1
|
Edmonds H, Mukherjee SS, Holcombe B, Yeh K, Bhargava R, Ghosh A. Quantification of Protein Secondary Structures from Discrete Frequency Infrared Images Using Machine Learning. APPLIED SPECTROSCOPY 2025:37028251325553. [PMID: 40165369 DOI: 10.1177/00037028251325553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Discrete frequency infrared (IR) imaging is an exciting experimental technique that has shown promise in various applications in biomedical science. This technique often involves acquiring IR absorptive images at specific frequencies of interest that enable pathologically relevant chemical contrast. However, certain applications, such as tracking the spatial variations in protein secondary structure of tissue specimens, necessary for the characterization of neurodegenerative diseases, require deeper analysis of spectral data. In such cases, the conventional analytical approach involves band fitting the hyperspectral data to extract the relative populations of different structures through their fitted areas under the curve (AUC). While Gaussian spectral fitting for one spectrum is viable, expanding that to an image with millions of pixels, as often applicable for tissue specimens, becomes a computationally expensive process. Alternatives like principal component analysis (PCA) are less structurally interpretable and incompatible with sparsely sampled data. Furthermore, this detracts from the key advantages of discrete frequency imaging by necessitating the acquisition of more finely sampled spectral data that is optimal for curve fitting, resulting in significantly longer data acquisition times, larger datasets, and additional computational overhead. In this work, we demonstrate that a simple two-step regressive neural network model can be utilized to mitigate these challenges and employ discrete frequency imaging for retrieving the results from band fitting without significant loss of fidelity. Our model reduces the data acquisition time nearly six-fold by requiring only seven wavenumbers to accurately interpolate spectral information at a higher resolution and subsequently using the upscaled spectra to accurately predict the component AUCs, which is more than 3000 times faster than spectral fitting. Our approach thus drastically cuts down the data acquisition and analysis time and predicts key differences in protein structure that can be vital towards broadening potential applications of discrete frequency imaging.
Collapse
Affiliation(s)
- Harrison Edmonds
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 354127, USA
| | - Sudipta S Mukherjee
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Brooke Holcombe
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 354127, USA
| | - Kevin Yeh
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois Urbana- Champaign, Urbana, Illinois 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 354127, USA
| |
Collapse
|
2
|
Newborn A, Karamat A, Van Aken B. Effects of Chlortetracycline on Lignin Biosynthesis in Arabidopsis thaliana. Int J Mol Sci 2025; 26:2288. [PMID: 40076908 PMCID: PMC11899738 DOI: 10.3390/ijms26052288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Feedstock plants for biofuel production can be cultivated on polluted sites that are unsuitable for edible crop production. This approach combines environmental restoration and renewable energy production, therefore enhancing the economic viability of plant-derived biofuels. Previous studies have indicated that exposure to environmental pollutants may elevate lignin levels in exposed plants, potentially impacting the biomass digestibility and the efficiency of bioethanol conversion. In this study, we investigated the impact of the antimicrobial agent chlortetracycline on lignin biosynthesis in the reference organism Arabidopsis thaliana. Toxicity testing showed that exposure to chlortetracycline significantly reduced plant growth at concentrations above 2.5 mg L-1. Using Fourier-transform infrared spectroscopy (FTIR) analysis, we observed a significant increase in the lignin signature, ranging from 16 to 40%, in plants exposed to chlortetracycline as compared to non-exposed control plants. Transcriptomic analysis (RNA sequencing) was conducted to determine the molecular basis of plant response to chlortetracycline, revealing significant enrichment of several genes involved in lignin biosynthesis and the phenylpropanoid pathway, including cinnamyl alcohol dehydrogenase and peroxidases. Exposure to chlortetracycline also resulted in the overexpression of genes involved in the metabolism of xenobiotic compounds, including cytochrome P450 monooxygenases, glutathione S-transferases, and glycosyltransferases. Chlortetracycline also induced several genes involved in plant response to stress and defense mechanisms, including transcription factors (e.g., WRKY, MYB, AP2/ERF families), pathogenesis-related proteins, and genes involved in stress signaling. These results suggest that the antibiotic chlortetracycline triggers multiple stress responses in A. thaliana, which may cause changes in lignin biosynthesis, reductions in plant growth, increases in the lignin content, and induction of defense metabolic pathways.
Collapse
Affiliation(s)
- Aaron Newborn
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, VA 22030, USA;
| | - Ayesha Karamat
- Department of Environmental Science & Policy, George Mason University, Fairfax, VA 22030, USA;
| | - Benoit Van Aken
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, VA 22030, USA;
| |
Collapse
|
3
|
Jahankir MJB, Ramesh H, Chakaravarthi T, Agarwal A, Goyal A, Balachander GM. Strip electrodes: a novel, effective and minimally invasive therapeutic option for correcting DNS via electromechanical reshaping. J Mater Chem B 2025; 13:668-682. [PMID: 39620248 DOI: 10.1039/d4tb01306a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Deviated nasal septum (DNS) is a common condition affecting nasal breathing, which is generally treated using septoplasty. However, this invasive surgical method carries potential risks of post-surgical complications. Alternatively, electromechanical reshaping (EMR) is a novel method that has evolved as a non-thermal, minimally invasive option to reshape the cartilage using mechanical pressure and direct current (DC) without significant tissue damage. However, the existing flat and needle electrodes tested in animal tissues have raised significant concerns due to their safety. Thus, herein, we aimed to develop a novel strip electrode configuration and optimize dosimetry to achieve efficient reshaping without compromising its safety. Electric field simulations showed that our novel 5-strip electrode configuration with a thickness of 0.5 mm achieved optimal electric field, requiring minimal current flow compared to flat electrodes. EMR was performed on ex vivo goat cartilage at various dosimetry groups to analyze four-day shape retention. The optimized strip electrode reshaped the ex vivo goat septal cartilage effectively at a dosimetry of 20 mA for 15 minutes, whereas the flat electrode needed 35 mA for 15 minutes. DMMB assay, ATR-FTIR spectroscopy, tensile testing, and histopathology analysis demonstrated reduced tissue damage while supporting increased efficiency and mechanical stability with the strip electrode configuration, emphasizing its safety. Thus, the optimized strip electrode-based EMR emerges as a viable non-invasive approach for reshaping the nasal septal cartilage, which can be used to treat DNS. Further in vivo studies are recommended to validate the long-term safety and efficacy of this technique.
Collapse
Affiliation(s)
- Mohamed Jameer Basha Jahankir
- Caldor Health Technologies Pvt Ltd, Mannudaiyar Street, Kurumbapalayam, Coimbatore, Tamil Nadu - 641007, India
- Atal Incubation Centre - Centre for Cellular and Molecular Biology, IDA Uppal, Habsiguda, Hyderabad, Telangana - 500039, India
| | - Harisharan Ramesh
- Caldor Health Technologies Pvt Ltd, Mannudaiyar Street, Kurumbapalayam, Coimbatore, Tamil Nadu - 641007, India
- Atal Incubation Centre - Centre for Cellular and Molecular Biology, IDA Uppal, Habsiguda, Hyderabad, Telangana - 500039, India
- Interdisciplinary Research Programme, Smart Healthcare, Indian Institute of Technology, Jodhpur, Rajasthan - 342030, India
| | - Thilak Chakaravarthi
- Caldor Health Technologies Pvt Ltd, Mannudaiyar Street, Kurumbapalayam, Coimbatore, Tamil Nadu - 641007, India
- Atal Incubation Centre - Centre for Cellular and Molecular Biology, IDA Uppal, Habsiguda, Hyderabad, Telangana - 500039, India
- Interdisciplinary Research Programme, Smart Healthcare, Indian Institute of Technology, Jodhpur, Rajasthan - 342030, India
| | - Ajay Agarwal
- Department of Electrical Engineering, Indian Institute of Technology, Jodhpur, Rajasthan - 342030, India
| | - Amit Goyal
- Department of Otorhinolaryngology, All Indian Institute of Medical Sciences, Jodhpur, Rajasthan - 342005, India
| | - Gowri Manohari Balachander
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh - 221005, India.
| |
Collapse
|
4
|
Griffin JN, Santos GM, Nguyen LD, Rodriguez DRO, Pereira LG, Jaén-Barrios N, Assis-Pereira G, de Oliveira Barreto N, Brandes AFN, Barbosa AC, Groenendijk P. Demystifying the tropics: FTIR characterization of pantropical woods and their α-cellulose extracts for past atmospheric 14C reconstructions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175010. [PMID: 39053534 DOI: 10.1016/j.scitotenv.2024.175010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/30/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
To ensure unbiased tree-ring radiocarbon (14C) results, traditional pretreatments carefully isolate wood cellulose from extractives using organic solvents, among other chemicals. The addition of solvents is laborious, time-consuming, and can increase the risk of carbon contamination. Tropical woods show a high diversity in wood-anatomical and extractive composition, but the necessity of organic-solvent extraction for the 14C dating of these diverse woods remains untested. We applied a chemical treatment that excludes the solvent step on the wood of 8 tropical tree species sampled in South-America and Africa, with different wood-anatomical and extractive properties. We analyzed the success of the extractive removal along with several steps of the α-cellulose extraction procedure using Fourier Transform Infrared (FTIR) spectroscopy and further confirmed the quality of 14C measurements after extraction. The α-cellulose extracts obtained here showed FTIR-spectra free of signals from various extractives and the 14C results on these samples showed reliable results. The chemical method evaluated reduces the technical complexity required to prepare α-cellulose samples for 14C dating, and therefore can bolster global atmospheric 14C applications, especially in the tropics.
Collapse
Affiliation(s)
- June Nakachi Griffin
- Department of Earth System Science, University of California Irvine, Irvine, CA 92697-3100, USA
| | - Guaciara M Santos
- Department of Earth System Science, University of California Irvine, Irvine, CA 92697-3100, USA.
| | - Lucas Duy Nguyen
- Department of Earth System Science, University of California Irvine, Irvine, CA 92697-3100, USA
| | - Daigard R O Rodriguez
- Departamento de Ciências Florestais, Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Lucas G Pereira
- Departamento de Ciências Florestais, Universidade Federal de Lavras, Lavras, MG 37200-900, Brazil
| | - Nelson Jaén-Barrios
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Gabriel Assis-Pereira
- Departamento de Ciências Florestais, Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil; Instituto de Pesquisas Ambientais do Estado de São Paulo, Assis, SP 19800-970, Brazil
| | | | - Arno F N Brandes
- Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ 24210-201, Brazil
| | - Ana Carolina Barbosa
- Departamento de Ciências Florestais, Universidade Federal de Lavras, Lavras, MG 37200-900, Brazil
| | - Peter Groenendijk
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| |
Collapse
|
5
|
Orłowska R, Dynkowska WM, Niedziela A, Zebrowski J, Zimny J, Androsiuk P, Bednarek PT. β-glucans, SAM, and GSH fluctuations in barley anther tissue culture conditions affect regenerants' DNA methylation and GPRE. BMC PLANT BIOLOGY 2024; 24:853. [PMID: 39261760 PMCID: PMC11391688 DOI: 10.1186/s12870-024-05572-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Microspore embryogenesis is a process that produces doubled haploids in tissue culture environments and is widely used in cereal plants. The efficient production of green regenerants requires stresses that could be sensed at the level of glycolysis, followed by the Krebs cycle and electron transfer chain. The latter can be affected by Cu(II) ion concentration in the induction media acting as cofactors of biochemical reactions, indirectly influencing the production of glutathione (GSH) and S-adenosyl-L-methionine (SAM) and thereby affecting epigenetic mechanisms involving DNA methylation (demethylation-DM, de novo methylation-DNM). The conclusions mentioned were acquired from research on triticale regenerants, but there is no similar research on barley. In this way, the study looks at how DNM, DM, Cu(II), SAM, GSH, and β-glucan affect the ability of green plant regeneration efficiency (GPRE). RESULTS The experiment involved spring barley regenerants obtained through anther culture. Nine variants (trials) of induction media were created by adding copper (CuSO4: 0.1; 5; 10 µM) and silver salts (AgNO3: 0; 10; 60 µM), with varying incubation times for the anthers (21, 28, and 35 days). Changes in DNA methylation were estimated using the DArTseqMet molecular marker method, which also detects cytosine methylation. Phenotype variability in β-glucans, SAM and GSH induced by the nutrient treatments was assessed using tentative assignments based on the Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. The effectiveness of green plant regeneration ranged from 0.1 to 2.91 plants per 100 plated anthers. The level of demethylation ranged from 7.61 to 32.29, while de novo methylation reached values ranging from 6.83 to 32.27. The paper demonstrates that the samples from specific in vitro conditions (trials) formed tight groups linked to the factors contributing to the two main components responsible for 55.05% of the variance (to the first component DNM, DM, to the second component GSH, β-glucans, Cu(II), GPRE). CONCLUSIONS We can conclude that in vitro tissue culture conditions affect biochemical levels, DNA methylation changes, and GPRE. Increasing Cu(II) concentration in the IM impacts the metabolism and DNA methylation, elevating GPRE. Thus, changing Cu(II) concentration in the IM is fair to expect to boost GPRE.
