1
|
Eldokmak MM, Essawy MM, Abdelkader S, Abolgheit S. Bioinspired poly-dopamine/nano-hydroxyapatite: an upgrading biocompatible coat for 3D-printed polylactic acid scaffold for bone regeneration. Odontology 2025; 113:89-100. [PMID: 38771492 DOI: 10.1007/s10266-024-00945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
Poly-lactic acid (PLA) has been proposed in dentistry for several regenerative procedures owing to its biocompatibility and biodegradability. However, the presence of methyl groups renders PLA hydrophobic, making the surface less ideal for cell attachment, and it does not promote tissue regeneration. Upgrading PLA with inductive biomaterial is a crucial step to increase the bioactivity of the PLA and allow cellular adhesion. Our purpose is to evaluate biocompatibility, bioactivity, cellular adhesion, and mechanical properties of 3D-printed PLA scaffold coated with poly-dopamine (PDA) and nano-hydroxyapatite (n-HA) versus PLA and PLA/n-HA scaffolds. The fused deposition modelling technique was used to print PLA, PLA with embedded n-HA particles, and PLA scaffold coated with PDA/n-HA by immersion. After matrices characterization for their chemical composition and surface properties, testing the compressive strength was pursued using a universal testing machine. The bioactivity of scaffolds was evaluated by monitoring the formation of calcium phosphate compounds after simulated body fluid immersion. The PLA/PDA/n-HA scaffold showed the highest compressive strength which was 29.11 ± 7.58 MPa with enhancing calcium phosphate crystals deposition with a specific calcium polyphosphate phase formed exclusively on PLA/PDA/n-HA. With cell viability assay, the PDA/n-HA-coated matrix was biocompatible with increase in the IC50, reaching ⁓ 176.8 at 72 without cytotoxic effect on the mesenchymal stem cells, promoting their adhesion and proliferation evaluated by confocal microscopy. The study explored the biocompatibility, bioactivity, and the cell adhesion ability of PDA/n-HA coat on a 3D-printed PLA scaffold that qualifies its use as a promising regenerative material.
Collapse
Affiliation(s)
- Mai M Eldokmak
- Department of Dental Biomaterials, Faculty of Dentistry, Alexandria University, Champollion Street-Azarita, Alexandria, 21525, Egypt.
| | - Marwa M Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, 21525, Egypt.
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21525, Egypt.
| | - Sally Abdelkader
- Department of Dental Biomaterials, Faculty of Dentistry, Alexandria University, Champollion Street-Azarita, Alexandria, 21525, Egypt
| | - Salma Abolgheit
- Department of Dental Biomaterials, Faculty of Dentistry, Alexandria University, Champollion Street-Azarita, Alexandria, 21525, Egypt
| |
Collapse
|
2
|
Costa B, Coelho J, Silva V, Shahrour H, Costa NA, Ribeiro AR, Santos SG, Costa F, Martínez-de-Tejada G, Monteiro C, Martins MCL. Dhvar5- and MSI78-coated titanium are bactericidal against methicillin-resistant Staphylococcus aureus, immunomodulatory and osteogenic. Acta Biomater 2025; 191:98-112. [PMID: 39542199 DOI: 10.1016/j.actbio.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Infection is one of the major issues associated with the failure of orthopedic devices, mainly due to implant bacterial colonization, biofilm formation, and associated antibiotic resistance. Antimicrobial peptides (AMP) are a promising alternative to conventional antibiotics given their broad-spectrum of activity, low propensity to induce bacterial resistance, and ability to modulate host immune responses. Dhvar5 (LLLFLLKKRKKRKY) and MSI78 (GIGKFLKKAKKFGKAFVKILKK) are two AMP with broad-spectrum activity against bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), one of the most problematic etiologic agents in Orthopedic Devices-Related Infections (ODRI). This work aims to evaluate the bactericidal, immunomodulatory and osteogenic potential of Dhvar5- and MSI78-coated titanium surfaces (AMP-Ti). Two AMP-Ti surfaces were successfully obtained by grafting Dhvar5 (0.8 ± 0.1 µM/mm2) or MSI78 (0.5 ± 0.3 µM/mm2) onto titanium substrates through a polydopamine layer. Both AMP-Ti were bactericidal against MRSA, eradicating bacteria upon contact for 6 h in a culture medium supplemented with human plasma proteins. The AMP-Ti immunomodulatory potential was evaluated using human primary macrophages, by assessing surfaces capacity to induce pro-/anti-inflammatory (M1/M2) markers and cytokines. While in naïve conditions both AMP-Ti surfaces slightly promoted the M2 marker CD163, in response to LPS and IFN-γ (simulating a bacterial infection), both AMP increased the M1 marker CCR7 and enhanced macrophage secretion of pro-inflammatory IL-6 and TNF-α cytokines, particularly for Ti-MSI78 surfaces. Additionally, both AMP-Ti surfaces were cytocompatible and promoted osteoblastic cell differentiation. This proof-of-concept study demonstrated the high potential of Dhvar5- and MSI78-Ti as antimicrobial coatings for ODRI prevention. STATEMENT OF SIGNIFICANCE: This study investigates the bactericidal effects of the antimicrobial peptides Dhvar5 and MSI78, immobilized on titanium (Ti) surfaces through a polydopamine coating, aiming at the prevention of Orthopedic-Device Related Infections (ODRIs). The developed coatings displayed MRSA-sterilizing activity, while revealing an immunomodulatory potential towards macrophages and promoting osteoblastic cell differentiation. This strategy allows a quick and easy immobilization of high quantities of AMP, unlike most other approaches, thus favoring its clinical translation.
Collapse
Affiliation(s)
- B Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP-Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - J Coelho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - V Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Colégio Internato dos Carvalhos (CIC), Porto, Portugal
| | - H Shahrour
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - N A Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP-Faculdade de Engenharia, Universidade do Porto, Porto, Portugal; UNESP - Universidade Estadual Paulista, Faculdade de Ciências, Bauru, SP 17033-360, Brazil
| | - A R Ribeiro
- NanoSafety Group, International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - S G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - F Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - G Martínez-de-Tejada
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - C Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - M C L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Chen W, Wan S, Lin H, Li S, Deng A, Feng L, Xu Y, Zhang X, Hu Z, Xu F, Yan K. Synergistic Effects of Polydopamine/Medical Stone Bio-Adsorbents for Enhanced Interfacial Adsorption and Dynamic Filtration of Bacteria. Polymers (Basel) 2024; 16:3027. [PMID: 39518237 PMCID: PMC11548163 DOI: 10.3390/polym16213027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Polymer-based wastewater disinfection, which is typically performed using chemical oxidation or irradiation, can result in various toxic byproducts and corrosion under harsh environments. This study introduces a robust bio-adsorbent prepared from naturally abundant polydopamine-modified medical stone (MS@PDA) for the high-efficiency removal of bacteria from water. The PDA nanocoating can be easily applied through an in situ self-polymerization process, resulting in a considerably high bacterial adsorption capacity of 6.6 k pcs mm-2 for Staphylococcus aureus. A cyclic flow-through dynamic filtration and a disinfection system was implemented using an MS@PDA porous filter with an average pore size of 21.8 ± 1.4 µm and porosity of ~83%, achieving a 5.2-6.0-fold enhancement in the cumulative removal efficiency for MS@PDA2. The underlying mechanisms were elucidated through the synergistic effects of interfacial bio-adsorption and size-dependent interception. Notably, the bacteria captured on the surface could be killed using the enhanced photothermal effects of the PDA nanocoating and the inherent antimicrobial properties of the mineral stone. Thus, this study not only provides a new type of advanced bio-adsorbent but also provides new perspectives on an efficient and cost-effective approach for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Wenfeng Chen
- CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China (X.Z.)
| | - Sha Wan
- CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China (X.Z.)
| | - Hongxin Lin
- CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China (X.Z.)
| | - Shimi Li
- CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China (X.Z.)
| | - Anhua Deng
- CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China (X.Z.)
| | - Lihui Feng
- CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China (X.Z.)
| | - Yangfan Xu
- CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China (X.Z.)
| | - Xu Zhang
- CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China (X.Z.)
| | - Zhen Hu
- Wuhan Huzhenyu Environmental Technology Company Ltd., Wuhan 430000, China;
| | - Fang Xu
- Wenzhou Haichen Technology Development Company Ltd., Wenzhou 325700, China;
| | - Kun Yan
- Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
4
|
Amani H, Alipour M, Shahriari E, Taboas JM. Immunomodulatory Biomaterials: Tailoring Surface Properties to Mitigate Foreign Body Reaction and Enhance Tissue Regeneration. Adv Healthc Mater 2024:e2401253. [PMID: 39370571 DOI: 10.1002/adhm.202401253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Indexed: 10/08/2024]
Abstract
The immune cells have demonstrated the ability to promote tissue repair by removing debris, breaking down the extracellular matrix, and regulating cytokine secretion profile. If the behavior of immune cells is not well directed, chronic inflammation and foreign body reaction (FBR) will lead to scar formation and loss of biomaterial functionality. The immunologic response toward tissue repair or chronic inflammation after injury and implantation can be modulated by manipulating the surface properties of biomaterials. Tailoring surface properties of biomaterials enables the regulation of immune cell fate such as adhesion, proliferation, recruitment, polarization, and cytokine secretion profile. This review begins with an overview of the role of immune cells in tissue healing and their interactions with biomaterials. It then discusses how the surface properties of biomaterials influence immune cell behavior. The core focus is reviewing surface modification methods to create innovative materials that reduce foreign body reactions and enhance tissue repair and regeneration by modulating immune cell activities. The review concludes with insights into future advancements in surface modification techniques and the associated challenges.
Collapse
Affiliation(s)
- Hamed Amani
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mahdieh Alipour
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Juan M Taboas
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
5
|
Zhang M, Mi M, Hu Z, Li L, Chen Z, Gao X, Liu D, Xu B, Liu Y. Polydopamine-Based Biomaterials in Orthopedic Therapeutics: Properties, Applications, and Future Perspectives. Drug Des Devel Ther 2024; 18:3765-3790. [PMID: 39219693 PMCID: PMC11363944 DOI: 10.2147/dddt.s473007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Polydopamine is a versatile and modifiable polymer, known for its excellent biocompatibility and adhesiveness. It can also be engineered into a variety of nanoparticles and biomaterials for drug delivery, functional modification, making it an excellent choice to enhance the prevention and treatment of orthopedic diseases. Currently, the application of polydopamine biomaterials in orthopedic disease prevention and treatment is in its early stages, despite some initial achievements. This article aims to review these applications to encourage further development of polydopamine for orthopedic therapeutic needs. We detail the properties of polydopamine and its biomaterial types, highlighting its superior performance in functional modification on nanoparticles and materials. Additionally, we also explore the challenges and future prospects in developing optimal polydopamine biomaterials for clinical use in orthopedic disease prevention and treatment.
