1
|
Dai ZQ, Gong XY, Zhang R, Jin MQ, Lu W, Wen W, Chen J, Lu FJ, Yang YF, Wang L, He XJ. Research trends in exercise therapy for the treatment of pain in postmenopausal osteoporosis over the past decade: A bibliometric analysis. World J Orthop 2024; 15:950-964. [DOI: 10.5312/wjo.v15.i10.950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is the most common form of primary osteoporosis among women, and the associated pain often drives patients to seek clinical intervention. Numerous studies have highlighted the unique clinical benefits of exercise therapy (ET) in alleviating PMOP-related pain. However, bibliometric analyses examining collaboration, development trends, and research frontiers in the field of ET for PMOP pain remain scarce.
AIM To explore the research trends in ET for pain treatment in PMOP patients over the past decade.
METHODS All scholarly works were meticulously sourced from the Science Citation Index-Expanded within the prominent Web of Science Core Collection. Utilizing the capabilities of CiteSpace 6.2.R5, we conducted a thorough analysis of publications, authors, frequently cited scholars, contributing nations, institutions, journals of significant citation, comprehensive references, and pivotal keywords. Additionally, our examination explored keyword cooccurrences, detailed timelines, and periods of heightened citation activity. This comprehensive search, from 2014 through 2023, was completed within a single day, on October 11, 2023.
RESULTS In total, 2914 articles were ultimately included in the analysis. There was a rapid increase in annual publication output in 2015, followed by stable growth in subsequent years. Boninger, Michael L, is the most prolific author, whereas Ware JE has the most citations. The United States’ global influence is significant, surpassing all other nations. The University of California System and Harvard University are the most influential academic institutions. J Bone Joint Surg Am is the most influential journal in this field. “Spinal cord injury” is the keyword that has garnered the most attention from researchers. The developmental pattern in this field is characterized by interdisciplinary fusion, with different disciplines converging to drive progress.
CONCLUSION The academic development of the field of ET for pain in PMOP has matured and stabilized. Clinical management and rehabilitation strategies, along with the mechanisms underlying the relationship between ET and bone resorption analgesia, continue to be the current and future focal points of research in this field.
Collapse
Affiliation(s)
- Zhao-Qiu Dai
- Changshu Hospital Affiliated with Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Xiao-Yan Gong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Rong Zhang
- Changshu Hospital Affiliated with Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Mei-Qin Jin
- Changshu Hospital Affiliated with Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Wei Lu
- Changshu Hospital Affiliated with Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Wen Wen
- Changshu Hospital Affiliated with Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Jie Chen
- Changshu Hospital Affiliated with Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Fang-Jie Lu
- Changshu Hospital Affiliated with Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Yi-Fan Yang
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Lei Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Xiao-Jin He
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
2
|
Liu X, Zhou M, Tan J, Ma L, Tang H, He G, Tao X, Guo L, Kang X, Tang K, Bian X. Inhibition of CX3CL1 by treadmill training prevents osteoclast-induced fibrocartilage complex resorption during TBI healing. Front Immunol 2024; 14:1295163. [PMID: 38283363 PMCID: PMC10811130 DOI: 10.3389/fimmu.2023.1295163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction The healing of tendon-bone injuries is very difficult, often resulting in poor biomechanical performance and unsatisfactory functional recovery. The tendon-bone insertion has a complex four distinct layers structure, and previous studies have often focused on promoting the regeneration of the fibrocartilage layer, neglecting the role of its bone end repair in tendon-bone healing. This study focuses on the role of treadmill training in promoting bone regeneration at the tendon-bone insertion and its related mechanisms. Methods After establishing the tendon-bone insertion injury model, the effect of treadmill training on tendon-bone healing was verified by Micro CT and HE staining; then the effect of CX3CL1 on osteoclast differentiation was verified by TRAP staining and cell culture; and finally the functional recovery of the mice was verified by biomechanical testing and behavioral test. Results Treadmill training suppresses the secretion of CX3CL1 and inhibits the differentiation of local osteoclasts after tendon-bone injury, ultimately reducing osteolysis and promoting tendon bone healing. Discussion Our research has found the interaction between treadmill training and the CX3CL1-C3CR1 axis, providing a certain theoretical basis for rehabilitation training.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Mei Zhou