Collapse
Affiliation(s)
- Renata Orłowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Wioletta Monika Dynkowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Agnieszka Niedziela
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Jacek Zebrowski
- Institute of Biology and Biotechnology, University of Rzeszow, Al. Rejtana 16C, Rzeszow, 35-959, Poland
| | - Janusz Zimny
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-719, Poland
| | - Piotr Tomasz Bednarek
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870, Błonie, Poland.
| |
Collapse
|
6
|
Burr DJ, Drauschke J, Kanevche K, Kümmel S, Stryhanyuk H, Heberle J, Perfumo A, Elsaesser A. Stable Isotope Probing-nanoFTIR for Quantitation of Cellular Metabolism and Observation of Growth-Dependent Spectral Features. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400289. [PMID: 38708804 DOI: 10.1002/smll.202400289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/16/2024] [Indexed: 05/07/2024]
Abstract
This study utilizes nanoscale Fourier transform infrared spectroscopy (nanoFTIR) to perform stable isotope probing (SIP) on individual bacteria cells cultured in the presence of 13C-labelled glucose. SIP-nanoFTIR simultaneously quantifies single-cell metabolism through infrared spectroscopy and acquires cellular morphological information via atomic force microscopy. The redshift of the amide I peak corresponds to the isotopic enrichment of newly synthesized proteins. These observations of single-cell translational activity are comparable to those of conventional methods, examining bulk cell numbers. Observing cells cultured under conditions of limited carbon, SIP- nanoFTIR is used to identify environmentally-induced changes in metabolic heterogeneity and cellular morphology. Individuals outcompeting their neighboring cells will likely play a disproportionately large role in shaping population dynamics during adverse conditions or environmental fluctuations. Additionally, SIP-nanoFTIR enables the spectroscopic differentiation of specific cellular growth phases. During cellular replication, subcellular isotope distribution becomes more homogenous, which is reflected in the spectroscopic features dependent on the extent of 13C-13C mode coupling or to specific isotopic symmetries within protein secondary structures. As SIP-nanoFTIR captures single-cell metabolism, environmentally-induced cellular processes, and subcellular isotope localization, this technique offers widespread applications across a variety of disciplines including microbial ecology, biophysics, biopharmaceuticals, medicinal science, and cancer research.
Collapse
Affiliation(s)
- David J Burr
- Department of Physics, Experimental Biophysics and Space Sciences, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Janina Drauschke
- Department of Physics, Experimental Biophysics and Space Sciences, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Katerina Kanevche
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Steffen Kümmel
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Hryhoriy Stryhanyuk
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Amedea Perfumo
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, Telegrafenberg, 14473, Potsdam, Germany
| | - Andreas Elsaesser
- Department of Physics, Experimental Biophysics and Space Sciences, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| |
Collapse
|
7
|
Dankar J, Rouchon V, Rivallan M, Pagis C, El-Roz M. Evidence on C-C Coupling to Acetate as Key Reaction Intermediate in Photocatalytic Reduction of CO 2 over Pt/TiO 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42210-42220. [PMID: 39086023 DOI: 10.1021/acsami.4c07256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Photocatalytic conversion of CO2 with H2O is an attractive application that has the potential to mitigate environmental and energy challenges through the conversion of CO2 to hydrocarbon products such as methane. However, the underlying reaction mechanisms remain poorly understood, limiting real progress in this field. In this work, a mechanistic investigation of the CO2 photocatalytic reduction on Pt/TiO2 is carried out using an operando FTIR approach, combined with chemometric data processing and isotope exchange of (12CO2 + H2O) toward (13CO2 + H2O). Multivariate curve resolution analysis applied to operando spectra across numerous cycles of photoactivation and the CO2 reaction facilitates the identification of principal chemical species involved in the reaction pathways. Moreover, specific probe-molecule-assisted reactions, including CO and CH3COOH, elucidate the capacity of selected molecules to undergo methane production under irradiation conditions. Finally, isotopic exchange reveals conclusive evidence regarding the nature of the identified species during CO2 conversion and points to the significant role of acetates resulting from the C-C coupling reaction as key intermediates in methane production from the CO2 photocatalytic reduction reaction.
Collapse
Affiliation(s)
- Joudy Dankar
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, Solaize 69360, France
- Laboratoire Catalyse et Spectrochimie, Normandie Université, Caen 14050, France
| | - Virgile Rouchon
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, Solaize 69360, France
| | - Mickael Rivallan
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, Solaize 69360, France
| | - Céline Pagis
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, Solaize 69360, France
| | - Mohamad El-Roz
- Laboratoire Catalyse et Spectrochimie, Normandie Université, Caen 14050, France
| |
Collapse
|
8
|
Ormancı Ö, Atasayar Z, Boso Hanyalı Ö. Investigating the Middle Iron Age ceramics of Van Fortress through multi-analytical techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124103. [PMID: 38447445 DOI: 10.1016/j.saa.2024.124103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
This work presents the characterization results of Middle Iron Age pottery fragments excavated in Van Fortress, the historical capital of the Urartu Kingdom, located on the eastern coast of Lake Van in Turkey. A multi-analytical approach combining optical microscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR) has been employed to investigate the mineralogical composition of ceramics. Micro-Raman spectrometer was also used for the characterization of the pigments used for decoration. The data collected from the analyses offered information on the minerals that were discovered in the ceramics, as well as the temperature at which the ceramics were fired and the atmosphere that they were exposed to. The existence of hematite suggests that they were subjected to firing in an oxidizing environment, with the exception of one sample, which has a sandwich shape characterized by a red-edge and a black center, indicating exposure to both reducing and oxidative atmospheres during the fire process. The ceramics utilized in this investigation are hypothesized to have been crafted from elemental substances procured from two to three distinct clay origins.
Collapse
Affiliation(s)
- Özden Ormancı
- Mimar Sinan Fine Arts University, Department of Conservation and Restoration of Cultural Property, Cumhuriyet Mahallesi Silahşör Caddesi No:71, Bomonti/Şişli, 34380 İstanbul, Turkey.
| | - Zeynep Atasayar
- Mimar Sinan Fine Arts University, Department of Conservation and Restoration of Cultural Property, Cumhuriyet Mahallesi Silahşör Caddesi No:71, Bomonti/Şişli, 34380 İstanbul, Turkey
| | - Özge Boso Hanyalı
- Mimar Sinan Fine Arts University, Department of Conservation and Restoration of Cultural Property, Cumhuriyet Mahallesi Silahşör Caddesi No:71, Bomonti/Şişli, 34380 İstanbul, Turkey
| |
Collapse
|
9
|
Baghel D, de Oliveira AP, Satyarthy S, Chase WE, Banerjee S, Ghosh A. Structural characterization of amyloid aggregates with spatially resolved infrared spectroscopy. Methods Enzymol 2024; 697:113-150. [PMID: 38816120 PMCID: PMC11147165 DOI: 10.1016/bs.mie.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The self-assembly of proteins and peptides into ordered structures called amyloid fibrils is a hallmark of numerous diseases, impacting the brain, heart, and other organs. The structure of amyloid aggregates is central to their function and thus has been extensively studied. However, the structural heterogeneities between aggregates as they evolve throughout the aggregation pathway are still not well understood. Conventional biophysical spectroscopic methods are bulk techniques and only report on the average structural parameters. Understanding the structure of individual aggregate species in a heterogeneous ensemble necessitates spatial resolution on the length scale of the aggregates. Recent technological advances have led to augmentation of infrared (IR) spectroscopy with imaging modalities, wherein the photothermal response of the sample upon vibrational excitation is leveraged to provide spatial resolution beyond the diffraction limit. These combined approaches are ideally suited to map out the structural heterogeneity of amyloid ensembles. AFM-IR, which integrates IR spectroscopy with atomic force microscopy enables identification of the structural facets the oligomers and fibrils at individual aggregate level with nanoscale resolution. These capabilities can be extended to chemical mapping in diseased tissue specimens with submicron resolution using optical photothermal microscopy, which combines IR spectroscopy with optical imaging. This book chapter provides the basic premise of these novel techniques and provides the typical methodology for using these approaches for amyloid structure determination. Detailed procedures pertaining to sample preparation and data acquisition and analysis are discussed and the aggregation of the amyloid β peptide is provided as a case study to provide the reader the experimental parameters necessary to use these techniques to complement their research efforts.
Collapse
Affiliation(s)
- Divya Baghel
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, United States
| | - Ana Pacheco de Oliveira
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, United States
| | - Saumya Satyarthy
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, United States
| | - William E Chase
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, United States
| | - Siddhartha Banerjee
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, United States
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, United States.
| |
Collapse
|
10
|
Eshel YD, Sharaha U, Beck G, Cohen-Logasi G, Lapidot I, Huleihel M, Mordechai S, Kapelushnik J, Salman A. Monitoring the efficacy of antibiotic therapy in febrile pediatric oncology patients with bacteremia using infrared spectroscopy of white blood cells-based machine learning. Talanta 2024; 270:125619. [PMID: 38199122 DOI: 10.1016/j.talanta.2023.125619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Bacteremia refers to the presence of bacteria in the bloodstream, which can lead to a serious and potentially life-threatening condition. In oncology patients, individuals undergoing cancer treatment have a higher risk of developing bacteremia due to a weakened immune system resulting from the disease itself or the treatments they receive. Prompt and accurate detection of bacterial infections and monitoring the effectiveness of antibiotic therapy are essential for enhancing patient outcomes and preventing the development and dissemination of multidrug-resistant bacteria. Traditional methods of infection monitoring, such as blood cultures and clinical observations, are time-consuming, labor-intensive, and often subject to limitations. This manuscript presents an innovative application of infrared spectroscopy of leucocytes of pediatric oncology patients with bacteremia combined with machine learning to diagnose the etiology of infection as bacterial and simultaneously monitor the efficacy of the antibiotic therapy in febrile pediatric oncology patients with bacteremia infections. Through the implementation of effective monitoring, it becomes possible to promptly identify any indications of treatment failure. This, in turn, indirectly serves to limit the progression of antibiotic resistance. The logistic regression (LR) classifier was able to differentiate the samples as bacterial or control within an hour, after receiving the blood samples with a success rate of over 95 %. Additionally, initial findings indicate that employing infrared spectroscopy of white blood cells (WBCs) along with machine learning is viable for monitoring the success of antibiotic therapy. Our follow up results demonstrate an accuracy of 87.5 % in assessing the effectiveness of the antibiotic treatment.
Collapse
Affiliation(s)
- Yotam D Eshel
- Department of Hematology and Oncology, Saban Pediatric Medical Center Soroka University Medical Center and Faculty of Health Sciences, Beer-Sheva, 84105, Israel
| | - Uraib Sharaha
- Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel; Department of Biology, Science and Technology College, Hebron University, Hebron, P760, Palestine
| | - Guy Beck
- Department of Hematology and Oncology, Saban Pediatric Medical Center Soroka University Medical Center and Faculty of Health Sciences, Beer-Sheva, 84105, Israel
| | - Gal Cohen-Logasi
- Department of Green Engineering, SCE-Sami Shamoon College of Engineering, Beer-Sheva, 84100, Israel
| | - Itshak Lapidot
- Department of Electrical and Electronics Engineering, ACLP-Afeka Center for Language Processing, Afeka Tel-Aviv Academic College of Engineering, Tel-Aviv, 69107, Israel; LIA Avignon Université, 339 Chemin des Meinajaries, Avignon, 84000, France
| | - Mahmoud Huleihel
- Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Shaul Mordechai
- Department of Physics, Ben-Gurion University, Beer-Sheva, 84105, Israel
| | - Joseph Kapelushnik
- Department of Hematology and Oncology, Saban Pediatric Medical Center Soroka University Medical Center and Faculty of Health Sciences, Beer-Sheva, 84105, Israel
| | - Ahmad Salman
- Department of Physics, SCE-Sami Shamoon College of Engineering, Beer-Sheva, 84100, Israel.
| |
Collapse
|
11
|
Metryka O, Wasilkowski D, Dulski M, Adamczyk-Habrajska M, Augustyniak M, Mrozik A. Metallic nanoparticle actions on the outer layer structure and properties of Bacillus cereus and Staphylococcus epidermidis. CHEMOSPHERE 2024; 354:141691. [PMID: 38484999 DOI: 10.1016/j.chemosphere.2024.141691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Although the antimicrobial activity of nanoparticles (NPs) penetrating inside the cell is widely recognised, the toxicity of large NPs (>10 nm) that cannot be translocated across bacterial membranes remains unclear. Therefore, this study was performed to elucidate the direct effects of Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs on relative membrane potential, permeability, hydrophobicity, structural changes within chemical compounds at the molecular level and the distribution of NPs on the surfaces of the bacteria Bacillus cereus and Staphylococcus epidermidis. Overall analysis of the results indicated the different impacts of individual NPs on the measured parameters in both strains depending on their type and concentration. B. cereus proved to be more resistant to the action of NPs than S. epidermidis. Generally, Cu-NPs showed the most substantial toxic effect on both strains; however, Ag-NPs exhibited negligible toxicity. All NPs had a strong affinity for cell surfaces and showed strain-dependent characteristic dispersion. ATR-FTIR analysis explained the distinctive interactions of NPs with bacterial functional groups, leading to macromolecular structural modifications. The results presented provide new and solid evidence for the current understanding of the interactions of metallic NPs with bacterial membranes.
Collapse
Affiliation(s)
- Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, 40-032, Katowice, Poland.