Collapse
Affiliation(s)
- Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Man Mi
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zilong Hu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Lixian Li
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zhiping Chen
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Di Liu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Bilian Xu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| |
Collapse
|
6
|
Omidian H, Wilson RL. Polydopamine Applications in Biomedicine and Environmental Science. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3916. [PMID: 39203091 PMCID: PMC11355457 DOI: 10.3390/ma17163916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
This manuscript explores the multifaceted applications of polydopamine (PDA) across various scientific and industrial domains. It covers the chemical aspects of PDA and its potential in bone tissue engineering, implant enhancements, cancer treatment, and nanotechnology. The manuscript investigates PDA's roles in tissue engineering, cell culture technologies, surface modifications, drug delivery systems, and sensing techniques. Additionally, it highlights PDA's contributions to microfabrication, nanoengineering, and environmental applications. Through detailed testing and assessment, the study identifies limitations in PDA-related research, such as synthesis complexity, incomplete mechanistic understanding, and biocompatibility variability. It also proposes future research directions aimed at improving synthesis techniques, expanding biomedical applications, and enhancing sensing technologies to optimize PDA's efficacy and scalability.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
7
|
Che Z, Sun Q, Zhao Z, Wu Y, Xing H, Song K, Chen A, Wang B, Cai M. Growth factor-functionalized titanium implants for enhanced bone regeneration: A review. Int J Biol Macromol 2024; 274:133153. [PMID: 38897500 DOI: 10.1016/j.ijbiomac.2024.133153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Titanium and titanium alloys are widely favored materials for orthopedic implants due to their exceptional mechanical properties and biological inertness. The additional benefit of sustained local release of bioactive substances further promotes bone tissue formation, thereby augmenting the osseointegration capacity of titanium implants and attracting increasing attention in bone tissue engineering. Among these bioactive substances, growth factors have shown remarkable osteogenic and angiogenic induction capabilities. Consequently, researchers have developed various physical, chemical, and biological loading techniques to incorporate growth factors into titanium implants, ensuring controlled release kinetics. In contrast to conventional treatment modalities, the localized release of growth factors from functionalized titanium implants not only enhances osseointegration but also reduces the risk of complications. This review provides a comprehensive examination of the types and mechanisms of growth factors, along with a detailed exploration of the methodologies used to load growth factors onto the surface of titanium implants. Moreover, it highlights recent advancements in the application of growth factors to the surface of titanium implants (Scheme 1). Finally, the review discusses current limitations and future prospects for growth factor-functionalized titanium implants. In summary, this paper presents cutting-edge design strategies aimed at enhancing the bone regenerative capacity of growth factor-functionalized titanium implants-a significant advancement in the field of enhanced bone regeneration.
Collapse
Affiliation(s)
- Zhenjia Che
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Yanglin Wu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Hu Xing
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Kaihang Song
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Aopan Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| |
Collapse
|
8
|
Ma C, de Barros NR, Zheng T, Gomez A, Doyle M, Zhu J, Nanda HS, Li X, Khademhosseini A, Li B. 3D Printing and Surface Engineering of Ti6Al4V Scaffolds for Enhanced Osseointegration in an In Vitro Study. Biomimetics (Basel) 2024; 9:423. [PMID: 39056864 PMCID: PMC11274417 DOI: 10.3390/biomimetics9070423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Ti6Al4V superalloy is recognized as a good candidate for bone implants owing to its biocompatibility, corrosion resistance, and high strength-to-weight ratio. While dense metal implants are associated with stress shielding issues due to the difference in densities, stiffness, and modulus of elasticity compared to bone tissues, the surface of the implant/scaffold should mimic the properties of the bone of interest to assure a good integration with a strong interface. In this study, we investigated the additive manufacturing of porous Ti6Al4V scaffolds and coating modification for enhanced osteoconduction using osteoblast cells. The results showed the successful fabrication of porous Ti6Al4V scaffolds with adequate strength. Additionally, the surface treatment with NaOH and Dopamine Hydrochloride (DOPA) promoted the formation of Dopamine Hydrochloride (DOPA) coating with an optimized coating process, providing an environment that supports higher cell viability and growth compared to the uncoated Ti6Al4V scaffolds, as demonstrated by the higher proliferation ratios observed from day 1 to day 29. These findings bring valuable insights into the surface modification of 3D-printed scaffolds for improved osteoconduction through the coating process in solutions.
Collapse
Affiliation(s)
- Changyu Ma
- Autonomy Research Center for STEAHM, California State University Northridge, Northridge, CA 91324, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | | | - Tianqi Zheng
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alejandro Gomez
- Autonomy Research Center for STEAHM, California State University Northridge, Northridge, CA 91324, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Marshall Doyle
- Autonomy Research Center for STEAHM, California State University Northridge, Northridge, CA 91324, USA
| | - Jianhao Zhu
- Autonomy Research Center for STEAHM, California State University Northridge, Northridge, CA 91324, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Himansu Sekhar Nanda
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
- Discipline of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India
| | - Xiaochun Li
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Bingbing Li
- Autonomy Research Center for STEAHM, California State University Northridge, Northridge, CA 91324, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| |
Collapse
|
9
|
Zaw O, Noon Shean Aye N, Daduang J, Proungvitaya S, Wongwattanakul M, Ngernyuang N, Daduang S, Shinsuphan N, Phatthanakun R, Jearanaikoon N, Maraming P. DNA aptamer-functionalized PDA nanoparticles: from colloidal chemistry to biosensor applications. Front Bioeng Biotechnol 2024; 12:1427229. [PMID: 39045538 PMCID: PMC11263086 DOI: 10.3389/fbioe.2024.1427229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
Polydopamine nanoparticles (PDA NPs) are widely utilized in the field of biomedical science for surface functionalization because of their unique characteristics, such as simple and low-cost preparation methods, good adhesive properties, and ability to incorporate amine and oxygen-rich chemical groups. However, challenges in the application of PDA NPs as surface coatings on electrode surfaces and in conjugation with biomolecules for electrochemical sensors still exist. In this work, we aimed to develop an electrochemical interface based on PDA NPs conjugated with a DNA aptamer for the detection of glycated albumin (GA) and to study DNA aptamers on the surfaces of PDA NPs to understand the aptamer-PDA surface interactions using molecular dynamics (MD) simulation. PDA NPs were synthesized by the oxidation of dopamine in Tris buffer at pH 10.5, conjugated with DNA aptamers specific to GA at different concentrations (0.05, 0.5, and 5 μM), and deposited on screen-printed carbon electrodes (SPCEs). The charge transfer resistance of the PDA NP-coated SPCEs decreased, indicating that the PDA NP composite is a conductive bioorganic material. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) confirmed that the PDA NPs were spherical, and dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy data indicated the successful conjugation of the aptamers on the PDA NPs. The as-prepared electrochemical interface was employed for the detection of GA. The detection limit was 0.17 μg/mL. For MD simulation, anti-GA aptamer through the 5'terminal end in a single-stranded DNA-aptamer structure and NH2 linker showed a stable structure with its axis perpendicular to the PDA surface. These findings provide insights into improved biosensor design and have demonstrated the potential for employing electrochemical PDA NP interfaces in point-of-care applications.
Collapse
Affiliation(s)
- Ohnmar Zaw
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nang Noon Shean Aye
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Siriporn Proungvitaya
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Molin Wongwattanakul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Center for Innovation and Standard for Medical Technology and Physical Therapy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nipaporn Ngernyuang
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
- Thammasat University Research Unit in Biomedical Science, Thammasat University, Pathum Thani, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nikorn Shinsuphan
- Medical Instrument Subsection, Maintenance Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Nichada Jearanaikoon
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | - Pornsuda Maraming
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
10
|
Seredin P, Goloshchapov D, Emelyanova A, Eremeev K, Peshkov Y, Shikhaliev K, Potapov A, Ippolitov Y, Kashkarov V, Nesterov D, Shapiro K, Freitas RO, Mahdy IA. Rapid Deposition of the Biomimetic Hydroxyapatite-Polydopamine-Amino Acid Composite Layers onto the Natural Enamel. ACS OMEGA 2024; 9:17012-17027. [PMID: 38645322 PMCID: PMC11024970 DOI: 10.1021/acsomega.3c08491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024]
Abstract
In this work, we developed a technology that enables rapid deposition of biomimetic composite films onto natural enamel slices (known as biotemplates). These films are composed of polydopamine (PDA) and nanocrystalline carbonate-substituted hydroxyapatite (nano-cHAp) that have been functionalized with amino acid l-Arginine. We utilized atomic force microscopy (AFM) and scattering scanning near-field optical microscopy (s-SNOM) combined with infrared (IR) synchrotron to achieve nanoscale spatial resolution for both IR absorption and topography analyses. This combined analytical modality allowed us to understand how morphology connects to local changes in the chemical environment on the biotemplate surface during the deposition of the bioinspired coating. Our findings revealed that when using the proposed technology and after the deposition of the first PDA layer, the film formed on the enamel surface nearly covers the entire surface of the specimen whose thickness is larger on the surface of the emerging enamel prisms. Calculation of the crystallinity index for the biomimetic layer showed a multiple increase compared with natural enamel. This indicates regular and dense aggregation of nano-cHAp into larger crystals, imitating the morphology of natural enamel rods. The microhardness of the formed PDA-based biomimetic layer mineralized with nano-cHAp functionalized with amino acid l-Arginine deposited on natural enamel was practically the same as that of natural enamel. The characterization of nano-cHAp-amino acid-PDA layers using IR and Raman microspectroscopy showed that l-arginine acts as a conjunction agent in the formation of mineralized biomimetic composite coatings. The uniformity of the mechanisms of PDA layer formation under different deposition conditions and substrate types allows for the formation of coatings regardless of the macro- and micromorphology of the template. Therefore, the results obtained in this work have a high potential for future clinical applications in dental practice.
Collapse
Affiliation(s)
- Pavel Seredin
- Voronezh
State University, University sq.1, Voronezh 394018, Russia
| | | | - Anna Emelyanova
- Voronezh
State University, University sq.1, Voronezh 394018, Russia
| | | | - Yaroslav Peshkov
- Voronezh
State University, University sq.1, Voronezh 394018, Russia
| | | | - Andrey Potapov
- Voronezh
State University, University sq.1, Voronezh 394018, Russia
| | - Yury Ippolitov
- Department
of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya st. 11, Voronezh 394006, Russia
| | | | - Dmitry Nesterov
- Voronezh
State University, University sq.1, Voronezh 394018, Russia
| | - Kirill Shapiro
- Voronezh
State University, University sq.1, Voronezh 394018, Russia
| | - Raul O. Freitas
- Brazilian
Synchrotron Light Laboratory (LNLS), Brazilian
Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Sao Paulo, Brazil
| | - Iman. A. Mahdy
- Physics
Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, 11754 Cairo, Egypt
| |
Collapse
|
11
|
Guo K, Wang Y, Feng ZX, Lin XY, Wu ZR, Zhong XC, Zhuang ZM, Zhang T, Chen J, Tan WQ. Recent Development and Applications of Polydopamine in Tissue Repair and Regeneration Biomaterials. Int J Nanomedicine 2024; 19:859-881. [PMID: 38293610 PMCID: PMC10824616 DOI: 10.2147/ijn.s437854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
The various tissue damages are a severe problem to human health. The limited human tissue regenerate ability requires suitable biomaterials to help damage tissue repair and regeneration. Therefore, many researchers devoted themselves to exploring biomaterials suitable for tissue repair and regeneration. Polydopamine (PDA) as a natural and multifunctional material which is inspired by mussel has been widely applied in different biomaterials. The excellent properties of PDA, such as strong adhesion, photothermal and high drug-loaded capacity, seem to be born for tissue repair and regeneration. Furthermore, PDA combined with different materials can exert unexpected effects. Thus, to inspire researchers, this review summarizes the recent and representative development of PDA biomaterials in tissue repair and regeneration. This article focuses on why apply PDA in these biomaterials and what PDA can do in different tissue injuries.
