osteogenesis and new bone formation, include design motifs that facilitate surgical handling, intraoperative modification and promote conformal fitting within complex defect geometries, induce a pro-healing immune response, and prevent bacterial infection. In this review, we discuss the bone injury microenvironment and methods of biomaterial design to overcome these obstacles, which if unaddressed, may result in failure of the implant to regenerate host bone.
Collapse
Affiliation(s)
- Marley J. Dewey
- Dept of Materials Science and Engineering, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
| | - Brendan A. C. Harley
- Dept of Materials Science and Engineering, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Dept of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory600 S. Mathews AveUrbanaIL 61801USA+1-217-333-5052+1-217-244-7112
| |
Collapse
|
26
|
KOROTKYI OH, DVORSHCHENKO KO, KOT LI, TYMOSHENKO MO, SAVCHUK OM, ABENAVOLI L, OSTAPCHENKO LI. The combination of chondroitin sulfate and probiotic prevents oxidative stress in the serum of rats with experimental osteoarthritis. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2021. [DOI: 10.23736/s2724-542x.21.02774-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Mishra S, Ganguli M. Functions of, and replenishment strategies for, chondroitin sulfate in the human body. Drug Discov Today 2021; 26:1185-1199. [PMID: 33549530 DOI: 10.1016/j.drudis.2021.01.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/26/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Chondroitin sulfate (CS) belongs to a class of molecules called glycosaminoglycans (GAGs). These are long, linear chains of polysaccharides comprising alternating amino sugars and hexuronic acid. Similar to other GAGs, CS is important in a multitude of biological activities. Alteration of CS levels has been implicated in several pathological conditions, including osteoarthritis (OA) and other inflammatory diseases, as well as physiological conditions, such as aging. Therefore, devising replenishment strategies for this molecule is an important area of research. In this review, we discuss the nature of CS, its function in different organs, and its implications in health and disease. We also describe different methods for the exogenous administration of CS.
Collapse
Affiliation(s)
- Sarita Mishra
- CSIR - Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Munia Ganguli
- CSIR - Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
28
|
Mishra S, Reshma G B, Pal S, Bano S, Gupta A, Kumari A, Ganguli M. Topical Application of Peptide-Chondroitin Sulfate Nanoparticles Allows Efficient Photoprotection in Skin. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2382-2398. [PMID: 33406837 DOI: 10.1021/acsami.0c22011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this article, we describe a method of delivery of chondroitin sulfate to skin as nanoparticles and demonstrate its anti-inflammatory and antioxidant role using UV irradiation as a model condition. These nanoparticles, formed through electrostatic interactions of chondroitin sulfate with a skin-penetrating peptide, were found to be homogenous with positive surface charges and stable at physiological and acidic pH under certain conditions. They were able to enter into the human keratinocyte cell line (HaCaT), artificial skin membrane (mimicking the human skin), and mouse skin tissue unlike free chondroitin sulfate. The preapplication of nanoparticles also exhibited reduced levels of oxidative stress, cyclobutane pyrimidine dimer formation, TNF-α, and so on in UV-B-irradiated HaCaT cells. In an acute UV-B irradiation mouse model, their topical application resulted in reduced epidermal thickness and sunburn cells, unlike in the case of free chondroitin sulfate. Thus, a completely noninvasive method was used to deliver a bio-macromolecule into the skin without using injections or abrasive procedures.
Collapse
Affiliation(s)
- Sarita Mishra
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Betsy Reshma G
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Simanti Pal
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subia Bano
- Elvesys Microfluidics Innovation Centre, Paris 75011, France
| | - Aanchal Gupta
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anupama Kumari
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
29
|
Shavlovskaya OA, Zolotovskaya IA, Prokofyeva YS. [Antiresorptive activity of pharmacological chondroitin sulfate in the older age group]. TERAPEVT ARKH 2020; 92:75-79. [PMID: 33720577 DOI: 10.26442/00403660.2020.12.200448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/07/2021] [Indexed: 01/01/2023]
Abstract
The prevalence of osteoarthritis (OA) increases in proportion to age, so in the population of people over 65 years of age. The pathogenesis of OA is based on inflammation of the cartilage tissue of the joint, which leads to damage to the cartilage, activation of signaling pathways and increased levels of cytokines. AIM To study the literature data on bone and cartilage remodeling with the development of resorptive processes and discuss possible algorithms and recommendations for the management of patients with OA on the background of chondroprotective therapy. MATERIALS AND METHODS A comprehensive analysis of data presented in open sources, published and available on such resources as PubMed, EMBASE, Cochrane, and Library. RESULTS According to the available recommendations and the opinion of experts, among the methods of OA therapy, drugs containing pharmaceutical chondroitin sulfate are currently being discussed, which in a number of studies has demonstrated high antiresorptive effectiveness. CONCLUSION The use of drugs based on pharmaceutical chondroitin sulfate (Chondroguard) contributes not only to the reduction of pain in OA, but also has a positive effect on the processes of inflammation, including those associated with age-related changes in the body.