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Mateusz Dulski
- Institute of Materials Science, Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500, Chorzów, Poland
| | - Małgorzata Adamczyk-Habrajska
- Institute of Materials Science, Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500, Chorzów, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
12
|
Fan X, Sun AR, Young RSE, Afara IO, Hamilton BR, Ong LJY, Crawford R, Prasadam I. Spatial analysis of the osteoarthritis microenvironment: techniques, insights, and applications. Bone Res 2024; 12:7. [PMID: 38311627 PMCID: PMC10838951 DOI: 10.1038/s41413-023-00304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 02/06/2024] Open
Abstract
Osteoarthritis (OA) is a debilitating degenerative disease affecting multiple joint tissues, including cartilage, bone, synovium, and adipose tissues. OA presents diverse clinical phenotypes and distinct molecular endotypes, including inflammatory, metabolic, mechanical, genetic, and synovial variants. Consequently, innovative technologies are needed to support the development of effective diagnostic and precision therapeutic approaches. Traditional analysis of bulk OA tissue extracts has limitations due to technical constraints, causing challenges in the differentiation between various physiological and pathological phenotypes in joint tissues. This issue has led to standardization difficulties and hindered the success of clinical trials. Gaining insights into the spatial variations of the cellular and molecular structures in OA tissues, encompassing DNA, RNA, metabolites, and proteins, as well as their chemical properties, elemental composition, and mechanical attributes, can contribute to a more comprehensive understanding of the disease subtypes. Spatially resolved biology enables biologists to investigate cells within the context of their tissue microenvironment, providing a more holistic view of cellular function. Recent advances in innovative spatial biology techniques now allow intact tissue sections to be examined using various -omics lenses, such as genomics, transcriptomics, proteomics, and metabolomics, with spatial data. This fusion of approaches provides researchers with critical insights into the molecular composition and functions of the cells and tissues at precise spatial coordinates. Furthermore, advanced imaging techniques, including high-resolution microscopy, hyperspectral imaging, and mass spectrometry imaging, enable the visualization and analysis of the spatial distribution of biomolecules, cells, and tissues. Linking these molecular imaging outputs to conventional tissue histology can facilitate a more comprehensive characterization of disease phenotypes. This review summarizes the recent advancements in the molecular imaging modalities and methodologies for in-depth spatial analysis. It explores their applications, challenges, and potential opportunities in the field of OA. Additionally, this review provides a perspective on the potential research directions for these contemporary approaches that can meet the requirements of clinical diagnoses and the establishment of therapeutic targets for OA.
Collapse
Affiliation(s)
- Xiwei Fan
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Antonia Rujia Sun
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Reuben S E Young
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Isaac O Afara
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- School of Electrical Engineering and Computer Science, Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, QLD, Australia
| | - Brett R Hamilton
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD, Australia
| | - Louis Jun Ye Ong
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ross Crawford
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Indira Prasadam
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia.
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
13
|
de Oliveira AP, Chase W, Confer MP, Walker S, Baghel D, Ghosh A. Colocalization of β-Sheets and Carotenoids in Aβ Plaques Revealed with Multimodal Spatially Resolved Vibrational Spectroscopy. J Phys Chem B 2024; 128:33-44. [PMID: 38124262 PMCID: PMC10851346 DOI: 10.1021/acs.jpcb.3c04782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The aggregation of amyloid β(Aβ) peptides is at the heart of Alzheimer's disease development and progression. As a result, amyloid aggregates have been studied extensively in vitro, and detailed structural information on fibrillar amyloid aggregates is available. However, forwarding these structural models to amyloid plaques in the human brain is still a major challenge. The chemistry of amyloid plaques, particularly in terms of the protein secondary structure and associated chemical moieties, remains poorly understood. In this report, we use Raman microspectroscopy to identify the presence of carotenoids in amyloid plaques and demonstrate that the abundance of carotenoids is correlated with the overall protein secondary structure of plaques, specifically to the population of β-sheets. While the association of carotenoids with plaques has been previously identified, their correlation with the β structure has never been identified. To further validate these findings, we have used optical photothermal infrared (O-PTIR) spectroscopy, which is a spatially resolved technique that yields complementary infrared contrast to Raman. O-PTIR unequivocally demonstrates the presence of elevated β-sheets in carotenoid-containing plaques and the lack of β structure in noncarotenoid plaques. Our findings underscore the potential link between anti-inflammatory species as carotenoids to specific secondary structural motifs within Aβ plaques and highlight the possible role of chemically distinct plaques in neuroinflammation, which can uncover new mechanistic insights and lead to new therapeutic strategies for AD.
Collapse
Affiliation(s)
| | - William Chase
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Matthew P. Confer
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, Illinois 61801, USA
| | - Savannah Walker
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Divya Baghel
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| |
Collapse
|
14
|
Hassanuddin NA, Normaya E, Ismail H, Iqbal A, Piah MBM, Abd Hamid S, Ahmad MN. Methyl 4-pyridyl ketone thiosemicarbazone (4-PT) as an effective and safe inhibitor of mushroom tyrosinase and antibrowning agent. Int J Biol Macromol 2024; 255:128229. [PMID: 37981274 DOI: 10.1016/j.ijbiomac.2023.128229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
Enzymatic browning is of concern as it can affect food safety and quality. In this study, an effective and safe tyrosinase inhibitor and anti-browning agent, methyl 4-pyridyl ketone thiosemicarbazone (4-PT), was synthesised and characterised using Fourier-transform infrared (FTIR) spectroscopy, CHNS elemental analysis, and proton (1H) and carbon-13 (13C) nuclear magnetic resonance (NMR) spectroscopy. The vibrational frequencies of 4-PT were studied theoretically using vibrational energy distribution analysis (VEDA). Density functional theory (DFT) was applied to elucidate its chemical properties, including the Mulliken atomic charges, molecular electrostatic potential (MEP), quantum theory of atoms in molecules (QTAIM) and reduced density gradient non-covalent interactions (RDG-NCIs). Moreover, 4-PT was compared with kojic acid in terms of its effectiveness as a tyrosinase inhibitor and anti-browning agent. The toxicity and physicochemical properties of 4-PT were predicted via ADME evaluation, which proved that 4-PT is safer than kojic acid. Experimentally, 4-PT (IC50 = 5.82 μM, browning index (10 days) = 0.292 ± 0.002) was proven to be an effective tyrosinase inhibitor and anti-browning agent compared to kojic acid (IC50 = 128.17 μM, browning index (10 days) = 0.332 ± 0.002). Furthermore, kinetic analyses indicated that the type of tyrosinase inhibition is a mixed inhibition, with Km and Vmax values of 0.85 mM and 2.78 E-09 μM/s, respectively. Finally, the mechanism of 4-PT for tyrosinase inhibition was proven by 1D, second derivative and 2D IR spectroscopy, molecular docking and molecular dynamic simulation approaches.
Collapse
Affiliation(s)
- Nur Amanina Hassanuddin
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia
| | - Erna Normaya
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia; Sustainable Nanotechnology and Computational Modelling (SuNCoM) Research Group, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Hakimah Ismail
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia
| | - Anwar Iqbal
- School of Chemical Science, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Mohd Bijarimi Mat Piah
- Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Kuantan, Malaysia
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia
| | - Mohammad Norazmi Ahmad
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia; Sustainable Nanotechnology and Computational Modelling (SuNCoM) Research Group, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.
| |
Collapse
|
15
|
Jingying C, Baocai L, Ying C, Wujun Z, Yunqing Z, Yingzhen H, Tew WY, Ong PS, Yan CS, Loh HW, Yam MF. Discrimination of Dioscorea species (Chinese yam) using FT-IR integrated with chemometric approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123229. [PMID: 37625275 DOI: 10.1016/j.saa.2023.123229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
Dioscorea oppositifolia is an important crop and functional food. D. oppositifolia tuber is often adulterated with D. persimilis, D. alata, and D. fordii tuber in the commercial market. This study proposed an integrated Fourier transform infrared spectroscopy (FT-IR) with chemometric approach to differentiate these four Dioscorea species. A total of 107 Dioscorea spp. tuber samples were collected from different locations in China. Principal Component Analysis (PCA), PCA-Class, and Orthogonal Partial Least Square Discriminant Analysis (OPLS-DA) were utilised to classify the FT-IR spectra. In this PCA is unable to differentiate the Dioscorea spp. tuber effectively. However, PCA-Class and OPLS-DA can distinguish spp. these 4 species Dioscorea tuber with high accuracy, sensitivity, and specificity. Additionally, the RMSEE, RMSEP and RMSECV values for OPLS-DA model were low, showing that it is a good model. The combination of FT-IR with the PCA-Class and OPLS-DA is practical in discriminating Dioscorea spp. tubers.
Collapse
Affiliation(s)
- Chen Jingying
- Research Center for Medicinal Plant, Institute of Agricultural Bio-resource, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China.
| | - Liu Baocai
- Research Center for Medicinal Plant, Institute of Agricultural Bio-resource, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
| | - Chen Ying
- Research Center for Medicinal Plant, Institute of Agricultural Bio-resource, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhang Wujun
- Research Center for Medicinal Plant, Institute of Agricultural Bio-resource, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
| | - Zhao Yunqing
- Research Center for Medicinal Plant, Institute of Agricultural Bio-resource, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
| | - Huang Yingzhen
- Research Center for Medicinal Plant, Institute of Agricultural Bio-resource, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
| | - Wan Yin Tew
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| | - Peng Shun Ong
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| | - Chong Seng Yan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| | - Hui Wei Loh
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| | - Mun Fei Yam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia; Faculty of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian 350122, China.
| |
Collapse
|
16
|
Syed ZA, Milman T, Fertala J, Steplewski A, Fertala A. Corneal Wound Healing in the Presence of Antifibrotic Antibody Targeting Collagen Fibrillogenesis: A Pilot Study. Int J Mol Sci 2023; 24:13438. [PMID: 37686240 PMCID: PMC10488077 DOI: 10.3390/ijms241713438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Highly organized collagen fibrils interlacing with proteoglycans form the crucial architecture of the cornea and facilitate its transparency. Corneal scarring from accidental injury, surgery, or infection alters this highly organized tissue, causing severe consequences, including blindness. There are no pharmacological or surgical methods to effectively and safely treat excessive corneal scarring. Thus, we tested the anticorneal scarring utility of a rationally designed anticollagen antibody (ACA) whose antifibrotic effects have already been demonstrated in nonocular models. Utilizing a rabbit model with an incisional corneal wound, we analyzed ACA's effects on forming collagen and proteoglycan-rich extracellular matrices in scar neotissue. We used microscopic and spectroscopic techniques to quantify these components and measure crucial parameters characterizing the structure and organization of collagen fibrils. Moreover, we analyzed the spatial distribution of collagen and proteoglycans in normal and healing corneas. Our study demonstrated significant changes in the quality and quantity of the analyzed molecules synthesized in scar neotissue. It showed that these changes extend beyond incision margins. It also showed ACA's positive impact on some crucial parameters defining proper cornea structure. This pilot study provides a stepping stone for future tests of therapeutic approaches that target corneal extracellular scar matrix assembly.
Collapse
Affiliation(s)
- Zeba A. Syed
- Wills Eye Hospital, Philadelphia, PA 19107, USA; (Z.A.S.); (T.M.)
| | - Tatyana Milman
- Wills Eye Hospital, Philadelphia, PA 19107, USA; (Z.A.S.); (T.M.)
| | - Jolanta Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, PA 19107, USA; (J.F.); (A.S.)
| | - Andrzej Steplewski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, PA 19107, USA; (J.F.); (A.S.)
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, PA 19107, USA; (J.F.); (A.S.)
| |
Collapse
|
17
|
Yun HW, Jin YJ, Shin DI, Noh S, Kim KM, Park JY, Lim S, Park DY. Fibrocartilage extracellular matrix augmented demineralized bone matrix graft repairs tendon-to-bone interface in a rabbit tendon reconstruction model. BIOMATERIALS ADVANCES 2023; 152:213522. [PMID: 37343332 DOI: 10.1016/j.bioadv.2023.213522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Current tendon/ligament reconstructions integrate via scar tissue rather than proper bone-tendon interface regeneration, which affects graft longevity, changes in bone tunnel size, and functional outcomes. The purpose of this study was to develop a functional demineralized bone matrix (DBM) + fibrocartilage extracellular matrix (FCECM) composite scaffold, characterize its physicochemical properties, and evaluate its efficacy in repairing tendon-bone interface in a rabbit tendon reconstruction model. Solubilized FCECM was loaded and crosslinked on to DBM scaffolds via gamma-irradiation to create DBM + FCECM scaffolds. The resulting scaffold showed interconnected pores coated with FCECM and protein cargo similar to FCECM. The addition of FCECM modified the physicochemical properties of the DBM scaffold, including microstructure, biochemical composition, mechanical strength, thermodynamic properties, and degradation period. The DBM + FCECM scaffold was biocompatible for mesenchymal stem cells (MSCs) and resulted in elevation of fibrochondrogenic gene markers compared to DBM scaffolds in vitro. In vivo implantation of DBM + FCECM scaffold resulted in neofibrocartilage formation, better pullout strength, and less bone tunnel widening compared to DBM only group in a rabbit tendon reconstruction model. In conclusion, the FCECM augmented DBM scaffold repairs the tendon-bone interface with osseous-fibrocartilage tissue, which may be utilized to improve current tendon reconstruction surgeries.