Collapse
Affiliation(s)
- Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zhang-Rui Wu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Tao Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jian Chen
- Department of Ultrasonography, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, People’s Republic of China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
12
|
Abyzova E, Dogadina E, Rodriguez RD, Petrov I, Kolesnikova Y, Zhou M, Liu C, Sheremet E. Beyond Tissue replacement: The Emerging role of smart implants in healthcare. Mater Today Bio 2023; 22:100784. [PMID: 37731959 PMCID: PMC10507164 DOI: 10.1016/j.mtbio.2023.100784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023] Open
Abstract
Smart implants are increasingly used to treat various diseases, track patient status, and restore tissue and organ function. These devices support internal organs, actively stimulate nerves, and monitor essential functions. With continuous monitoring or stimulation, patient observation quality and subsequent treatment can be improved. Additionally, using biodegradable and entirely excreted implant materials eliminates the need for surgical removal, providing a patient-friendly solution. In this review, we classify smart implants and discuss the latest prototypes, materials, and technologies employed in their creation. Our focus lies in exploring medical devices beyond replacing an organ or tissue and incorporating new functionality through sensors and electronic circuits. We also examine the advantages, opportunities, and challenges of creating implantable devices that preserve all critical functions. By presenting an in-depth overview of the current state-of-the-art smart implants, we shed light on persistent issues and limitations while discussing potential avenues for future advancements in materials used for these devices.
Collapse
Affiliation(s)
- Elena Abyzova
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
| | - Elizaveta Dogadina
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | | | - Ilia Petrov
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
| | | | - Mo Zhou
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | | |
Collapse
|
13
|
Ma T, Wang CX, Ge XY, Zhang Y. Applications of Polydopamine in Implant Surface Modification. Macromol Biosci 2023; 23:e2300067. [PMID: 37229654 DOI: 10.1002/mabi.202300067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/22/2023] [Indexed: 05/27/2023]
Abstract
There is great clinical demand for orthopedic and dental implant surface modification methods to prevent osseointegration failure and improve implant biological functions. Notably, dopamine (DA) can be polymerized to form polydopamine (PDA), which is similar to the adhesive proteins secreted by mussels, to form a stable bond between the bone surface and implants. Therefore, PDA has the potential to be used as an implant surface modification material with good hydrophilicity, roughness, morphology, mechanical strength, biocompatibility, antibacterial activity, cellular adhesion, and osteogenesis. In addition, PDA degradation releases DA into the surrounding microenvironment, which is found to play an important role in regulating DA receptors on both osteoblasts and osteoclasts during the bone remodeling process. Furthermore, the adhesion properties of PDA suggest its use as an intermediate layer in assisting other functional bone remodeling materials, such as nanoparticles, growth factors, peptides, and hydrogels, to form "dual modifications." The purpose of this review is to summarize the recent progress in research on PDA and its derivatives as orthopedic and dental implant surface modification materials and to analyze the multiple functions of PDA.
Collapse
Affiliation(s)
- Ting Ma
- Department of Oral Implantology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Chen-Xi Wang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Xi-Yuan Ge
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Yu Zhang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| |
Collapse
|
14
|
Tapia-Lopez LV, Luna-Velasco MA, Beaven EK, Conejo-Dávila AS, Nurunnabi M, Castro JS. RGD Peptide-Functionalized Polyether Ether Ketone Surface Improves Biocompatibility and Cell Response. ACS Biomater Sci Eng 2023; 9:5270-5278. [PMID: 37642514 DOI: 10.1021/acsbiomaterials.3c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Polyether ether ketone (PEEK) is a biocompatible polymer used in maxillofacial and orthopedic applications because of its mechanical properties and chemical stability. However, this biomaterial is inert and requires surface modification to make it bioactive, enhancing implant-tissue integration and giving the material the ability to interact with the surrounding microenvironment. In this paper, surface of PEEK was activated by oxygen plasma treatment and this resulted in increasing reactivity and surface hydrophilicity. Then, a polydopamine (PDA) coating was deposited over the surface followed by biofunctionalization with an RGD peptide. The plasma effect was studied by contact angle measurements and scanning electron microscopy. X-ray photoelectron spectroscopy confirmed the presence of PDA coating and RGD peptide. Crystallinity and phase identification were carried out through X-ray diffraction. Quantification of the immobilized peptide over the PEEK surface was reached through UV-vis spectroscopy. In addition, in vitro tests with fibroblast cell line (NIH/3T3) determined the viability, attachment, spreading, and proliferation of these cells over the modified PEEK surfaces. According to the results, PEEK surfaces functionalized with peptides demonstrated an increased cellular response with each successive surface modification.
Collapse
Affiliation(s)
- Lillian V Tapia-Lopez
- Universidad Autónoma de Ciudad Juárez, Av. del Charro 450, Col. Partido Romero, Ciudad Juárez 32310, Mexico
- Department of Pharmaceutical Sciences, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - María A Luna-Velasco
- Centro de Investigación en Materiales Avanzados, Miguel de Cervantes Saavedra 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico
| | - Elfa K Beaven
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Alain S Conejo-Dávila
- Centro de Investigación en Materiales Avanzados, Miguel de Cervantes Saavedra 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Javier S Castro
- Universidad Autónoma de Ciudad Juárez, Av. del Charro 450, Col. Partido Romero, Ciudad Juárez 32310, Mexico
| |
Collapse
|
15
|
Pozy E, Savla C, Palmer AF. Photocatalytic Synthesis of a Polydopamine-Coated Acellular Mega-Hemoglobin as a Potential Oxygen Therapeutic with Antioxidant Properties. Biomacromolecules 2023; 24:2022-2029. [PMID: 37027799 DOI: 10.1021/acs.biomac.2c01420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Hemoglobin-based oxygen carriers (HBOCs) are being developed to overcome limitations associated with transfusion of donated red blood cells (RBCs) such as potential transmission of blood-borne pathogens and limited ex vivo storage shelf-life. Annelid erythrocruorin (Ec) derived from the worm Lumbricus terrestris (Lt) is an acellular mega-hemoglobin that has shown promise as a potential HBOC due to the large size of its oligomeric structure, thus overcoming limitations of unmodified circulating cell-free hemoglobin (Hb). With a large molecular weight of 3.6 MDa compared to 64.5 kDa for human Hb (hHb) and 144 oxygen-binding globin subunits compared to the 4 globin subunits of hHb, LtEc does not extravasate from the circulation to the same extent as hHb. LtEc is stable in the circulation without RBC membrane encapsulation and has a lower rate of auto-oxidation compared to acellular hHb, which allows the protein to remain functional for longer periods of time in the circulation compared to HBOCs derived from mammalian Hbs. Surface coatings, such as poly(ethylene glycol) (PEG) and oxidized dextran (Odex), have been investigated to potentially reduce the immune response and improve the circulation time of LtEc in vivo. Polydopamine (PDA) is a hydrophilic, biocompatible, bioinspired polymer coating used for biomedical nanoparticle assemblies and coatings and has previously been investigated for the surface coating of hHb. PDA is typically synthesized via the self-polymerization of dopamine (DA) under alkaline (pH > 8.0) conditions. However, at pH > 8.0, the oligomeric structure of LtEc begins to dissociate. Therefore, in this study, we investigated a photocatalytic method of PDA polymerization on the surface of LtEc using 9-mesityl-10-methylacridinium tetrafluoroborate (Acr-Mes) to drive PDA polymerization under physiological conditions (pH 7.4, 25 °C) over 2, 5, and 16 h in order to preserve the size and structure of LtEc. The resulting structural, biophysical, and antioxidant properties of PDA surface-coated LtEc (PDA-LtEc) was characterized using various techniques. PDA-LtEc showed an increase in measured particle size, molecular weight, and surface ζ-potential with increasing reaction time from t = 2 to 16 h compared to unmodified LtEc. PDA-LtEc reacted for 16 h was found to have reduced oxygen-binding cooperativity and slower deoxygenation kinetics compared to PDA-LtEc with lower levels of polymerization (t = 2 h), but there was no statistically significant difference in oxygen affinity. The thickness of the PDA coating can be controlled and in turn the biophysical properties can be tuned by changing various reaction conditions. PDA-LtEc was shown to demonstrate an increased level of antioxidant capacity (ferric iron reduction and free-radical scavenging) when synthesized at a reaction time of t = 16 h compared to LtEc. These antioxidant properties may prove beneficial for oxidative protection of PDA-LtEc during its time in the circulation. Hence, we believe that PDA-LtEc is a promising oxygen therapeutic for potential use in transfusion medicine applications.
Collapse
Affiliation(s)
- Ethan Pozy
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
16
|
Ma J, Li J, Wang X, Li M, Teng W, Tao Z, Xie J, Ma Y, Shi Q, Li B, Saijilafu. GDNF-Loaded Polydopamine Nanoparticles-Based Anisotropic Scaffolds Promote Spinal Cord Repair by Modulating Inhibitory Microenvironment. Adv Healthc Mater 2023; 12:e2202377. [PMID: 36549669 DOI: 10.1002/adhm.202202377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Spinal cord injury (SCI) is a devastating injury that causes permanent loss of sensation and motor function. SCI repair is a significant challenge due to the limited regenerating ability of adult neurons and the complex inflammatory microenvironment. After SCI, the oxidative stress induced by excessive reactive oxygen species (ROS) often leads to prolonged neuroinflammation that results in sustained damage to the spinal cord tissue. Polydopamine (PDA) shows remarkable capability in scavenging ROS to treat numerous inflammatory diseases. In this study, glial cell-derived neurotrophic factor (GDNF)-loaded PDA nanoparticle-based anisotropic scaffolds for spinal cord repair are developed. It is found that mesoporous PDA nanoparticles (mPDA NPs) in the scaffolds efficiently scavenge ROS and promote microglia M2 polarization, thereby inhibiting inflammatory response at the injury site and providing a favorable microenvironment for nerve cell survival. Furthermore, the GDNF encapsulated in mPDA NPs promotes corticospinal tract motor axon regeneration and its locomotor functional recovery. Together, findings from this study reveal that the GDNF-loaded PDA/Gelatin scaffolds hold potential as an effective artificial transplantation material for SCI treatment.
Collapse
Affiliation(s)
- Jinjin Ma
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jiaying Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xingran Wang
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Meimei Li
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Wenwen Teng
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zihan Tao
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jile Xie
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yanxia Ma
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Qin Shi
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Li
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, 310015, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Saijilafu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, 310015, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| |
Collapse
|
17
|
Dixon DT, Gomillion CT. 3D-Printed conductive polymeric scaffolds with direct current electrical stimulation for enhanced bone regeneration. J Biomed Mater Res B Appl Biomater 2023; 111:1351-1364. [PMID: 36825765 DOI: 10.1002/jbm.b.35239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/13/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
Various methods have been used to treat bone defects caused by genetic disorders, injury, or disease. Yet, there is still great need to develop alternative approaches to repair damaged bone tissue. Bones naturally exhibit piezoelectric potential, or the ability to convert mechanical stresses into electrical impulses. This phenomenon has been utilized clinically to enhance bone regeneration in conjunction with electrical stimulation (ES) therapies; however, oftentimes with critical-sized bone defects, the bioelectric potential at the site of injury is compromised, resulting in less desirable outcomes. In the present study, the potential of a 3D-printed conductive polymer blend to enhance bone formation through restoration of the bioelectrical microenvironment was evaluated. A commercially available 3D printer was used to create circular, thin-film scaffolds consisting of either polylactide (PLA) or a conductive PLA (CPLA) composite. Preosteoblast cells were seeded onto the scaffolds and subjected to direct current ES via a purpose-built cell culture chamber. It was found that CPLA scaffolds had no adverse effects on cell viability, proliferation or differentiation when compared with control scaffolds. The addition of ES, however, resulted in a significant increase in the expression of osteocalcin, a protein indicative of osteoblast maturation, after 14 days of culture. Furthermore, xylenol orange staining also showed the presence of increased mineralized calcium nodules in cultures undergoing stimulation. This study demonstrates the potential for low-cost, conductive scaffolding materials to support cell viability and enhance in vitro mineralization in conjunction with ES.
