1
|
Wagner JG, Chen L, Jiang F, Nedley E, Akkaya Z, Ngarmsrikan C, Link TM, Majumdar S, Collins KH, Souza RB. Relationships Between the Infrapatellar Fat Pad and Patellofemoral Joint Osteoarthritis Differ With Body Mass Index and Sex. J Orthop Res 2025. [PMID: 39833110 DOI: 10.1002/jor.26048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025]
Abstract
The role of the infrapatellar fat pad (IPFP) in knee osteoarthritis is not understood. This study aimed to identify relationships between MRI-based signal abnormalities in the IPFP and measures of structural pathology and symptom severity in PFJOA, as well as investigate the influence of obesity and sex on these relationships. Seventy participants (ages 28-80) with isolated PFJOA underwent bilateral knee MRI scan acquisitions and completed the Knee Injury and Osteoarthritis Outcome Score (KOOS). MR images were scored for abnormal IPFP area and signal intensity, joint effusion, synovial proliferation, and patellar and trochlear cartilage damage. Repeated measures correlations were performed to assess associations between abnormal area and signal of IPFP and PFJOA pathology and KOOS, respectively. Associations were interrogated across weight-based groups based on BMI and sex-based groups. Between abnormal IPFP and PFJOA pathology, we observed no significant associations. Between abnormal IPFP and patient-reported outcomes, we observed weak to moderate significant negative associations between the size of the abnormal IPFP area and all KOOS subscales. In a sex-based analysis of IPFP and KOOS associations, we observed significant moderate negative correlations between IPFP and KOOS scores across all subcategories in female participants. In male participants, abnormal IPFP was not associated with KOOS scores. The IPFP is significantly related to PFJOA patient-reported pain and function, and this correlation is stronger in high-risk OA groups.
Collapse
Affiliation(s)
- J G Wagner
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, California, USA
- Department of Orthopaedic Surgery, University of California, San Francisco, California, USA
| | - L Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - F Jiang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - E Nedley
- Department of Orthopaedic Surgery, University of California, San Francisco, California, USA
| | - Z Akkaya
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- Department of Radiology, Ankara University Faculty of Medicine, Ankara, Turkey
| | | | - T M Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - S Majumdar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - K H Collins
- Department of Orthopaedic Surgery, University of California, San Francisco, California, USA
- Department of Anatomy, University of California, San Francisco, California, USA
| | - R B Souza
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| |
Collapse
|
2
|
Griffin TM, Komaravolu RK, Lopes EBP, Mehta-D'souza P, Conner T, Kovats T, Kovats S, Allen M, Harris P, Humphrey MB, Welhaven HD, Brahmachary P, June RK. Exercise induces dynamic changes in intra-articular metabolism and inflammation associated with remodeling of the infrapatellar fat pad in mice. Sci Rep 2025; 15:2428. [PMID: 39827311 PMCID: PMC11743197 DOI: 10.1038/s41598-025-86726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
We hypothesized that daily exercise promotes joint health by upregulating anti-inflammatory mediators via adaptive molecular and metabolic changes in the infrapatellar fat pad (IFP). We tested this hypothesis by conducting time-resolved analyses between 1 and 14 days of voluntary wheel running exercise in C57BL/6J mice. IFP structure and cellularity were evaluated by histomorphology, picrosirius red collagen staining, and flow cytometry analysis of stromal vascular fraction cells. Joint inflammation and metabolism were evaluated by multiplex gene expression analysis of synovium-IFP tissue and synovial fluid metabolomics, respectively. Exercise transiently increased cytokine and chemokine gene expression in synovium-IFP tissue, resolving within the first 5 days of exercise. The acute inflammatory response was associated with decreased adipocyte size and elevated CD45+Gr1+ myeloid cells, increased collagen content, and oxidized phospholipids. Exercise acutely altered synovial fluid metabolites, characterized by increased amino acids, peptides, bile acids, sphingolipids, dicarboxylic acids, and straight medium chain fatty acids and decreased hydroxy fatty acids and diacylglycerols. Between 5 and 14 days of exercise, inflammation, collagen, and adipocyte size returned to pre-exercise levels, and CD206+ immuno-regulatory macrophages increased. Thus, although the onset of new daily exercise transiently induced synovium-IFP inflammation and altered tissue structure, sustained daily exercise promoted IFP homeostasis.
Collapse
Affiliation(s)
- Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA.
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA.
- Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Ravi K Komaravolu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Erika Barboza Prado Lopes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Padmaja Mehta-D'souza
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Taylor Conner
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Tessa Kovats
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Susan Kovats
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Madeline Allen
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, 73019, USA
| | - Peyton Harris
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Mary Beth Humphrey
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
- Department of Medicine, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Hope D Welhaven
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Priyanka Brahmachary
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
3
|
Nakayama S, Fukumoto Y, Taniguchi M, Asai T, Wakida M, Miki E, Nakao S, Fukushima T, Kouda K, Ikezoe T. Echo intensity of the superficial part of the medial infrapatellar fat pad and medial meniscal extrusion are associated with knee symptoms in community-dwelling older adults. J Med Ultrason (2001) 2025:10.1007/s10396-024-01512-1. [PMID: 39812964 DOI: 10.1007/s10396-024-01512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE Knee pain is a characteristic symptom of early-stage knee osteoarthritis. Recently, the association between knee symptoms and infrapatellar fat pad (IFP) degeneration has garnered attention. This study aimed to clarify the association between ultrasound-derived size and echo intensity (EI) in the IFP and knee symptoms. METHODS A total of 163 community-dwelling older individuals (women, n = 106; age, 75.1 ± 7.0 years) participated. An ultrasound imaging device was used to assess the area and EI of the superficial and deep parts of the central, medial, and lateral IFP and presence of medial meniscal extrusion (MME) and medial tibial osteophytes. Based on the 2011 version of the Knee Society Knee Scoring System (KSS) symptoms category, the participants were classified into a symptomatic (KSS symptom score < 23, n = 74) or asymptomatic (KSS symptom score ≧23, n = 89) group. Logistic regression analyses were performed with groups as dependent variables and EI and area of the IFP as independent variables. RESULTS EI of the superficial part of the medial IFP was significantly associated with knee symptoms, adjusting for age, sex, body mass index, MME, and medial osteophytes (p < 0.05). MME was also significantly associated with knee symptoms (p < 0.05). EI of the other parts, area of any parts, and medial osteophytes were not associated with knee symptoms. CONCLUSION These findings suggested the utility of evaluating EI on the superficial part of the medial IFP and MME as the articular structures associated with knee symptoms.
Collapse
Affiliation(s)
- Shohei Nakayama
- Department of Rehabilitation, Kotake Orthopedic Clinic, 17-1 Hirone, Inagawa-cho, Kawabe-gun, Hyogo, 666-0252, Japan
- Faculty of Rehabilitation, Kansai Medical University, 18-89 Uyamahigashicho, Hirakata, Osaka, 573-1136, Japan
| | - Yoshihiro Fukumoto
- Faculty of Rehabilitation, Kansai Medical University, 18-89 Uyamahigashicho, Hirakata, Osaka, 573-1136, Japan.
| | - Masashi Taniguchi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tsuyoshi Asai
- Faculty of Rehabilitation, Kansai Medical University, 18-89 Uyamahigashicho, Hirakata, Osaka, 573-1136, Japan
| | - Masanori Wakida
- Faculty of Rehabilitation, Kansai Medical University, 18-89 Uyamahigashicho, Hirakata, Osaka, 573-1136, Japan
| | - Emi Miki
- Faculty of Rehabilitation, Kansai Medical University, 18-89 Uyamahigashicho, Hirakata, Osaka, 573-1136, Japan
| | - Sayaka Nakao
- Faculty of Rehabilitation, Kansai Medical University, 18-89 Uyamahigashicho, Hirakata, Osaka, 573-1136, Japan
| | - Takuya Fukushima
- Faculty of Rehabilitation, Kansai Medical University, 18-89 Uyamahigashicho, Hirakata, Osaka, 573-1136, Japan
| | - Katsuyasu Kouda
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Tome Ikezoe
- Faculty of Rehabilitation, Kansai Medical University, 18-89 Uyamahigashicho, Hirakata, Osaka, 573-1136, Japan
| |
Collapse
|
4
|
Rong G, Zhang Z, Zhan W, Chen M, Ruan J, Shen C. VEGFA, MYC, and JUN are abnormally elevated in the synovial tissue of patients with advanced osteoarthritis. Sci Rep 2025; 15:2066. [PMID: 39814733 PMCID: PMC11736073 DOI: 10.1038/s41598-024-80551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/19/2024] [Indexed: 01/18/2025] Open
Abstract
Osteoarthritis (OA), affecting > 500 million people worldwide, profoundly affects the quality of life and ability to work. The mitogen-activated protein kinase (MAPK) signaling pathway plays an essential role in OA. To address the lack of studies focused on synovial cells in OA, we evaluated the expression patterns and roles of the MAPK signaling pathway components in OA synovial tissues using bioinformatics. The JUN, MYC, and VEGFA expression levels were significantly higher in the synovial tissues of patients with OA than in control tissues. These loci were closely related to abnormal proliferation, inflammation, and angiogenesis in the synovial tissues of patients with OA. We speculate that Myc and VEGFA activate the p38-MAPK signaling pathway to further activate Jun, thereby promoting abnormal inflammation, proliferation, and angiogenesis in OA synovial tissue. The high MYC, JUN, and VEGFA expression was positively correlated with the patients' K-L score, pain time, and synovial score. Furthermore, the high p38-MAPK and P-p38-MAPK expression confirmed that the abnormal expression and activation of the MAPK signaling pathway occurred in the synovial tissue of patients with OA. Our findings may provide a new direction for the clinical diagnosis and treatment of OA and insights into its pathogenesis.
Collapse
Affiliation(s)
- Genxiang Rong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Zhenyu Zhang
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, 214041, Jiangsu, China
| | - Wenjing Zhan
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Minnan Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jingjing Ruan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan Area, Hefei City, 230022, China.
| | - Cailiang Shen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
5
|
De Francesco F, Sbarbati A, Sierra LAQ, Zingaretti N, Sarmadian Z, Parodi PC, Ricci G, Riccio M, Mobasheri A. Anatomy, Histology, and Embryonic Origin of Adipose Tissue: Insights to Understand Adipose Tissue Homofunctionality in Regeneration and Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:53-78. [PMID: 39107527 DOI: 10.1007/5584_2024_801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Preadipocytes are formed during the 14th and 16th weeks of gestation. White adipose tissue, in particular, is generated in specific areas and thereby assembles after birth, rapidly increasing following the propagation of adipoblasts, which are considered the preadipocyte cell precursors. The second trimester of gestation is a fundamental phase of adipogenesis, and in the third trimester, adipocytes, albeit small may be present within the main deposition areas. In the course of late gestation, adipose tissue develops in the foetus and promotes the synthesis of large amounts of uncoupling protein 1, in similar quantities relative to differentiated brown adipose tissue. In mammals, differentiation occurs in two functionally different types of adipose cells: white adipose cells resulting from lipid storage and brown adipose cells from increased metabolic energy consumption. During skeletogenesis, synovial joints develop through the condensation of mesenchymal cells, which forms an insertional layer of flattened cells that umlaut skeletal elements, by sharing the same origin in the development of synovium. Peri-articular fat pads possess structural similarity with body subcutaneous white adipose tissue; however, they exhibit a distinct metabolic function due to the micro-environmental cues in which they are embedded. Fat pads are an important component of the synovial joint and play a key role in the maintenance of joint homeostasis. They are also implicated in pathological states such as osteoarthritis.In this paper we explore the therapeutic potential of adipocyte tissue mesenchymal precursor-based stem cell therapy linking it back to the anatomic origin of adipose tissue.
Collapse
Affiliation(s)
- Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, AOU Ospedali Riuniti delle Marche, Ancona, Italy
| | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona, Italy
| | | | - Nicola Zingaretti
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, Udine, Italy
| | - Zahra Sarmadian
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Pier Camillo Parodi
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, Udine, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery, AOU Ospedali Riuniti delle Marche, Ancona, Italy
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Joint Surgery, Sun Yat-sen University, Guangzhou, People's Republic of China.