Collapse
Affiliation(s)
- Hee-Woong Yun
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Yong Jun Jin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Dong Il Shin
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sujin Noh
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Kyu Min Kim
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Jae-Young Park
- Department of Orthopedic Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, Pocheon 13496, Gyeonggi-do, Republic of Korea
| | - Sumin Lim
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Do Young Park
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea.
| |
Collapse
|
18
|
Shukla AG, Milman T, Fertala J, Steplewski A, Fertala A. Scar formation in the presence of mitomycin C and the anti-fibrotic antibody in a rabbit model of glaucoma microsurgery: A pilot study. Heliyon 2023; 9:e15368. [PMID: 37123929 PMCID: PMC10130883 DOI: 10.1016/j.heliyon.2023.e15368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/19/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Purpose This study aimed to evaluate the utility of a rationally engineered antibody that directly blocks collagen fibrillogenesis to reduce scar tissue formation associated with subconjunctival glaucoma surgery. Material and methods Fourteen eyes of 7 adult rabbits underwent glaucoma filtering surgery using XEN 45 Gel Stent. The rabbits' eyes were divided randomly into three treatment groups: (i) treated with the antibody, (ii) treated with mitomycin C, and (iii) treated with the antibody and mitomycin C. Following surgeries, the intraocular pressure and bleb appearance were evaluated in vivo. The rabbits were sacrificed 8 weeks after the surgery, and their eyes were harvested and processed for tissue analysis. Subsequently, tissue samples were analyzed microscopically for fibrotic tissue and cellular markers of inflammation. Moreover, the collagen-rich fibrotic tissue formed around the stents was analyzed using quantitative histology and infrared spectroscopy. The outcomes of this study were analyzed using the ANOVA test. Results This study demonstrated no significant differences in intraocular pressure, bleb appearance, or presence of complications such as bleb leak among the treatment groups. In contrast, we observed significant differences among the subpopulations of collagen fibrils formed within scar neo-tissue. Based on the spectroscopic analyses, we determined that the relative content of mature collagen cross-links in the antibody-treated group was significantly reduced compared to other groups. Conclusions Direct blocking of collagen fibrillogenesis with the anti-collagen antibody offers potentially beneficial effects that may reduce the negative impact of the subconjunctival scarring associated with glaucoma filtering surgery.
Collapse
Affiliation(s)
- Aakriti Garg Shukla
- Wills Eye Hospital, Philadelphia, PA, USA
- Glaucoma Division, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Jolanta Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrzej Steplewski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Corresponding author. Department of Orthopaedic Surgery; Sidney Kimmel Medical College, Thomas Jefferson University; Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, 19107, PA, USA.
| |
Collapse
|
19
|
Cassani NM, Santos IA, Grosche VR, Ferreira GM, Guevara-Vega M, Rosa RB, Pena LJ, Nicolau-Junior N, Cintra ACO, Mineo TP, Sabino-Silva R, Sampaio SV, Jardim ACG. Roles of Bothrops jararacussu toxins I and II: Antiviral findings against Zika virus. Int J Biol Macromol 2023; 227:630-640. [PMID: 36529220 DOI: 10.1016/j.ijbiomac.2022.12.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/16/2022]
Abstract
Zika virus is the etiologic agent of Zika fever, and has been previously associated with cases of microcephaly, drawing the attention of the health authorities worldwide. However, no vaccine or antiviral are currently available. Phospholipases A2 (PLA2) isolated from snake venoms have demonstrated antiviral activity against several viruses. Here we demonstrated the anti-ZIKV activity of bothropstoxins-I and II (BthTX-I and II) isolated from Bothrops jararacussu venom. Vero E6 cells were infected with ZIKVPE243 in the presence of compounds for 72 h, when virus titers were evaluated. BthTX-I and II presented strong dose-dependent inhibition of ZIKV, with a SI of 149.1 and 1.44 × 105, respectively. These toxins mainly inhibited the early stages of the replicative cycle, such as during the entry of ZIKV into host cells, as shown by the potent virucidal effect, suggesting the action of these toxins on the virus particles. Moreover, BthTX-I and II presented significant activity towards post-entry stages of the ZIKV replicative cycle. Molecular docking analyses showed that BthTX-I and II potentially interact with DII and DIII domains from ZIKV Envelope protein. Our findings show that these PLA2s could be used as useful templates for the development of future antiviral candidate drugs against Zika fever.
Collapse
Affiliation(s)
- Natasha Marques Cassani
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Igor Andrade Santos
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Victória Riquena Grosche
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil; Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto, SP, Brazil
| | - Giulia Magalhães Ferreira
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Marco Guevara-Vega
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Rafael Borges Rosa
- Rodents Animal Facilities Complex, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil; Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Lindomar José Pena
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Nilson Nicolau-Junior
- Institute of Biotechnology, Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Adélia Cristina Oliveira Cintra
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Tiago Patriarca Mineo
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Robinson Sabino-Silva
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil; Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto, SP, Brazil.
| |
Collapse
|
20
|
Ruiz UEA, Santos IA, Grosche VR, Fernandes RS, de Godoy AS, Torres JDA, Freire MCLC, Mesquita NCDMR, Guevara-Vega M, Nicolau-Junior N, Sabino-Silva R, Mineo TWP, Oliva G, Jardim ACG. Imidazonaphthyridine effects on Chikungunya virus replication: Antiviral activity by dependent and independent of interferon type 1 pathways. Virus Res 2023; 324:199029. [PMID: 36565816 PMCID: PMC10194360 DOI: 10.1016/j.virusres.2022.199029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The Chikungunya virus (CHIKV) causes Chikungunya fever, a disease characterized by symptoms such as arthralgia/polyarthralgia. Currently, there are no antivirals approved against CHIKV, emphasizing the need to develop novel therapies. The imidazonaphthyridine compound (RO8191), an interferon-α (IFN-α) agonist, was reported as a potent inhibitor of HCV. Here RO8191 was investigated for its potential to inhibit CHIKV replication in vitro. RO8191 inhibited CHIKV infection in BHK-21 and Vero-E6 cells with a selectivity index (SI) of 12.3 and 37.3, respectively. Additionally, RO8191 was capable to protect cells against CHIKV infection, inhibit entry by virucidal activity, and strongly impair post-entry steps of viral replication. An effect of RO8191 on CHIKV replication was demonstrated in BHK-21 through type-1 IFN production mechanism and in Vero-E6 cells which has a defective type-1 IFN production, also suggesting a type-1 IFN independent mode of action. Molecular docking calculations demonstrated interactions of RO8191 with the CHIKV E proteins, corroborated by the ATR-FTIR assay, and with non-structural proteins, supported by the CHIKV-subgenomic replicon cells assay.
Collapse
Affiliation(s)
| | - Igor Andrade Santos
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Victória Riquena Grosche
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil; Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Campus São José do Rio Preto, SP, Brazil
| | | | | | | | | | | | - Marco Guevara-Vega
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Nilson Nicolau-Junior
- Institute of Biotechnology, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Robinson Sabino-Silva
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | - Glaucius Oliva
- Sao Carlos Institute of Physics, University of Sao Paulo (USP), São Carlos, SP, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil; Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Campus São José do Rio Preto, SP, Brazil.
| |
Collapse
|
21
|
Sahachairungrueng W, Meechan C, Veerachat N, Thompson AK, Teerachaichayut S. Assessing the Levels of Robusta and Arabica in Roasted Ground Coffee Using NIR Hyperspectral Imaging and FTIR Spectroscopy. Foods 2022; 11:3122. [PMID: 36230198 PMCID: PMC9562924 DOI: 10.3390/foods11193122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
It has been reported that some brands of roasted ground coffee, whose ingredients are labeled as 100% Arabica coffee, may also contain the cheaper Robusta coffee. Thus, the objective of this research was to test whether near-infrared spectroscopy hyperspectral imaging (NIR-HSI) or Fourier transform infrared spectroscopy (FTIRs) could be used to test whether samples of coffee were pure Arabica or whether they contained Robusta, and if so, what were the levels of Robusta they contained. Qualitative models of both the NIR-HSI and FTIRs techniques were established with support vector machine classification (SVMC). Results showed that the highest levels of accuracy in the prediction set were 98.04 and 97.06%, respectively. Quantitative models of both techniques for predicting the concentration of Robusta in the samples of Arabica with Robusta were established using support vector machine regression (SVMR), which gave the highest levels of accuracy in the prediction set with a coefficient of determination for prediction (Rp2) of 0.964 and 0.956 and root mean square error of prediction (RMSEP) of 5.47 and 6.07%, respectively. It was therefore concluded that the results showed that both techniques (NIR-HSI and FTIRs) have the potential for use in the inspection of roasted ground coffee to classify and determine the respective levels of Arabica and Robusta within the mixture.
Collapse
Affiliation(s)
- Woranitta Sahachairungrueng
- Department of Food Science, School of Food-Industry, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520, Thailand
| | - Chanyanuch Meechan
- Department of Food Process Engineering, School of Food-Industry, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520, Thailand
| | - Nutchaya Veerachat
- Department of Food Process Engineering, School of Food-Industry, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520, Thailand
| | - Anthony Keith Thompson
- Department of Postharvest Technology, Cranfield University, College Road, Bedford MK43 0AL, UK
| | - Sontisuk Teerachaichayut
- Department of Food Process Engineering, School of Food-Industry, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520, Thailand
| |
Collapse
|
22
|
Tew WY, Ying C, Wujun Z, Baocai L, Yoon TL, Yam MF, Jingying C. Application of FT-IR spectroscopy and chemometric technique for the identification of three different parts of Camellia nitidissima and discrimination of its authenticated product. Front Pharmacol 2022; 13:931203. [PMID: 36238551 PMCID: PMC9551166 DOI: 10.3389/fphar.2022.931203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/29/2022] [Indexed: 12/03/2022] Open
Abstract
Camellia nitidissima C.W. Chi is a golden camellia recognized in Chinese herbology and widely used as tea and essential oil in Chinese communities. Due to its diverse pharmacological properties, it can be used to treat various diseases. However, unethical sellers adulterated the flower with other parts of Camellia nitidissima in their product. This study used an integrated tri-step infrared spectroscopy method and a chemometric approach to distinguish C. nitidissima’s flowers, leaves, and seeds. The three different parts of C. nitidissima were well distinguished using Fourier transform infrared spectroscopy (FT-IR), second-derivative infrared (SD-IR) spectra, and two-dimensional correlation infrared (2D-IR) spectra. The FT-IR and SD-IR spectra of the samples were subjected to principal component analysis (PCA), PCA-class, and orthogonal partial least square discriminant analysis (OPLS-DA) for classification and discrimination studies. The three parts of C. nitidissima were well separated and discriminated by PCA and OPLS-DA. The PCA-class model’s sensitivity, accuracy, and specificity were all >94%, indicating that PCA-class is the good model. In addition, the RMSEE, RMSEP, and RMSECV values for the OPLS-DA model were low, and the model’s sensitivity, accuracy, and specificity were all 100%, showing that it is the excellent one. In addition, PCA-class and OPLS-DA obtained scores of 27/32 and 26/32, respectively, for detecting adulterated and other TCM reference flower samples from C. nitidissima. Combining an infrared spectroscopic method with a chemometric approach proved that it is possible to differentiate distinct sections of C. nitidissima and discriminate adulterated samples of C.nitidissima flower.
Collapse
Affiliation(s)
- Wan Yin Tew
- Research Center for Medicinal Plant, Institute of Agricultural Bio-resource, Fujian Academy of Agricultural Sciences, Fuzhou, China
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Chen Ying
- Research Center for Medicinal Plant, Institute of Agricultural Bio-resource, Fujian Academy of Agricultural Sciences, Fuzhou, China
- School of Chinese MateriaMedica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhang Wujun
- Research Center for Medicinal Plant, Institute of Agricultural Bio-resource, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Liu Baocai
- Research Center for Medicinal Plant, Institute of Agricultural Bio-resource, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Tiem Leong Yoon
- School of Physics, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Mun Fei Yam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Chen Jingying, ; Mun Fei Yam,
| | - Chen Jingying
- Research Center for Medicinal Plant, Institute of Agricultural Bio-resource, Fujian Academy of Agricultural Sciences, Fuzhou, China
- *Correspondence: Chen Jingying, ; Mun Fei Yam,
| |
Collapse
|
23
|
Spain O, Funk C. Detailed Characterization of the Cell Wall Structure and Composition of Nordic Green Microalgae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9711-9721. [PMID: 35894177 PMCID: PMC9372998 DOI: 10.1021/acs.jafc.2c02783] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Green microalgae are attractive to food, pharmaceutical, and biofuel industries due to the promising and diverse properties of their intracellular components. In current biotechnological applications, however, clear bottlenecks are the cell disruption and cell harvesting steps. Challenges in both of these processes are directly linked to the properties of the microalgal cell wall. The aim of this study was to explore the cell wall compositions and morphologies of four Nordic microalgal strains (Chlorella vulgaris (13-1), Scenedesmus sp. (B2-2), Haematococcus pluvialis, and Coelastrella sp. (3-4)) and their changes in relation to logarithmic and stationary growth phases. Transmission electron microscopy imaging enabled us to visualize the cell walls and to observe structural elements such as spines, microfibrillar hairs, or layers. Using cryogenic X-ray photoelectron spectroscopy, we quantified lipid, protein, and polysaccharide content of the outer surface of the microalgal cell wall in cultures. Fourier transform infrared spectroscopy highlighted changes between growth phases within the polysaccharide and protein fractions of the cell wall. Very prominent differences were observed in sugar and protein composition of the Scenedesmus sp. (B2-2) cell wall compared to the cell walls of the other three Nordic strains using trimethylsilyl derivatization.