Collapse
Affiliation(s)
- Damion T Dixon
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Cheryl T Gomillion
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
18
|
Borges MHR, Nagay BE, Costa RC, Souza JGS, Mathew MT, Barão VAR. Recent advances of polypyrrole conducting polymer film for biomedical application: Toward a viable platform for cell-microbial interactions. Adv Colloid Interface Sci 2023; 314:102860. [PMID: 36931199 DOI: 10.1016/j.cis.2023.102860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Polypyrrole (PPy) is one of the most studied conductive polymers due to its electrical conductivity and biological properties, which drive the possibility of numerous applications in the biomedical area. The physical-chemical features of PPy allow the manufacture of biocompatible devices, enhancing cell adhesion and proliferation. Furthermore, owing to the electrostatic interactions between the negatively charged bacterial cell wall and the positive charges in the polymer structure, PPy films can perform an effective antimicrobial activity. PPy is also frequently associated with biocompatible agents and antimicrobial compounds to improve the biological response. Thus, this comprehensive review appraised the available evidence regarding the PPy-based films deposited on metallic implanted devices for biomedical applications. We focus on understanding key concepts that could influence PPy attributes regarding antimicrobial effect and cell behavior under in vitro and in vivo settings. Furthermore, we unravel the several agents incorporated into the PPy film and strategies to improve its functionality. Our findings suggest that incorporating other elements into the PPy films, such as antimicrobial agents, biomolecules, and other biocompatible polymers, may improve the biological responses. Overall, the basic properties of PPy, when combined with other composites, electrostimulation techniques, or surface treatment methods, offer great potential in biocompatibility and/or antimicrobial activities. However, challenges in synthesis standardization and potential limitations such as low adhesion and mechanical strength of the film must be overcome to improve and broaden the application of PPy film in biomedical devices.
Collapse
Affiliation(s)
- Maria H R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University (UNG), Guarulhos, Sāo Paulo 07023-070, Brazil; Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
| | - Mathew T Mathew
- Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL 61107, USA
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil.
| |
Collapse
|
19
|
Syeddan SA. Research Methodology and Mechanisms of Action of Current Orthopaedic Implant Coatings. J Long Term Eff Med Implants 2023; 33:51-66. [PMID: 36734927 DOI: 10.1615/jlongtermeffmedimplants.2022040062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Orthopedic implants are crucial interventions that are gaining greater importance in modern medicine to restore function to commonly affected joints. Each implantation carries the risk of implant-associated infection and loosening of the implant due to improper integration with soft tissue. Coating strategies have been developed to aid the growth of bone into the implant (osteointegration) and prevent biofilm formation to avoid infection. In this review, primary articles highlighting recent developments and advancements in orthopedic implant coating will be presented. Additionally, the methodology of the articles will be critiqued based on this research criteria: establishment of function on a theoretical basis, validation of coating function, and potential next steps/improvements based on results. A theoretical basis based on understanding the mechanisms at play of these various coatings allows for systems to be developed to tackle the tasks of osteointegration, subversion of infection, and avoidance of cytotoxicity. The current state of research methodology in coating design focuses too heavily on either osteointegration or the prevention of infection, thus, future development in medical implant coating needs to investigate the creation of a coating that accomplishes both tasks. Additionally, next steps and improvements to systems need to be better highlighted to move forward when problems arise within a system. Research currently showcasing new coatings is performed primarily in vitro and in vivo. More clinical trials need to be performed to highlight long-term sustainability, the structural integrity, and the safety of the implant.
Collapse
|
20
|
García-Mayorga JC, Rosu HC, Jasso-Salcedo AB, Escobar-Barrios VA. Kinetic study of polydopamine sphere synthesis using TRIS: relationship between synthesis conditions and final properties. RSC Adv 2023; 13:5081-5095. [PMID: 36777934 PMCID: PMC9909370 DOI: 10.1039/d2ra06669f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
The synthesis and characterization of polydopamine (PDA) using dopamine (DA) as the monomer and (hydroxymethyl)aminomethane (TRIS) as the oxidant is studied. The effect of temperature and TRIS concentration on the kinetics of dopamine polymerization is evaluated, and the kinetic parameters are also calculated. Three TRIS concentrations are used to assess their effect on DA polymerization kinetics. The reaction at 1.5 mmol of TRIS shows a sustained increase of the rate constant with temperature from 2.38 × 10-4 to 5.10 × 10-4 when the temperature is increased from 25 to 55 °C; however, not all reactions follow an Arrhenius law. In addition, the correlation between the synthesis parameters and morphological, structural, and thermal properties of polydopamine is established. The morphology of the PDA particles is evaluated by Scanning Electron Microscopy (SEM), the relationships between the diameter, distribution size, and the rate constant. Thermal characterization by Differential Scanning Calorimetry (DSC) shows an endothermic transition around 130 °C associated with the melting of PDA's regular structure. It is supported by structural studies, such as infrared and Raman spectroscopy and X-ray Diffraction (XRD), by observing a broad peak at 23.1° (2θ) that fits with a graphitic-like structure of PDA.
Collapse
Affiliation(s)
- Juan Carlos García-Mayorga
- Advanced Materials Department, Instituto Potosino de Investigación Científica y Tecnológica A.C. Camino a la Presa San José, Lomas 4a Sección San Luis Potosí SLP 78216 Mexico
| | - Haret-Codratian Rosu
- Advanced Materials Department, Instituto Potosino de Investigación Científica y Tecnológica A.C. Camino a la Presa San José, Lomas 4a Sección San Luis Potosí SLP 78216 Mexico
| | - Alma Berenice Jasso-Salcedo
- Departamento de Biociencias y Agrotecnología, Centro de Investigación en Química AplicadaBlvd. Enrique Reyna Hermosillo No. 140SaltilloCoahuila25294Mexico
| | - Vladimir Alonso Escobar-Barrios
- Advanced Materials Department, Instituto Potosino de Investigación Científica y Tecnológica A.C. Camino a la Presa San José, Lomas 4a Sección San Luis Potosí SLP 78216 Mexico
| |
Collapse
|
21
|
Zhao Y, Wu Z, Chen L, Shu X, Guan J, Yang K, Shi R, Li Y, Numata K, Shao Z. Restructuring the Interface of Silk-Polycaprolactone Biocomposites Using Rigid-Flexible Agents. Biomacromolecules 2023; 24:332-343. [PMID: 36562543 DOI: 10.1021/acs.biomac.2c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural fiber-reinforced biocomposites with excellent mechanical and biological properties have attractive prospects for internal medical devices. However, poor interfacial adhesion between natural silk fiber and the polymer matrix has been a disturbing issue for such applications. Herein, rigid-flexible agents, such as polydopamine (PDA) and epoxy soybean oil (ESO), were introduced to enhance the interfacial adhesion between Antheraea pernyi (Ap) silk and a common medical polymer, polycaprolactone (PCL). We compared two strategies of depositing PDA first (Ap-PDA-ESO) and grafting ESO first (Ap-ESO-PDA). The rigid-flexible interfacial agents introduced multiple molecular interactions at the silk-PCL interface. The "Ap-PDA-ESO" strategy exhibited a greater enhancement in interfacial adhesion, and interfacial toughening mechanisms were proposed. This work sheds light on engineering strong and tough silk fiber-based biocomposites for biomedical applications.
Collapse
Affiliation(s)
- Yan Zhao
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing100191, People's Republic of China
| | - Zihong Wu
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing100191, People's Republic of China
| | - Lei Chen
- Beijing Research Institute of Orthopedics and Traumatology, Beijing Jishuitan Hospital, Beijing100035, People's Republic of China
| | - Xiong Shu
- Beijing Research Institute of Orthopedics and Traumatology, Beijing Jishuitan Hospital, Beijing100035, People's Republic of China
| | - Juan Guan
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing100191, People's Republic of China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100083, People's Republic of China
| | - Kang Yang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan243002, People's Republic of China
| | - Ruya Shi
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing100191, People's Republic of China
| | - Yibin Li
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing100191, People's Republic of China
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama351-0198, Japan.,Department of Material Chemistry, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai200433, People's Republic of China
| |
Collapse
|
22
|
Li R, Zhou C, Chen J, Luo H, Li R, Chen D, Zou X, Wang W. Synergistic osteogenic and angiogenic effects of KP and QK peptides incorporated with an injectable and self-healing hydrogel for efficient bone regeneration. Bioact Mater 2022; 18:267-283. [PMID: 35387156 PMCID: PMC8961307 DOI: 10.1016/j.bioactmat.2022.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
Irregular defects generated by trauma or surgery in orthopaedics practice were usually difficult to be fitted by the preformed traditional bone graft substitute. Therefore, the injectable hydrogels have attracted an increasing interest for bone repair because of their fittability and mini-invasivity. However, the uncontrollable spreading or mechanical failures during its manipulation remain a problem to be solved. Moreover, in order to achieve vascularized bone regeneration, alternatives of osteogenic and angiogenic growth factors should be adopted to avoid the problem of immunogenicity and high cost. In this study, a novel injectable self-healing hydrogel system (GMO hydrogel) loaded with KP and QK peptides had been developed for enhancing vascularized regeneration of small irregular bone defect. The dynamic imine bonds between gelatin methacryloyl and oxidized dextran provided the GMO hydrogel with self-healing and shear-thinning abilities, which led to an excellent injectability and fittability. By photopolymerization of the enclosed GelMA, GMO hydrogel was further strengthened and thus more suitable for bone regeneration. Besides, the osteogenic peptide KP and angiogenic peptide QK were tethered to GMO hydrogel by Schiff base reaction, leading to desired releasing profiles. In vitro, this composite hydrogel could significantly improve the osteogenic differentiation of BMSCs and angiogenesis ability of HUVECs. In vivo, KP and QK in the GMO hydrogel demonstrated a significant synergistic effect in promoting new bone formation in rat calvaria. Overall, the KP and QK loaded GMO hydrogel was injectable and self-healing, which can be served as an efficient approach for vascularized bone regeneration via a minimally invasive approach.