Collapse
Affiliation(s)
| | | | - Y S Prokofyeva
- Yevdokimov Moscow State University of Medicine and Dentistry
- Spasokukotsky City Clinical Hospital
| |
Collapse
|
30
|
Chen S, Chen W, Chen Y, Mo X, Fan C. Chondroitin sulfate modified 3D porous electrospun nanofiber scaffolds promote cartilage regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111312. [PMID: 33254957 DOI: 10.1016/j.msec.2020.111312] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 01/29/2023]
Abstract
3D electrospun nanofibrous scaffolds have been developed for cartilage regeneration, however, there is no consensus on the preferable method for biocompatible scaffolds that enhance regeneration and attenuate inflammation. We designed a 3D porous electrospun polylactic acid (PLA) @gelatin-based scaffold by a novel method. Chondroitin sulfate (CS), commonly used in clinical cartilage treatment, is capable of regulating cartilage formation and inhibiting inflammation. Thus we further functionalized the 3D scaffold by crosslinking of CS, assuming that CS-functionalized scaffold (CSS) would promote cartilage regeneration and modulate inflammation. We confirmed that CSS exhibits not only appropriate reversible compressibility and mechanical property, but also appropriate biocompatibility, allowing cell proliferation. In vitro, the potential of CSS for chondrogenic differentiation was improved compared to control and PLA@gelatin scaffold as chondrogenic markers Collagen2 and Aggrecan was significantly increased. Meanwhile, significant reduction in two crucial inflammatory factors (NO and PGE2) in CSS group demonstrated inflammation inhibition. In vivo, rabbit cartilage defects were created and CSS effectively promoted cartilage repair. Additionally, superior anti-inflammation effect of CSS was demonstrated by reduction in iNOS and PGES, enzymes producing NO and PGE2, respectively by immunohistology. Our results indicated the preferable property of CSS for cartilage regeneration and its potential in immunoregulation.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, PR China
| | - Weiming Chen
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200000 Shanghai, PR China
| | - Yini Chen
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, PR China
| | - Xiumei Mo
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 201620 Shanghai, PR China.
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, PR China.
| |
Collapse
|
31
|
Song W, Liu Y, Dong X, Song C, Bai Y, Hu P, Li L, Wang T. Lactobacillus M5 prevents osteoarthritis induced by a high-fat diet in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
32
|
Lee WS, Kato M, Sugawara E, Kono M, Kudo Y, Kono M, Fujieda Y, Bohgaki T, Amengual O, Oku K, Yasuda S, Onodera T, Iwasaki N, Atsumi T. Protective Role of Optineurin Against Joint Destruction in Rheumatoid Arthritis Synovial Fibroblasts. Arthritis Rheumatol 2020; 72:1493-1504. [DOI: 10.1002/art.41290] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/14/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Wen Shi Lee
- Hokkaido University, Sapporo, Japan, and Tokyo Medical and Dental University Tokyo Japan
| | | | | | | | | | | | | | | | | | | | - Shinsuke Yasuda
- Hokkaido University, Sapporo, Japan, and Tokyo Medical and Dental University Tokyo Japan
| | | | | | | |
Collapse
|
33
|
Dewey MJ, Nosatov AV, Subedi K, Harley B. Anisotropic mineralized collagen scaffolds accelerate osteogenic response in a glycosaminoglycan-dependent fashion. RSC Adv 2020; 10:15629-15641. [PMID: 32655857 PMCID: PMC7351350 DOI: 10.1039/d0ra01336f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regeneration of critically-sized craniofacial bone defects requires a template to promote cell activity and bone remodeling. However, induced regeneration becomes more challenging with increasing defect size. Methods of repair using allografts and autografts have inconsistent results, attributed to age-related regenerative capabilities of bone. We are developing a mineralized collagen scaffold to promote craniomaxillofacial bone regeneration as an alternative to repair. Here, we hypothesize modifying the pore anisotropy and glycosaminoglycan content of the scaffold will improve cell migration, viability, and subsequent bone formation. Using anisotropic and isotropic scaffold variants, we test the role of pore orientation on human mesenchymal stem cell (MSC) activity. We subsequently explore the role of glycosaminoglycan content, notably chondroitin-6-sulfate, chondroitin-4-sulfate, and heparin sulfate on mineralization. We find that while short term MSC migration and activity was not affected by pore orientation, increased bone mineral synthesis was observed in anisotropic scaffolds. Further, while scaffold glycosaminoglycan content did not impact cell viability, heparin sulfate and chondroitin-6-sulfate containing variants increased mineral formation at the late stage of in vitro culture, respectively. Overall, these findings show scaffold microstructural and proteoglycan modifications represent a powerful tool to improve MSC osteogenic activity. Mineralized collagen scaffolds were modified to include anisotropic pore architecture and one of three glycosaminoglycans in order to improve bone mineral formation in vitro.![]()