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| |
Collapse
|
6
|
Mustonen AM, Malinen M, Paakinaho V, Lehenkari P, Palosaari S, Kärjä V, Nieminen P. RNA sequencing analysis reveals distinct gene expression patterns in infrapatellar fat pads of patients with end-stage osteoarthritis or rheumatoid arthritis. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159576. [PMID: 39489461 DOI: 10.1016/j.bbalip.2024.159576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Osteoarthritis (OA) and autoimmune-driven rheumatoid arthritis (RA) are inflammatory joint diseases that share partly similar symptoms but have different, inadequately understood pathogeneses. Adipose tissues, including intra-articular infrapatellar fat pad (IFP), may contribute to their development. Analysis of differentially expressed genes (DEGs) in IFPs could improve the diagnostics of these conditions and help to develop novel treatment strategies. The aim was to identify potentially crucial genes and pathways discriminating OA and RA IFPs using RNA sequencing analysis. We aimed to distinguish genetically distinct patient groups as a starting point for further translational studies with the eventual goal of personalized medicine. Samples were collected from arthritic knees during total knee arthroplasty of sex- and age-matched OA and seropositive RA patients (n = 5-6/group). Metabolic pathways of interest were investigated by whole transcriptome sequencing, and DEGs were analyzed with univariate tests, hierarchical clustering (HC), and pathway analyses. There was significant interindividual variation in mRNA expression patterns, but distinct subgroups of OA and RA patients emerged that reacted similarly to their disease states based on HC. Compared to OA, RA samples showed 703 genes to be upregulated and 691 genes to be downregulated. Signaling pathway analyses indicated that these DEGs had common pathways in lipid metabolism, fatty acid biosynthesis and degradation, adipocytokine and insulin signaling, inflammatory response, and extracellular matrix organization. The divergent mRNA expression profiles in RA and OA suggest contribution of IFP to the regulation of synovial inflammatory processes and articular cartilage degradation and could provide novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland.
| | - Marjo Malinen
- Department of Forestry and Environmental Engineering, South-Eastern Finland University of Applied Sciences, Paraatikenttä 7, FI-45100 Kouvola, Finland.
| | - Ville Paakinaho
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Petri Lehenkari
- Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland; Department of Surgery, Oulu University Hospital, P.O. Box 21, FI-90029 OYS, Finland.
| | - Sanna Palosaari
- Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland.
| | - Vesa Kärjä
- Department of Clinical Pathology, Kuopio University Hospital, Puijonlaaksontie 2, FI-70210 Kuopio, Finland.
| | - Petteri Nieminen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
7
|
Emanuel KS, Huang L, Haartmans MJJ, Sanmartin Martinez J, Zijta F, Heeren RMA, Kerkhoffs GMMJ, Emans PJ, Cillero-Pastor B. Patient-responsive protein biomarkers for cartilage degeneration and repair identified in the infrapatellar fat pad. Expert Rev Proteomics 2024:1-11. [PMID: 39635821 DOI: 10.1080/14789450.2024.2438774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVES Cartilage defects (CDs) are regarded as early manifestation of osteoarthritis (OA). The infrapatellar fat pad (IPFP) is an important mediator in maintaining joint homeostasis, disease progression and tissue repair, with a crucial role of its secreted proteins. Here, we investigate the proteome of the IPFP in relation to clinical status and response to surgical treatment of CDs. METHODS In order to characterize the proteome of the IPFP, samples from a cohort of 53 patients who received surgical treatment for knee CDs were analyzed with label-free proteomics. Patients were divided based on validated outcome scores for pain and knee function, preoperatively and at 1-year postoperatively, and on MRI assessment of the defect severity, fibrosis and synovitis. RESULTS Specific proteins were differentially abundant in patients with MRI features and better clinical outcome after CD surgery, including a downregulation of cartilage intermediate layer protein 2 (CILP-2) and microsomal glutathione s-transferase 1 (MGST1), and an upregulation of aggrecan (ACAN), and proteoglycan 4 (PRG4). Pathways related to cell interaction, oxidation and matrix remodeling were altered. CONCLUSION Proteins in the IPFP that have a function in extracellular matrix, inflammation and immunomodulation were identified as potentially relevant markers for cartilage repair monitoring.
Collapse
Affiliation(s)
- Kaj S Emanuel
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam Collaboration on Health & Safety in Sports (ACHSS), IOC Research Center, Amsterdam UMC, Amsterdam, The Netherlands
- Joint-Preserving Clinic, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University, Medical Center, Maastricht, The Netherlands
| | - Luojiao Huang
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Maastricht, The Netherlands
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| | - Mirella J J Haartmans
- Joint-Preserving Clinic, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University, Medical Center, Maastricht, The Netherlands
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| | - Javier Sanmartin Martinez
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Maastricht, The Netherlands
| | - Frank Zijta
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| | - Gino M M J Kerkhoffs
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam Collaboration on Health & Safety in Sports (ACHSS), IOC Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Pieter J Emans
- Joint-Preserving Clinic, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University, Medical Center, Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Maastricht, The Netherlands
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Nakahata A, Ito A, Nakahara R, Kuroki H. Meniscus Injury Induces Patellofemoral Osteoarthritis Development Mediated by Synovitis and Gait Kinematics: A Preclinical Study. Cartilage 2024:19476035241299769. [PMID: 39567862 PMCID: PMC11580119 DOI: 10.1177/19476035241299769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/20/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
OBJECTIVE To investigate whether meniscal injury leads to the development of patellofemoral (PF) osteoarthritis (PFOA) and to explore how synovitis and gait kinematics mediate this relationship. METHODS Fifty-four male Wistar rats (12 weeks old) were randomly assigned to the control, sham, or destabilized medial meniscus (DMM) groups. The rats were subjected to gait analysis to assess the kinematic changes at 2, 4, and 8 weeks postoperatively. Subsequently, the rats were euthanized, and their right knees were harvested for histological analysis. RESULTS The Osteoarthritis Research Society International (OARSI) and modified Mankin (MM) scores in the DMM group were significantly higher than those in the control and sham groups at week 2 and significantly higher than those in the control group at week 4. The OARSI and MM scores in the sham group were significantly higher than those in the control group at weeks 2 and 4. The association between the DMM and OARSI scores was significantly mediated by the synovitis score and knee flexion angle at foot contact (proportion mediated: 58% and 10%, respectively). The association between the sham and OARSI scores was significantly mediated by the synovitis score and knee flexion angle (proportion mediated: 24% and 24%, respectively). CONCLUSIONS DMM surgery induced articular cartilage damage in the PF joint. Synovitis and the knee flexion angle significantly mediated the association between DMM or sham surgery and PFOA development.
Collapse
Affiliation(s)
- Akihiro Nakahata
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Nakahara
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Liu Z, Xie W, Li H, Liu X, Lu Y, Lu B, Deng Z, Li Y. Novel perspectives on leptin in osteoarthritis: Focus on aging. Genes Dis 2024; 11:101159. [PMID: 39229323 PMCID: PMC11369483 DOI: 10.1016/j.gendis.2023.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 09/05/2024] Open
Abstract
Osteoarthritis (OA) is a common chronic joint disease characterized by articular cartilage degeneration, subchondral sclerosis, synovitis, and osteophyte formation. OA is associated with disability and impaired quality of life, particularly among the elderly. Leptin, a 16-kD non-glycosylated protein encoded by the obese gene, is produced on a systemic and local basis in adipose tissue and the infrapatellar fat pad located in the knee. The metabolic mechanisms employed by leptin in OA development have been widely studied, with attention being paid to aging as a corroborative risk factor for OA. Hence, in this review, we have attempted to establish a potential link between leptin and OA, by focusing on aging-associated mechanisms and proposing leptin as a potential diagnostic and therapeutic target in aging-related mechanisms of OA that may provide fruitful guidance and emphasis for future research.
Collapse
Affiliation(s)
- Zimo Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xu Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhenhan Deng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
10
|
Abughazaleh N, Smith H, Seerattan RA, Hart DA, Reimer RA, Herzog W. Development of shoulder osteoarthritis and bone lesions in female and male rats subjected to a high fat/sucrose diet. Sci Rep 2024; 14:25871. [PMID: 39468197 PMCID: PMC11519393 DOI: 10.1038/s41598-024-76703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Oligofructose prebiotic fiber supplementation has been reported to mitigate the effects of a high fat/high sucrose diet and reduce knee joint degeneration in male rats. However, few studies investigated the development of osteoarthritis and bone lesions as a function of sex and in joints other than the knee. This study was aimed at to quantifying the effect of a HFS diet and prebiotic fiber supplementation on shoulder joint health in male and female Sprague-Dawley rats. Rats were randomized into 6 groups: 2 groups fed a chow diet: Chow-Male n = 11, Chow-female n = 12; 2 groups fed a HFS diet: HFS-Male n = 11, HFS-Female n = 12; and 2 groups fed a prebiotic fiber supplement in addition to the HFS diet: Fiber-Male n = 6, Fiber- Female n = 12. After 12 weeks, shoulder joints were histologically assessed for OA. Body composition, serum lipid profile, insulin resistance and fecal microbiota were also assessed. Shoulders in male and female rats appear to be protected against degeneration when exposed to a HFS diet. Male rats developed bone lesions while females did not. Fiber supplementation was more effective in males than in females suggesting that fiber supplementation may have sex-specific effects on the gut microbiota.
Collapse
Affiliation(s)
- Nada Abughazaleh
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| | - Hannah Smith
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | | | - David A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, Department of Surgery, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Yue S, Zhai G, Zhao S, Liang X, Liu Y, Zheng J, Chen X, Dong Y. The biphasic role of the infrapatellar fat pad in osteoarthritis. Biomed Pharmacother 2024; 179:117364. [PMID: 39226725 DOI: 10.1016/j.biopha.2024.117364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disease resulting in joint deterioration. It is a whole organ disease characterized by cartilage degeneration and varying degrees of synovitis, involving pathological changes in all joint tissues, such as cartilage, subchondral bone, ligaments, meniscus, synovium, and infrapatellar fat pad (IPFP). IPFP is the largest adipose tissue structure in the knee joint and is composed of fat cells, immune cells and blood vessels. Moreover, IPFP is located close to the cartilage and bone surface so that it may reduce the impact of loading and absorb forces generated through the knee joint, and may have a protective role in joint health. IPFP has been shown to release various cytokines and adipokines that play pro-inflammatory and pro-catabolic roles in cartilage, promoting OA progression. Intra-articular injections of IPFP-derived mesenchymal stem cells and exosomes have been shown to reduce pain and prevent OA progression in patients with knee OA. Previous studies have shown that IPFP has a biphasic effect on OA progression. This article reviews the latest research progress of IPFP, discusses the role and mechanism of IPFP in OA, provide new intervention strategies for the treatment of OA. This article will also discuss the handling of IPFP during the procedure of total knee arthroplasty.
Collapse
Affiliation(s)
- Songkai Yue
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Ganggang Zhai
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Siyu Zhao
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Xiaming Liang
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Yunke Liu
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Jia Zheng
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Xiaoyang Chen
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Yonghui Dong
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China.
| |
Collapse
|
12
|
Yin X, Wang Q, Tang Y, Wang T, Zhang Y, Yu T. Research progress on macrophage polarization during osteoarthritis disease progression: a review. J Orthop Surg Res 2024; 19:584. [PMID: 39342341 PMCID: PMC11437810 DOI: 10.1186/s13018-024-05052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024] Open
Abstract
Primary osteoarthritis (OA) is a prevalent degenerative joint disease that mostly affects the knee joint. It is a condition that occurs around the world. Because of the aging population and the increase in obesity prevalence, the incidence of primary OA is increasing each year. Joint replacement can completely subside the pain and minimize movement disorders caused by advanced OA, while nonsteroidal drugs and injection of sodium hyaluronate into the joint cavity can only partially relieve the pain; hence, it is critical to search for new methods to treat OA. Increasing lines of evidence show that primary OA is a chronic inflammatory disorder, with synovial inflammation as the main characteristic. Macrophages, as one of the immune cells, can be polarized to produce M1 (proinflammatory) and M2 (anti-inflammatory) types during synovial inflammation in OA. Following polarization, macrophages do not come in direct contact with chondrocytes; however, they affect chondrocyte metabolism through paracrine production of a significant quantity of inflammatory cytokines, matrix metalloproteinases, and growth factors and thus participate in inducing joint pain, cartilage injury, angiogenesis, and osteophyte formation. The main pathways that influence the polarization of macrophages are the Toll-like receptor and NF-κB pathways. The study of how macrophage polarization affects OA disease progression has gradually become one of the approaches to prevent and treat OA. Experimental studies have found that the treatment of macrophage polarization in primary OA can effectively relieve synovial inflammation and reduce cartilage damage. The present article summarizes the influence of inflammatory factors secreted by macrophages after polarization on OA disease progression, the main signaling pathways that induce macrophage differentiation, and the role of different polarized types of macrophages in OA; thus, providing a reference for preventing and treating primary OA.
Collapse
Affiliation(s)
- Xiangzhi Yin
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
- Department of Orthopaedics, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Quan Wang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266005, China
| | - Yijie Tang
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Tianrui Wang
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yingze Zhang
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Tengbo Yu
- Department of Orthopaedics, Qingdao Municipal Hospital, Qingdao, 266011, China.
| |
Collapse
|
13
|
Kawaji H, Eguchi N, Saizaki K. Kinematics of the anterior interval in individuals with knee osteoarthritis. J Phys Ther Sci 2024; 36:498-504. [PMID: 39239408 PMCID: PMC11374176 DOI: 10.1589/jpts.36.498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/02/2024] [Indexed: 09/07/2024] Open
Abstract
[Purpose] Abnormal anterior interval kinematics may be associated with knee pain and loss of knee motion. We investigated the anterior interval kinematics during passive knee extension in individuals with knee osteoarthritis (OA). [Participants and Methods] The anterior interval space was evaluated in 13 healthy knees (healthy group) and 11 knees with OA (knee OA group) at 30° and 15° knee flexion using ultrasonography. We measured the angle between the anterior tibia and patellar tendon, known as the patellar tendon-tibial angle (PTTA). [Results] The PTTA significantly increased as the angle of knee flexion decreased in the healthy group. In the knee OA group, the PTTA did not change significantly at 30° and 15° knee flexion. The knee OA group had a considerably higher PTTA at 30° knee flexion and a smaller amount of change in PTTA during knee angle changes than the healthy group. However, after adjusting for age and body mass index (BMI), no significant differences were observed between groups. [Conclusions] Differences in the anterior interval kinematics during knee motion between groups may be due to aging and high BMI. Further research is required to address most of the factors influencing these abnormalities.
Collapse
Affiliation(s)
- Hayato Kawaji
- School of Rehabilitation Sciences, Health Sciences University of Hokkaido: 1757 Kanazawa, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan
- Current affiliation: Soseikawadori Orthopedic Clinic, Japan
| | | | | |
Collapse
|
14
|
Iordache S, Cursaru A, Marinescu A, Cretu B, Popa M, Costache MA, Serban B, Cirstoiu C. Magnetic Resonance Imaging Features and Functional Score in Patients Requiring Total Knee Arthroplasty. Cureus 2024; 16:e68595. [PMID: 39371769 PMCID: PMC11450362 DOI: 10.7759/cureus.68595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Knee osteoarthritis (KOA) is a progressive degenerative disease, with an increasing prevalence among the population. The degenerative changes in KOA affect the cartilage, menisci, synovial tissue, and subchondral bone. The treatment for patients in advanced stages of the disease is total knee arthroplasty (TKA). The purpose of this descriptive study is to identify the MRI features in the case of patients with KOA who did not obtain an improvement in symptoms and joint function after the non-surgical treatments and who applied for surgical treatment, i.e. TKA. Also, we aimed to identify the correlations between the MRI changes and the functional score of the patients, as well as the inter-variable correlations. Materials and methods The study was conducted in the Department of Orthopedics and Traumatology at the University Emergency Hospital of Bucharest between January 1, 2023, and January 31, 2024. It included 50 patients who required TKA. This study is a prospective, observational, and descriptive analysis focusing on patients scheduled for TKA. Results The patients in the study group who required TKA had a Knee Society Score (KSS) ranging from 35 to 70 and a KSS function score between 24 and 60. Among them, 98% had tricompartmental lesions of the articular cartilage, and 100% presented with osteophytes, even when they were not identifiable radiologically. Additionally, 58% of the patients had changes in the infrapatellar fat pad, 66% presented with joint effusion without any traumatic history, and 86% of the patients had partial or complete lesions of the anterior cruciate ligament. Conclusion The MRI pattern of the patient who requires TKA consists of the presence of articular cartilage lesions in more than two compartments with exposure of the subchondral bone and diameter greater than 1 cm, meniscus lesions (>grade 2), meniscus extrusion (>grade 1), the presence of bone marrow lesions (BMLs) in the medial or lateral compartment of the femur or tibia, hyperintense signal of the infrapatellar fat pad, anterior cruciate ligament (ACL) lesions (>grade 2), and the presence of osteophytes together with the presence of effusion in the suprapatellar bursa. BMLs and changes in the infrapatellar fat pad may lead to the opening of new research perspectives explaining the complex changes in KOA in relation to the inflammatory process and gene expression.