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jindong Tan
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lin Ma
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hong Tang
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Gang He
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xu Tao
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lin Guo
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xia Kang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Kanglai Tang
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xuting Bian
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Bian X, Wang Q, Wang Y, Lou S. The function of previously unappreciated exerkines secreted by muscle in regulation of neurodegenerative diseases. Front Mol Neurosci 2024; 16:1305208. [PMID: 38249295 PMCID: PMC10796786 DOI: 10.3389/fnmol.2023.1305208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
The initiation and progression of neurodegenerative diseases (NDs), distinguished by compromised nervous system integrity, profoundly disrupt the quality of life of patients, concurrently exerting a considerable strain on both the economy and the social healthcare infrastructure. Exercise has demonstrated its potential as both an effective preventive intervention and a rehabilitation approach among the emerging therapeutics targeting NDs. As the largest secretory organ, skeletal muscle possesses the capacity to secrete myokines, and these myokines can partially improve the prognosis of NDs by mediating the muscle-brain axis. Besides the well-studied exerkines, which are secreted by skeletal muscle during exercise that pivotally exert their beneficial function, the physiological function of novel exerkines, e.g., apelin, kynurenic acid (KYNA), and lactate have been underappreciated previously. Herein, this review discusses the roles of these novel exerkines and their mechanisms in regulating the progression and improvement of NDs, especially the significance of their functions in improving NDs' prognoses through exercise. Furthermore, several myokines with potential implications in ameliorating ND progression are proposed as the future direction for investigation. Elucidation of the function of exerkines secreted by skeletal muscle in the regulation of NDs advances the understanding of its pathogenesis and facilitates the development of therapeutics that intervene in these processes to cure NDs.
Collapse
Affiliation(s)
- Xuepeng Bian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Qian Wang
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Yibing Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shujie Lou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
4
|
de Souza PB, de Araujo Borba L, Castro de Jesus L, Valverde AP, Gil-Mohapel J, Rodrigues ALS. Major Depressive Disorder and Gut Microbiota: Role of Physical Exercise. Int J Mol Sci 2023; 24:16870. [PMID: 38069198 PMCID: PMC10706777 DOI: 10.3390/ijms242316870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Major depressive disorder (MDD) has a high prevalence and is a major contributor to the global burden of disease. This psychiatric disorder results from a complex interaction between environmental and genetic factors. In recent years, the role of the gut microbiota in brain health has received particular attention, and compelling evidence has shown that patients suffering from depression have gut dysbiosis. Several studies have reported that gut dysbiosis-induced inflammation may cause and/or contribute to the development of depression through dysregulation of the gut-brain axis. Indeed, as a consequence of gut dysbiosis, neuroinflammatory alterations caused by microglial activation together with impairments in neuroplasticity may contribute to the development of depressive symptoms. The modulation of the gut microbiota has been recognized as a potential therapeutic strategy for the management of MMD. In this regard, physical exercise has been shown to positively change microbiota composition and diversity, and this can underlie, at least in part, its antidepressant effects. Given this, the present review will explore the relationship between physical exercise, gut microbiota and depression, with an emphasis on the potential of physical exercise as a non-invasive strategy for modulating the gut microbiota and, through this, regulating the gut-brain axis and alleviating MDD-related symptoms.