Collapse
Affiliation(s)
| | | | | | - Brendan Harley
- Dept. of Materials Science and Engineering, USA.,School of Chemical Sciences, USA.,Dept. Chemical and Biomolecular Engineering, USA.,Dept. of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory 600 S. Mathews Ave., Urbana, IL 61801, USA
| |
Collapse
|
34
|
Wu R, Shang N, Gui M, Yin J, Li P. Sturgeon ( Acipenser)-Derived Chondroitin Sulfate Suppresses Human Colon Cancer HCT-116 Both In Vitro and In Vivo by Inhibiting Proliferation and Inducing Apoptosis. Nutrients 2020; 12:nu12041130. [PMID: 32316636 PMCID: PMC7230714 DOI: 10.3390/nu12041130] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Chondroitin sulfate (CS), mainly present in the cartilage and bone of animals, is known as a potential food-derived bioactive that has several biological functions, such as anti-arthritic and anti-inflammatory activity. Sturgeon (Acipenser), an important fishery resource in China, contains an abundance of CS in their cartilage. In our previous study, we have extracted and purified CS from sturgeon cartilage. Herein, we further investigate the health benefits of sturgeon-derived chondroitin sulfate (SCS), especially for colorectal cancer treatment. The in vitro study indicated that SCS could inhibit the proliferation of the human colon cancer cell line HCT-116 in a dose-dependent manner, which was associated with cell cycle arrest. In addition, SCS also led to extensive cellular apoptosis in colon cancer cell HCT-116 cells. Meanwhile, an in vivo study showed that SCS treatment significantly inhibited the tumor development of xenograft HCT-116 in mice via proliferation suppression and apoptosis induction. Further, a mechanistic study demonstrated that the apoptosis induction was mainly due to the activation of the Bcl-2 family-associated mitochondrial pathway. Overall, our results provided a basis for SCS as a promising agent against colon cancer.
Collapse
Affiliation(s)
- Ruiyun Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China; (R.W.); (J.Y.)
| | - Nan Shang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Meng Gui
- Beijing Fisheries Research Institute, Beijing 10083, China;
| | - Jian Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China; (R.W.); (J.Y.)
| | - Pinglan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China; (R.W.); (J.Y.)
- Correspondence: ; Tel./Fax: +86-010-6273-8678
| |
Collapse
|
35
|
Effectiveness of Non-Animal Chondroitin Sulfate Supplementation in the Treatment of Moderate Knee Osteoarthritis in a Group of Overweight Subjects: A Randomized, Double-Blind, Placebo-Controlled Pilot Study. Nutrients 2019; 11:nu11092027. [PMID: 31470599 PMCID: PMC6769794 DOI: 10.3390/nu11092027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis in the world and is characterized by pain, various disabilities and loss of quality of life. Chondroitin sulfate (CS) is recommended as first-line therapy. CS of non-animal origin is of great interest for safety and sustainability reasons. This study aims to investigate the anti-inflammatory effects, anti-pain and ability-enhancement of a short-term supplementation with non-animal CS in overweight subjects with OA. In a randomized, double-blind, placebo-controlled pilot study, 60 overweight adults with symptomatic OA were allocated to consume 600 mg of non-animal CS (n = 30) or a placebo (n = 30) daily for 12 consecutive weeks. The assessment of knee-pain, quality of life, related inflammation markers and body composition was performed at 0, 4 and 12 weeks. The Tegner Lysholm Knee Scoring (TLKS) scale of the experimental group showed a statistically significant increase (+10.64 points; confidence interval (95% confidence interval (CI) 5.57; 15.70; p < 0.01), while the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score decreased (−12.24 points; CI 95% −16.01; −8.38; p < 0.01). The results also showed a decrease in the C-reactive protein (CRP) level (−0.14 mg/dL, CI 95% −0.26; −0.04; p < 0.01) and erythrocyte sedimentation rate (ESR) level (−5.01 mm/h, CI 95% −9.18; −0.84, p < 0.01) as well as the visual analogue scale (VAS) score in both knees. In conclusion, this pilot study demonstrates the effectiveness of non-animal CS supplementation in overweight subjects with knee OA in improving knee function, pain and inflammation markers.