Collapse
Affiliation(s)
- Sergiu Iordache
- Orthopaedics and Traumatology, University Emergency Hospital, Bucharest, ROU
| | - Adrian Cursaru
- Orthopaedics and Traumatology, University Emergency Hospital, Bucharest, ROU
| | - Andreea Marinescu
- Radiology and Imaging, University Emergency Hospital, Bucharest, ROU
| | - Bogdan Cretu
- Orthopaedics and Traumatology, University Emergency Hospital, Bucharest, ROU
| | - Mihnea Popa
- Orthopaedics and Traumatology, University Emergency Hospital, Bucharest, ROU
| | | | - Bogdan Serban
- Orthopaedics and Traumatology, University Emergency Hospital, Bucharest, ROU
| | - Catalin Cirstoiu
- Orthopaedics and Traumatology, University Emergency Hospital, Bucharest, ROU
| |
Collapse
|
15
|
Yoshimura H, Nakagawa Y, Muneta T, Koga H. A CCL2/MCP-1 antagonist attenuates fibrosis of the infrapatellar fat pad in a rat model of arthritis. BMC Musculoskelet Disord 2024; 25:674. [PMID: 39210303 PMCID: PMC11360299 DOI: 10.1186/s12891-024-07737-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Fibrosis of the infrapatellar fat pad (IFP) is a feature of osteoarthritis and contributes substantially to the pain and dysfunction in patients' joints. However, the underlying mechanisms remain unclear. C-C motif chemokine ligand-2 (CCL2) plays a central role in tissue fibrosis. Thus, we aimed to investigate the role of CCL2 in the development of IFP fibrosis in a rat model of arthritis, hypothesizing that a CCL2 antagonist could mitigate fibrotic progression. METHODS We induced arthritis in male Wistar rats using intra-articular injections of carrageenan. Furthermore, to evaluate the effects of a CCL2 antagonist on protein expression and collagen deposition in the IFP of the rats, we transferred an N-terminal-truncated CCL2 gene into a rat model via electroporation-mediated intramuscular injection. Macrophage infiltration and collagen deposition in the IFP were analyzed in vivo. Groups were compared using the Mann-Whitney U test and Student's t-test. RESULTS We identified infiltrating macrophages as well as increases in CCL2 and TGF-β levels as collagen deposition progressed. Gene transfer of the CCL2-antagonist before arthritis induction attenuated collagen deposition remarkably. CONCLUSIONS We provide initial evidence that anti-CCL2 gene therapy can effectively suppress the development of IFP fibrosis in a rat model. Thus, targeting CCL2 holds promise as a therapeutic strategy for managing tissue fibrosis in osteoarthritis patients.
Collapse
Affiliation(s)
- Hideya Yoshimura
- Department of Orthopaedic Surgery, Kawaguchi Kogyo General Hospital, Saitama, 332-0031, Japan.
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Yusuke Nakagawa
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
- Department of Cartilage Regeneration, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Takeshi Muneta
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| |
Collapse
|
16
|
Wang Z, Lu J, Li Z, Wang Y, Ge H, Zhang M, Wang R, Gu Y, Ding L, Ren W, Shen Z, Du G, Wu Y, Zhan H. Qualitative and Quantitative Measures in the Infrapatellar Fat Pad in Older Adults: Associations with Knee Pain, Radiographic Osteoarthritis, Kinematics, and Kinetics of the Knee. Acad Radiol 2024; 31:3315-3326. [PMID: 38413312 DOI: 10.1016/j.acra.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/29/2024]
Abstract
RATIONALE AND OBJECTIVES The purpose of this study is to delineate cross-sectional associations between qualitative and quantitative measures of the infrapatellar fat pad (IPFP) and knee symptoms, structure, kinematics, and kinetics in older adults. METHODS Ninety eligible subjects (90 knees, mean age 54.0 years, 68.9% female) were examined at our center. We used T2-weighted fat-suppressed magnetic resonance imaging (MRI) to evaluate signal intensity alteration, maximum sagittal area, and depth of the IPFP. Symptomatic osteoarthritis (SOA) was a pain subscale score greater than 0 on the Western Ontario McMaster Osteoarthritis Index. A Kellgren-Lawrence grade ≥ 2 identified incident radiographic osteoarthritis (iROA). Three-dimensional gait data were employed to analyze knee joint kinematics and kinetics. Correlation and regression analyzes assessed associations between IPFP measurements and SOA, iROA, kinematics, and kinetics. RESULTS There were strong and positive associations between IPFP signal intensity alteration and both SOA and iROA in multivariable regression analyzes [OR (95% CI): 2.849 (1.440 to 5.636), 2.356 (1.236 to 4.492), respectively]. Conversely, a significant negative correlation was observed between IPFP maximum area and flexion angle [B (95%CI): - 1.557 (-2.549 to -0.564)]. Moreover, adjusting for covariates did not reveal any significant correlation between IPFP parameters and other indicators (P > 0.05, respectively). CONCLUSION IPFP signal intensity alteration and area were associated with knee clinical symptoms, structural abnormalities, and flexion angle in adults over 40, respectively. These findings suggest that IPFP may be a crucial imaging biomarker in early and middle knee osteoarthritis.
Collapse
Affiliation(s)
- Zhengming Wang
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jiehang Lu
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Zhengyan Li
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiya Ge
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Min Zhang
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Rui Wang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Orthopedic Surgery, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Yong Gu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Lipeng Ding
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Woxing Ren
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Zhibi Shen
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Guoqing Du
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufeng Wu
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Hongsheng Zhan
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
17
|
Benner JL, Boerma-Argelo KDS, Simon-Konijnenburg MD, Hoozemans MJM, Burger BJ. Hoffa's fat pad resection during total knee arthroplasty does not affect functioning and gait: a double-blind randomized clinical trial. Arch Orthop Trauma Surg 2024; 144:3657-3668. [PMID: 39196403 PMCID: PMC11417071 DOI: 10.1007/s00402-024-05503-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Hoffa's fat pad is considered a source of anterior knee pain and may limit prosthetic knee function. Resection of Hoffa's fat pad in total knee arthroplasty (TKA), however, is controversial, and little is known about the functional outcomes including gait quality. This double-blind randomized controlled trial (i) compared functional recovery between TKAs where Hoffa was resected or preserved, and (ii) compared recovery of self-reported function with objective (gait-related) outcomes. MATERIALS AND METHODS Eighty-five patients (age 66.4 ± 8.0 years, 47% women) scheduled to undergo TKA for primary osteoarthritis were randomly assigned to either fat pad resection or preservation. Subjective measures of functioning were assessed at baseline, 6 weeks, 3 months, and 12 months postoperatively and included the Knee Injury and Osteoarthritis Outcome Score (KOOS), Kujala, and visual analog scale (VAS) for pain. Objective measures of functioning were assessed at baseline, 3 months, and 12 months postoperatively and included instrumented range-of-motion and gait analysis. Longitudinal analyses (generalized estimating equations) were used to compare recovery between groups, and chi-square tests compared attainment of minimal clinical important difference (MCID) and patient acceptable symptom state (PASS). Finally, correlation analyses explored associations between subjective and objective recovery in function. RESULTS Resection patients showed poorer improvement in KOOS quality of life in the first 6 weeks (B=-10.02, 95% confidence interval (CI) [-18.91, -1.12], p = .027), but stronger improvement in knee extension after 3 months (B = 3.02, 95%CI [0.45, 5.60], p = .021) compared to preservation patients. Regarding MCID or PASS, no differences were noted between groups at 3 and 12 months (all p > .05). Subjective function substantially improved in the first 3 months, while objective outcomes improved only between 3 and 12 months. Moderate to strong correlations were identified between changes in knee flexion and gait with Kujala and KOOS in the resection but not in the preservation group. CONCLUSIONS Similar functional outcomes were achieved after TKA with or without resection of Hoffa's fat pad. Hence, removing the fat pad to promote surgical exposure will not affect functional outcomes including gait quality. Functional recovery of objective outcomes was not always consistent with subjective recovery, suggesting that both self-reported as well as objective, gait-related outcomes may provide meaningful information on functional recovery following TKA. TRIAL REGISTRATION This clinical trial was prospectively registered under the Netherlands Trial Registry (# NL3638). This registry has recently been replaced by the Dutch Trial Registry where this study can be accessed via https://onderzoekmetmensen.nl/en/trial/20994 .
Collapse
Affiliation(s)
- Joyce L Benner
- Department of Orthopaedic Surgery, Centre for Orthopaedic Research Alkmaar (CORAL), Northwest Clinics, Wilhelminalaan 12, Alkmaar, 1815 JD, The Netherlands.
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, Amsterdam, 1081 BT, The Netherlands.
| | - Kirsten D S Boerma-Argelo
- Department of Orthopaedic Surgery, Centre for Orthopaedic Research Alkmaar (CORAL), Northwest Clinics, Wilhelminalaan 12, Alkmaar, 1815 JD, The Netherlands
| | - Myrthe D Simon-Konijnenburg
- Department of Orthopaedic Surgery, Centre for Orthopaedic Research Alkmaar (CORAL), Northwest Clinics, Wilhelminalaan 12, Alkmaar, 1815 JD, The Netherlands
| | - Marco J M Hoozemans
- Department of Orthopaedic Surgery, Centre for Orthopaedic Research Alkmaar (CORAL), Northwest Clinics, Wilhelminalaan 12, Alkmaar, 1815 JD, The Netherlands
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, Amsterdam, 1081 BT, The Netherlands
| | - Bart J Burger
- Department of Orthopaedic Surgery, Centre for Orthopaedic Research Alkmaar (CORAL), Northwest Clinics, Wilhelminalaan 12, Alkmaar, 1815 JD, The Netherlands
| |
Collapse
|
18
|
Liu Y, Chen P, Hu B, Xiao Y, Su T, Luo X, Tu M, Cai G. Excessive mechanical loading promotes osteoarthritis development by upregulating Rcn2. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167251. [PMID: 38795835 DOI: 10.1016/j.bbadis.2024.167251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
Exposure of articular cartilage to excessive mechanical loading is closely related to the pathogenesis of osteoarthritis (OA). However, the exact molecular mechanism by which excessive mechanical loading drives OA remains unclear. In vitro, primary chondrocytes were exposed to cyclic tensile strain at 0.5 Hz and 10 % elongation for 30 min to simulate excessive mechanical loading in OA. In vivo experiments involved mice undergoing anterior cruciate ligament transection (ACLT) to model OA, followed by interventions on Rcn2 expression through adeno-associated virus (AAV) injection and tamoxifen-induced gene deletion. 10 μL AAV2/5 containing AAV-Rcn2 or AAV-shRcn2 was administered to the mice by articular injection at 1 week post ACLT surgery, and Col2a1-creERT: Rcn2flox/flox mice were injected with tamoxifen intraperitoneally to obtain Rcn2-conditional knockout mice. Finally, we explored the mechanism of Rcn2 affecting OA. Here, we identified reticulocalbin-2 (Rcn2) as a mechanosensitive factor in chondrocytes, which was significantly elevated in chondrocytes under mechanical overloading. PIEZO type mechanosensitive ion channel component 1 (Piezo1) is a critical mechanosensitive ion channel, which mediates the effect of mechanical loading on chondrocytes, and we found that increased Rcn2 could be suppressed through knocking down Piezo1 under excessive mechanical loading. Furthermore, chondrocyte-specific deletion of Rcn2 in adult mice alleviated OA progression in the mice receiving the surgery of ACLT. On the contrary, articular injection of Rcn2-expressing adeno-associated virus (AAV) accelerated the progression of ACLT-induced OA in mice. Mechanistically, Rcn2 accelerated the progression of OA through promoting the phosphorylation and nuclear translocation of signal transducer and activator of transcription 3 (Stat3).
Collapse
Affiliation(s)
- Yalin Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Peng Chen
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| | - Biao Hu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Manli Tu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, China; Jiangxi Branch of National Clinical Research Center for metabolic Disease, China.
| | - Guangping Cai
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
19
|
Huo Z, Xu C, Li S, Niu Y, Wang F. The thickness change ratio and preservation ratio of the infrapatellar fat pad are related to anterior knee pain in patients following medial patellofemoral ligament reconstruction. J Orthop Surg Res 2024; 19:375. [PMID: 38918867 PMCID: PMC11197376 DOI: 10.1186/s13018-024-04853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The infrapatellar fat pad (IPFP) lies extrasynovial and intracapsular, preserving the joint cavity and serving as a biochemical regulator of inflammatory reactions. However, there is a lack of research on the relationship between anterior knee pain (AKP) and the IPFP after medial patellofemoral ligament reconstruction (MPFLR). Pinpointing the source of pain enables clinicians to promptly manage and intervene, facilitating personalized rehabilitation and improving patient prognosis. METHODS A total of 181 patients were included in the study. These patients were divided into the AKP group (n = 37) and the control group (n = 144). Clinical outcomes included three pain-related scores, Tegner activity score, patient satisfaction, etc. Imaging outcomes included the IPFP thickness, IPFP fibrosis, and the IPFP thickness change and preservation ratio. Multivariate analysis was used to determine the independent factors associated with AKP. Finally, the correlation between independent factors and three pain-related scores was analyzed to verify the results. RESULTS The control group had better postoperative pain-related scores and Tegner activity score than the AKP group (P < 0.01). The AKP group had lower IPFP thickness change ratio and preservation ratio (P < 0.001), and smaller IPFP thickness (P < 0.05). The multivariate analysis revealed that the IPFP thickness change ratio [OR = 0.895, P < 0.001] and the IPFP preservation ratio [OR = 0.389, P < 0.001] were independent factors related to AKP, with a significant correlation between these factors and pain-related scores [|r| > 0.50, P < 0.01]. CONCLUSIONS This study showed the lower IPFP change ratio and preservation ratio may be independent factors associated with AKP after MPFLR. Early detection and targeted intervention of the underlying pain sources can pave the way for tailored rehabilitation programs and improved surgical outcomes. LEVEL OF EVIDENCE LEVEL III.