Collapse
|
24
|
Jayan H, Pu H, Sun DW. Analyzing macromolecular composition of E. Coli O157:H7 using Raman-stable isotope probing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121217. [PMID: 35427921 DOI: 10.1016/j.saa.2022.121217] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Metabolic dynamics of bacterial cells is needed for understanding the correlation between changes in environmental conditions and cell metabolic activity. In this study, Raman spectroscopy combined with deuterium labelling was used to analyze the metabolic activity of a single Escherichia coli O157:H7 cell. The incorporation of deuterium from heavy water into cellular biomolecules resulted in the formation of carbon-deuterium (CD) peaks in the Raman spectra, indicating the cell metabolic activity. The broad vibrational peaks corresponding to CD and CH peaks encompassed different specific shifts of macromolecules such as protein, lipids, and nucleic acid. The utilization of tryptophan and oleic acid by the cell as the sole carbon source led to changes in cell lipid composition, as indicated by new peaks in the second derivative spectra. Thus, the proposed method could semi-quantitatively determine total metabolic activity, macromolecule specific identification, and lipid and protein metabolism in a single cell.
Collapse
Affiliation(s)
- Heera Jayan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
25
|
Rajesh S, Gangadoo S, Nguyen H, Zhai J, Dekiwadia C, Drummond CJ, Chapman J, Truong VK, Tran N. Application of Fluconazole-Loaded pH-Sensitive Lipid Nanoparticles for Enhanced Antifungal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32845-32854. [PMID: 35850116 DOI: 10.1021/acsami.2c05165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cryptococcus neoformans is a yeast-like fungus that can cause the life-threatening disease cryptococcal meningitis. Numerous reports have shown increased resistance of this fungus against antifungal treatments, such as fluconazole (Fluc), contributing to an 80% global mortality rate. This work presents a novel approach to improve the delivery of the antifungal agent Fluc and increase the drug's targetability and availability at the infection site. Exploiting the acidic environment surrounding a C. neoformans infected site, we have developed pH-sensitive lipid nanoparticles (LNP) encapsulating Fluc to inhibit the growth of resistant C. neoformans. The LNP-Fluc delivery system consists of a neutral lipid monoolein (MO) and a novel synthetic ionizable lipid 2-morpholinoethyl oleate (O2ME). At neutral pH, because of the presence of O2ME, the nanoparticles are neutral and exhibit a liquid crystalline hexagonal nanostructure (hexosomes). At an acidic pH, they are positively charged with a cubic nanostructure (cubosomes), which facilitates the interaction with the negatively charged fungal cell wall. This interaction results in the MIC50 and MIC90 values of the LNP-Fluc being significantly lower than that of the free-Fluc control. Confocal laser scanning microscopy and scanning electron microscopy further support the MIC values, showing fungal cells exposed to LNP-Fluc at acidic pH were heavily distorted, demonstrating efflux of cytoplasmic molecules. In contrast, fungal cells exposed to Fluc alone showed cell walls mostly intact. This current study represents a significant advancement in delivering targeted antifungal therapy to combat fungal antimicrobial resistance.
Collapse
Affiliation(s)
- Sarigama Rajesh
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - Sheeana Gangadoo
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - Han Nguyen
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - Jiali Zhai
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - Chaitali Dekiwadia
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - James Chapman
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - Vi Khanh Truong
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
- Biomedical Nanoengineering Lab, College of Medicine and Public Health, Flinders University, Bedford Park 5043, South Australia
| | - Nhiem Tran
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| |
Collapse
|
26
|
Experimental Investigation on the Bioprotective Role of Trehalose on Glutamine Solutions by Infrared Spectroscopy. MATERIALS 2022; 15:ma15124329. [PMID: 35744387 PMCID: PMC9231094 DOI: 10.3390/ma15124329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022]
Abstract
Glutamine plays a significant role in several basic metabolic processes and is an important regulator of heat shock protein response. The present work is focused on the analysis of the thermal response of aqueous solutions of Glutamine and aqueous solutions of Glutamine in the presence of Trehalose by means of infrared absorption technique. The performed study shows how in the case of a multicomponent system, characterized by a huge number of spectral contributions whose assignment are questionable, the Spectral Distance (SD) and the Cross Wavelet Correlation (XWT) approaches are able to furnish explanatory parameters that can characterize the variations in the spectra behaviour, which is an efficient tool for quantitative comparisons. With this purpose, the analysis has been performed by evaluating the SD and the XWT parameters for the whole investigated spectral range, i.e., 4000–400 cm−1, for scans collected as a function of temperature in the range 20 °C ÷ 60 °C both for Glutamine/Water compounds and for Glutamine /Water/Trehalose mixtures. By means of these analyses, it is found that in aqueous solutions of Glutamine, with respect to aqueous solutions of Glutamine in the presence of Trehalose, the SD and XWT temperature trends follow a linear behaviour where the angular coefficient for Glutamine /Water/Trehalose compounds are lower than that of the Glutamine-Water system in both cases. The obtained findings suggest that Trehalose stabilizes Glutamine against heat treatment.
Collapse
|
27
|
Souza de Araujo GR, Mendonça da Cruz Macieira G, Xavier de Oliveira D, Santos Matos S, Nery Dos Santos Q, Otubo L, Antunes de Souza Araújo A, Cavalcante Duarte M, Moreira Lira AA, de Souza Nunes R, Vitorino Sarmento VH. Microemulsions formed by PPG-5-CETETH-20 at low concentrations for transdermal delivery of nifedipine: Structural and in vitro study. Colloids Surf B Biointerfaces 2022; 214:112474. [PMID: 35338963 DOI: 10.1016/j.colsurfb.2022.112474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/13/2022] [Accepted: 03/19/2022] [Indexed: 12/26/2022]
Abstract
Nifedipine is a potent anti-hypertensive, which is poorly orally bioavailable on account of first-pass metabolism, short half-life, and low water solubility. This study aimed to develop a microemulsified system with low surfactant concentration and to evaluate the influence of microemulsion (ME) phase behavior on skin permeation of nifedipine, as drug model. Thereafter, MEs were obtained using PPG-5-CETETH-20, oleic acid, and phosphate buffer at pH 5.0. The selected MEs were isotropic, with droplet diameters less than 10 nm, polydispersity index < 0.25, and pH between 5.0 and 5.2. MEs presented low viscosity and Newtonian behavior. SAXS results confirmed bicontinuous and oil-in-water (o/w) MEs formation. The presence of the drug promoted only very slight modifications in the ME structure. The MEs presented ability to deliver nifedipine via the transdermal route when in comparison with the control. Nevertheless, the skin permeated and retained amounts from the o/w and bicontinuous formulations did not differ significantly. The ATR-FTIR demonstrated that both formulations promoted fluidization and disorganization of lipids and increased the drug diffusion and partition coefficients in the skin. In conclusion, PPG-5-CETETH-20 MEs obtained proved to be effective skin permeation enhancers, acting by rising the coefficients of partition and diffusion of the nifedipine in the skin.
Collapse
Affiliation(s)
| | - Givalda Mendonça da Cruz Macieira
- Department of Chemistry, Federal University of Sergipe, Av. Vereador Olimpio Grande, Sítio Porto, Itabaiana, s/n 49506-036 SE, Brazil
| | - Dayane Xavier de Oliveira
- Department of Chemistry, Federal University of Sergipe, Av. Vereador Olimpio Grande, Sítio Porto, Itabaiana, s/n 49506-036 SE, Brazil
| | - Saulo Santos Matos
- Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jd. Rosa Elze, São Cristóvão, s/n 49100-000 SE, Brazil
| | - Quesia Nery Dos Santos
- Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jd. Rosa Elze, São Cristóvão, s/n 49100-000 SE, Brazil
| | - Larissa Otubo
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Cidade Universitária, Av. Prof. Lineu Prestes, 2242, São Paulo, CEP 05508-000 SP, Brazil
| | - Adriano Antunes de Souza Araújo
- Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jd. Rosa Elze, São Cristóvão, s/n 49100-000 SE, Brazil
| | - Marcelo Cavalcante Duarte
- Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jd. Rosa Elze, São Cristóvão, s/n 49100-000 SE, Brazil
| | - Ana Amélia Moreira Lira
- Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jd. Rosa Elze, São Cristóvão, s/n 49100-000 SE, Brazil
| | - Rogéria de Souza Nunes
- Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jd. Rosa Elze, São Cristóvão, s/n 49100-000 SE, Brazil
| | - Victor Hugo Vitorino Sarmento
- Department of Chemistry, Federal University of Sergipe, Av. Vereador Olimpio Grande, Sítio Porto, Itabaiana, s/n 49506-036 SE, Brazil.
| |
Collapse
|
28
|
Surface Chemical and Morphological Analysis of Chitosan/1,3-β-d-Glucan Polysaccharide Films Cross-Linked at 90 °C. Int J Mol Sci 2022; 23:ijms23115953. [PMID: 35682630 PMCID: PMC9180171 DOI: 10.3390/ijms23115953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/28/2022] Open
Abstract
The cross-linking temperature of polymers may affect the surface characteristics and molecular arrangement, which are responsible for their mechanical and physico-chemical properties. The aim of this research was to determine and explain in detail the mechanism of unit interlinkage of two-component chitosan/1,3-β-d-glucan matrices gelled at 90 °C. This required identifying functional groups interacting with each other and assessing surface topography providing material chemical composition. For this purpose, various spectroscopic and microscopic approaches, such as attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), were applied. The results indicate the involvement mainly of the C-C and C-H groups and C=O⋯HN moieties in the process of biomaterial polymerization. Strong chemical interactions and ionocovalent bonds between the N-glucosamine moieties of chitosan and 1,3-β-d-glucan units were demonstrated, which was also reflected in the uniform surface of the sample without segregation. These unique properties, hybrid character and proper cell response may imply the potential application of studied biomaterial as biocompatible scaffolds used in regenerative medicine, especially in bone restoration and/or wound healing.
Collapse
|
29
|
Esther Elizabeth Grace C, Briget Mary M, Vaidyanathan S, Srisudha S. Response to nutrient variation on lipid productivity in green microalgae captured using second derivative FTIR and Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120830. [PMID: 34995851 DOI: 10.1016/j.saa.2021.120830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Two green microalgae species Monoraphidium contortum (M. contortum) and Chlamydomonas sp. that were identified to accumulate lipids were subjected to four different nutrient treatments (NP1-NP4), ranging in nitrate (0.05-5 mM N) and phosphate (2.8-264 μM P) concentrations, at a fixed N:P ratio of ∼18. The effect of nutrient variation on lipid productivity in the species was investigated using second derivative (SD) FTIR and Raman spectroscopy of algal biomass. SD spectral analysis revealed high production of lipid in the form of hydrocarbons (CH) (3000-2800 cm-1), triacylglycerides (TAGs)(∼1740 cm-1), saturated (SFA)(∼1440 cm-1), and unsaturated fatty acids (UFA)(∼3010 cm-1) for the nutrient deplete condition (NP1) in both species. Changes in signals attributed to lipids in proportion to other biochemical components were consistent with physiological changes expected from nutrient depletion. Relative signal intensities for lipids showed a significant increase in NP1, in particular, CH, TAGs in relation to protein signals (in SD-FTIR), and SFA, UFA in relation to carotenoid signals (in SD-Raman). PCA performed on the negative spectral values of the SD-FTIR and SD-Raman data for the four NP treatments enabled discrimination not only between the species but also between the NP treatments and the timing of harvest. M. contortum was found to contain a relatively higher proportion of CH, TAGs, SFA, and UFA compared to Chlamydomonas sp. Peak areas from the negative SD spectra, informed by PCA analysis, enabled capturing quantifiable changes in a manner that is consistent with known microalgal physiology. SD-FTIR and SD-Raman spectroscopy have been shown to possess superior potential to capture relevant microalgal physiological changes.