Collapse
|
36
|
Burge KY, Hannah L, Eckert JV, Gunasekaran A, Chaaban H. The Protective Influence of Chondroitin Sulfate, a Component of Human Milk, on Intestinal Bacterial Invasion and Translocation. J Hum Lact 2019; 35:538-549. [PMID: 31051086 PMCID: PMC6615959 DOI: 10.1177/0890334419845338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Human milk is known to be protective against necrotizing enterocolitis, a devastating intestinal inflammatory disease affecting the preterm population. Although the pathogenesis of necrotizing enterocolitis is yet to be solidified, intestinal integrity dysfunction, bacterial invasion and/or translocation, and inflammation may play important roles. Glycosaminoglycans, compounds naturally prevalent in both human milk and the intestine, are thought to be anti-inflammatory and capable of altering bacterial interactions within the gut. RESEARCH AIM In this study, we aimed to evaluate the potential of chondroitin sulfate, the most prominent class of glycosaminoglycans in human milk, to protect against bacterial infection in an intestinal in vitro model. METHODS T84 cell monolayers were treated with chondroitin sulfate and cell viability was assessed across a number of doses. Monolayers were then pretreated with chondroitin sulfate and subsequently challenged with E. coli invasion and translocation to evaluate any protective role of the compound against infection. Tight junction barrier function was assessed by transepithelial electrical resistance, and cytokine levels were evaluated. RESULTS Chondroitin sulfate at any dose up to 750 μg/ml was not associated with any statistically significant decrease in cell viability. Additionally, chondroitin sulfate at 750 μg/ml was associated with a 75% decrease in both bacterial invasion and translocation compared to control. CONCLUSIONS These data suggest chondroitin sulfate may protect against bacterial infection through a reduction in both invasion and translocation, importantly without attendant reduction in cell viability.
Collapse
Affiliation(s)
- Kathryn Y Burge
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lindsey Hannah
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jeffrey V Eckert
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Aarthi Gunasekaran
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hala Chaaban
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
37
|
Pomin VH, Vignovich WP, Gonzales AV, Vasconcelos AA, Mulloy B. Galactosaminoglycans: Medical Applications and Drawbacks. Molecules 2019; 24:E2803. [PMID: 31374852 PMCID: PMC6696379 DOI: 10.3390/molecules24152803] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022] Open
Abstract
Galactosaminoglycans (GalAGs) are sulfated glycans composed of alternating N-acetylgalactosamine and uronic acid units. Uronic acid epimerization, sulfation patterns and fucosylation are modifications observed on these molecules. GalAGs have been extensively studied and exploited because of their multiple biomedical functions. Chondroitin sulfates (CSs), the main representative family of GalAGs, have been used in alternative therapy of joint pain/inflammation and osteoarthritis. The relatively novel fucosylated chondroitin sulfate (FCS), commonly found in sea cucumbers, has been screened in multiple systems in addition to its widely studied anticoagulant action. Biomedical properties of GalAGs are directly dependent on the sugar composition, presence or lack of fucose branches, as well as sulfation patterns. Although research interest in GalAGs has increased considerably over the three last decades, perhaps motivated by the parallel progress of glycomics, serious questions concerning the effectiveness and potential side effects of GalAGs have recently been raised. Doubts have centered particularly on the beneficial functions of CS-based therapeutic supplements and the potential harmful effects of FCS as similarly observed for oversulfated chondroitin sulfate, as a contaminant of heparin. Unexpected components were also detected in CS-based pharmaceutical preparations. This review therefore aims to offer a discussion on (1) the current and potential therapeutic applications of GalAGs, including those of unique features extracted from marine sources, and (2) the potential drawbacks of this class of molecules when applied to medicine.