Collapse
Affiliation(s)
- Zhenhui Huo
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
| | - Chenyue Xu
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
| | - Sibo Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Yingzhen Niu
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
| | - Fei Wang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
20
|
Mourya A, Arya S, Singh A, Bajad G, Loharkar S, Shubhra, Devangan P, Mehra NK, Shukla R, Chandra R, Madan J. Gold Nanoparticles as a Tool to Detect Biomarkers in Osteoarthritis: New Insights. Indian J Microbiol 2024. [DOI: 10.1007/s12088-024-01331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/08/2024] [Indexed: 01/06/2025] Open
|
21
|
Dzidotor GK, Moorhead JB, Ude CC, Ogueri KS, Ghosh D, Laurencin CT. Functions and Effectiveness of Unloader, Patellofemoral, and Knee Sleeve Orthoses: A Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024; 10:147-171. [PMID: 38983777 PMCID: PMC11233114 DOI: 10.1007/s40883-023-00313-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/18/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2024]
Abstract
Background Knee orthoses have been extensively used as a nonsurgical approach to improving knee deficiencies. Currently, arthritic knee conditions remain the leading cause of disability, and this number is expected to increase. As the use of knee orthoses varies widely, so has their effectiveness which is still largely debatable. Here, we present the functions and effectiveness of the three most prominent knee orthotic models dedicated to supporting knee osteoarthritis-unloader, patellofemoral, and knee sleeves. Purpose/Research Question Considering the depth and diversity of the many clinical studies and documented laboratory reports published to date, this literature review was created to educate the clinician, patient, and researcher on common knee orthoses used for the management of arthritic knee conditions. In doing so, we discuss their design, biomechanical effects, and clinical efficacy, as well as broader outcomes, limitations, and recommendations for use. Results/Synthesis The knee orthoses discussed within the scope of this paper are dedicated to protecting the knee against strenuous compressive loads that may affect the patellofemoral and tibiofemoral joints of the knee. Since the knee has multiple axes of motion and articulating surfaces that experience different loads during functional activities, it can be implied that, to a large extent, knee brace designs can differ drastically. Unloader knee orthoses are designed to decrease tibiofemoral and patellofemoral joint pressures. Patellofemoral knee orthoses are designed to decrease strain on the patellofemoral and quadriceps tendons while stabilizing the patella. Knee sleeves are designed to stabilize movements, reduce pain in joints, and improve proprioception across the knee joint. Conclusion Although patients often report benefits from wearing braces, these benefits have not been confirmed by clinicians and scientific investigators. Results from these three orthosis types show that clinical efficacy is still elusive due to the different methodologies used by researchers. Layman Summary Knee orthoses also referred to as knee brace are commonly used for support and stability of the knee. Unloader knee braces are designed to relieve and support those suffering from knee osteoarthritis by improving physical impairment and reducing pain. Patellofemoral knee braces aim to help patients manage patellofemoral pain syndrome. Rehabilitative compression sleeves, also known as knee sleeves, are often used to assist patients suffering from knee pain and laxity. Important findings on the three knee braces discussed show discrepancies in results. Their effectiveness and validity are yet to be understood.
Collapse
Affiliation(s)
- Godwin K. Dzidotor
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Mansfield Rd, Storrs, CT, USA
| | - Jeffrey B. Moorhead
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA
| | - Chinedu C. Ude
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Kenneth S. Ogueri
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA
- Institute of Materials Science, University of Connecticut, Mansfield Rd, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Mansfield Rd, Storrs, CT, USA
| | - Debolina Ghosh
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA
| | - Cato T. Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Mansfield Rd, Storrs, CT, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Institute of Materials Science, University of Connecticut, Mansfield Rd, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Mansfield Rd, Storrs, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Mansfield Rd, Storrs, CT, USA
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
22
|
Zhou Z, Liu J, Xiong T, Liu Y, Tuan RS, Li ZA. Engineering Innervated Musculoskeletal Tissues for Regenerative Orthopedics and Disease Modeling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310614. [PMID: 38200684 DOI: 10.1002/smll.202310614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Musculoskeletal (MSK) disorders significantly burden patients and society, resulting in high healthcare costs and productivity loss. These disorders are the leading cause of physical disability, and their prevalence is expected to increase as sedentary lifestyles become common and the global population of the elderly increases. Proper innervation is critical to maintaining MSK function, and nerve damage or dysfunction underlies various MSK disorders, underscoring the potential of restoring nerve function in MSK disorder treatment. However, most MSK tissue engineering strategies have overlooked the significance of innervation. This review first expounds upon innervation in the MSK system and its importance in maintaining MSK homeostasis and functions. This will be followed by strategies for engineering MSK tissues that induce post-implantation in situ innervation or are pre-innervated. Subsequently, research progress in modeling MSK disorders using innervated MSK organoids and organs-on-chips (OoCs) is analyzed. Finally, the future development of engineering innervated MSK tissues to treat MSK disorders and recapitulate disease mechanisms is discussed. This review provides valuable insights into the underlying principles, engineering methods, and applications of innervated MSK tissues, paving the way for the development of targeted, efficacious therapies for various MSK conditions.
Collapse
Affiliation(s)
- Zhilong Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Jun Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Tiandi Xiong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Yuwei Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
| | - Rocky S Tuan
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
23
|
Wang Q, Yao M, Song X, Liu Y, Xing X, Chen Y, Zhao F, Liu K, Cheng X, Jiang S, Lang N. Automated Segmentation and Classification of Knee Synovitis Based on MRI Using Deep Learning. Acad Radiol 2024; 31:1518-1527. [PMID: 37951778 DOI: 10.1016/j.acra.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVES To develop a deep learning (DL) model for segmentation of the suprapatellar capsule (SC) and infrapatellar fat pad (IPFP) based on sagittal proton density-weighted images and to distinguish between three common types of knee synovitis. MATERIALS AND METHODS This retrospective study included 376 consecutive patients with pathologically confirmed knee synovitis (rheumatoid arthritis, gouty arthritis, and pigmented villonodular synovitis) from two institutions. A semantic segmentation model was trained on manually annotated sagittal proton density-weighted images. The segmentation results of the regions of interest and patients' sex and age were used to classify knee synovitis after feature processing. Classification by the DL method was compared to the classification performed by radiologists. RESULTS Data of the 376 patients (mean age, 42 ± 15 years; 216 men) were separated into a training set (n = 233), an internal test set (n = 93), and an external test set (n = 50). The automated segmentation model showed good performance (mean accuracy: 0.99 and 0.99 in the internal and external test sets). On the internal test set, the DL model performed better than the senior radiologist (accuracy: 0.86 vs. 0.79; area under the curve [AUC]: 0.83 vs. 0.79). On the external test set, the DL diagnostic model based on automatic segmentation performed as well or better than senior and junior radiologists (accuracy: 0.79 vs. 0.79 vs. 0.73; AUC: 0.76 vs. 0.77 vs. 0.70). CONCLUSION DL models for segmentation of SC and IPFD can accurately classify knee synovitis and aid radiologic diagnosis.
Collapse
Affiliation(s)
- Qizheng Wang
- Peking University Third Hospital, Department of Radiology, 49 North Garden Road, Haidian District, Beijing, PR China (Q.W., X.X., Y.C., K.L., N.L.)
| | - Meiyi Yao
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, PR China (M.Y., X.S., S.J.)
| | - Xinhang Song
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, PR China (M.Y., X.S., S.J.)
| | - Yandong Liu
- Beijing Jishuitan Hospital, Department of Radiology, 31 Xinjiekou East Street, Beijing, PR China (Y.L., X.C.)
| | - Xiaoying Xing
- Peking University Third Hospital, Department of Radiology, 49 North Garden Road, Haidian District, Beijing, PR China (Q.W., X.X., Y.C., K.L., N.L.)
| | - Yongye Chen
- Peking University Third Hospital, Department of Radiology, 49 North Garden Road, Haidian District, Beijing, PR China (Q.W., X.X., Y.C., K.L., N.L.)
| | - Fangbo Zhao
- Peking University, No.5 YiHeYuan Road, Haidian District, Beijing, PR China (F.Z.)
| | - Ke Liu
- Peking University Third Hospital, Department of Radiology, 49 North Garden Road, Haidian District, Beijing, PR China (Q.W., X.X., Y.C., K.L., N.L.)
| | - Xiaoguang Cheng
- Beijing Jishuitan Hospital, Department of Radiology, 31 Xinjiekou East Street, Beijing, PR China (Y.L., X.C.)
| | - Shuqiang Jiang
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, PR China (M.Y., X.S., S.J.)
| | - Ning Lang
- Peking University Third Hospital, Department of Radiology, 49 North Garden Road, Haidian District, Beijing, PR China (Q.W., X.X., Y.C., K.L., N.L.).
| |
Collapse
|
24
|
Bravo B, Argüello JM, Forriol F, Altónaga JR. [Translated article] Infrapatellar fat pad resection effect on the osteoarthritis development: Experimental study in sheep. Rev Esp Cir Ortop Traumatol (Engl Ed) 2024; 68:T134-T141. [PMID: 37992862 DOI: 10.1016/j.recot.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/09/2023] [Indexed: 11/24/2023] Open
Abstract
INTRODUCTION The fat of the synovial joints can be used to maintain the joint structure. Our objective is to analyse the evolution of joint degeneration in knees with and without adipose pack. MATERIAL AND METHODOLOGY In six sheep, the anterior cruciate ligament was sectioned in both knees, to cause osteoarthritis. In one group the fat pack was preserved and in another group it was completely removed. We performed a histological and molecular biology study analyzing the expression, in the synovial membrane, subchondral bone, cartilage, fat, meniscus, and synovial fluid, of RUNX2, PTHrP, cathepsin-K, and MCP1. RESULTS We did not find morphological differences. We found increased expression of RUNX2 in synovial membrane, PTHrP and Cathepsin K in synovial fluid in the group without fat, and increased expression of RUNX2 in the meniscus and MCP1 in synovial fluid in the group with fat. CONCLUSION Infrapatellar fat participates in the inflammatory process that accompanies osteoarthritis, since Hoffa fat pad resection alters pro-inflammatory markers, while the model with intact fat increases the pro-inflammatory marker MCP1 in synovial fluid.
Collapse
Affiliation(s)
- B Bravo
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad CEU-San Pablo, Madrid, Spain.
| | - J M Argüello
- Servicio de Cirugía Ortopédica y Traumatología, Fundación Jiménez Díaz, Madrid, Spain
| | - F Forriol
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad CEU-San Pablo, Madrid, Spain
| | - J R Altónaga
- Clínica Veterinaria, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
25
|
Bravo B, Argüello JM, Forriol F, Altónaga JR. Infrapatellar Fat Pad resection effect on the osteoarthritis development: Experimental study in sheep. Rev Esp Cir Ortop Traumatol (Engl Ed) 2024; 68:134-141. [PMID: 37187343 DOI: 10.1016/j.recot.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023] Open
Abstract
INTRODUCTION The fat of the synovial joints can be used to maintain the joint structure. Our objective is to analyze the evolution of joint degeneration in knees with and without adipose pack. MATERIAL AND METHODOLOGY In six sheep, the anterior cruciate ligament was sectioned in both knees, to cause osteoarthritis. In one group the fat pack was preserved and in another group it was completely removed. We performed a histological and molecular biology study analyzing the expression, in the synovial membrane, subchondral bone, cartilage, fat, meniscus, and synovial fluid, of RUNX2, PTHrP, cathepsin-K, and MCP1. RESULTS We did not find morphological differences. We found increased expression of RUNX2 in synovial membrane, PTHrP and Cathepsin K in synovial fluid in the group without fat, and increased expression of RUNX2 in the meniscus and MCP1 in synovial fluid in the group with fat. CONCLUSION Infrapatellar fat participates in the inflammatory process that accompanies osteoarthritis, since Hoffa fat pad resection alters pro-inflammatory markers, while the model with intact fat increases the pro-inflammatory marker MCP1 in synovial fluid.
Collapse
Affiliation(s)
- B Bravo
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad CEU-San Pablo, Madrid, España.
| | - J M Argüello
- Servicio de Cirugía Ortopédica y Traumatología, Fundación Jiménez Díaz, Madrid, España
| | - F Forriol
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad CEU-San Pablo, Madrid, España
| | - J R Altónaga
- Clínica Veterinaria, Facultad de Veterinaria, Universidad de León, León, España
| |
Collapse
|
26
|
Agulla B, Vizcaíno N, Velarde R, Estruch J, Domínguez E, Pastor J. Adipocytes in synovial fluid cytology: An approach for diagnosing synovial lipomatosis. Vet Clin Pathol 2024; 53:80-84. [PMID: 38320970 DOI: 10.1111/vcp.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
A 2-year-old neutered male bullmastiff dog was presented with chronic left hind limb lameness. Physical examination revealed left stifle effusion and medial buttress without cranial tibial thrust. Radiographs showed joint effusion and new bone formation at the patella apex. Magnetic resonance imaging showed increased synovial fluid, widening of the joint space, abnormal infrapatellar fat body and thinning of the cranial cruciate ligament. Synoviocentesis and cytologic evaluation of synovial fluid revealed marked mononuclear inflammation with abundant fatty tissue, suggesting synovial lipomatosis in conjunction with the imaging findings. The disease was confirmed histologically after sampling the lesion during arthrotomy. Synovial lipomatosis, characterized by extensive synovial adipose tissue proliferation of the synovial membrane, is a rare "tumor-like" disorder that usually affects the stifle. Although the etiology remains unclear, joint trauma, inflammation, instability, and lipid abnormalities have been proposed as causes. Inflammatory factors may promote synoviocyte and adipocyte hyperplasia that perpetuate the process. Surgical removal may be suggested to eliminate triggers and prevent future recurrences. The report provides the first cytological description of adipocytes in synovial fluid associated with the diagnosis of synovial lipomatosis in dogs. This case report underscores the potential effectiveness of cytologic analysis of synovial fluid smears, in combination with magnetic resonance imaging (MRI), for diagnosing this condition and reducing complications associated with arthrotomy for sampling purposes. Additionally, the case highlights that synovial lipomatosis should be considered as a potential differential diagnosis for synovial masses in dogs. Further cases are needed to validate these observations in veterinary medicine.