Collapse
Affiliation(s)
| | - M Briget Mary
- Research Centre, Department of Physics, Lady Doak College, Madurai 625002, Tamil Nadu, India.
| | - Seetharaman Vaidyanathan
- ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| | - S Srisudha
- Research Centre, Department of Botany, Lady Doak College, Madurai 625002, Tamil Nadu, India.
| |
Collapse
|
30
|
Santos IA, Pereira AKDS, Guevara-Vega M, de Paiva REF, Sabino-Silva R, Bergamini FRG, Corbi PP, Jardim ACG. Repurposing potential of rimantadine hydrochloride and development of a promising platinum(II)-rimantadine metallodrug for the treatment of Chikungunya virus infection. Acta Trop 2022; 227:106300. [PMID: 34979144 DOI: 10.1016/j.actatropica.2021.106300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/15/2022]
Abstract
Most of the patients infected with Chikungunya virus (CHIKV) develop chronic manifestations characterized by pain and deformity in joints, impacting their quality of life. The aminoadamantanes, in their turn, have been exploited due to their biological activities, with amantadine and memantine recently described with anti-CHIKV activities. Here we evaluated the antiviral activity of rimantadine hydrochloride (rtdH), a well-known antiviral agent against influenza A, its platinum complex (Pt-rtd), and the precursor cis-[PtCl2(dmso)2], against CHIKV infection in vitro. The rtdH demonstrated significant antiviral activity in all stages of CHIKV replication (29% in pre-treatment; 57% in early stages of infection; 60% in post-entry stages). The Pt-rtd complex protected the cells against infection in 92%, inhibited 100% of viral entry, mainly by a virucidal effect, and impaired 60% of post-entry stages. Alternatively, cis-[PtCl2(dmso)2] impaired viral entry in 100% and post-entry steps in 60%, but had no effect in protecting cells when administered prior to CHIKV infection. Collectively, the obtained data demonstrated that rtdH and Pt-rtd significantly interfered in the early stages of CHIKV life cycle, with the strongest effect observed to Pt-rtd complex, which reduced up to 100% of CHIKV infection. Moreover, molecular docking analysis and infrared spectroscopy data (ATR-FTIR) suggest an interaction of Pt-rtd with CHIKV glycoproteins, potentially related to the mechanism of inhibition of viral entry by Pt-rtd. Through a migration retardation assay, it was also shown that Pt-rtd and cis-[PtCl2(dmso)2] interacted with the dsRNA in 87% and 100%, respectively. The obtained results highlight the repurposing potential of rtdH as an anti-CHIKV drug, as well as the synthesis of promising platinum(II) metallodrugs with potential application for the treatment of CHIKV infections. Importance Chikungunya fever is a disease that can result in persistent symptoms due to the chronic infection process. Infected patients can develop physical disability, resulting and high costs to the health system and significant impacts on the quality of life of affected individuals. Additionally, there are no licensed vaccines or antivirals against the Chikungunya virus (CHIKV) and the virus is easily transmitted due to the abundance of viable vectors in epidemic regions. In this context, our study highlights the repurposing potential of the commercial drug rimantadine hydrochloride (rtdH) as an antiviral agent for the treatment of CHIKV infections. Moreover, our data demonstrated that a platinum(II)-rimantadine metallodrug (Pt-rtd) poses as a potent anti-CHIKV molecule with potential application for the treatment of Chikungunya fever. Altogether, rtdH and Pt-rtd significantly interfered in the early stages of CHIKV life cycle, reducing up to 100% of CHIKV infection in vitro.
Collapse
Affiliation(s)
- Igor Andrade Santos
- Laboratory of Virology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia-MG 38405-302, Brazil
| | | | - Marco Guevara-Vega
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil
| | | | - Robinson Sabino-Silva
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Fernando R G Bergamini
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia, Uberlândia-MG 34000-902, Brazil.
| | - Pedro P Corbi
- Institute of Chemistry, University of Campinas-UNICAMP, Campinas-SP 13083-871, Brazil.
| | - Ana Carolina G Jardim
- Laboratory of Virology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia-MG 38405-302, Brazil; Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
31
|
Prediction of Neonatal Respiratory Distress Biomarker Concentration by Application of Machine Learning to Mid-Infrared Spectra. SENSORS 2022; 22:s22051744. [PMID: 35270894 PMCID: PMC8914945 DOI: 10.3390/s22051744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023]
Abstract
The authors of this study developed the use of attenuated total reflectance Fourier transform infrared spectroscopy (ATR–FTIR) combined with machine learning as a point-of-care (POC) diagnostic platform, considering neonatal respiratory distress syndrome (nRDS), for which no POC currently exists, as an example. nRDS can be diagnosed by a ratio of less than 2.2 of two nRDS biomarkers, lecithin and sphingomyelin (L/S ratio), and in this study, ATR–FTIR spectra were recorded from L/S ratios of between 1.0 and 3.4, which were generated using purified reagents. The calibration of principal component (PCR) and partial least squares (PLSR) regression models was performed using 155 raw baselined and second derivative spectra prior to predicting the concentration of a further 104 spectra. A three-factor PLSR model of second derivative spectra best predicted L/S ratios across the full range (R2: 0.967; MSE: 0.014). The L/S ratios from 1.0 to 3.4 were predicted with a prediction interval of +0.29, −0.37 when using a second derivative spectra PLSR model and had a mean prediction interval of +0.26, −0.34 around the L/S 2.2 region. These results support the validity of combining ATR–FTIR with machine learning to develop a point-of-care device for detecting and quantifying any biomarker with an interpretable mid-infrared spectrum.
Collapse
|
32
|
Palácio G, Pulcinelli SH, Santilli CV. Fingerprint of semi-crystalline structure memory in the thermal and ionic conduction properties of amorphous ureasil-polyether hybrid solid electrolytes. RSC Adv 2022; 12:5225-5235. [PMID: 35425554 PMCID: PMC8981479 DOI: 10.1039/d1ra09138g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
Correlations among the structure, thermal properties, and ionic conductivity of solid polymer electrolytes (SPEs) were studied using a ureasil-polyethylene oxide (U-PEO) organic-inorganic hybrid prepared according to a simple sol-gel route, employing a low molecular weight PEO macromer (M w = 1900 g mol-1). The behavior of an amorphous sample loaded with lithium triflate (LiTFSI) at an optimum ratio between ether oxygen and lithium (EO/Li+ = 15) was compared with that of a semicrystalline sample prepared without salt loading. The temperature range investigated by differential scanning calorimetry (DSC), Raman spectroscopy, small angle X-ray scattering (SAXS), and complex impedance spectroscopy covered both the glass transition and the melting temperature of the U-PEO. The gauche to trans conformational transformation of the (O-C-C-O)Li+ sequence showed similarity between the temperature evolution of the semi-crystalline U-PEO and amorphous U-PEO:Li+ samples, providing an indication of the local structural memory of crystalline state in the amorphous SPE. The linear thermal expansion of the average correlation distance between the siloxane crosslink nodes and the long-distance period of the lamellar semi-crystalline edifice were determined by SAXS. Comparison of the expansion curves suggested that although the siloxane nodes were excluded from the PEO crystalline edifice, the sharp expansion of the amorphous region between the lamellae during melting permitted modulation of the free volume of the hybrid network. In addition, the temperature-induced Li+-EO decomplexation observed by Raman spectroscopy explained the change of the average activation energy of the conduction process revealed by the different Arrhenius regimes. These results evidence the key role of the ionic conductivity decoupling from the segmental motion of chain pair channels on the improvement of ion mobility through the free volume between chains. This concept may inspire materials chemistry researchers to design optimized structures of polymer electrolytes with minimized structural memory of crystaline building blocks and improved ionic conductivity.
Collapse
Affiliation(s)
- Gustavo Palácio
- Chemistry Institute of the São Paulo State University, UNESP 14800-060 Araraquara São Paulo Brazil
| | - Sandra H Pulcinelli
- Chemistry Institute of the São Paulo State University, UNESP 14800-060 Araraquara São Paulo Brazil
| | - Celso V Santilli
- Chemistry Institute of the São Paulo State University, UNESP 14800-060 Araraquara São Paulo Brazil
| |
Collapse
|
33
|
Merlin JPJ, Li X. Role of Nanotechnology and Their Perspectives in the Treatment of Kidney Diseases. Front Genet 2022; 12:817974. [PMID: 35069707 PMCID: PMC8766413 DOI: 10.3389/fgene.2021.817974] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are differing in particle size, charge, shape, and compatibility of targeting ligands, which are linked to improved pharmacologic characteristics, targetability, and bioavailability. Researchers are now tasked with developing a solution for enhanced renal treatment that is free of side effects and delivers the medicine to the active spot. A growing number of nano-based medication delivery devices are being used to treat renal disorders. Kidney disease management and treatment are currently causing a substantial global burden. Renal problems are multistep processes involving the accumulation of a wide range of molecular and genetic alterations that have been related to a variety of kidney diseases. Renal filtration is a key channel for drug elimination in the kidney, as well as a burgeoning topic of nanomedicine. Although the use of nanotechnology in the treatment of renal illnesses is still in its early phases, it offers a lot of potentials. In this review, we summarized the properties of the kidney and characteristics of drug delivery systems, which affect a drug’s ability should focus on the kidney and highlight the possibilities, problems, and opportunities.
Collapse
Affiliation(s)
- J P Jose Merlin
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
34
|
Choi Y, Hong J, Kim BH, Ahn S. Determination of seed content in red pepper powders by
1
H NMR
and
second‐derivative FT‐IR
spectroscopy combined with statistical analyses. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuri Choi
- Department of Chemistry Chung‐Ang University Seoul South Korea
| | - Junyoung Hong
- Department of Food and Nutrition Sookmyung Women's University Seoul South Korea
| | - Byung Hee Kim
- Department of Food and Nutrition Sookmyung Women's University Seoul South Korea
| | - Sangdoo Ahn
- Department of Chemistry Chung‐Ang University Seoul South Korea
| |
Collapse
|
35
|
Ferguson D, Henderson A, McInnes EF, Lind R, Wildenhain J, Gardner P. Infrared micro-spectroscopy coupled with multivariate and machine learning techniques for cancer classification in tissue: a comparison of classification method, performance, and pre-processing technique. Analyst 2022; 147:3709-3722. [DOI: 10.1039/d2an00775d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A meta-analysis of various multivariate/Machine Learning (ML) classifiers trained on IR Micro-spectroscopy tissue datasets for cancer classification are directly compared using a calculated F1-Score metric alongside study pre-processing techniques.
Collapse
Affiliation(s)
- Dougal Ferguson
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Department of Chemical Engineering and Analytical Science, School of Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Alex Henderson
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Department of Chemical Engineering and Analytical Science, School of Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | | | - Rob Lind
- Syngenta, International Research Centre, Jealotts Hill, Bracknell, RG42 6EY, UK
| | - Jan Wildenhain
- Syngenta, International Research Centre, Jealotts Hill, Bracknell, RG42 6EY, UK
| | - Peter Gardner
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Department of Chemical Engineering and Analytical Science, School of Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
36
|
Rabchinskii MK, Sysoev VV, Ryzhkov SA, Eliseyev IA, Stolyarova DY, Antonov GA, Struchkov NS, Brzhezinskaya M, Kirilenko DA, Pavlov SI, Palenov ME, Mishin MV, Kvashenkina OE, Gabdullin PG, Varezhnikov AS, Solomatin MA, Brunkov PN. A Blueprint for the Synthesis and Characterization of Thiolated Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:45. [PMID: 35009995 PMCID: PMC8746421 DOI: 10.3390/nano12010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 06/12/2023]
Abstract
Graphene derivatization to either engineer its physical and chemical properties or overcome the problem of the facile synthesis of nanographenes is a subject of significant attention in the nanomaterials research community. In this paper, we propose a facile and scalable method for the synthesis of thiolated graphene via a two-step liquid-phase treatment of graphene oxide (GO). Employing the core-level methods, the introduction of up to 5.1 at.% of thiols is indicated with the simultaneous rise of the C/O ratio to 16.8. The crumpling of the graphene layer upon thiolation without its perforation is pointed out by microscopic and Raman studies. The conductance of thiolated graphene is revealed to be driven by the Mott hopping mechanism with the sheet resistance values of 2.15 kΩ/sq and dependable on the environment. The preliminary results on the chemiresistive effect of these films upon exposure to ethanol vapors in the mix with dry and humid air are shown. Finally, the work function value and valence band structure of thiolated graphene are analyzed. Taken together, the developed method and findings of the morphology and physics of the thiolated graphene guide the further application of this derivative in energy storage, sensing devices, and smart materials.
Collapse
Affiliation(s)
- Maxim K. Rabchinskii
- Ioffe Institute, Politekhnicheskaya St. 26, 194021 Saint Petersburg, Russia; (S.A.R.); (I.A.E.); (G.A.A.); (D.A.K.); (S.I.P.); (P.N.B.)
| | - Victor V. Sysoev
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya St., 410054 Saratov, Russia; (V.V.S.); (A.S.V.); (M.A.S.)
| | - Sergei A. Ryzhkov
- Ioffe Institute, Politekhnicheskaya St. 26, 194021 Saint Petersburg, Russia; (S.A.R.); (I.A.E.); (G.A.A.); (D.A.K.); (S.I.P.); (P.N.B.)
| | - Ilya A. Eliseyev
- Ioffe Institute, Politekhnicheskaya St. 26, 194021 Saint Petersburg, Russia; (S.A.R.); (I.A.E.); (G.A.A.); (D.A.K.); (S.I.P.); (P.N.B.)
| | - Dina Yu. Stolyarova
- National Research Centre “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia;
| | - Grigorii A. Antonov
- Ioffe Institute, Politekhnicheskaya St. 26, 194021 Saint Petersburg, Russia; (S.A.R.); (I.A.E.); (G.A.A.); (D.A.K.); (S.I.P.); (P.N.B.)
| | - Nikolai S. Struchkov
- Center for Probe Microscopy and Nanotechnology, National Research University of Electronic Technology, Bld. 1, Shokin Square, 124498 Moscow, Russia;
| | - Maria Brzhezinskaya
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany;
| | - Demid A. Kirilenko
- Ioffe Institute, Politekhnicheskaya St. 26, 194021 Saint Petersburg, Russia; (S.A.R.); (I.A.E.); (G.A.A.); (D.A.K.); (S.I.P.); (P.N.B.)
| | - Sergei I. Pavlov
- Ioffe Institute, Politekhnicheskaya St. 26, 194021 Saint Petersburg, Russia; (S.A.R.); (I.A.E.); (G.A.A.); (D.A.K.); (S.I.P.); (P.N.B.)