Collapse
Affiliation(s)
- Vitor H Pomin
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
| | - William P Vignovich
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA
| | - Alysia V Gonzales
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA
| | - Ariana A Vasconcelos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Barbara Mulloy
- Imperial College, Department of Medicine, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
38
|
A comparative analysis of secreted protein disulfide isomerases from the tropical co-endemic parasites Schistosoma mansoni and Leishmania major. Sci Rep 2019; 9:9568. [PMID: 31267027 PMCID: PMC6606611 DOI: 10.1038/s41598-019-45709-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
The human parasites Schistosoma mansoni and Leishmania major are co-endemic and a major threat to human health. Though displaying different tissue tropisms, they excrete/secrete similar subsets of intracellular proteins that, interacting with the host extracellular matrix (ECM), help the parasites invading the host. We selected one of the most abundant proteins found in the secretomes of both parasites, protein disulfide isomerase (PDI), and performed a comparative screening with surface plasmon resonance imaging (SPRi), looking for ECM binding partners. Both PDIs bind heparan sulfate; none of them binds collagens; each of them binds further ECM components, possibly linked to the different tropisms. We investigated by small-angle X-ray scattering both PDIs structures and those of a few complexes with host partners, in order to better understand the differences within this conserved family fold. Furthermore, we highlighted a previously undisclosed moonlighting behaviour of both PDIs, namely a concentration-dependent switch of function from thiol-oxidoreductase to holdase. Finally, we have tried to exploit the differences to look for possible compounds able to interfere with the redox activity of both PDI.
Collapse
|
39
|
Fenbo M, Xingyu X, Bin T. Strontium chondroitin sulfate/silk fibroin blend membrane containing microporous structure modulates macrophage responses for guided bone regeneration. Carbohydr Polym 2019; 213:266-275. [DOI: 10.1016/j.carbpol.2019.02.068] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 12/19/2022]
|
40
|
Gross AR, Theoharides TC. Chondroitin sulfate inhibits secretion of TNF and CXCL8 from human mast cells stimulated by IL-33. Biofactors 2019; 45:49-61. [PMID: 30521103 DOI: 10.1002/biof.1464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 01/19/2023]
Abstract
Glycosaminoglycans (GAGs) are linear, highly negatively charged carbohydrate chains present in connective tissues. Chondroitin sulfate (CS) and heparin (Hep) are also found in the numerous secretory granules of mast cells (MC), tissue immune cells involved in allergic and inflammatory reactions. CS and Hep may inhibit secretion of histamine from rat connective tissue MC, but their effect on human MC remains unknown. Human LAD2 MC were pre-incubated with CS, Hep, or dermatan sulfate (DS) before being stimulated by either the peptide substance P (SP, 2 μM) or the cytokine IL-33 (10 ng/mL). Preincubation with CS had no effect on MC degranulation stimulated by SP, but inhibited TNF (60%) and CXCL8 (45%) secretion from LAD2 cells stimulated by IL-33. Fluorescein-conjugated CS (CS-F) was internalized by LAD2 cells only at 37 °C, but not 4 °C, indicating it occurred by endocytosis. DS and Hep inhibited IL-33-stimulated secretion of TNF and CXCL8 to a similar extent as CS. None of the GAGs tested inhibited IL-33-stimulated gene expression of either TNF or CXCL8. There was no effect of CS on ionomycin-stimulated calcium influx. There was also no effect of CS on surface expression of the IL-33 receptor, ST2. Neutralization of the hyaluronan receptor CD44 did not affect the internalization of CS-F. The findings in this article show that CS inhibits secretion of TNF and CXCL8 from human cultured MC stimulated by IL-33. CS could be formulated for systemic or topical treatment of allergic or inflammatory diseases, such as atopic dermatitis, cutaneous mastocytosis, and psoriasis. © 2018 BioFactors, 45(1):49-61, 2019.
Collapse
Affiliation(s)
- Amanda R Gross
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
41
|
DiNubile N. Glucosamine and Chondroitin Sulfate: What Has Been Learned Since the Glucosamine/chondroitin Arthritis Intervention Trial. Orthopedics 2018; 41:200-207. [PMID: 29771395 DOI: 10.3928/01477447-20180511-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/13/2017] [Indexed: 02/03/2023]
Abstract
Glucosamine and chondroitin sulfate, alone or in combination, are used worldwide by individuals suffering from osteoarthritis pain. They are by prescription in some countries but are available as over-the-counter dietary supplements in other countries, such as the United States. The inconclusive results of the National Institutes of Health-sponsored Glucosamine/chondroitin Arthritis Intervention Trial (GAIT) did little to clarify the efficacy of these agents. However, some newer studies have provided a better perspective on the potential benefits that they can offer. Because the 2 in combination showed a significant level of efficacy in the moderate-to-severe knee osteoarthritis subgroup of the GAIT, this review examines the randomized, controlled trials published from that time to the present. The findings of these studies are mixed, owing in some cases to the high rate of placebo response added to by the ethical incorporation of rescue analgesics into protocols designed to evaluate the slow-acting, subtle effects of glucosamine and chondroitin sulfate in combination. The strong influence of the placebo effect and confounding of results by rescue analgesics point to the importance of objective measurement tools such as osteoarthritis biomarker panels in long-term glucosamine/chondroitin sulfate clinical trials with less reliance on the subjective measurement tools commonly used in osteoarthritis trials of pharmaceuticals. [Orthopedics. 2018; 41(4):200-207.].