Collapse
Affiliation(s)
- Beatriz Agulla
- Department Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nùria Vizcaíno
- Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roser Velarde
- Department Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Estruch
- Department Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Josep Pastor
- Department Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
- Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Yuan Z, Jiang D, Yang M, Tao J, Hu X, Yang X, Zeng Y. Emerging Roles of Macrophage Polarization in Osteoarthritis: Mechanisms and Therapeutic Strategies. Orthop Surg 2024; 16:532-550. [PMID: 38296798 PMCID: PMC10925521 DOI: 10.1111/os.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
Osteoarthritis (OA) is the most common chronic degenerative joint disease in middle-aged and elderly people, characterized by joint pain and dysfunction. Macrophages are key players in OA pathology, and their activation state has been studied extensively. Various studies have suggested that macrophages might respond to stimuli in their microenvironment by changing their phenotypes to pro-inflammatory or anti-inflammatory phenotypes, which is called macrophage polarization. Macrophages accumulate and become polarized (M1 or M2) in many tissues, such as synovium, adipose tissue, bone marrow, and bone mesenchymal tissues in joints, while resident macrophages as well as other stromal cells, including fibroblasts, chondrocytes, and osteoblasts, form the joint and function as an integrated unit. In this study, we focus exclusively on synovial macrophages, adipose tissue macrophages, and osteoclasts, to investigate their roles in the development of OA. We review recent key findings related to macrophage polarization and OA, including pathogenesis, molecular pathways, and therapeutics. We summarize several signaling pathways in macrophage reprogramming related to OA, including NF-κB, MAPK, TGF-β, JAK/STAT, PI3K/Akt/mTOR, and NLRP3. Of note, despite the increasing availability of treatments for osteoarthritis, like intra-articular injections, surgery, and cellular therapy, the demand for more effective clinical therapies has remained steady. Therefore, we also describe the current prospective therapeutic methods that deem macrophage polarization to be a therapeutic target, including physical stimulus, chemical compounds, and biological molecules, to enhance cartilage repair and alleviate the progression of OA.
Collapse
Affiliation(s)
- Zimu Yuan
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Decheng Jiang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Mengzhu Yang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Jie Tao
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Xin Hu
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| | - Xiao Yang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina
| | - Yi Zeng
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
28
|
Novakov V, Novakova O, Churnosova M, Aristova I, Ponomarenko M, Reshetnikova Y, Churnosov V, Sorokina I, Ponomarenko I, Efremova O, Orlova V, Batlutskaya I, Polonikov A, Reshetnikov E, Churnosov M. Polymorphism rs143384 GDF5 reduces the risk of knee osteoarthritis development in obese individuals and increases the disease risk in non-obese population. ARTHROPLASTY 2024; 6:12. [PMID: 38424630 PMCID: PMC10905832 DOI: 10.1186/s42836-023-00229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/26/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND We investigated the effect of obesity on the association of genome-wide associative studies (GWAS)-significant genes with the risk of knee osteoarthritis (KOA). METHODS All study participants (n = 1,100) were divided into 2 groups in terms of body mass index (BMI): BMI ≥ 30 (255 KOA patients and 167 controls) and BMI < 30 (245 KOA and 433 controls). The eight GWAS-significant KOA single nucleotide polymorphisms (SNP) of six candidate genes, such as LYPLAL1 (rs2820436, rs2820443), SBNO1 (rs1060105, rs56116847), WWP2 (rs34195470), NFAT5 (rs6499244), TGFA (rs3771501), GDF5 (rs143384), were genotyped. Logistic regression analysis (gPLINK online program) was used for SNPs associations study with the risk of developing KOA into 2 groups (BMI ≥ 30 and BMI < 30) separately. The functional effects of KOA risk loci were evaluated using in silico bioinformatic analysis. RESULTS Multidirectional relationships of the rs143384 GDF5 with KOA in BMI-different groups were found: This SNP was KOA protective locus among individuals with BMI ≥ 30 (OR 0.41 [95%CI 0.20-0.94] recessive model) and was disorder risk locus among individuals with BMI < 30 (OR 1.32 [95%CI 1.05-1.65] allele model, OR 1.44 [95%CI 1.10-1.86] additive model, OR 1.67 [95%CI 1.10-2.52] dominant model). Polymorphism rs143384 GDF5 manifested its regulatory effects in relation to nine genes (GDF5, CPNE1, EDEM2, ERGIC3, GDF5OS, PROCR, RBM39, RPL36P4, UQCC1) in adipose tissue, which were involved in the regulation of pathways of apoptosis of striated muscle cells. CONCLUSIONS In summary, the effect of obesity on the association of the rs143384 GDF5 with KOA was shown: the "protective" value of this polymorphism in the BMI ≥ 30 group and the "risk" meaning in BMI < 30 cohort.
Collapse
Affiliation(s)
- Vitaly Novakov
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Olga Novakova
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Maria Churnosova
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Inna Aristova
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Marina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Yuliya Reshetnikova
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Vladimir Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Inna Sorokina
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Olga Efremova
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Valentina Orlova
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Irina Batlutskaya
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Alexey Polonikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
- Department of Biology, Medical Genetics and Ecology and Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, 305041, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, 308015, Russia.
| |
Collapse
|
29
|
Karjalainen K, Tanska P, Collins KH, Herzog W, Korhonen RK, Moo EK. Independent and combined effects of obesity and traumatic joint injury to the structure and composition of rat knee cartilage. Connect Tissue Res 2024; 65:117-132. [PMID: 38530304 DOI: 10.1080/03008207.2024.2310838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/22/2024] [Indexed: 03/27/2024]
Abstract
Osteoarthritis (OA) is a multifactorial joint disease characterized by articular cartilage degradation. Risk factors for OA include joint trauma, obesity, and inflammation, each of which can affect joint health independently, but their interaction and the associated consequences of such interaction were largely unexplored. Here, we studied compositional and structural alterations in knee joint cartilages of Sprague-Dawley rats exposed to two OA risk factors: joint injury and diet-induced obesity. Joint injury was imposed by surgical transection of anterior cruciate ligaments (ACLx), and obesity was induced by a high fat/high sucrose diet. Depth-dependent proteoglycan (PG) content and collagen structural network of cartilage were measured from histological sections collected previously in Collins et al.. (2015). We found that ACLx primarily affected the superficial cartilages. Compositionally, ACLx led to reduced PG content in lean animals, but increased PG content in obese rats. Structurally, ACLx caused disorganization of collagenous network in both lean and obese animals through increased collagen orientation in the superficial tissues and a change in the degree of fibrous alignment. However, the cartilage degradation attributed to joint injury and obesity was not necessarily additive when the two risk factors were present simultaneously, particularly for PG content and collagen orientation in the superficial tissues. Interestingly, sham surgeries caused a through-thickness disorganization of collagen network in lean and obese animals. We conclude that the interactions of multiple OA risk factors are complex and their combined effects cannot be understood by superposition principle. Further research is required to elucidate the interactive mechanism between OA subtypes.
Collapse
Affiliation(s)
- Kalle Karjalainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Petri Tanska
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Kelsey H Collins
- Laboratory of Musculoskeletal Crosstalk, Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, USA
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Eng Kuan Moo
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada
| |
Collapse
|
30
|
Kreitmaier P, Park YC, Swift D, Gilly A, Wilkinson JM, Zeggini E. Epigenomic profiling of the infrapatellar fat pad in osteoarthritis. Hum Mol Genet 2024; 33:501-509. [PMID: 37975894 PMCID: PMC10939427 DOI: 10.1093/hmg/ddad198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Osteoarthritis is a prevalent, complex disease of the joints, and affects multiple intra-articular tissues. Here, we have examined genome-wide DNA methylation profiles of primary infrapatellar fat pad and matched blood samples from 70 osteoarthritis patients undergoing total knee replacement surgery. Comparing the DNA methylation profiles between these tissues reveal widespread epigenetic differences. We produce the first genome-wide methylation quantitative trait locus (mQTL) map of fat pad, and make the resource available to the wider community. Using two-sample Mendelian randomization and colocalization analyses, we resolve osteoarthritis GWAS signals and provide insights into the molecular mechanisms underpinning disease aetiopathology. Our findings provide the first view of the epigenetic landscape of infrapatellar fat pad primary tissue in osteoarthritis.
Collapse
Affiliation(s)
- Peter Kreitmaier
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, Ismaninger Str. 22, Munich 81675, Germany
- Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
| | - Young-Chan Park
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
| | - Diane Swift
- Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Rd, Sheffield S10 2RX, United Kingdom
| | - Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Rd, Sheffield S10 2RX, United Kingdom
| | - Eleftheria Zeggini
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, Ismaninger Str. 22, Munich 81675, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
| |
Collapse
|
31
|
Wang S, Xiao Y, An X, Luo L, Gong K, Yu D. A comprehensive review of the literature on CD10: its function, clinical application, and prospects. Front Pharmacol 2024; 15:1336310. [PMID: 38389922 PMCID: PMC10881666 DOI: 10.3389/fphar.2024.1336310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
CD10, a zinc-dependent metalloprotease found on the cell surface, plays a pivotal role in an array of physiological and pathological processes including cardiovascular regulation, immune function, fetal development, pain response, oncogenesis, and aging. Recognized as a biomarker for hematopoietic and tissue stem cells, CD10 has garnered attention for its prognostic potential in the progression of leukemia and various solid tumors. Recent studies underscore its regulatory significance and therapeutic promise in combating Alzheimer's disease (AD), and it is noted for its protective role in preventing heart failure (HF), obesity, and type-2 diabetes. Furthermore, CD10/substance P interaction has also been shown to contribute to the pain signaling regulation and immunomodulation in diseases such as complex regional pain syndrome (CRPS) and osteoarthritis (OA). The emergence of COVID-19 has sparked interest in CD10's involvement in the disease's pathogenesis. Given its association with multiple disease states, CD10 is a prime therapeutic target; inhibitors targeting CD10 are now being advanced as therapeutic agents. This review compiles recent and earlier literature on CD10, elucidating its physicochemical attributes, tissue-specific expression, and molecular functions. Furthermore, it details the association of CD10 with various diseases and the clinical advancements of its inhibitors, providing a comprehensive overview of its growing significance in medical research.
Collapse
Affiliation(s)
- Shudong Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yinghui Xiao
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Luo
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kejian Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
32
|
Tang S, Yao L, Ruan J, Kang J, Cao Y, Nie X, Lan W, Zhu Z, Han W, Liu Y, Tian J, Seale P, Qin L, Ding C. Single-cell atlas of human infrapatellar fat pad and synovium implicates APOE signaling in osteoarthritis pathology. Sci Transl Med 2024; 16:eadf4590. [PMID: 38266107 DOI: 10.1126/scitranslmed.adf4590] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/18/2023] [Indexed: 01/26/2024]
Abstract
The infrapatellar fat pad (IPFP) and synovium play essential roles in maintaining knee joint homeostasis and in the progression of osteoarthritis (OA). The cellular and transcriptional mechanisms regulating the function of these specialized tissues under healthy and diseased conditions are largely unknown. Here, single-cell and single-nuclei RNA sequencing of human IPFP and synovial tissues were performed to elucidate the cellular composition and transcriptional profile. Computational trajectory analysis revealed that dipeptidyl peptidase 4+ mesenchymal cells function as a common progenitor for IPFP adipocytes and synovial lining layer fibroblasts, suggesting that IPFP and synovium represent an integrated tissue unit. OA induced a profibrotic and inflammatory phenotype in mesenchymal lineage cells with biglycan+ intermediate fibroblasts as a major contributor to OA fibrosis. Apolipoprotein E (APOE) signaling from intermediate fibroblasts and macrophages was identified as a critical regulatory factor. Ex vivo incubation of human cartilage with soluble APOE accelerated proteoglycan degeneration. Inhibition of APOE signaling by intra-articular injection of an anti-APOE neutralizing antibody attenuated the progression of collagenase-induced OA in mice, demonstrating a detrimental effect of APOE on cartilage. Our studies provide a framework for designing further therapeutic strategies for OA by describing the cellular and transcriptional landscape of human IPFP and synovium in healthy versus OA joints.
Collapse
Affiliation(s)
- Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Lutian Yao
- Department of Orthopaedic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jianzhao Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jingliang Kang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yumei Cao
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xiaoyu Nie
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Weiren Lan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Weiyu Han
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yongguang Liu
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jing Tian
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Patrick Seale
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| |
Collapse
|
33
|
Testini V, Veronese N, Ricatti G, Paparella MT, Guglielmi G. Dimensional changes of Hoffa’s fat pad related to aging: evaluation by MRI. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2024; 55:15. [DOI: 10.1186/s43055-023-01177-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2025] Open
Abstract
Abstract
Background
Hoffa's fat pad is an intra-capsular extra-sinovial structure of the knee joint that has a significant biomechanical and metabolic role, minimizing the influence of stresses created by loading and generating cytokines. Changes in its size can lead to variations in the homeostasis of the knee in elderly patients. This work intends to assess the dimensional variations of Hoffa's fat pad associated to aging in both sexes, using MRI sagittal sequences acquired from the OAI (Osteoarthritis Initiative) database.