Collapse
Affiliation(s)
- Runze Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Chen Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Jun Chen
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- The Key Laboratory of Imflammation and Autoimmune Diseases, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haotian Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Ruoyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Danying Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Weicai Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| |
Collapse
|
23
|
Tolabi H, Bakhtiary N, Sayadi S, Tamaddon M, Ghorbani F, Boccaccini AR, Liu C. A critical review on polydopamine surface-modified scaffolds in musculoskeletal regeneration. Front Bioeng Biotechnol 2022; 10:1008360. [PMID: 36466324 PMCID: PMC9715616 DOI: 10.3389/fbioe.2022.1008360] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Increasing concern about age-related diseases, particularly musculoskeletal injuries and orthopedic conditions, highlights the need for strategies such as tissue engineering to address them. Surface modification has been developed to create pro-healing interfaces, personalize scaffolds and provide novel medicines. Polydopamine, a mussel-inspired adhesive polymer with highly reactive functional groups that adhere to nearly all substrates, has gained attention in surface modification strategies for biomaterials. Polydopamine was primarily developed to modify surfaces, but its effectiveness has opened up promising approaches for further applications in bioengineering as carriers and nanoparticles. This review focuses on the recent discoveries of the role of polydopamine as a surface coating material, with focus on the properties that make it suitable for tackling musculoskeletal disorders. We report the evolution of using it in research, and discuss papers involving the progress of this field. The current research on the role of polydopamine in bone, cartilage, muscle, nerve, and tendon regeneration is discussed, thus giving comprehensive overview about the function of polydopamine both in-vitro and in-vivo. Finally, the report concludes presenting the critical challenges that must be addressed for the clinical translation of this biomaterial while exploring future perspectives and research opportunities in this area.
Collapse
Affiliation(s)
- Hamidreza Tolabi
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Negar Bakhtiary
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Shaghayegh Sayadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Maryam Tamaddon
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Farnaz Ghorbani
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, United Kingdom
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| |
Collapse
|
24
|
Suttiat K, Wattanutchariya W, Manaspon C. Preparation and Characterization of Porous Poly(Lactic Acid)/Poly(Butylene Adipate-Co-Terephthalate) (PLA/PBAT) Scaffold with Polydopamine-Assisted Biomineralization for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7756. [PMID: 36363351 PMCID: PMC9658926 DOI: 10.3390/ma15217756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The development of scaffolds that simultaneously provide porous architectures and osteogenic properties is the major challenge in tissue engineering. Herein, a scaffold with high porosity and well interconnected networks, namely poly(lactic acid)/poly(butylene adipate-co-terephthalate) (PLA/PBAT), was fabricated using the gas foaming/ammonium bicarbonate particulate leaching technique. Mussel-inspired polydopamine (PDA)-assisted biomineralization generated by two-step simple soaking in dopamine solution and 10× SBF-like solution was performed to improve the material's osteogenicity. Highly porous scaffolds available in less organized opened cell structures with diameters ranging from 10 µm to 100 µm and 200 µm to 500 µm were successfully prepared. The well interconnected porous architectures were observed through the whole thickness of the scaffold. The even deposition of the organic-inorganic bioactive mineralized layer composed of PDA and nano-scale hydroxyapatite (HA) crystals on the scaffold surface was evidenced by scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The developed scaffold exhibited high total porosity (84.17 ± 1.29%), a lower surface contact angle (θ = 45.7 ± 5.9°), lower material degradation rate (7.63 ± 2.56%), and a high level of material biocompatibility. The MTT assay and Alizarin Red S staining (ARS) confirmed its osteogenic enhancement property toward human osteoblast-like cells (MG-63). These results clarified that the developed porous PLA/PBAT scaffold with PDA-assisted biomineralization exhibited good potential for application as a biomaterial for bone tissue regeneration and hard tissue engineering.
Collapse
Affiliation(s)
- Kullapop Suttiat
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wassanai Wattanutchariya
- Advanced Manufacturing and Management Technology Research Center, Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chawan Manaspon
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
25
|
Malik A, Rouf S, Ul Haq MI, Raina A, Valerga Puerta AP, Sagbas B, Ruggiero A. Tribo-corrosive behavior of additive manufactured parts for orthopaedic applications. J Orthop 2022; 34:49-60. [PMID: 36016865 PMCID: PMC9396253 DOI: 10.1016/j.jor.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/20/2022] [Accepted: 08/05/2022] [Indexed: 01/01/2023] Open
Abstract
Background Additive manufacturing (AM) being an integral component of the production offers a wide variety of applications in the production of different components. The medical industry after the introduction of Additive Manufacturing has resulted in several advancements. The production of intricate patient-specific implants is one of such advancements which greatly assist a surgeon during a surgery. Orthopedic implants apart from possessing good mechanical strength are also expected to exhibit good tribological and corrosion behavior. As a result, the development of various orthopaedic implants and tools has become simple with the use of additive manufacturing. Objectives and Rationale In the current paper an effort has been made to discuss actual scientific knowledge on the tribo-corrosive behavior of additive manufactured parts for orthopedic applications. Different studies dealing with the mechanisms of lubrication and friction in synovial joints have also been considered. A special focus has also been laid down to study the corrosive effect of implants on the human body. A section dedicated to texturing of orthopedic implants has also been provided. The paper further elaborates the different research challenges and issues related to the use of additive manufacturing for the production of optimized orthopedic implants. Conclusion The study revealed that additive manufacturing has greatly aided in the manufacture of different orthopaedic implants with enhanced properties. However, a detailed study of the effect of processes like friction, wear, lubrication and corrosion in these implants needs to be done. The performance of these implants in the presence of various synovial fluids also needs to be addressed. However, the lack of more biocompatible materials, scalability and cost issues hinder the widespread use of AM in the different orthopaedic applications.
Collapse
Affiliation(s)
- Abrar Malik
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Jammu and Kashmir, 182320, India
| | - Saquib Rouf
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Jammu and Kashmir, 182320, India
| | - Mir Irfan Ul Haq
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Jammu and Kashmir, 182320, India
| | - Ankush Raina
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Jammu and Kashmir, 182320, India
| | | | - Binnur Sagbas
- Yildiz Technical University, Mechanical Engineering Department, 34349, Besiktas Istanbul, Turkiye
| | | |
Collapse
|
26
|
Sarkari S, Khajehmohammadi M, Davari N, Li D, Yu B. The effects of process parameters on polydopamine coatings employed in tissue engineering applications. Front Bioeng Biotechnol 2022; 10:1005413. [PMID: 36172013 PMCID: PMC9512135 DOI: 10.3389/fbioe.2022.1005413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
The biomaterials’ success within the tissue engineering field is hinged on the capability to regulate tissue and cell responses, comprising cellular adhesion, as well as repair and immune processes’ induction. In an attempt to enhance and fulfill these biomaterials’ functions, scholars have been inspired by nature; in this regard, surface modification via coating the biomaterials with polydopamine is one of the most successful inspirations endowing the biomaterials with surface adhesive properties. By employing this approach, favorable results have been achieved in various tissue engineering-related experiments, a significant one of which is the more rapid cellular growth observed on the polydopamine-coated substrates compared to the untreated ones; nonetheless, some considerations regarding polydopamine-coated surfaces should be taken into account to control the ultimate outcomes. In this mini-review, the importance of coatings in the tissue engineering field, the different types of surfaces requiring coatings, the significance of polydopamine coatings, critical factors affecting the result of the coating procedure, and recent investigations concerning applications of polydopamine-coated biomaterials in tissue engineering are thoroughly discussed.
Collapse
Affiliation(s)
- Soulmaz Sarkari
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Dejian Li, ; Baoqing Yu,
| | - Baoqing Yu
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
- *Correspondence: Dejian Li, ; Baoqing Yu,
| |
Collapse
|
27
|
Wu Z, Huo X, Yang T, Liu K, Wu T, Feng Z, Wang M, Li F, Jia J, Zhang X, Gao W, Yu L. CRISPR/Cas9-3NLS/sgHMGA2@PDA nanosystem is the potential efficient gene editing therapy for gastric cancer with HMGA2 high expression. Front Oncol 2022; 12:978533. [PMID: 36119467 PMCID: PMC9479195 DOI: 10.3389/fonc.2022.978533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Gene therapy is one of the target therapies with promising clinical use for gastric cancer (GC). However, the delivery of the CRISPR/Cas9/sgRNA (RNP) gene editing tool severely limits the practical therapeutic effect of GC. Therefore, it is a great challenge to develop an RNP delivery system that is simple to prepare and can rapidly encapsulate RNP while achieving high delivery and gene editing efficiency. We developed, for the first time, the CRISPR/Cas9@PDA nano-delivery system that can achieve high-efficiency delivery (95%) of CRISPR/Cas9-3NLS/sgHMGA2 and high-efficient HMGA2 gene editing (82%) of GC cells. In particular, the experiment’s weak alkaline environment can not only protect the activity of CRISPR/Cas9-3NLS/sgHMGA2 but also trigger the self-polymerization of polydopamine (PDA). Meanwhile, the presence of KE in the CRISPR/Cas9 amino acid sequence can achieve the directional growth of PDA, thus forming a core–shell structure that protects CRISPR/Cas9-3NLS/sgHMGA2. This efficient CRISPR/Cas9-3NLS/sgHMGA2 delivery and HMGA2 gene editing ability has also been verified in mice, which can significantly inhibit tumor growth in mice. The success of building the delivery system and its ideal treating effect give hope to the efficacious treatment for the GC patients with HMGA2 high expression.
Collapse
Affiliation(s)
- Zhouying Wu
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People’s Hospital, Hohhot, China
| | - Xue Huo
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People’s Hospital, Hohhot, China
| | - Tingyu Yang
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People’s Hospital, Hohhot, China
| | - Kun Liu
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, China
| | - Ting Wu
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People’s Hospital, Hohhot, China
| | - Zongqi Feng
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People’s Hospital, Hohhot, China
| | - Min Wang
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People’s Hospital, Hohhot, China
| | - Feng Li
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People’s Hospital, Hohhot, China
| | - Jianchao Jia
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People’s Hospital, Hohhot, China
| | - Xiaoran Zhang
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People’s Hospital, Hohhot, China
| | - Wenming Gao
- Departments of Cardiology, Hohhot First Hospital, Hohhot, China
| | - Lan Yu
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People’s Hospital, Hohhot, China
- Department of Endocrine and Metabolic Diseases, Inner Mongolia People’s Hospital, Hohhot, China
- *Correspondence: Lan Yu,
| |
Collapse
|
28
|
Du J, Zhou Y, Bao X, Kang Z, Huang J, Xu G, Yi C, Li D. Surface polydopamine modification of bone defect repair materials: Characteristics and applications. Front Bioeng Biotechnol 2022; 10:974533. [PMID: 35935489 PMCID: PMC9355039 DOI: 10.3389/fbioe.2022.974533] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Bone defects are a common challenge for clinical orthopedic surgeons. The existing bone defect repair materials are difficult to achieve satisfactory osseointegration between the material and the bone. Therefore, it is increasingly important to find effective methods to improve the integration of the materials with the bone and thus facilitate bone defect repair. Researchers have found that polydopamine (PDA) has a structure and properties similar to the adhesive proteins secreted by mussels in nature, with good biocompatibility, bioactivity, hydrophilicity, bio-adhesion and thermal stability. PDA is therefore expected to be used as a surface modification material for bone repair materials to improve the bonding of bone repair materials to the bone surface. This paper reviews research related to PDA-modified bone repair materials and looks at their future applications.