Collapse
|
42
|
Chakraborty J, Roy S, Murab S, Ravani R, Kaur K, Devi S, Singh D, Sharma S, Mohanty S, Dinda AK, Tandon R, Ghosh S. Modulation of Macrophage Phenotype, Maturation, and Graft Integration through Chondroitin Sulfate Cross-Linking to Decellularized Cornea. ACS Biomater Sci Eng 2018; 5:165-179. [PMID: 33405862 DOI: 10.1021/acsbiomaterials.8b00251] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Decellularized corneas obtained from other species have gained intense popularity in the field of tissue engineering due to its role to serve as an alternative to the limited availability of high-quality donor tissues. However, the decellularized cornea is found to evoke an immune response inspite of the removal of the cellular contents and antigens due to the distortion of the collagen fibrils that exposes certain antigenic sites, which often lead to graft rejection. Therefore, in this study we tested the hypothesis that cross-linking the decellularized corneas with chondroitin sulfate may help in restoring the distorted conformationation changes of fibrous matrix and thus help in reducing the occurrence of graft rejection. Cross-linking of the decellularized cornea with oxidized chondroitin sulfate was validated by ATR-FTIR analysis. An in vitro immune response study involving healthy monocytes and differentiated macrophages with their surface marker analysis by pHrodo red, Lysotracker red, ER tracker, and CD63, LAMP-2 antibodies confirmed that the cross-linked decellularized matrices elicited the least immune response compared to the decellularized ones. We implanted three sets of corneal scaffolds obtained from goat, i.e., native, decellularized, and decellularized corneas conjugated with chondroitin sulfate into the rabbit stroma. Histology analysis, three months after implantation into the rabbit corneal stromal region, confirmed the restoration of the collagen fibril conformation and the migration of cells to the implanted constructs, affirming proper graft integration. Hence we conclude that the chondroitin sulfate cross-linked decellularized corneal matrix may serve as an efficient alternative to the allograft and human cadaveric corneas.
Collapse
Affiliation(s)
- Juhi Chakraborty
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Subhadeep Roy
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sumit Murab
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | | | - Kulwinder Kaur
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | | | | | | | | | | | | | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
43
|
Rnjak‐Kovacina J, Tang F, Whitelock JM, Lord MS. Glycosaminoglycan and Proteoglycan-Based Biomaterials: Current Trends and Future Perspectives. Adv Healthc Mater 2018; 7:e1701042. [PMID: 29210510 DOI: 10.1002/adhm.201701042] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/18/2017] [Indexed: 12/18/2022]
Abstract
Proteoglycans and their glycosaminoglycans (GAG) are essential for life as they are responsible for orchestrating many essential functions in development and tissue homeostasis, including biophysical properties and roles in cell signaling and extracellular matrix assembly. In an attempt to capture these biological functions, a range of biomaterials are designed to incorporate off-the-shelf GAGs, typically isolated from animal sources, for tissue engineering, drug delivery, and regenerative medicine applications. All GAGs, with the exception of hyaluronan, are present in the body covalently coupled to the protein core of proteoglycans, yet the incorporation of proteoglycans into biomaterials remains relatively unexplored. Proteoglycan-based biomaterials are more likely to recapitulate the unique, tissue-specific GAG profiles and native GAG presentation in human tissues. The protein core offers additional biological functionality, including cell, growth factor, and extracellular matrix binding domains, as well as sites for protein immobilization chemistries. Finally, proteoglycans can be recombinantly expressed in mammalian cells and thus offer genetic manipulation and metabolic engineering opportunities for control over the protein and GAG structures and functions. This Progress Report summarizes current developments in GAG-based biomaterials and presents emerging research and future opportunities for the development of biomaterials that incorporate GAGs presented in their native proteoglycan form.