| | - Mihail E. Palenov
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University (SPbPU), Polytechnicheskaya 29, 195251 Saint Petersburg, Russia; (M.E.P.); (M.V.M.); (O.E.K.); (P.G.G.)
| | - Maxim V. Mishin
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University (SPbPU), Polytechnicheskaya 29, 195251 Saint Petersburg, Russia; (M.E.P.); (M.V.M.); (O.E.K.); (P.G.G.)
| | - Olga E. Kvashenkina
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University (SPbPU), Polytechnicheskaya 29, 195251 Saint Petersburg, Russia; (M.E.P.); (M.V.M.); (O.E.K.); (P.G.G.)
| | - Pavel G. Gabdullin
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University (SPbPU), Polytechnicheskaya 29, 195251 Saint Petersburg, Russia; (M.E.P.); (M.V.M.); (O.E.K.); (P.G.G.)
| | - Alexey S. Varezhnikov
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya St., 410054 Saratov, Russia; (V.V.S.); (A.S.V.); (M.A.S.)
| | - Maksim A. Solomatin
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya St., 410054 Saratov, Russia; (V.V.S.); (A.S.V.); (M.A.S.)
| | - Pavel N. Brunkov
- Ioffe Institute, Politekhnicheskaya St. 26, 194021 Saint Petersburg, Russia; (S.A.R.); (I.A.E.); (G.A.A.); (D.A.K.); (S.I.P.); (P.N.B.)
| |
Collapse
|
37
|
Park SE, Yu HY, Ahn S. Development and Validation of a Simple Method to Quantify Contents of Phospholipids in Krill Oil by Fourier-Transform Infrared Spectroscopy. Foods 2021; 11:foods11010041. [PMID: 35010171 PMCID: PMC8750116 DOI: 10.3390/foods11010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
This study focuses on developing a quantification method for phosphatidylcholine (PC) and total phospholipid (PL) in krill oil using Fourier-transform infrared (FT-IR) spectroscopy. Signals derived from the choline and phosphate groups were selected as indicator variables for determining PC and total PL content; calibration curves with a correlation coefficient of >0.988 were constructed with calibration samples prepared by mixing krill oil raw material and fish oil in different ratios. The limit of detection (LOD, 0.35–3.29%) of the method was suitable for the designed assay with good accuracy (97.90–100.33%). The relative standard deviations for repeatability (0.90–2.31%) were acceptable. Therefore, both the methods using absorbance and that using second-derivative were confirmed to be suitable for quantitative analysis. When applying this method to test samples, including supplements, the PC content and total PL content were in good agreement with an average difference of 2–3% compared to the 31P NMR method. These results confirmed that the FT-IR method can be used as a convenient and rapid alternative to the 31P NMR method for quantifying PLs in krill oil.
Collapse
|
38
|
Prayitno YA, Emmawati A, Prabowo S, Candra KP, Rahmadi A. AUTENTIKASI CEPAT MADU HUTAN KALIMATAN TIMUR DENGAN ATR-FTIR SPEKTROSKOPI KOMBINASI ANALISIS KEMOMETRIKA. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2021. [DOI: 10.6066/jtip.2021.32.2.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Honey adulteration is mostly conducted by the addition of sucrose. In this study, the authentication of honey was conducted using ATR-FTIR and chemometrics. Pure honey samples (MA) were collected from nine regions in East Kalimantan. The ATR-FTIR spectra of these samples were then compared to sucrose-adulterated honey (MS), which were prepared in the sucrose concentration from 2.5 to 50% (v / v).The data analysis was performed using chemometrics techniques: 1) Principle Component Analysis (PCA) method, 2) classification with Discriminant Analysis (DA), and 3) regression with (PCR) and (PLS). As a result, PCA was able to visualize the differences between MS and MA. DA analysis was able to distinguish MS and MA at wave numbers from 1200 to 800 cm-1 with 92.5% performance index. Quantitative calibration models of the sucrose-adulterated honey could be obtained from PLS and PCR, while the best calibration model was obtained with the PLS method from the 2nd derivative spectra. In summary, sucrose-adulterated honey from East Kalimantan can be authenticated using ATR-FTIR method in combination with chemometric analysis.
Collapse
|
39
|
Shnitov VV, Rabchinskii MK, Brzhezinskaya M, Stolyarova DY, Pavlov SV, Baidakova MV, Shvidchenko AV, Kislenko VA, Kislenko SA, Brunkov PN. Valence Band Structure Engineering in Graphene Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104316. [PMID: 34704658 DOI: 10.1002/smll.202104316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Engineering of the 2D materials' electronic structure is at the forefront of nanomaterials research nowadays, giving an advance in the development of next-generation photonic devices, e-sensing technologies, and smart materials. Herein, employing core-level spectroscopy methods combined with density functional theory (DFT) modeling, the modification of the graphenes' valence band (VB) upon its derivatization by carboxyls and ketones is revealed. The appearance of a set of localized states in the VB of graphene related to molecular orbitals of the introduced functionalities is signified both experimentally and theoretically. Applying the DFT calculations of the density of states projected on the functional groups, their contributions to the VB structure are decomposed. An empirical approach, allowing one to analyze and predict the impact of a certain functional group on the graphenes' electronic structure in terms of examination of the model molecules, mimicking the introduced functionality, is proposed and validated. The interpretation of the arising states origin is made and their designation, pointing out their symmetry type, is proposed. Taken together, these results guide the band structure engineering of graphene derivatives and give a hint on the mechanisms underlying the alteration of the VB structure of 2D materials upon their derivatization.
Collapse
Affiliation(s)
- Vladimir V Shnitov
- Ioffe Institute, Politekhnicheskaya St. 26, Saint Petersburg, 194021, Russia
| | - Maxim K Rabchinskii
- Ioffe Institute, Politekhnicheskaya St. 26, Saint Petersburg, 194021, Russia
| | - Maria Brzhezinskaya
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Dina Yu Stolyarova
- NRC "Kurchatov Institute", Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Sergey V Pavlov
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel St. 3, Moscow, 143026, Russia
- Joint Institute for High Temperatures of RAS, 13/2 Izhorskaya St., Moscow, 125412, Russia
| | - Marina V Baidakova
- Ioffe Institute, Politekhnicheskaya St. 26, Saint Petersburg, 194021, Russia
| | | | - Vitaliy A Kislenko
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel St. 3, Moscow, 143026, Russia
- Joint Institute for High Temperatures of RAS, 13/2 Izhorskaya St., Moscow, 125412, Russia
| | - Sergey A Kislenko
- Joint Institute for High Temperatures of RAS, 13/2 Izhorskaya St., Moscow, 125412, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, 141701, Russia
| | - Pavel N Brunkov
- Ioffe Institute, Politekhnicheskaya St. 26, Saint Petersburg, 194021, Russia
| |
Collapse
|
40
|
Virtanen V, Nippolainen E, Shaikh R, Afara IO, Töyräs J, Solheim J, Tafintseva V, Zimmermann B, Kohler A, Saarakkala S, Rieppo L. Infrared Fiber-Optic Spectroscopy Detects Bovine Articular Cartilage Degeneration. Cartilage 2021; 13:285S-294S. [PMID: 33615831 PMCID: PMC8804829 DOI: 10.1177/1947603521993221] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Joint injuries may lead to degeneration of cartilage tissue and initiate development of posttraumatic osteoarthritis. Arthroscopic surgeries can be used to treat joint injuries, but arthroscopic evaluation of articular cartilage quality is subjective. Fourier transform infrared spectroscopy combined with fiber optics and attenuated total reflectance crystal could be used for the assessment of tissue quality during arthroscopy. We hypothesize that fiber-optic mid-infrared spectroscopy can detect enzymatically and mechanically induced damage similar to changes occurring during progression of osteoarthritis. DESIGN Bovine patellar cartilage plugs were extracted and degraded enzymatically and mechanically. Adjacent untreated samples were utilized as controls. Enzymatic degradation was done using collagenase and trypsin enzymes. Mechanical damage was induced by (1) dropping a weight impactor on the cartilage plugs and (2) abrading the cartilage surface with a rotating sandpaper. Fiber-optic mid-infrared spectroscopic measurements were conducted before and after treatments, and spectral changes were assessed with random forest, partial least squares discriminant analysis, and support vector machine classifiers. RESULTS All models had excellent classification performance for detecting the different enzymatic and mechanical damage on cartilage matrix. Random forest models achieved accuracies between 90.3% and 77.8%, while partial least squares model accuracies ranged from 95.8% to 84.7%, and support vector machine accuracies from 91.7% to 80.6%. CONCLUSIONS The results suggest that fiber-optic Fourier transform infrared spectroscopy attenuated total reflectance spectroscopy is a viable way to detect minor and major degeneration of articular cartilage. Objective measures provided by fiber-optic spectroscopic methods could improve arthroscopic evaluation of cartilage damage.
Collapse
Affiliation(s)
- Vesa Virtanen
- Research Unit of Medical Imaging,
Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland,Vesa Virtanen, Research Unit of Medical
Imaging, Physics and Technology, Faculty of Medicine, University of Oulu,
Aapistie 5 A, Oulu, Pohjois-Pohjanmaa 90220, Finland.
| | - Ervin Nippolainen
- Department of Applied Physics,
University of Eastern Finland, Kuopio, Finland
| | - Rubina Shaikh
- Department of Applied Physics,
University of Eastern Finland, Kuopio, Finland
| | - Isaac O. Afara
- Department of Applied Physics,
University of Eastern Finland, Kuopio, Finland,School of Information Technology and
Electrical Engineering, The University of Queensland, Brisbane, Queensland,
Australia
| | - Juha Töyräs
- Department of Applied Physics,
University of Eastern Finland, Kuopio, Finland,Diagnostic Imaging Center, Kuopio
University Hospital, Kuopio, Finland,School of Information Technology and
Electrical Engineering, The University of Queensland, Brisbane, Queensland,
Australia
| | - Johanne Solheim
- Biospectroscopy and Data Modeling Group,
Faculty of Science and Technology, Norwegian University of Life Sciences, Ås,
Norway
| | - Valeria Tafintseva
- Biospectroscopy and Data Modeling Group,
Faculty of Science and Technology, Norwegian University of Life Sciences, Ås,
Norway
| | - Boris Zimmermann
- Biospectroscopy and Data Modeling Group,
Faculty of Science and Technology, Norwegian University of Life Sciences, Ås,
Norway
| | - Achim Kohler
- Biospectroscopy and Data Modeling Group,
Faculty of Science and Technology, Norwegian University of Life Sciences, Ås,
Norway
| | - Simo Saarakkala
- Research Unit of Medical Imaging,
Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland,Department of Diagnostic Radiology, Oulu
University Hospital, Oulu, Finland
| | - Lassi Rieppo
- Research Unit of Medical Imaging,
Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
41
|
Banerjee S, Ghosh A. Structurally Distinct Polymorphs of Tau Aggregates Revealed by Nanoscale Infrared Spectroscopy. J Phys Chem Lett 2021; 12:11035-11041. [PMID: 34747175 PMCID: PMC8967399 DOI: 10.1021/acs.jpclett.1c02660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Aggregation of the tau protein plays a central role in several neurodegenerative diseases collectively known as tauopathies, including Alzheimer's and Parkinson's disease. Tau misfolds into fibrillar β sheet structures that constitute the paired helical filaments found in neurofibrillary tangles. It is known that there can be significant structural heterogeneities in tau aggregates associated with different diseases. However, while structures of mature fibrils have been studied, the structural distributions in early-stage tau aggregates is not well-understood. In the present study, we use atomic force microscopy-IR to investigate nanoscale spectra of individual tau fibrils at different stages of aggregation and demonstrate the presence of multiple fibrillar polymorphs that exhibit different secondary structures. We further show that mature fibrils contain significant amounts of antiparallel β sheets. Our results are the very first application of nanoscale infrared spectroscopy to tau aggregates and underscore the promise of spatially resolved infrared spectroscopy for investigating protein aggregation.
Collapse
Affiliation(s)
| | - Ayanjeet Ghosh
- Corresponding Author Ayanjeet Ghosh - Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, AL 35401, USA.
| |
Collapse
|
42
|
Keen AN, Mackrill JJ, Gardner P, Shiels HA. Compliance of the fish outflow tract is altered by thermal acclimation through connective tissue remodelling. J R Soc Interface 2021; 18:20210492. [PMID: 34784777 PMCID: PMC8596013 DOI: 10.1098/rsif.2021.0492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To protect the gill capillaries from high systolic pulse pressure, the fish heart contains a compliant non-contractile chamber called the bulbus arteriosus which is part of the outflow tract (OFT) which extends from the ventricle to the ventral aorta. Thermal acclimation alters the form and function of the fish atria and ventricle to ensure appropriate cardiac output at different temperatures, but its impact on the OFT is unknown. Here we used ex vivo pressure-volume curves to demonstrate remodelling of passive stiffness in the rainbow trout (Oncorhynchus mykiss) bulbus arteriosus following more than eight weeks of thermal acclimation to 5, 10 and 18°C. We then combined novel, non-biased Fourier transform infrared spectroscopy with classic histological staining to show that changes in compliance were achieved by changes in tissue collagen-to-elastin ratio. In situ gelatin zymography and SDS-PAGE zymography revealed that collagen remodelling was underpinned, at least in part, by changes in activity and abundance of collagen degrading matrix metalloproteinases. Collectively, we provide the first indication of bulbus arteriosus thermal remodelling in a fish and suggest this remodelling ensures optimal blood flow and blood pressure in the OFT during temperature change.