Collapse
Affiliation(s)
- Jianhang Du
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Ying Zhou
- Department of Rehabilitation, General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Xiaogang Bao
- Spine Center, Department of Orthopedics Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhanrong Kang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jianming Huang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Guohua Xu
- Spine Center, Department of Orthopedics Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- *Correspondence: Guohua Xu, ; Chengqing Yi, ; Dejian Li,
| | - Chengqing Yi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Guohua Xu, ; Chengqing Yi, ; Dejian Li,
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Guohua Xu, ; Chengqing Yi, ; Dejian Li,
| |
Collapse
|
29
|
Ghorai SK, Dutta A, Roy T, Guha Ray P, Ganguly D, Ashokkumar M, Dhara S, Chattopadhyay S. Metal Ion Augmented Mussel Inspired Polydopamine Immobilized 3D Printed Osteoconductive Scaffolds for Accelerated Bone Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28455-28475. [PMID: 35715225 DOI: 10.1021/acsami.2c01657] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Critical bone defects with a sluggish rate of auto-osteoconduction and imperfect reconstruction are motivators for the development of an alternate innovative approach for the regeneration of bone. Tissue engineering for bone regeneration signifies an advanced way to overcome this problem by creating an additional bone tissue substitute. Among different fabrication techniques, the 3D printing technique is obviously the most efficient and advanced way to fabricate an osteoconductive scaffold with a controlled porous structure. In the current article, the polycarbonate and polyester diol based polyurethane-urea (P12) was synthesized and 3D porous nanohybrid scaffolds (P12/TP-nHA) were fabricated using the 3D printing technique by incorporating the osteoconductive nanomaterial titanium phosphate adorned nanohydroxyapatite (TP-nHA). To improve the bioactivity, the surface of the fabricated scaffolds was modified with the immobilized biomolecule polydopamine (PDA) at room temperature. XPS study as well as the measurement of surface wettability confirmed the higher amount of PDA immobilization on TP-nHA incorporated nanohybrid scaffolds through the dative bone formation between the vacant d orbital of the incorporated titanium ion and the lone pair electron of the catechol group of dopamine. The incorporated titanium phosphate (TP) increased the tensile strength (53.1%) and elongation at break (96.8%) of the nanohybrid composite as compared to pristine P12. Moreover, the TP incorporated nanohybrid scaffold with calcium and phosphate moieties and a higher amount of immobilized active biomolecule improved the in vitro bioactivity, including the cell viability, cell proliferation, and osteogenic gene expression using hMSCs, of the fabricated nanohybrid scaffolds. A rat tibia defect model depicted that the TP incorporated nanohybrid scaffold with immobilized PDA enhanced the in vivo bone regeneration ability compared to the control sample without revealing any organ toxicity signifying the superior osteogenic bioactivity. Thus, a TP augmented polydopamine immobilized polyurethane-urea based nanohybrid 3D printed scaffold with improved physicochemical properties and osteogenic bioactivity could be utilized as an excellent advanced material for bone regeneration substitute.
Collapse
Affiliation(s)
- Sanjoy Kumar Ghorai
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur-721302, India
| | - Abir Dutta
- Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur-721302, India
| | - Trina Roy
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur-721302, India
| | - Preetam Guha Ray
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur-721302, India
| | - Debabrata Ganguly
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur-721302, India
| | | | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur-721302, India
| | | |
Collapse
|
30
|
He X, Obeng E, Sun X, Kwon N, Shen J, Yoon J. Polydopamine, harness of the antibacterial potentials-A review. Mater Today Bio 2022; 15:100329. [PMID: 35757029 PMCID: PMC9218838 DOI: 10.1016/j.mtbio.2022.100329] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/11/2022] Open
Abstract
Antibiotic resistance is one of the major causes of morbidity and mortality, triggered by the adhesion of microbes and to some extent the formation of biofilms. This condition has been quite challenging in the health and industrial sector. Conditions and processes required to foil these infectious and resistance are of much concern. The synthesis of PDA material, inspired by the Mytilus edulis foot protein (MEFP)5 possesses unique characteristics that allow for, adhesion, photothermal therapy, synergistic effects with other materials, biocompatibility process, etc. Therefore, their usage holds great potential for dealing with both the infectious nature and the antibiotic resistance processes. Hence, this review provides an overview of the mechanism involved in accomplishing and eradicating bacteria, the recently harnessed antibacterial effect of the PDA through other properties they possess, a way forward in tapping the benefit embedded in the PDA, and the future perspective.
Collapse
Affiliation(s)
- Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Enoch Obeng
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoshuai Sun
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Nahyun Kwon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001, China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
31
|
Mahendiran B, Muthusamy S, Janani G, Mandal BB, Rajendran S, Krishnakumar GS. Surface Modification of Decellularized Natural Cellulose Scaffolds with Organosilanes for Bone Tissue Regeneration. ACS Biomater Sci Eng 2022; 8:2000-2015. [PMID: 35452211 DOI: 10.1021/acsbiomaterials.1c01502] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The utility of plant tissues as scaffolding materials has been gaining significant interest in recent years owing to their unique material characteristics that are ideal for tissue regeneration. In this study, the degradation and biocompatibility of natural cellulosic scaffolds derived from Borassus flabellifer (Linn.) (BF) immature endosperm was improved by chemical oxidation and surface functionalization processes. Briefly, thus obtained cellulosic scaffolds were sequentially processed via a detergent exchange decellularization process followed by sodium periodate mediated oxidation and organosilane-based surface modification using amino (NH2)-terminated 3-aminopropyltriethoxysilane (APTES) and methyl (CH3)-terminated octadecyltrichlorosilane (OTS). Post oxidation and surface functionalization, the scaffolds showed improved physiochemical, morphological, and mechanical properties. Especially, the swelling capacity, total porosity, surface area, degradation kinetics, and mechanical behavior of scaffold were significantly higher in modified scaffold groups. The biocompatibility analysis demonstrated excellent cellular adhesion, proliferation and differentiation of osteoblasts with an evident upregulation of mineralization. Subcutaneous implantation of these scaffolds in a rat model demonstrated active angiogenesis, enhanced degradation, and excellent biocompatibility with concomitant deposition of a collagen matrix. Taken together, the native cellulosic scaffolds post chemical oxidation and surface functionalization can exclusively integrate the potential properties of native soft tissue with ameliorated in vitro and in vivo support in bone tissue engineering for nonloading bearing applications.
Collapse
Affiliation(s)
- Balaji Mahendiran
- Department of Biotechnology, Applied Biomaterials Laboratory, PSG Institute of Advanced Studies, Coimbatore-641004, Tamil Nadu, India
| | - Shalini Muthusamy
- Department of Biotechnology, Applied Biomaterials Laboratory, PSG Institute of Advanced Studies, Coimbatore-641004, Tamil Nadu, India
| | - G Janani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.,School of Health Science and Technology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Selvakumar Rajendran
- Department of Nanobiotechnology, Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore-641004, Tamil Nadu, India
| | - Gopal Shankar Krishnakumar
- Department of Biotechnology, Applied Biomaterials Laboratory, PSG Institute of Advanced Studies, Coimbatore-641004, Tamil Nadu, India
| |
Collapse
|
32
|
Qin S, Lu Z, Gan K, Qiao C, Li B, Chen T, Gao Y, Jiang L, Liu H. Construction of a
BMP
‐2 gene delivery system for polyetheretherketone bone implant material and its effect on bone formation in vitro. J Biomed Mater Res B Appl Biomater 2022; 110:2075-2088. [PMID: 35398972 DOI: 10.1002/jbm.b.35062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Shuang Qin
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Zhengkuan Lu
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Kang Gan
- Department of Stomatology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Chunyan Qiao
- Department of Oral Pathology, Hospital of Stomatology Jilin University Changchun China
| | - Baosheng Li
- Department of Dental Implantology, Hospital of Stomatology Jilin University Changchun China
| | - Tianjie Chen
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Yunbo Gao
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Lingling Jiang
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Hong Liu
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| |
Collapse
|
33
|
Arango-Santander S. Bioinspired Topographic Surface Modification of Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2383. [PMID: 35407716 PMCID: PMC8999667 DOI: 10.3390/ma15072383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/17/2022]
Abstract
Physical surface modification is an approach that has been investigated over the last decade to reduce bacterial adhesion and improve cell attachment to biomaterials. Many techniques have been reported to modify surfaces, including the use of natural sources as inspiration to fabricate topographies on artificial surfaces. Biomimetics is a tool to take advantage of nature to solve human problems. Physical surface modification using animal and vegetal topographies as inspiration to reduce bacterial adhesion and improve cell attachment has been investigated in the last years, and the results have been very promising. However, just a few animal and plant surfaces have been used to modify the surface of biomaterials with these objectives, and only a small number of bacterial species and cell types have been tested. The purpose of this review is to present the most current results on topographic surface modification using animal and plant surfaces as inspiration to modify the surface of biomedical materials with the objective of reducing bacterial adhesion and improving cell behavior.
Collapse
|
34
|
Telli A, Taş M. The use of mussel-inspired polydopamine interlayer for high-efficiency surface functionalization of PET fabrics. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02973-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe surface modifications of polymer materials are carried out to improve surface properties, add new functionalities and thus enlarge their application areas. Polyethylene terephthalate (PET) is a commonly used textile fabric to achieve functional properties via surface modification techniques. However, its inert and non-reactive nature necessitates an activation process before the surface modification to create functional surfaces. Plasma treatment and chemical methods are commonly used for this aim. However, these techniques can easily damage the surface of the PET fabric and result in decreased mechanical properties. In this study, we proposed a new method to activate the surface of PET using polydopamine (PDA) interlayer, known as substrate-independent coating material, to form a better and more homogenous polyaniline (PAni) coating via an in-situ polymerization technique. The surface appearance of the samples was investigated using scanning electron microscopy, and the distribution of elements was analyzed using an energy-dispersive (EDS) detector. Thermal properties of the samples were explored using thermogravimetric analyses and Fourier-transform infrared spectroscopy was used to compare the chemical structures of the coated and uncoated samples. It was found that the PDA interlayer between PAni and PET significantly reduced the sheet resistance by providing more homogenous and chemically stable PAni coatings. Moreover, the effect of the PDA and PAni coating on the optical properties was investigated, and it was found that the PDA + PAni coated fabric exhibited a maximum of 10% reflectance in the range of 400 and 700 nm while uncoated fabric showed over 90%.
Collapse
|
35
|
Addressing the Needs of the Rapidly Aging Society through the Development of Multifunctional Bioactive Coatings for Orthopedic Applications. Int J Mol Sci 2022; 23:ijms23052786. [PMID: 35269928 PMCID: PMC8911303 DOI: 10.3390/ijms23052786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
The unprecedented aging of the world's population will boost the need for orthopedic implants and expose their current limitations to a greater extent due to the medical complexity of elderly patients and longer indwelling times of the implanted materials. Biocompatible metals with multifunctional bioactive coatings promise to provide the means for the controlled and tailorable release of different medications for patient-specific treatment while prolonging the material's lifespan and thus improving the surgical outcome. The objective of this work is to provide a review of several groups of biocompatible materials that might be utilized as constituents for the development of multifunctional bioactive coatings on metal materials with a focus on antimicrobial, pain-relieving, and anticoagulant properties. Moreover, the review presents a summary of medications used in clinical settings, the disadvantages of the commercially available products, and insight into the latest development strategies. For a more successful translation of such research into clinical practice, extensive knowledge of the chemical interactions between the components and a detailed understanding of the properties and mechanisms of biological matter are required. Moreover, the cost-efficiency of the surface treatment should be considered in the development process.