Collapse
Affiliation(s)
| | - Fengying Tang
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| |
Collapse
|
44
|
Creation of disease-inspired biomaterial environments to mimic pathological events in early calcific aortic valve disease. Proc Natl Acad Sci U S A 2017; 115:E363-E371. [PMID: 29282325 DOI: 10.1073/pnas.1704637115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An insufficient understanding of calcific aortic valve disease (CAVD) pathogenesis remains a major obstacle in developing treatment strategies for this disease. The aim of the present study was to create engineered environments that mimic the earliest known features of CAVD and apply this in vitro platform to decipher relationships relevant to early valve lesion pathobiology. Glycosaminoglycan (GAG) enrichment is a dominant hallmark of early CAVD, but culture of valvular interstitial cells (VICs) in biomaterial environments containing pathological amounts of hyaluronic acid (HA) or chondroitin sulfate (CS) did not directly increase indicators of disease progression such as VIC activation or inflammatory cytokine production. However, HA-enriched matrices increased production of vascular endothelial growth factor (VEGF), while matrices displaying pathological levels of CS were effective at retaining lipoproteins, whose deposition is also found in early CAVD. Retained oxidized low-density lipoprotein (oxLDL), in turn, stimulated myofibroblastic VIC differentiation and secretion of numerous inflammatory cytokines. OxLDL also increased VIC deposition of GAGs, thereby creating a positive feedback loop to further enrich GAG content and promote disease progression. Using this disease-inspired in vitro platform, we were able to model a complex, multistep pathological sequence, with our findings suggesting distinct roles for individual GAGs in outcomes related to valve lesion progression, as well as key differences in cell-lipoprotein interactions compared with atherosclerosis. We propose a pathogenesis cascade that may be relevant to understanding early CAVD and envision the extension of such models to investigate other tissue pathologies or test pharmacological treatments.
Collapse
|
45
|
Molecular characterization of CHST11 and its potential role in nacre formation in pearl oyster Pinctada fucata martensii. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
46
|
Costa-Almeida R, Gasperini L, Borges J, Babo PS, Rodrigues MT, Mano JF, Reis RL, Gomes ME. Microengineered Multicomponent Hydrogel Fibers: Combining Polyelectrolyte Complexation and Microfluidics. ACS Biomater Sci Eng 2016; 3:1322-1331. [DOI: 10.1021/acsbiomaterials.6b00331] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raquel Costa-Almeida
- 3B’s
Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark − Parque de Ciência
e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University of Minho, 4710-057 Braga/Guimarães, Portugal
| | - Luca Gasperini
- 3B’s
Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark − Parque de Ciência
e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University of Minho, 4710-057 Braga/Guimarães, Portugal
| | - João Borges
- 3B’s
Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark − Parque de Ciência
e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University of Minho, 4710-057 Braga/Guimarães, Portugal
| | - Pedro S. Babo
- 3B’s
Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark − Parque de Ciência
e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University of Minho, 4710-057 Braga/Guimarães, Portugal
| | - Márcia T. Rodrigues
- 3B’s
Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark − Parque de Ciência
e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University of Minho, 4710-057 Braga/Guimarães, Portugal
| | - João F. Mano
- 3B’s
Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark − Parque de Ciência
e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University of Minho, 4710-057 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s
Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark − Parque de Ciência
e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University of Minho, 4710-057 Braga/Guimarães, Portugal
| | - Manuela E. Gomes
- 3B’s
Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark − Parque de Ciência
e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University of Minho, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
47
|
Liu B, Lu J, Ai C, Zhang B, Guo L, Song S, Zhu B. Quick characterization of uronic acid-containing polysaccharides in 5 shellfishes by oligosaccharide analysis upon acid hydrolysis. Carbohydr Res 2016; 435:149-155. [DOI: 10.1016/j.carres.2016.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022]
|
48
|
Ruggiero M, Reinwald H, Pacini S. Is chondroitin sulfate responsible for the biological effects attributed to the GC protein-derived Macrophage Activating Factor (GcMAF)? Med Hypotheses 2016; 94:126-31. [PMID: 27515218 DOI: 10.1016/j.mehy.2016.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/29/2016] [Accepted: 07/17/2016] [Indexed: 12/15/2022]
Abstract
We hypothesize that a plasma glycosaminoglycan, chondroitin sulfate, may be responsible for the biological and clinical effects attributed to the Gc protein-derived Macrophage Activating Factor (GcMAF), a protein that is extracted from human blood. Thus, Gc protein binds chondroitin sulfate on the cell surface and such an interaction may occur also in blood, colostrum and milk. This interpretation would solve the inconsistencies encountered in explaining the effects of GcMAF in vitro and in vivo. According to our model, the Gc protein or the GcMAF bind to chondroitin sulfate both on the cell surface and in bodily fluids, and the resulting multimolecular complexes, under the form of oligomers trigger a transmembrane signal or, alternatively, are internalized and convey the signal directly to the nucleus thus eliciting the diverse biological effects observed for both GcMAF and chondroitin sulfate.