Methods
We examined the Hoffa's fat pad sagittal thickness in 217 men and women with knee osteoarthritis who were grouped into four age groups for the study: 40–49; 50–59; 60–69; and 70–80. 3T sagittal IW 2D TSE Fat-suppressed MRI sequences, taken from the OAI (Osteoarthritis Initiative) database, were examined.
Results
Hoffa’s fat pad thickness was shown to differ significantly between groups in both men and women, decreasing in the older individuals' groups (R = − 0.46; p 0.0001). By dividing the patients into ten-year age groups and by sex, the thickness of both the right knee and the left knee was examined. In fact, the average thickness of Hoffa's fat pad of the right knee was reported to be, in males, 33.6+/− 3 mm in subjects aged between 40 and 49 years, 31+/− 2.4 mm for patients aged between 50 and 59, 30.3 ± 1.8 mm in the group between 60 and 69 years and 28.7+/− 1.8 mm between 70 and 80 years. In women the values obtained were the following: 29+/− 1.6 mm between 40 and 49 years; 28.9+/− 2.6 mm in the group between 50 and 59 years, 25.3+/− 1.9 mm for patients aged 60 and 69 years and 26+/− 2 mm between 70 and 80 years. Similar results were obtained for the left knee.
Conclusions
Hoffa’s fat pad gradually thins with aging in both male and female patients with knee osteoarthritis, and this can be detected by evaluating the thickness of the fat pad on sagittal MRI sequences.
Collapse
|
34
|
Wisniewska E, Laue D, Spinnen J, Kuhrt L, Kohl B, Bußmann P, Meier C, Schulze-Tanzil G, Ertel W, Jagielski M. Infrapatellar Fat Pad Modulates Osteoarthritis-Associated Cytokine and MMP Expression in Human Articular Chondrocytes. Cells 2023; 12:2850. [PMID: 38132170 PMCID: PMC10741519 DOI: 10.3390/cells12242850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Osteoarthritis (OA) most frequently affects the knee joint and is associated with an elevated expression of cytokines and extracellular cartilage matrix (ECM), degrading enzymes such as matrix metalloproteinases (MMPs). Differences in gene expression of the intra-articularly located infrapatellar fat pad (IPFP) and other fatty tissue suggest its autonomous function, yet its role in OA pathogenesis remains unknown. Human IPFPs and articular cartilage were collected from OA patients undergoing total knee arthroplasty, and biopsies from the IPFP of healthy patients harvested during knee arthroscopy served as controls (CO). Isolated chondrocytes were co-cultured with either osteoarthritic (OA) or CO-IPFPs in a transwell system. Chondrocyte expression of MMP1, -3, -13, type 1 and 2 collagens, interleukin IL1β, IL6, IL10, and tumor necrosis factor TNFα was analyzed by RTD-PCR at day 0 and day 2, and TNFα secretion was analyzed by ELISA. The cytokine release in IPFPs was assessed by an array. Results: Both IPFPs (CO, OA) significantly reduced the expression of type 2 collagen and TNFα in chondrocytes. On the other hand, only CO-IPFP suppressed the expression of type 1 collagen and significantly induced the MMP13 expression. On the contrary, IL1β and IL6 were significantly induced when exposed to OA-IPFP. Conclusions: The partial loss of the suppressive effect on type 1 collagen gene expression found for OA-IPFP shows the pathological remodeling and dedifferentiation potential of the OA-IPFP on the chondrocytes. However, the significant suppression of TNFα implies that the OA- and CO-IPFP could also exhibit a protective role in the knee joint, preventing the progress of inflammation.
Collapse
Affiliation(s)
- Ewa Wisniewska
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.W.); (D.L.); (J.S.); (L.K.); (B.K.); (P.B.); (C.M.); (W.E.)
| | - Dominik Laue
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.W.); (D.L.); (J.S.); (L.K.); (B.K.); (P.B.); (C.M.); (W.E.)
| | - Jacob Spinnen
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.W.); (D.L.); (J.S.); (L.K.); (B.K.); (P.B.); (C.M.); (W.E.)
| | - Leonard Kuhrt
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.W.); (D.L.); (J.S.); (L.K.); (B.K.); (P.B.); (C.M.); (W.E.)
| | - Benjamin Kohl
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.W.); (D.L.); (J.S.); (L.K.); (B.K.); (P.B.); (C.M.); (W.E.)
| | - Patricia Bußmann
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.W.); (D.L.); (J.S.); (L.K.); (B.K.); (P.B.); (C.M.); (W.E.)
| | - Carola Meier
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.W.); (D.L.); (J.S.); (L.K.); (B.K.); (P.B.); (C.M.); (W.E.)
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University (PMU), Prof.-Ernst Nathan Strasse 1, 90419 Nuremberg, Germany;
| | - Wolfgang Ertel
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.W.); (D.L.); (J.S.); (L.K.); (B.K.); (P.B.); (C.M.); (W.E.)
| | - Michal Jagielski
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.W.); (D.L.); (J.S.); (L.K.); (B.K.); (P.B.); (C.M.); (W.E.)
| |
Collapse
|
35
|
Wei G, Lu K, Umar M, Zhu Z, Lu WW, Speakman JR, Chen Y, Tong L, Chen D. Risk of metabolic abnormalities in osteoarthritis: a new perspective to understand its pathological mechanisms. Bone Res 2023; 11:63. [PMID: 38052778 PMCID: PMC10698167 DOI: 10.1038/s41413-023-00301-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
Although aging has traditionally been viewed as the most important risk factor for osteoarthritis (OA), an increasing amount of epidemiological evidence has highlighted the association between metabolic abnormalities and OA, particularly in younger individuals. Metabolic abnormalities, such as obesity and type II diabetes, are strongly linked to OA, and they affect both weight-bearing and non-weight-bearing joints, thus suggesting that the pathogenesis of OA is more complicated than the mechanical stress induced by overweight. This review aims to explore the recent advances in research on the relationship between metabolic abnormalities and OA risk, including the impact of abnormal glucose and lipid metabolism, the potential pathogenesis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Guizheng Wei
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ke Lu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Muhammad Umar
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhenglin Zhu
- Department of Orthopedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - William W Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - John R Speakman
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Chen
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
36
|
Xiao J, Gong X, Fu Z, Song X, Ma Q, Miao J, Cai R, Yan Z, Wang S, Li Q, Chen Y, Yang L, Bian X, Chen Y. The influence of inflammation on the characteristics of adipose-derived mesenchymal stem cells (ADMSCs) and tissue repair capability in a hepatic injury mouse model. Stem Cell Res Ther 2023; 14:334. [PMID: 37981679 PMCID: PMC10659042 DOI: 10.1186/s13287-023-03532-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are adult stem cells with self-renewal and multi-directional differentiation potential and possess the functions of immunomodulation, regulation of cell growth, and repair of damage. Over recent years, MSCs have been found to regulate the secretion of inflammatory factors and to exert regulatory effects on various lymphocytes in inflammatory states, and on the subsequent repair of tissue damage caused by inflammation. In the present study, we analyzed the effects of tissue inflammation on the characteristics of MSCs. METHODS Human fat derived from the infrapatellar fat pad (IPFP) of knees with differing degrees of inflammation was extracted from specimens derived from total knee arthroplasties. HE and immunohistochemical staining was performed to directly observe the evidence and degree of inflammation in human infrapatellar fat pad tissue in order to classify MSCs cells, by their origin, into highly inflamed and lowly inflamed groups, and to study the effect of tissue inflammation on cell acquisition rates via cellular counting data. Flow cytometry assays were performed to investigate the effect of tissue inflammation on MSC surface marker expression. Trilineage differentiation, including osteogenesis, adipogenesis, and chondrogenesis, was performed to assess the effect of tissue inflammation on the ability of MSCs to undergo directed differentiation. The effect of tissue inflammation on the ability of MSCs to proliferate was investigated via clone formation studies. RNA-sequencing was performed to evaluate the transcriptomes of MSCs derived from different areas of inflammation. The effect of tissue inflammation on tissue repair capacity and safety of MSCs was investigated via a murine model of acute liver injury. RESULTS The results of cell count data indicate that a high degree of tissue inflammation significantly decreases the acquisition rate of MSCs, and the proportion of CD34+ and CD146+ cells. The results of our trilineage differentiation assay show that a higher degree of inflammation decreases osteogenic differentiation and enhances adipogenic and chondrogenic differentiation of MSCs. However, these differences were not statistically significant. Clone formation assays indicate that the degree of tissue inflammation at the MSC source does not significantly affect the proliferative capacity of MSCs. The transcriptomes of MSCs remain relatively stable in fat pad tissues derived from both highly and lowly inflamed samples. The results of acute liver injury investigations in mice indicate that MSCs of high and low inflammatory tissue origin have no significant difference in their tissue repair capability. CONCLUSIONS High tissue inflammation at the source of MSCs reduces the acquisition rate of MSCs and the percentage of CD34+ and CD146+ cells acquisition. However, source tissue inflammation may not significantly affect trilineage differentiation potential and proliferative capacity of MSCs. Also, MSCs obtained from differing source degrees of inflammation retain stable and similar transcriptomic profile and are both safe and efficacious for tissue repair/regeneration without detectable differences.
Collapse
Affiliation(s)
- Jingfang Xiao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Qinghua Ma
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Jingya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zexuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Shuai Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Qian Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yaokai Chen
- Biobank and Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, People's Republic of China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China.
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China.
| | - Yemiao Chen
- Biobank and Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, People's Republic of China.
| |
Collapse
|
37
|
Satake Y, Izumi M, Aso K, Ikeuchi M. Association between infrapatellar fat pad ultrasound elasticity and anterior knee pain in patients with knee osteoarthritis. Sci Rep 2023; 13:20103. [PMID: 37973859 PMCID: PMC10654649 DOI: 10.1038/s41598-023-47459-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
This study investigates whether infrapatellar fat pad (IPFP) elasticity is associated with anterior knee pain in patients with knee osteoarthritis (KOA). The IPFP elasticity of 97 patients with KOA (Kellgren and Lawrence [KL] grades of the femorotibial and patellofemoral joints ≥ 2 and ≤ 2, respectively), aged 46-86 years, was evaluated via shear wave speed using ultrasound elastography. The patients were divided into two groups according to the presence or absence of anterior knee pain. Univariate analyses were used to compare patient age, sex, femorotibial KL grade, magnetic resonance imaging findings (Hoffa, effusion synovitis, bone marrow lesion scores, and IPFP size), and IPFP elasticity between the groups. Multivariate logistic regression analyses were subsequently performed using selected explanatory variables. IPFP elasticity was found to be associated with anterior knee pain in the univariate (p = 0.007) and multivariate (odds ratio: 61.12, 95% CI 1.95-1920.66; p = 0.019) analyses. Anterior knee pain is strongly associated with stiffer IPFPs regardless of the femorotibial KL grade, suggesting that ultrasound elastography is useful for the diagnosis of painful IPFP in patients with KOA.
Collapse
Affiliation(s)
- Yoshinori Satake
- Department of Orthopaedic Surgery, Kochi Medical School, Kochi University, Kohasu, Okoh-Cho, Nankoku-City, Kochi, 783-8505, Japan.
| | - Masashi Izumi
- Department of Orthopaedic Surgery, Kochi Medical School, Kochi University, Kohasu, Okoh-Cho, Nankoku-City, Kochi, 783-8505, Japan
| | - Koji Aso
- Department of Orthopaedic Surgery, Kochi Medical School, Kochi University, Kohasu, Okoh-Cho, Nankoku-City, Kochi, 783-8505, Japan
| | - Masahiko Ikeuchi
- Department of Orthopaedic Surgery, Kochi Medical School, Kochi University, Kohasu, Okoh-Cho, Nankoku-City, Kochi, 783-8505, Japan
| |
Collapse
|
38
|
Martin A, Liu K, Alimohammadi M. The ligamentum mucosum's potential as a preventative structure in the development of knee osteoarthritis. J Exp Orthop 2023; 10:109. [PMID: 37919534 PMCID: PMC10622374 DOI: 10.1186/s40634-023-00681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
PURPOSE This paper aimed to identify whether the presence, type, and/or morphology of the ligamentum mucosum could play a role in the development of knee osteoarthritis. Since its microscopic structure is alike that of other knee ligaments, it was hypothesized that its presence could facilitate knee motion and stability, thus preventing or reducing the extent of knee osteoarthritis. METHODS Thirty three cadavers (a total of 51 knees) were dissected. The ligamentum mucosum, if present, was measured with a digital caliber and a measuring tape in terms of length, width, and thickness. Knee osteoarthritis was assessed in six regions of the knee. The OuterBridge Classification System (Grades 0-4) was used to visually assess the extent, in addition to probing the area. Osteoarthritis was deemed present if the grade was 2 or greater. RESULTS The presence of the ligament was associated with a lower mean osteoarthritis level in the trochlear groove and lateral tibial plateau regions (p < 0.001 and p = 0.013, respectively). Overall osteoarthritis of the knee was also present at varying levels for each type of the ligamentum mucosum (p < 0.001). The patella and the medial condyle had the greatest levels of osteoarthritis, while the medial and lateral tibial plateaus had the lowest levels. CONCLUSION The presence of the ligamentum mucosum is linked with decreased osteoarthritis in the trochlear groove region. In addition, both the absent ligament and its classification as a vertical septum are associated with increased knee osteoarthritis. LEVEL OF EVIDENCE Five.