Collapse
|
36
|
Zhuang B, Chen T, Huang Y, Xiao Z, Jin Y. Chemo-photothermal immunotherapy for eradication of orthotopic tumors and inhibition of metastasis by intratumoral injection of polydopamine versatile hydrogels. Acta Pharm Sin B 2022; 12:1447-1459. [PMID: 35530148 PMCID: PMC9069317 DOI: 10.1016/j.apsb.2021.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer remains one of the leading causes of death globally and metastasis always leads to treatment failure. Here, we develop a versatile hydrogel loading photothermal agents, chemotherapeutics, and immune-adjuvants to eradicate orthotopic tumors and inhibit metastasis by combinational therapy. Hydrogel networks were synthesized via the thiol-Michael addition of polydopamine (PDA) with thiolated hyaluronic acid. PDA acted as a cross-linking agent and endowed the hydrogel with excellent photothermal property. Meanwhile, a chemotherapeutic agent, doxorubicin (DOX), was loaded in the hydrogel via π‒π stacking with PDA and an immune-adjuvant, CpG-ODN, was loaded via electrostatic interaction. The release of DOX from the hydrogel was initially slow but accelerated due to near infrared light irradiation. The hydrogels showed remarkably synergistic effect against 4T1 cancer cells and stimulated plenty of cytokines secreting from RAW264.7 cells. Moreover, the hydrogels eradicated orthotopic murine breast cancer xenografts and strongly inhibited metastasis after intratumoral injection and light irradiation. The high anticancer efficiency of this chemo-photothermal immunotherapy resulted from the strong synergistic effect of the versatile hydrogels, including the evoked host immune response. The combinational strategy of chemo-photothermal immunotherapy is promising for highly effective treatment of breast cancer.
Collapse
Key Words
- ALT, alanine aminotransferase
- Breast cancer
- CCK-8, cell counting kit-8
- CRE, creatinine
- Chemotherapy
- DOX, doxorubicin
- DOX@PDA, DOX-loaded PDA nanoparticles
- DTT, dithiothreitol
- EDC, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
- ELISA, enzyme-linked immunosorbent assay
- FBS, fetal bovine serum
- FDA, fluorescein diacetate
- H&E, Hematoxylin and Eosin
- HA, hyaluronic acid
- HA-SH, thiolated hyaluronic acid
- Hydrogel
- Immunotherapy
- Intratumoral injection
- LPS, lipopolysaccharide
- Metastasis
- NHS, N-hydroxysuccinimide
- NIR, near-infrared
- PDA, polydopamine
- PI, propidium iodide
- PTT, photothermal therapy
- Photothermal
- Polydopamine
- RBC, red blood cells
- SEM, scanning electron microscope
- Tunel, terminal deoxynucleotidyl transferase dUTP nick end labeling
- WBC, white blood cells
Collapse
|
37
|
Ghert M. CORR Insights®: What Are the Long-term Surgical Outcomes of Compressive Endoprosthetic Osseointegration of the Femur with a Minimum 10-year Follow-up Period? Clin Orthop Relat Res 2022; 480:549-550. [PMID: 34591037 PMCID: PMC8846350 DOI: 10.1097/corr.0000000000002004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/16/2021] [Indexed: 01/31/2023]
Affiliation(s)
- Michelle Ghert
- Professor, Department of Surgery, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
38
|
Lu H, Liu J, Yu M, Li P, Huang R, Wu W, Hu Z, Xiao Y, Jiang F, Xing X. Photothermal-enhanced antibacterial and antioxidant hydrogels dressings based on catechol-modified chitosan derived carbonized polymer dots for effective treatment of wound infection. Biomater Sci 2022; 10:2692-2705. [PMID: 35438690 DOI: 10.1039/d2bm00221c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial infection and excess reactive oxygen species (ROS) remain challenging factors contributing for the delayed healing of chronic wounds. Although various antibacterial and antioxidant hydrogel dressings have been developed to...
Collapse
Affiliation(s)
- Haojie Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jing Liu
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Meizhe Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Peili Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Ruobing Huang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Wenzhen Wu
- Department of Oral Surgery, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - Zunhan Hu
- Department of Oral Surgery, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - Yuhong Xiao
- Department of Oral Surgery, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - Feng Jiang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaodong Xing
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
39
|
Nazbar A, Samani S, Yazdian Kashani S, Amanzadeh A, Shoeibi S, Bonakdar S. Molecular imprinting as a simple way for the long-term maintenance of the stemness and proliferation potential of adipose-derived stem cells: an in vitro study. J Mater Chem B 2022; 10:6816-6830. [DOI: 10.1039/d2tb00279e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Culturing adipose-derived stem cells (ADSCs) on the biomimetic ADSC-imprinted substrate is a simple way for long-term maintenance of their stemness and proliferation potential.
Collapse
Affiliation(s)
- Abolfazl Nazbar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Samani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Amir Amanzadeh
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Shahram Shoeibi
- Food and Drug Laboratory Research Center (FDLRC), Iran Food and Drug Administration (IFDA), MOH & ME, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
40
|
Razavi M, Wang J, Thakor AS. Localized drug delivery graphene bioscaffolds for cotransplantation of islets and mesenchymal stem cells. SCIENCE ADVANCES 2021; 7:eabf9221. [PMID: 34788097 PMCID: PMC8597999 DOI: 10.1126/sciadv.abf9221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 09/28/2021] [Indexed: 06/01/2023]
Abstract
In the present work, we developed, characterized, and tested an implantable graphene bioscaffold which elutes dexamethasone (Dex) that can accommodate islets and adipose tissue–derived mesenchymal stem cells (AD-MSCs). In vitro studies demonstrated that islets in graphene–0.5 w/v% Dex bioscaffolds had a substantial higher viability and function compared to islets in graphene-alone bioscaffolds or islets cultured alone (P < 0.05). In vivo studies, in which bioscaffolds were transplanted into the epididymal fat pad of diabetic mice, demonstrated that, when islet:AD-MSC units were seeded into graphene–0.5 w/v% Dex bioscaffolds, this resulted in complete restoration of glycemic control immediately after transplantation with these islets also showing a faster response to glucose challenges (P < 0.05). Hence, this combination approach of using a graphene bioscaffold that can be functionalized for local delivery of Dex into the surrounding microenvironment, together with AD-MSC therapy, can significantly improve the survival and function of transplanted islets.
Collapse
Affiliation(s)
- Mehdi Razavi
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Jing Wang
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Avnesh S. Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
41
|
Zhu Y, Liu W, Ngai T. Polymer coatings on magnesium‐based implants for orthopedic applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210578] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yuwei Zhu
- Department of Chemistry The Chinese University of Hong Kong Shatin N. T. Hong Kong
| | - Wei Liu
- Department of Chemistry The Chinese University of Hong Kong Shatin N. T. Hong Kong
| | - To Ngai
- Department of Chemistry The Chinese University of Hong Kong Shatin N. T. Hong Kong
| |
Collapse
|
42
|
Yao M, Cheng S, Zhong G, Zhou J, Shao H, Ma L, Du C, Peng F, Zhang Y. Enhanced osteogenesis of titanium with nano-Mg(OH) 2 film and a mechanism study via whole genome expression analysis. Bioact Mater 2021; 6:2729-2741. [PMID: 33665504 PMCID: PMC7895731 DOI: 10.1016/j.bioactmat.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Titanium (Ti) has been the most widely used orthopedic implant in the past decades. However, their inert surface often leads to insufficient osteointegration of Ti implant. To solve this issue, two bioactive Mg(OH)2 films were developed on Ti surfaces using hydrothermal treatment (Ti-M1# and Ti-M2#). The Mg(OH)2 films showed nano-flake structures: sheets on Ti-M1# with a thickness of 14.7 ± 0.7 nm and a length of 131.5 ± 2.9 nm, and on Ti-M2# with a thickness of 13.4 ± 2.2 nm and a length of 56.9 ± 5.6 nm. Both films worked as Mg ions releasing platforms. With the gradual degradation of Mg(OH)2 films, weakly alkaline microenvironments will be established surrounding the modified implants. Benefiting from the sustained release of Mg ions, nanostructures, and weakly alkaline microenvironments, the as-prepared nano-Mg(OH)2 coated Ti showed better in vitro and in vivo osteogenesis. Notably, Ti-M2# showed better osteogenesis than Ti-M1#, which can be ascribed to its smaller nanostructure. Moreover, whole genome expression analysis was applied to study the osteogenic mechanism of nano-Mg(OH)2 films. For both coated samples, most of the genes related to ECM-receptor interaction, focal adhesion, and TGF-β pathways were upregulated, indicating that these signaling pathways were activated, leading to better osteogenesis. Furthermore, cells cultured on Ti-M2# showed markedly upregulated BMP-4 gene expression, suggesting that the nanostructure with Mg ion release ability can better activate BMP-4 related signaling pathways, resulting in better osteogenesis. Nano-Mg(OH)2 films demonstrated a superior osteogenesis and are promising surface modification strategy for orthopedic applications.
Collapse
Affiliation(s)
- Mengyu Yao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Shi Cheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Guoqing Zhong
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
- Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jielong Zhou
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Hongwei Shao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Limin Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Chang Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Corresponding author.
| | - Feng Peng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
- Corresponding author.
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
- Corresponding author.
| |
Collapse
|
43
|
Hasani-Sadrabadi MM, Pouraghaei S, Zahedi E, Sarrion P, Ishijima M, Dashtimoghadam E, Jahedmanesh N, Ansari S, Ogawa T, Moshaverinia A. Antibacterial and Osteoinductive Implant Surface Using Layer-by-Layer Assembly. J Dent Res 2021; 100:1161-1168. [PMID: 34315313 PMCID: PMC8716140 DOI: 10.1177/00220345211029185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Osseointegration of dental, craniofacial, and orthopedic implants is critical for their long-term success. Multifunctional surface treatment of implants was found to significantly improve cell adhesion and induce osteogenic differentiation of dental-derived stem cells in vitro. Moreover, local and sustained release of antibiotics via nanolayers from the surface of implants can present unparalleled therapeutic benefits in implant dentistry. Here, we present a layer-by-layer surface treatment of titanium implants capable of incorporating BMP-2-mimicking short peptides and gentamicin to improve their osseointegration and antibacterial features. Additionally, instead of conventional surface treatments, we employed polydopamine coating before layer-by-layer assembly to initiate the formation of the nanolayers on rough titanium surfaces. Cytocompatibility analysis demonstrated that modifying the titanium implant surface with layer-by-layer assembly did not have adverse effects on cellular viability. The implemented nanoscale coating provided sustained release of osteoinductive peptides with an antibacterial drug. The surface-functionalized implants showed successful osteogenic differentiation of periodontal ligament stem cells and antimicrobial activity in vitro and increased osseointegration in a rodent animal model 4 wk postsurgery as compared with untreated implants. Altogether, our in vitro and in vivo studies suggest that this approach can be extended to other dental and orthopedic implants since this surface functionalization showed improved osseointegration and an enhanced success rate.