Collapse
Affiliation(s)
- Adam N Keen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - John J Mackrill
- Department of Physiology, University College Cork, Cork, County Cork, Ireland
| | - Peter Gardner
- School of Chemical Engineering and Analytical Science, Manchester Institute of Biotechnology, University of Manchester, UK
| | - Holly A Shiels
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
43
|
Ternary Copper Complex of L-Glutamine and Phenanthroline as Counterions of Cyclo-Tetravanadate Anion: Experimental–Theoretical Characterization and Potential Antineoplastic Activity. METALS 2021. [DOI: 10.3390/met11101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the last decade, therapeutic metallodrugs have become substantially effective in the treatment of cancer. Thus, developing new effective anticancer drugs is a significant research area against the continuing increase in cancers worldwide. In the search for heterobimetallic prodrugs containing V/Cu, a new cyclo-tetravanadate was synthesized and characterized by UV-visible and FTIR spectroscopies and single-crystal X-ray diffraction. L-Glutamine and 1,10-phenanthroline allow the crystallization of [Cu(L-Gln)(phen)(H2O)]4[V4O12]∙8(H2O) (1), in which the cyclo-tetravanadate acts as a free anion. Density functional theory (DFT) calculations were carried out to characterize the frontier molecular orbitals and molecular electrostatic potential. Global reactivity indexes were calculated and analyzed to give insight into the cyclo-tetravanadate anion and complex counterions interactions. Also, using Bader’s theory of atoms in molecules (AIM), non-covalent interactions were analyzed. Docking analysis with the Casiopeina-like complex resulting from the hydrolysis of compound 1 provided insights into these complex potential anticancer activities by interacting with DNA/tRNA via H-bonds and hydrophobic interactions. The release of both components could act together or separately, acting as prodrugs with potential dual antineoplastic activities.
Collapse
|
44
|
Steplewski A, Fertala J, Tomlinson RE, Wang ML, Donahue A, Arnold WV, Rivlin M, Beredjiklian PK, Abboud JA, Namdari S, Fertala A. Mechanisms of reducing joint stiffness by blocking collagen fibrillogenesis in a rabbit model of posttraumatic arthrofibrosis. PLoS One 2021; 16:e0257147. [PMID: 34492074 PMCID: PMC8423260 DOI: 10.1371/journal.pone.0257147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Posttraumatic fibrotic scarring is a significant medical problem that alters the proper functioning of injured tissues. Current methods to reduce posttraumatic fibrosis rely on anti-inflammatory and anti-proliferative agents with broad intracellular targets. As a result, their use is not fully effective and may cause unwanted side effects. Our group previously demonstrated that extracellular collagen fibrillogenesis is a valid and specific target to reduce collagen-rich scar buildup. Our previous studies showed that a rationally designed antibody that binds the C-terminal telopeptide of the α2(I) chain involved in the aggregation of collagen molecules limits fibril assembly in vitro and reduces scar formation in vivo. Here, we have utilized a clinically relevant arthrofibrosis model to study the broad mechanisms of the anti-scarring activity of this antibody. Moreover, we analyzed the effects of targeting collagen fibril formation on the quality of healed joint tissues, including the posterior capsule, patellar tendon, and subchondral bone. Our results show that blocking collagen fibrillogenesis not only reduces collagen content in the scar, but also accelerates the remodeling of healing tissues and changes the collagen fibrils’ cross-linking. In total, this study demonstrated that targeting collagen fibrillogenesis to limit arthrofibrosis affects neither the quality of healing of the joint tissues nor disturbs vital tissues and organs.
Collapse
Affiliation(s)
- Andrzej Steplewski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Jolanta Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Ryan E. Tomlinson
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Mark L. Wang
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Allison Donahue
- College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - William V. Arnold
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Michael Rivlin
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Pedro K. Beredjiklian
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Joseph A. Abboud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Surena Namdari
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
45
|
Saeed A, Qusti SY, Almarwani RH, Jambi EJ, Alshammari EM, Gusty NF, Balgoon MJ. Effects of aluminum chloride and coenzyme Q10 on the molecular structure of lipids and the morphology of the brain hippocampus cells. RSC Adv 2021; 11:29925-29933. [PMID: 35480272 PMCID: PMC9040883 DOI: 10.1039/d1ra03786b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/08/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Aluminum chloride (AlCl3) is a neurotoxic substance, while coenzyme Q10 (CoQ10) is considered a lipid antioxidant. Herein, their effects on the molecular structure of lipids and the morphology of the hippocampus brain tissue were investigated. Three groups of Wistar albino male rats were used in this study. For four weeks, one group was kept as a control group; the second group was given AlCl3; the third group was given AlCl3/CoQ10. Fourier transform infrared (FTIR) and histopathological examinations were utilized to estimate alterations in the molecular structure of the lipids and the cell morphology, respectively. The FTIR spectra revealed considerable decreases in the CH contents and alterations in the molecular ratios of olefinic[double bond, length as m-dash]CH/νas(CH3), νas(CH2)/νas(CH3), and νas(CH2)/[νas(CH2) + νs(CH2)] in the group given AlCl3. However, no significant changes were detected in those rats given AlCl3/CoQ10. Histopathology images uncovered shrinking and dark centers in the pyramidal cells of brain tissue hippocampal cells. The diameters of the pyramidal cells were estimated to be 4.81 ± 0.55 μm, 4.04 ± 0.71 μm, and 4.63 ± 0.71 μm for the control, AlCl3, and AlCl3/CoQ10 groups, respectively. The study showed that the AlCl3 could cause a shrinking of around 16% in the hippocampus pyramidal cells; besides, CoQ10 is a powerful therapeutic antioxidant to help restore the hippocampal neurons to a regular state.
Collapse
Affiliation(s)
- Abdu Saeed
- Department of Physics, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia +96 6563190832
- Department of Physics, Thamar University Thamar 87246 Yemen
| | - Safaa Y Qusti
- Biochemistry Department, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
| | - Rawan Hamdan Almarwani
- Biochemistry Department, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
| | - Ebtihaj J Jambi
- Biochemistry Department, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
- King Fahd Medical Research Center Jeddah Saudi Arabia
| | - Eida M Alshammari
- Department of Chemistry, College of Sciences, University of Ha'il Ha'il 2440 Saudi Arabia
| | - Naeem F Gusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University Mecca Saudi Arabia
| | - Maha J Balgoon
- Biochemistry Department, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
46
|
Fourier Transform Infrared Microspectroscopy Combined with Principal Component Analysis and Artificial Neural Networks for the Study of the Effect of β-Hydroxy-β-Methylbutyrate (HMB) Supplementation on Articular Cartilage. Int J Mol Sci 2021; 22:ijms22179189. [PMID: 34502096 PMCID: PMC8430473 DOI: 10.3390/ijms22179189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
The potential of Fourier Transform infrared microspectroscopy (FTIR microspectroscopy) and multivariate analyses were applied for the classification of the frequency ranges responsible for the distribution changes of the main components of articular cartilage (AC) that occur during dietary β-hydroxy-β-methyl butyrate (HMB) supplementation. The FTIR imaging analysis of histological AC sections originating from 35-day old male piglets showed the change in the collagen and proteoglycan contents of the HMB-supplemented group compared to the control. The relative amount of collagen content in the superficial zone increased by more than 23% and in the middle zone by about 17%, while no changes in the deep zone were observed compared to the control group. Considering proteoglycans content, a significant increase was registered in the middle and deep zones, respectively; 62% and 52% compared to the control. AFM nanoindentation measurements collected from animals administered with HMB displayed an increase in AC tissue stiffness by detecting a higher value of Young’s modulus in all investigated AC zones. We demonstrated that principal component analysis and artificial neural networks could be trained with spectral information to distinguish AC histological sections and the group under study accurately. This work may support the use and effectiveness of FTIR imaging combined with multivariate analyses as a quantitative alternative to traditional collagenous tissue-related histology.
Collapse
|
47
|
Various Simulated Body Fluids Lead to Significant Differences in Collagen Tissue Engineering Scaffolds. MATERIALS 2021; 14:ma14164388. [PMID: 34442910 PMCID: PMC8399520 DOI: 10.3390/ma14164388] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/23/2022]
Abstract
This study aims to point out the main drawback with respect to the design of simulated body environments. Three media commonly used for the simulation of the identical body environment were selected, i.e., Kokubo’s simulated body fluid that simulates the inorganic component of human blood plasma, human blood plasma, and phosphate buffer saline. A comparison was performed of the effects of the media on collagen scaffolds. The mechanical and structural effects of the media were determined via the application of compression mechanical tests, the determination of mass loss, and image and micro-CT analyses. The adsorption of various components from the media was characterized employing energy-dispersive spectrometry. The phase composition of the materials before and after exposure was determined using X-ray diffraction. Infrared spectroscopy was employed for the interpretation of changes in the collagen secondary structure. Major differences in terms of the mechanical properties and mass loss were observed between the three media. Conversely, only minor structural changes were detected. Since no general recommendation exists for selecting the simulated body environment, it is necessary to avoid the simplification of the results and, ideally, to utilize alternative methods to describe the various aspects of degradation processes that occur in the media.
Collapse
|
48
|
Muntean CM, Ştefan R, Tǎbǎran A, Tripon C, Bende A, Fǎlǎmaş A, Colobǎţiu LM, Olar LE. The Influence of UV Femtosecond Laser Pulses on Bacterial DNA Structure, as Proved by Fourier Transform Infrared (FT‐IR) Spectroscopy. ChemistrySelect 2021. [DOI: 10.1002/slct.202102097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cristina M. Muntean
- National Institute for Research & Development of Isotopic and Molecular Technologies 67-103 Donat Str. 400293 Cluj-Napoca Romania
| | - Rǎzvan Ştefan
- University of Agricultural Sciences and Veterinary Medicine Faculty of Veterinary Medicine 3–5 Calea Manastur Str. 400372 Cluj-Napoca Romania
| | - Alexandra Tǎbǎran
- University of Agricultural Sciences and Veterinary Medicine Faculty of Veterinary Medicine 3–5 Calea Manastur Str. 400372 Cluj-Napoca Romania
| | - Carmen Tripon
- National Institute for Research & Development of Isotopic and Molecular Technologies 67-103 Donat Str. 400293 Cluj-Napoca Romania
| | - Attila Bende
- National Institute for Research & Development of Isotopic and Molecular Technologies 67-103 Donat Str. 400293 Cluj-Napoca Romania
| | - Alexandra Fǎlǎmaş
- National Institute for Research & Development of Isotopic and Molecular Technologies 67-103 Donat Str. 400293 Cluj-Napoca Romania
| | - Liora M. Colobǎţiu
- Iuliu Haţieganu University of Medicine and Pharmacy Faculty of Pharmacy 8 Victor Babeş Str. 400012 Cluj-Napoca Romania
| | - Loredana E. Olar
- University of Agricultural Sciences and Veterinary Medicine Faculty of Veterinary Medicine 3–5 Calea Manastur Str. 400372 Cluj-Napoca Romania
| |
Collapse
|
49
|
The generation of volatiles in model systems containing varying casein to whey protein ratios as affected by low frequency ultrasound. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Nasompag S, Siritongsuk P, Thammawithan S, Srichaiyapol O, Prangkio P, Camesano TA, Sinthuvanich C, Patramanon R. AFM Study of Nanoscale Membrane Perturbation Induced by Antimicrobial Lipopeptide C 14 KYR. MEMBRANES 2021; 11:membranes11070495. [PMID: 34208993 PMCID: PMC8307486 DOI: 10.3390/membranes11070495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Lipopeptides have been extensively studied as potential antimicrobial agents. In this study, we focused on the C14-KYR lipopeptide, a modified version of the KYR tripeptide with myristic acid at the N-terminus. Here, membrane perturbation of live E. coli treated with the parent KYR and C14-KYR peptides was compared at the nanoscale level using AFM imaging. AFM analyses, including average cellular roughness and force spectroscopy, revealed the severe surface disruption mechanism of C14-KYR. A loss of surface roughness and changes in topographic features included membrane shrinkage, periplasmic membrane separation from the cell wall, and cytosolic leakage. Additional evidence from synchrotron radiation FTIR microspectroscopy (SR-FTIR) revealed a marked structural change in the membrane component after lipopeptide attack. The average roughness of the E. coli cell before and after treatment with C14-KYR was 129.2 ± 51.4 and 223.5 ± 14.1 nm, respectively. The average rupture force of the cell treated with C14-KYR was 0.16 nN, four times higher than that of the untreated cell. Our study demonstrates that the mechanistic effect of the lipopeptide against bacterial cells can be quantified through surface imaging and adhesion force using AFM.
Collapse
Affiliation(s)
- Sawinee Nasompag
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (S.N.); (C.S.)
| | - Pawinee Siritongsuk
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (S.T.); (O.S.)
| | - Saengrawee Thammawithan
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (S.T.); (O.S.)
| | - Oranee Srichaiyapol
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (S.T.); (O.S.)
| | - Panchika Prangkio
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Terri A. Camesano
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Chomdao Sinthuvanich
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (S.N.); (C.S.)
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (S.T.); (O.S.)
- Correspondence:
| |
Collapse
|