Collapse
Affiliation(s)
| | - Kenneth Liu
- UBC (Vancouver, Canada) Faculty of Medicine - Cellular and Physiological Sciences, Vancouver, Canada
| | - Majid Alimohammadi
- UBC (Vancouver, Canada) Faculty of Medicine - Cellular and Physiological Sciences, Vancouver, Canada
| |
Collapse
|
39
|
Cheng KY, Moazamian D, Ma Y, Jang H, Jerban S, Du J, Chung CB. Clinical application of ultrashort echo time (UTE) and zero echo time (ZTE) magnetic resonance (MR) imaging in the evaluation of osteoarthritis. Skeletal Radiol 2023; 52:2149-2157. [PMID: 36607355 PMCID: PMC10323038 DOI: 10.1007/s00256-022-04269-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023]
Abstract
Novel compositional magnetic resonance (MR) imaging techniques have allowed for both the qualitative and quantitative assessments of tissue changes in osteoarthritis, many of which are difficult to characterize on conventional MR imaging. Ultrashort echo time (UTE) and zero echo time (ZTE) MR imaging have not been broadly implemented clinically but have several applications that leverage contrast mechanisms for morphologic evaluation of bone and soft tissue, as well as biochemical assessment in various stages of osteoarthritis progression. Many of the musculoskeletal tissues implicated in the initiation and progression of osteoarthritis are short T2 in nature, appearing dark as signal has already decayed to its minimum when image sampling starts. UTE and ZTE MR imaging allow for the qualitative and quantitative assessments of these short T2 tissues (bone, tendon, calcified cartilage, meniscus, and ligament) with both structural and functional reference standards described in the literature [1-3]. This review will describe applications of UTE and ZTE MR imaging in musculoskeletal tissues focusing on its role in knee osteoarthritis. While the review will address tissue-specific applications of these sequences, it is understood that osteoarthritis is a whole joint process with involvement and interdependence of all tissues. KEY POINTS: • UTE MR imaging allows for the qualitative and quantitative evaluation of short T2 tissues (bone, calcified cartilage, and meniscus), enabling identification of both early degenerative changes and subclinical injuries that may predispose to osteoarthritis. • ZTE MR imaging allows for the detection of signal from bone, which has some of the shortest T2 values, and generates tissue contrast similar to CT, potentially obviating the need for CT in the assessment of osseous features of osteoarthritis.
Collapse
Affiliation(s)
- Karen Y Cheng
- Department of Radiology, University of California, San Diego, CA, USA
| | - Dina Moazamian
- Department of Radiology, University of California, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Orthopedic Surgery, University of California, San Diego, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, CA, USA.
- Department of Radiology, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
40
|
Kim JN, Park HJ, Park JH, Park SJ, Kim E, Lee YT, Shin H. Abnormalities of the pericruciate fat pad: Correlations with the location and severity of chondral lesions of the knee. Eur J Radiol 2023; 167:111028. [PMID: 37595398 DOI: 10.1016/j.ejrad.2023.111028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 07/10/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023]
Abstract
PURPOSE The aim of this study was to evaluate the relationship between the grade of signal change of the pericruciate fat pad (PCFP) and the location and severity of cartilage alterations in the knee on magnetic resonance imaging (MRI). MATERIALS AND METHODS This retrospective study included 234 patients (M:F = 96:138, mean: 51 years) who underwent knee MRI. Two experienced musculoskeletal radiologists assessed any PCFP alterations (as grades 0-3) and chondral lesions using the modified Outerbridge grade (as grades 0-4). Bone marrow lesions (BMLs), meniscal status, anterior cruciate ligament alterations, and effusion-synovitis were also evaluated on the MRI. The relationships between PCFP alteration and MR findings (including the grade of chondral lesion) were evaluated. RESULTS Signal changes in the PCFP were detected in 150 cases by Reader 1 (grade 0, 67 cases; grade 1, 53 cases; grade 2, 21 cases; grade 3, 9 cases) and in 154 cases by Reader 2 (grade 0, 59 cases; grade 1, 61 cases; grade 2, 24 cases; grade 3, 10 cases). The grade of PCFP signal change was statistically significantly correlated with the grade of the chondral lesion of the medial femoral condyle (MFC) (p = 0.029 and p = 0.003, respectively) and the medial tibial plateau (MTP) (p = 0.045, p = 0.002, Readers 1 and 2, respectively). The grade of PCFP signal change was significantly correlated with the grade of the BMLs of the MFC, MTP, and lateral femoral condyle (p < 0.05) for both readers. PCFP alteration was related to effusion-synovitis and tears of the medial meniscus. CONCLUSIONS The grade of PCFP signal change was correlated with the severity of the cartilage alteration in the medial compartment of the knee joint and was also correlated with BMLs in the medial compartment, medial meniscal tears, and synovitis. Therefore, signal change in the PFCP seen on MRI can be an additional clue of the presence of osteoarthritis in the knee, particularly in the medial compartment.
Collapse
Affiliation(s)
- Ji Na Kim
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee Jin Park
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Jai Hyung Park
- Department of Orthopaedic Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se Jin Park
- Department of Orthopaedic Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eugene Kim
- Department of Orthopaedic Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong Taek Lee
- Department of Physical & Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyunchul Shin
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
41
|
Haartmans MJJ, Claes BSR, Eijkel GB, Emanuel KS, Tuijthof GJM, Heeren RMA, Emans PJ, Cillero-Pastor B. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) reveals potential lipid markers between infrapatellar fat pad biopsies of osteoarthritis and cartilage defect patients. Anal Bioanal Chem 2023; 415:5997-6007. [PMID: 37505238 PMCID: PMC10556153 DOI: 10.1007/s00216-023-04871-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The incidence of osteoarthritis (OA) has been expected to increase due to an aging population, as well as an increased incidence of intra-articular (osteo-) chondral damage. Lipids have already been shown to be involved in the inflammatory process of OA. This study aims at revealing region-specific lipid profiles of the infrapatellar fat pad (IPFP) of OA or cartilage defect patients by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which could be used as biomarkers for early OA detection. A higher presence of phospholipids was found in OA patients compared with cartilage defect patients. In addition, a higher abundance of ether-linked phosphatidylethanolamines (PE O-s) containing arachidonic acid was specifically found in OA patients compared with cartilage defect patients. These lipids were mainly found in the connective tissue of the IPFP. Specific lipid species were associated to OA patients compared with cartilage defect patients. PE O-s have been suggested as possible biomarkers for OA. As these were found more abundantly in the connective tissue, the IPFP's intra-tissue heterogeneity might play an important role in biomarker discovery, implying that the amount of fibrous tissue is associated with OA.
Collapse
Affiliation(s)
- Mirella J J Haartmans
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Britt S R Claes
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Gert B Eijkel
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Kaj S Emanuel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
- Department of Orthopedic Surgery and Sport Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gabrielle J M Tuijthof
- Biomedical Device Design and Production Technology, Faculty of Engineering Technology, University of Twente, Enschede, the Netherlands
| | - Ron M A Heeren
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Pieter J Emans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Berta Cillero-Pastor
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands.
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands.
| |
Collapse
|
42
|
Zhang Z, Zhao S, Sun Z, Zhai C, Xia J, Wen C, Zhang Y, Zhang Y. Enhancement of the therapeutic efficacy of mesenchymal stem cell-derived exosomes in osteoarthritis. Cell Mol Biol Lett 2023; 28:75. [PMID: 37770821 PMCID: PMC10540339 DOI: 10.1186/s11658-023-00485-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Osteoarthritis (OA), a common joint disorder with articular cartilage degradation as the main pathological change, is the major source of pain and disability worldwide. Despite current treatments, the overall treatment outcome is unsatisfactory. Thus, patients with severe OA often require joint replacement surgery. In recent years, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option for preclinical and clinical palliation of OA. MSC-derived exosomes (MSC-Exos) carrying bioactive molecules of the parental cells, including non-coding RNAs (ncRNAs) and proteins, have demonstrated a significant impact on the modulation of various physiological behaviors of cells in the joint cavity, making them promising candidates for cell-free therapy for OA. This review provides a comprehensive overview of the biosynthesis and composition of MSC-Exos and their mechanisms of action in OA. We also discussed the potential of MSC-Exos as a therapeutic tool for modulating intercellular communication in OA. Additionally, we explored bioengineering approaches to enhance MSC-Exos' therapeutic potential, which may help to overcome challenges and achieve clinically meaningful OA therapies.
Collapse
Affiliation(s)
- Zehao Zhang
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Sheng Zhao
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Zhaofeng Sun
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Chuanxing Zhai
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Caining Wen
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China.
| | - Yuge Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China.
| | - Yuanmin Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China.
| |
Collapse
|
43
|
Arnaert S, Byttebier P, Van Rossom S, Vereecke E, Jonkers I, Oei E, Bierma-Zeinstra SM, Lories R, van Middelkoop M, Clockaerts S. Anterior Tibiotalar Fat Pad Involvement in Ankle Osteoarthritis: MRI Features in Patients 1 Year After a Lateral Ankle Sprain. Cartilage 2023; 14:285-291. [PMID: 37013994 PMCID: PMC10601560 DOI: 10.1177/19476035231161786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 04/05/2023] Open
Abstract
OBJECTIVE To investigate the characteristics of the anterior tibiotalar fat pad (ATFP) in the ankle joint in a population of patients 1 year after an ankle sprain and its correlation with systemic factors and local articular pathology. DESIGN The study is a secondary analysis of an observational case-control study. We included 206 patients who were followed 6-12 months after ankle sprain. T1 MRI scans were assessed for signal intensity and area of ATFP by mapping the fat pad using dedicated imaging software (Mimics 18.0). Quantitative values of intensity and area were generated. Linear regression analysis was used to examine the association between both local and systemic factors and the ATFP. Variables with a P value <0.2 were entered in 5 stepwise multivariate models: (1) age-sex-body mass index (BMI); (2) anamnesis; (3) physical examination; (4) radiographic findings; and (5) MRI findings. Predictors in these separate models were entered in the final model. RESULTS The final multivariate model showed a significant positive association between age (P = 0.04; 95% confidence interval [CI] = 1.13 ± 1.06), BMI (P = 0.05; 95% CI = 3.61 ± 3.53), and sex (P < 0.01; 95% CI = -49.26 ± 30.04) with T1 intensity. The final model also showed a significant negative association between age (P < 0.01; 95% CI = -0.57 ± 0.34), diffuse cartilage loss in the lateral talus (P = 0.03; 95% CI = -0.71 ± 0.63), and Kellgren and Lawrence score in the tibiotalar joint (P < 0.01; 95%CI = -21.61 ± 7.24) and ATFP area. A positive association was found between BMI (P < 0.01; 95% CI = 2.25 ± 1.15) and ATFP area. CONCLUSION This study demonstrates a correlation between ATFP and both systemic factors and local pathology in the ankle joint.
Collapse
Affiliation(s)
- Stijn Arnaert
- Division of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Paul Byttebier
- Orthopedic Surgery and Traumatology, General Municipal Hospital Aalst, Aalst, Belgium
| | - Sam Van Rossom
- Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium
| | - Evie Vereecke
- Department of Development and Regeneration, KU Leuven, Kortrijk, Belgium
| | - Ilse Jonkers
- Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium
| | - Edwin Oei
- Radiology & Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Rik Lories
- Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | - Stefan Clockaerts
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Department of Othopedic Surgery and Traumatology, Hospital of Lier, Lier, Belgium
| |
Collapse
|
44
|
Du X, Liu Z, Tao X, Mei Y, Zhou D, Cheng K, Gao S, Shi H, Song C, Zhang X. Research Progress on the Pathogenesis of Knee Osteoarthritis. Orthop Surg 2023; 15:2213-2224. [PMID: 37435789 PMCID: PMC10475681 DOI: 10.1111/os.13809] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 07/13/2023] Open
Abstract
Knee osteoarthritis (KOA) is a chronic joint bone disease characterized by inflammatory destruction and hyperplasia of bone. Its main clinical symptoms are joint mobility difficulties and pain, severe cases can lead to limb paralysis, which poses major pressure to the quality of life and mental health of patients, but also brings serious economic burden to society. The occurrence and development of KOA is influenced by many factors, including systemic factors and local factors. The joint biomechanical changes caused by aging, trauma and obesity, abnormal bone metabolism caused by metabolic syndrome, the effects of cytokines and related enzymes, genetic and biochemical abnormalities caused by plasma adiponectin, etc. all directly or indirectly lead to the occurrence of KOA. However, there is little literature that systematically and comprehensively integrates macro- and microscopic KOA pathogenesis. Therefore, it is necessary to comprehensively and systematically summarize the pathogenesis of KOA in order to provide a better theoretical basis for clinical treatment.
Collapse
Affiliation(s)
- Xin Du
- Center for Phenomics of Traditional Chinese MedicineThe Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Zi‐yu Liu
- Center for Phenomics of Traditional Chinese MedicineThe Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Xing‐xing Tao
- Center for Phenomics of Traditional Chinese MedicineThe Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Yong‐liang Mei
- Department of Orthopaedics and Traumatology (Trauma and Bone‐setting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Da‐qian Zhou
- Department of Orthopaedics and Traumatology (Trauma and Bone‐setting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Kang Cheng
- Department of Orthopaedics and Traumatology (Trauma and Bone‐setting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Si‐long Gao
- Department of Orthopaedics and Traumatology (Trauma and Bone‐setting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Hou‐yin Shi
- Medical DepartmentThe Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Chao Song
- Department of Orthopaedics and Traumatology (Trauma and Bone‐setting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Xiao‐min Zhang
- Department of Orthopaedics and Traumatology (Trauma and Bone‐setting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
45
|
Lyu L, Li Y, Zhong J, Yao W. Association among peripatellar fat pad edema and related patellofemoral maltracking parameters: a case-control magnetic resonance imaging study. BMC Musculoskelet Disord 2023; 24:678. [PMID: 37626375 PMCID: PMC10463576 DOI: 10.1186/s12891-023-06827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The peripatellar fat pads are critical for protective cushioning during movement, and their endocrine function has been shown to affect osteoarthritis. Magnetic resonance imaging (MRI) is frequently used to visualize edema of the peripatellar fat pads due to injury. In this study, we aimed to assess the relationship between peripatellar fat pad edema and patellofemoral maltracking MRI parameters and investigate the association among cases of peripatellar fat pad edema. METHODS Age- and sex-matched peripatellar fat pad edema cases were identified and divided into superolateral Hoffa, quadriceps, and prefemoral groups. Images were assessed according to tibial tuberosity lateralization, trochlear dysplasia, patellar alta, patellar tilt, and bisect offset. McNemar's test or paired t-tests and Spearman's correlation were used for statistical analysis. Interobserver agreement was assessed with the intraclass correlation coefficient. RESULTS Of 1210 MRI scans, 50, 68, and 42 cases were in the superolateral Hoffa, quadriceps, and prefemoral groups, respectively. Subjects with superolateral Hoffa fat pad edema had a lower lateral trochlear inclination (p = 0.028), higher Insall-Salvati (p < 0.001) and modified Insall-Salvati (p = 0.021) ratios, and lower patellotrochlear index (p < 0.001) than controls. The prefemoral group had a lower lateral trochlear inclination (p = 0.014) and higher Insall-Salvati (p < 0.001) and modified Insall-Salvati (p = 0.004) ratios compared with the control group. In contrast, the patellotrochlear index (p = 0.001) was lower. Mean patellar tilt angle (p = 0.019) and mean bisect offset (p = 0.005) were significantly different between cases and controls. The quadriceps group showed no association. Superolateral Hoffa was positively correlated with prefemoral (p < 0.001, r = 0.408) and negatively correlated with quadriceps (p < 0.001, r = -0.500) fat pad edema. CONCLUSIONS Superolateral Hoffa and prefemoral fat pad edemas were associated with patellar maltracking parameters. Quadriceps fat pad edema and maltracking parameters were not associated. Superolateral Hoffa fat pad edema was positively correlated with prefemoral and negatively correlated with quadriceps fat pad edema.