Collapse
Affiliation(s)
- M M Hasani-Sadrabadi
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - S Pouraghaei
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - E Zahedi
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - P Sarrion
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - M Ishijima
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - E Dashtimoghadam
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - N Jahedmanesh
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - S Ansari
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - T Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - A Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
44
|
Pacelli S, Chakravarti AR, Modaresi S, Subham S, Burkey K, Kurlbaum C, Fang M, Neal CA, Mellott AJ, Chakraborty A, Paul A. Investigation of human adipose-derived stem-cell behavior using a cell-instructive polydopamine-coated gelatin-alginate hydrogel. J Biomed Mater Res A 2021; 109:2597-2610. [PMID: 34189837 DOI: 10.1002/jbm.a.37253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 01/05/2023]
Abstract
Hydrogels can be fabricated and designed to exert direct control over stem cells' adhesion and differentiation. In this study, we have investigated the use of polydopamine (pDA)-treatment as a binding platform for bioactive compounds to create a versatile gelatin-alginate (Gel-Alg) hydrogel for tissue engineering applications. Precisely, pDA was used to modify the surface properties of the hydrogel and better control the adhesion and osteogenic differentiation of human adipose-derived stem cells (hASCs). pDA enabled the adsorption of different types of bioactive molecules, including a model osteoinductive drug (dexamethasone) as well as a model pro-angiogenic peptide (QK). The pDA treatment efficiently retained the drug and the peptide compared to the untreated hydrogel and proved to be effective in controlling the morphology, cell area, and osteogenic differentiation of hASCs. Overall, the findings of this study confirm the efficacy of pDA treatment as a valuable strategy to modulate the biological properties of biocompatible Gel-Alg hydrogels and further extend their value in regenerative medicine.
Collapse
Affiliation(s)
- Settimio Pacelli
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Aparna R Chakravarti
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Saman Modaresi
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Siddharth Subham
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Kyley Burkey
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Cecilia Kurlbaum
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Madeline Fang
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Christopher A Neal
- Department of Plastic and Burn Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Adam J Mellott
- Department of Plastic and Burn Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
45
|
Lin Y, Zhang L, Yang Y, Yang M, Hong Q, Chang K, Dai J, Chen L, Pan C, Hu Y, Quan L, Wei Y, Liu S, Yang Z. Loading Gentamicin and Zn 2+ on TiO 2 Nanotubes to Improve Anticoagulation, Endothelial Cell Growth, and Antibacterial Activities. Stem Cells Int 2021; 2021:9993247. [PMID: 34054972 PMCID: PMC8112940 DOI: 10.1155/2021/9993247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/05/2022] Open
Abstract
Titanium and its alloys are widely used in blood-contacting implantable and interventional medical devices; however, their biocompatibility is still facing great challenges. In the present study, in order to improve the biocompatibility and antibacterial activities of titanium, TiO2 nanotubes were firstly in situ prepared on the titanium surface by anodization, followed by the introduction of polyacrylic acid (PAA) and gentamicin (GS) on the nanotube surface by layer-by-layer assembly, and finally, zinc ions were loaded on the surface to further improve the bioactivities. The nanotubes displayed excellent hydrophilicity and special nanotube-like structure, which can selectively promote the albumin adsorption, enhance the blood compatibility, and promote the growth of endothelial cells to some degree. After the introduction of PAA and GS, although the superhydrophilicity cannot be achieved, the results of platelet adhesion, cyclic guanosine monophosphate (cGMP) activity, hemolysis rate, and activated partial thromboplastin time (APTT) showed that the blood compatibility was improved, and the blood compatibility was further enhanced after zinc ion loading. On the other hand, the modified surface showed good cytocompatibility to endothelial cells. The introduction of PAA and zinc ions not only promoted the adhesion and proliferation of endothelial cells but also upregulated expression of vascular endothelial growth factor (VEGF) and nitric oxide (NO). The slow and continuous release of GS and Zn2+ over 14 days can significantly improve the antibacterial properties. Therefore, the present study provides an effective method for the surface modification of titanium-based blood-contacting materials to simultaneously endow with good blood compatibility, endothelial growth behaviors, and antibacterial properties.
Collapse
Affiliation(s)
- Yuebin Lin
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Li Zhang
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Ya Yang
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Minhui Yang
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qingxiang Hong
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Keming Chang
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Juan Dai
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Lu Chen
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Changjiang Pan
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Youdong Hu
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Li Quan
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yanchun Wei
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Sen Liu
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhongmei Yang
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| |
Collapse
|
46
|
Chen Y, Yang Q, Ma D, Peng L, Mao Y, Zhou X, Deng Y, Yang W. Metal-organic frameworks/polydopamine coating endows polyetheretherketone with disinfection and osteogenicity. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1909585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yong Chen
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Qizhang Yang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Daichuan Ma
- Analytical & Testing Center, Sichuan University, Chengdu, China
| | - Liming Peng
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yurong Mao
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Xiong Zhou
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yi Deng
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Weizhong Yang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Multifunctional natural polymer-based metallic implant surface modifications. Biointerphases 2021; 16:020803. [PMID: 33906356 DOI: 10.1116/6.0000876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High energy traumas could cause critical damage to bone, which will require permanent implants to recover while functionally integrating with the host bone. Critical sized bone defects necessitate the use of bioactive metallic implants. Because of bioinertness, various methods involving surface modifications such as surface treatments, the development of novel alloys, bioceramic/bioglass coatings, and biofunctional molecule grafting have been utilized to effectively integrate metallic implants with a living bone. However, the applications of these methods demonstrated a need for an interphase layer improving bone-making to overcome two major risk factors: aseptic loosening and peri-implantitis. To accomplish a biologically functional bridge with the host to prevent loosening, regenerative cues, osteoimmunomodulatory modifications, and electrochemically resistant layers against corrosion appeared as imperative reinforcements. In addition, interphases carrying antibacterial cargo were proven to be successful against peri-implantitis. In the literature, metallic implant coatings employing natural polymers as the main matrix were presented as bioactive interphases, enabling rapid, robust, and functional osseointegration with the host bone. However, a comprehensive review of natural polymer coatings, bridging and grafting on metallic implants, and their activities has not been reported. In this review, state-of-the-art studies on multifunctional natural polymer-based implant coatings effectively utilized as a bone tissue engineering (BTE) modality are depicted. Protein-based, polysaccharide-based coatings and their combinations to achieve better osseointegration via the formation of an extracellular matrix-like (ECM-like) interphase with gap filling and corrosion resistance abilities are discussed in detail. The hypotheses and results of these studies are examined and criticized, and the potential future prospects of multifunctional coatings are also proposed as final remarks.
Collapse
|
48
|
Garg D, Matai I, Sachdev A. Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic. ACS Biomater Sci Eng 2021; 7:1933-1961. [PMID: 33826312 DOI: 10.1021/acsbiomaterials.0c01408] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An alarming increase in implant failure incidence due to microbial colonization on the administered orthopedic implants has become a horrifying threat to replacement surgeries and related health concerns. In essence, microbial adhesion and its subsequent biofilm formation, antibiotic resistance, and the host immune system's deficiency are the main culprits. An advanced class of biomaterials termed anti-infective hydrogel implant coatings are evolving to subdue these complications. On this account, this review provides an insight into the significance of anti-infective hydrogels for preventing orthopedic implant associated infections to improve the bone healing process. We briefly discuss the clinical course of implant failure, with a prime focus on orthopedic implants. We identify the different anti-infective coating strategies and hence several anti-infective agents which could be incorporated in the hydrogel matrix. The fundamental design criteria to be considered while fabricating anti-infective hydrogels for orthopedic implants will be discussed. We highlight the different hydrogel coatings based on the origin of the polymers involved in light of their antimicrobial efficacy. We summarize the relevant patents reported in the prevention of implant infections, including orthopedics. Finally, the challenges concerning the clinical translation of the aforesaid hydrogels are described, and considerable solutions for improved clinical practice and better future prospects are proposed.
Collapse
Affiliation(s)
- Deepa Garg
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Ishita Matai
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Abhay Sachdev
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| |
Collapse
|
49
|
Deng Z, Wang W, Xu X, Nie Y, Liu Y, Gould OEC, Ma N, Lendlein A. Biofunction of Polydopamine Coating in Stem Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10748-10759. [PMID: 33594879 DOI: 10.1021/acsami.0c22565] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High levels of reactive oxygen species (ROS) during stem cell expansion often lead to replicative senescence. Here, a polydopamine (PDA)-coated substrate was used to scavenge extracellular ROS for mesenchymal stem cell (MSC) expansion. The PDA-coated substrate could reduce the oxidative stress and mitochondrial damage in replicative senescent MSCs. The expression of senescence-associated β-galactosidase of MSCs from three human donors (both bone marrow- and adipose tissue-derived) was suppressed on PDA. The MSCs on the PDA-coated substrate showed a lower level of interleukin 6 (IL-6), one of the senescence-associated inflammatory components. Cellular senescence-specific genes, such as p53 and p21, were downregulated on the PDA-coated substrate, while the stemness-related gene, OCT4, was upregulated. The PDA-coated substrate strongly promoted the proliferation rate of MSCs, while the stem cell character and differentiation potential were retained. Large-scale expansion of stem cells would greatly benefit from the PDA-coated substrate.
Collapse
Affiliation(s)
- Zijun Deng
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, 14195 Berlin, Germany
| | - Weiwei Wang
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Xun Xu
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Yan Nie
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Yue Liu
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Oliver E C Gould
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Nan Ma
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, 14195 Berlin, Germany
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, 14195 Berlin, Germany
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
50
|
Hong SH, Koo MA, Lee MH, Seon GM, Park YJ, Jeong H, Kim D, Park JC. An effective method to generate controllable levels of ROS for the enhancement of HUVEC proliferation using a chlorin e6-immobilized PET film as a photo-functional biomaterial. Regen Biomater 2021; 8:rbab005. [PMID: 33738119 PMCID: PMC7955709 DOI: 10.1093/rb/rbab005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) are byproducts of cellular metabolism; they play a significant role as secondary messengers in cell signaling. In cells, high concentrations of ROS induce apoptosis, senescence, and contact inhibition, while low concentrations of ROS result in angiogenesis, proliferation, and cytoskeleton remodeling. Thus, controlling ROS generation is an important factor in cell biology. We designed a chlorin e6 (Ce6)-immobilized polyethylene terephthalate (PET) film (Ce6-PET) to produce extracellular ROS under red-light irradiation. The application of Ce6-PET films can regulate the generation of ROS by altering the intensity of light-emitting diode sources. We confirmed that the Ce6-PET film could effectively promote cell growth under irradiation at 500 μW/cm2 for 30 min in human umbilical vein endothelial cells. We also found that the Ce6-PET film is more efficient in generating ROS than a Ce6-incorporated polyurethane film under the same conditions. Ce6-PET fabrication shows promise for improving the localized delivery of extracellular ROS and regulating ROS formation through the optimization of irradiation intensity.
Collapse
Affiliation(s)
- Seung Hee Hong
- Cellbiocontrol Laboratory, Department of Medical Engineering
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project
| | - Min-Ah Koo
- Cellbiocontrol Laboratory, Department of Medical Engineering
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project
| | - Mi Hee Lee
- Cellbiocontrol Laboratory, Department of Medical Engineering
| | - Gyeung Mi Seon
- Cellbiocontrol Laboratory, Department of Medical Engineering
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project
| | - Ye Jin Park
- Cellbiocontrol Laboratory, Department of Medical Engineering
- Department of Medical Device Engineering and Management, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
| | - HaKyeong Jeong
- Cellbiocontrol Laboratory, Department of Medical Engineering
- Department of Medical Device Engineering and Management, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
| | - Dohyun Kim
- Cellbiocontrol Laboratory, Department of Medical Engineering
| | - Jong-Chul Park
- Cellbiocontrol Laboratory, Department of Medical Engineering
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project
- Department of Medical Device Engineering and Management, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|