Collapse
Affiliation(s)
- Marco Ruggiero
- dr. reinwald healthcare gmbh + co kg, Friedrich-Luber-Straße 29, D-90592 Schwarzenbruck, Germany
| | - Heinz Reinwald
- dr. reinwald healthcare gmbh + co kg, Friedrich-Luber-Straße 29, D-90592 Schwarzenbruck, Germany
| | - Stefania Pacini
- dr. reinwald healthcare gmbh + co kg, Friedrich-Luber-Straße 29, D-90592 Schwarzenbruck, Germany.
| |
Collapse
|
49
|
Mende M, Bednarek C, Wawryszyn M, Sauter P, Biskup MB, Schepers U, Bräse S. Chemical Synthesis of Glycosaminoglycans. Chem Rev 2016; 116:8193-255. [DOI: 10.1021/acs.chemrev.6b00010] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marco Mende
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Christin Bednarek
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Mirella Wawryszyn
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Paul Sauter
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Moritz B. Biskup
- Division
2—Informatics, Economics and Society, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Ute Schepers
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
50
|
Corradetti B, Taraballi F, Minardi S, Van Eps J, Cabrera F, Francis LW, Gazze SA, Ferrari M, Weiner BK, Tasciotti E. Chondroitin Sulfate Immobilized on a Biomimetic Scaffold Modulates Inflammation While Driving Chondrogenesis. Stem Cells Transl Med 2016; 5:670-82. [PMID: 27013739 DOI: 10.5966/sctm.2015-0233] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/04/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Costs associated with degenerative inflammatory conditions of articular cartilage are exponentially increasing in the aging population, and evidence shows a strong clinical need for innovative therapies. Stem cell-based therapies represent a promising strategy for the treatment of innumerable diseases. Their regenerative potential is undeniable, and it has been widely exploited in many tissue-engineering approaches, especially for bone and cartilage repair. Their immune-modulatory capacities in particular make stem cell-based therapeutics an attractive option for treating inflammatory diseases. However, because of their great plasticity, mesenchymal stem cells (MSCs) are susceptible to different external factors. Biomaterials capable of concurrently providing physical support to cells while acting as synthetic extracellular matrix have been established as a valuable strategy in cartilage repair. Here we propose a chondroitin sulfate-based biomimetic scaffold that recapitulates the physicochemical features of the chondrogenic niche and retains MSC immunosuppressive potential in vitro, either in response to a proinflammatory cytokine or in the presence of stimulated peripheral blood mononuclear cells. In both cases, a significant increase in the production of molecules associated with immunosuppression (nitric oxide and prostaglandins), as well as in the expression of their inducible enzymes (iNos, Pges, Cox-2, and Tgf-β). When implanted subcutaneously in rats, our scaffold revealed a reduced infiltration of leukocytes at 24 hours, which correlated with a greater upregulation of genes involved in inflammatory cell apoptotic processes. In support of its effective use in tissue-engineering applications of cartilage repair, the potential of the proposed platform to drive chondrogenic and osteogenic differentiation of MSC was also proven. SIGNIFICANCE Recently, increasing clinical evidence has highlighted the important role of proinflammatory mediators and infiltrating inflammatory cell populations inducing chronic inflammation and diseases in damaged cartilage. This work should be of broad interest because it proposes an implantable biomimetic material, which holds the promise for a variety of medical conditions that necessitate the functional restoration of damaged cartilage tissue (such as trauma, diseases, deformities, or cancer).
Collapse
Affiliation(s)
- Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesca Taraballi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Silvia Minardi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza, Italy
| | - Jeffrey Van Eps
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA Department of Surgery, Houston Methodist Hospital, Houston, Texas, USA
| | - Fernando Cabrera
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Lewis W Francis
- Centre for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, United Kingdom
| | - Salvatore A Gazze
- Centre for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, United Kingdom
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Bradley K Weiner
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA Department of Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|