Collapse
Affiliation(s)
- Liangjing Lyu
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China.
| | - Yongliang Li
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Jingyu Zhong
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Weiwu Yao
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China.
| |
Collapse
|
46
|
Hattori Y, Hasegawa M, Iino T, Imanaka-Yoshida K, Sudo A. Role of Syndecan-4 in the Inhibition of Articular Cartilage Degeneration in Osteoarthritis. Biomedicines 2023; 11:2257. [PMID: 37626753 PMCID: PMC10452293 DOI: 10.3390/biomedicines11082257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Despite its widespread existence, there are relatively few drugs that can inhibit the progression of osteoarthritis (OA). Syndecan-4 (SDC4) is a transmembrane heparan sulfate proteoglycan that modulates cellular interactions with the extracellular matrix. Upregulated SDC4 expression in articular cartilage chondrocytes correlates with OA progression. In the present study, we treated osteoarthritic cartilage with SDC4 to elucidate its role in the disease's pathology. In this in vitro study, we used real-time polymerase chain reaction (PCR) to investigate the effects of SDC4 on anabolic and catabolic factors in cultured chondrocytes. In the in vivo study, we investigated the effect of intra-articular injection of SDC4 into the knee joints of an OA mouse model. In vitro, SDC4 upregulated the expression of tissue inhibitor of metalloproteinase (TIMP)-3 and downregulated the expression of matrix metalloproteinase (MMP)-13 and disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 in chondrocytes. Injection of SDC4 into the knee joints of OA model mice prevented articular cartilage degeneration 6 and 8 weeks postoperatively. Immunohistochemical analysis 8 weeks after SDC4 injection into the knee joint revealed decreased ADAMTS-5 expression and increased TIMP-3 expression. The results of this study suggest that the treatment of osteoarthritic articular cartilage with SDC4 inhibits cartilage degeneration.
Collapse
Affiliation(s)
- Yoshio Hattori
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (Y.H.); (T.I.); (A.S.)
| | - Masahiro Hasegawa
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (Y.H.); (T.I.); (A.S.)
| | - Takahiro Iino
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (Y.H.); (T.I.); (A.S.)
| | - Kyoko Imanaka-Yoshida
- Departments of Pathology & Matrix Biology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan;
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (Y.H.); (T.I.); (A.S.)
| |
Collapse
|
47
|
Tan H, Kang W, Fan Q, Wang B, Yu Y, Yu N, Duan H, Yuan P, Wang S, Chen Q, Jin C. Intravoxel Incoherent Motion Diffusion-Weighted MR Imaging Findings of Infrapatellar Fat Pad Signal Abnormalities: Comparison Between Symptomatic and Asymptomatic Knee Osteoarthritis. Acad Radiol 2023; 30:1374-1383. [PMID: 36609030 DOI: 10.1016/j.acra.2022.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/26/2022] [Accepted: 11/12/2022] [Indexed: 01/06/2023]
Abstract
RATIONALE AND OBJECTIVES Infrapatellar fat pad (IPFP) proton density-weighted images (PdWI) hyperintense regions on MRI are an important imaging feature of knee osteoarthritis (KOA) and are thought to represent inflammation which may induce knee pain. The aim of the study was to compare the intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) findings of PdWI hyperintense regions of IPFP between symptomatic and asymptomatic KOA and to determine whether IVIM-DWI parameters can be used as an objective biomarker for symptomatic KOA. MATERIALS AND METHODS In total, 84 patients with symptomatic KOA, 43 asymptomatic KOA persons, and 30 healthy controls with MRI were retrospectively reviewed. Demographic, IPFP-synovitis, Western Ontario and McMaster Osteoarthritis Index (WOMAC) pain sub-score, IPFP volume and depth and quantitative parameters of IVIM-DWI were collected. The chi-square test, Binary logistic regression and receiver operating characteristic curve (ROC) analysis were used for diagnostic performance comparison. RESULTS The IPFP volume and depth were statistically significant differences between the non-KOA and sKOA groups (p<0.05). The IPFP PdWI hyperintense regions demonstrated significantly higher values of D and D* in the symptomatic KOA compared to those in the asymptomatic KOA (1.51±0.47 vs. 1.73±0.40 for D and 19.24±6.44 vs. 27.09±9.75 for D*) (both p<0.05). Multivariate logistic regression analyses showed that Higher D and D* values of IPFP hyperintense region were significantly associated with higher risks of knee pain (OR: 1.97; 95% CI: 1.21-3.19; p=0.006 for D and OR: 1.24; 95% CI: 1.09-1.41; p=0.001 for D*). Sensitivity and specificity of D value for symptomatic KOA were 80.28% and 83.33%, with an AUC of 0.78 (0.68-0.86). D* value had the sensitivity with 92.96% and a specificity of 58.33%, with an AUC of 0.82 (0.73-0.89) for symptomatic KOA. CONCLUSION IVIM-DWI can be used as an additional functional imaging technique to study IPFP with signal abnormalities on PdWI, and the D and D* values may have potential value to predict the symptom in mild-to-moderate KOA patients.
Collapse
Affiliation(s)
- Hui Tan
- From the department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China; Department of Radiology, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Wulin Kang
- Department of Orthopedics, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Qiuju Fan
- Department of Radiology, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Bin Wang
- Institute of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Yong Yu
- Department of Radiology, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Nan Yu
- Department of Radiology, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Haifeng Duan
- Department of Radiology, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Puwei Yuan
- Department of Orthopedics, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Shaoyu Wang
- MR senior scientific marketing specialist, Siemens Healthineers, Shanghai, People's Republic of China
| | - Qing Chen
- Institute of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Chenwang Jin
- From the department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
48
|
Gambari L, Cellamare A, Grassi F, Grigolo B, Panciera A, Ruffilli A, Faldini C, Desando G. Targeting the Inflammatory Hallmarks of Obesity-Associated Osteoarthritis: Towards Nutraceutical-Oriented Preventive and Complementary Therapeutic Strategies Based on n-3 Polyunsaturated Fatty Acids. Int J Mol Sci 2023; 24:ijms24119340. [PMID: 37298291 DOI: 10.3390/ijms24119340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity (Ob), which has dramatically increased in the last decade, is one of the main risk factors that contribute to the incidence and progression of osteoarthritis (OA). Targeting the characteristics of obesity-associated osteoarthritis (ObOA) may offer new chances for precision medicine strategies in this patient cohort. First, this review outlines how the medical perspective of ObOA has shifted from a focus on biomechanics to the significant contribution of inflammation, mainly mediated by changes in the adipose tissue metabolism through the release of adipokines and the modification of fatty acid (FA) compositions in joint tissues. Preclinical and clinical studies on n-3 polyunsaturated FAs (PUFAs) are critically reviewed to outline the strengths and weaknesses of n-3 PUFAs' role in alleviating inflammatory, catabolic and painful processes. Emphasis is placed on potential preventive and therapeutic nutritional strategies based on n-3 PUFAs, with a focus on ObOA patients who could specifically benefit from reformulating the dietary composition of FAs towards a protective phenotype. Finally, tissue engineering approaches that involve the delivery of n-3 PUFAs directly into the joint are explored to address the perspectives and current limitations, such as safety and stability issues, for implementing preventive and therapeutic strategies based on dietary compounds in ObOA patients.
Collapse
Affiliation(s)
- Laura Gambari
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Antonella Cellamare
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Francesco Grassi
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Brunella Grigolo
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Panciera
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Alberto Ruffilli
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Cesare Faldini
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Giovanna Desando
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
49
|
Rizzo MG, Best TM, Huard J, Philippon M, Hornicek F, Duan Z, Griswold AJ, Kaplan LD, Hare JM, Kouroupis D. Therapeutic Perspectives for Inflammation and Senescence in Osteoarthritis Using Mesenchymal Stem Cells, Mesenchymal Stem Cell-Derived Extracellular Vesicles and Senolytic Agents. Cells 2023; 12:1421. [PMID: 37408255 PMCID: PMC10217382 DOI: 10.3390/cells12101421] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 07/07/2023] Open
Abstract
Osteoarthritis (OA) is the most common cause of disability worldwide among the elderly. Alarmingly, the incidence of OA in individuals less than 40 years of age is rising, likely due to the increase in obesity and post-traumatic osteoarthritis (PTOA). In recent years, due to a better understanding of the underlying pathophysiology of OA, several potential therapeutic approaches targeting specific molecular pathways have been identified. In particular, the role of inflammation and the immune system has been increasingly recognized as important in a variety of musculoskeletal diseases, including OA. Similarly, higher levels of host cellular senescence, characterized by cessation of cell division and the secretion of a senescence-associated secretory phenotype (SASP) within the local tissue microenvironments, have also been linked to OA and its progression. New advances in the field, including stem cell therapies and senolytics, are emerging with the goal of slowing disease progression. Mesenchymal stem/stromal cells (MSCs) are a subset of multipotent adult stem cells that have demonstrated the potential to modulate unchecked inflammation, reverse fibrosis, attenuate pain, and potentially treat patients with OA. Numerous studies have demonstrated the potential of MSC extracellular vesicles (EVs) as cell-free treatments that comply with FDA regulations. EVs, including exosomes and microvesicles, are released by numerous cell types and are increasingly recognized as playing a critical role in cell-cell communication in age-related diseases, including OA. Treatment strategies for OA are being developed that target senescent cells and the paracrine and autocrine secretions of SASP. This article highlights the encouraging potential for MSC or MSC-derived products alone or in combination with senolytics to control patient symptoms and potentially mitigate the progression of OA. We will also explore the application of genomic principles to the study of OA and the potential for the discovery of OA phenotypes that can motivate more precise patient-driven treatments.
Collapse
Affiliation(s)
- Michael G. Rizzo
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
| | - Thomas M. Best
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
| | - Johnny Huard
- Center for Regenerative and Personalized Medicine (CRPM), Steadman Philippon Research Institute, Vail, CO 81657, USA (M.P.)
| | - Marc Philippon
- Center for Regenerative and Personalized Medicine (CRPM), Steadman Philippon Research Institute, Vail, CO 81657, USA (M.P.)
| | - Francis Hornicek
- Department of Orthopedics, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.H.); (Z.D.)
| | - Zhenfeng Duan
- Department of Orthopedics, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.H.); (Z.D.)
| | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Lee D. Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
50
|
Nisar A, Jagtap S, Vyavahare S, Deshpande M, Harsulkar A, Ranjekar P, Prakash O. Phytochemicals in the treatment of inflammation-associated diseases: the journey from preclinical trials to clinical practice. Front Pharmacol 2023; 14:1177050. [PMID: 37229273 PMCID: PMC10203425 DOI: 10.3389/fphar.2023.1177050] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Advances in biomedical research have demonstrated that inflammation and its related diseases are the greatest threat to public health. Inflammatory action is the pathological response of the body towards the external stimuli such as infections, environmental factors, and autoimmune conditions to reduce tissue damage and improve patient comfort. However, when detrimental signal-transduction pathways are activated and inflammatory mediators are released over an extended period of time, the inflammatory process continues and a mild but persistent pro-inflammatory state may develop. Numerous degenerative disorders and chronic health issues including arthritis, diabetes, obesity, cancer, and cardiovascular diseases, among others, are associated with the emergence of a low-grade inflammatory state. Though, anti-inflammatory steroidal, as well as non-steroidal drugs, are extensively used against different inflammatory conditions, they show undesirable side effects upon long-term exposure, at times, leading to life-threatening consequences. Thus, drugs targeting chronic inflammation need to be developed to achieve better therapeutic management without or with a fewer side effects. Plants have been well known for their medicinal use for thousands of years due to their pharmacologically active phytochemicals belonging to diverse chemical classes with a number of these demonstrating potent anti-inflammatory activity. Some typical examples include colchicine (alkaloid), escin (triterpenoid saponin), capsaicin (methoxy phenol), bicyclol (lignan), borneol (monoterpene), and quercetin (flavonoid). These phytochemicals often act via regulating molecular mechanisms that synergize the anti-inflammatory pathways such as increased production of anti-inflammatory cytokines or interfere with the inflammatory pathways such as to reduce the production of pro-inflammatory cytokines and other modulators to improve the underlying pathological condition. This review describes the anti-inflammatory properties of a number of biologically active compounds derived from medicinal plants, and their mechanisms of pharmacological intervention to alleviate inflammation-associated diseases. The emphasis is given to information on anti-inflammatory phytochemicals that have been evaluated at the preclinical and clinical levels. Recent trends and gaps in the development of phytochemical-based anti-inflammatory drugs have also been included.
Collapse
Affiliation(s)
- Akib Nisar
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Suresh Jagtap
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Suresh Vyavahare
- Shatayu Ayurved and Research Centre, Solapur, Maharashtra, India
| | - Manasi Deshpande
- Department of Dravyagun Vigyan, College of Ayurved, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Abhay Harsulkar
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
- Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | | | - Om Prakash
- Department of Microbiology, Immunology and Parasitology, University Health Sciences Center, New Orleans, LA, United States
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|