Collapse
Affiliation(s)
- Pedro Borges de Souza
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Laura de Araujo Borba
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Louise Castro de Jesus
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Ana Paula Valverde
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| |
Collapse
|
5
|
Chen H, Zheng Q, Lv Y, Yang Z, Fu Q. CUL4A-mediated ZEB1/microRNA-340-5p/HMGB1 axis promotes the development of osteoporosis. J Biochem Mol Toxicol 2023; 37:e23373. [PMID: 37253097 DOI: 10.1002/jbt.23373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/17/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Understanding the molecular mechanisms underlying osteoclast differentiation provides insights into bone loss and even osteoporosis. The specific mechanistic actions of cullin 4A (CUL4A) in osteoclast differentiation and resultant osteoporosis is poorly explored. We developed a mouse model of osteoporosis using bilateral ovariectomy (OVX) and examined CUL4A expression. It was noted that CUL4A expression was increased in the bone marrow of OVX mice. Overexpression of CUL4A promoted osteoclast differentiation, and knockdown of CUL4A alleviated osteoporosis symptoms of OVX mice. Bioinformatic analyses were applied to identify the downstream target genes of microRNA-340-5p (miR-340-5p), followed by interaction analysis. The bone marrow macrophages (BMMs) were isolated from femur of OVX mice, which were transfected with different plasmids to alter the expression of CUL4A, Zinc finer E-box binding homeobox 1 (ZEB1), miR-340-5p, and Toll-like receptor 4 (TLR4). ChIP assay was performed to detect enrichment of ZEB1 promoter by H3K4me3 antibody in BMMs. ZEB1 was overexpressed in the bone marrow of OVX mice. Overexpression of CUL4A mediated H3K4me3 methylation to increase ZEB1 expression, thus promoting osteoclast differentiation. Meanwhile, ZEB1 could inhibit miR-340-5p expression and upregulate HMGB1 to induce osteoclast differentiation. Overexpressed ZEB1 activated the TLR4 pathway by regulating the miR-340-5p/HMGB1 axis to induce osteoclast differentiation, thus promoting the development of osteoporosis. Overall, E3 ubiquitin ligase CUL4A can upregulate ZEB1 to repress miR-340-5p expression, leading to HMGB1 upregulation and the TLR4 pathway activation, which promotes osteoclast differentiation and the development of osteoporosis.
Collapse
Affiliation(s)
- Hongliang Chen
- Department of Joint Surgery, Shenyang Sujiatun District Central Hospital, Shenyang, China
| | - Qiang Zheng
- Department of Joint Surgery, Shenyang Sujiatun District Central Hospital, Shenyang, China
| | - You Lv
- Department of Joint Surgery, Shenyang Sujiatun District Central Hospital, Shenyang, China
| | - Zhongfeng Yang
- Department of Joint Surgery, Shenyang Sujiatun District Central Hospital, Shenyang, China
| | - Qin Fu
- Department of Joint Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Gielen E, Dupont J, Dejaeger M, Laurent MR. Sarcopenia, osteoporosis and frailty. Metabolism 2023; 145:155638. [PMID: 37348597 DOI: 10.1016/j.metabol.2023.155638] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/21/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Muscles and bones are intricately connected tissues displaying marked co-variation during development, growth, aging, and in many diseases. While the diagnosis and treatment of osteoporosis are well established in clinical practice, sarcopenia has only been classified internationally as a disease in 2016. Both conditions are associated with an increased risk of adverse health outcomes such as fractures, dysmobility and mortality. Rather than focusing on one dimension of bone or muscle mass or weakness, the concept of musculoskeletal frailty captures the overall loss of physiological reserves in the locomotor system with age. The term osteosarcopenia in particular refers to the double jeopardy of osteoporosis and sarcopenia. Muscle-bone interactions at the biomechanical, cellular, paracrine, endocrine, neuronal or nutritional level may contribute to the pathophysiology of osteosarcopenia. The paradigm wherein muscle force controls bone strength is increasingly facing competition from a model centering on the exchange of myokines, osteokines and adipokines. The most promising results have been obtained in preclinical models where common drug targets have been identified to treat these conditions simultaneously. In this narrative review, we critically summarize the current understanding of the definitions, epidemiology, pathophysiology, and treatment of osteosarcopenia as part of an integrative approach to musculoskeletal frailty.
Collapse
Affiliation(s)
- Evelien Gielen
- Gerontology and Geriatrics Unit, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Jolan Dupont
- Gerontology and Geriatrics Unit, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Marian Dejaeger
- Gerontology and Geriatrics Unit, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Michaël R Laurent
- Centre for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; Geriatrics Department, Imelda Hospital, Bonheiden, Belgium.
| |
Collapse
|
7
|
Im DS. Recent advances in GPR35 pharmacology; 5-HIAA serotonin metabolite becomes a ligand. Arch Pharm Res 2023:10.1007/s12272-023-01449-y. [PMID: 37227682 DOI: 10.1007/s12272-023-01449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
GPR35, an orphan receptor, has been waiting for its ligand since its cloning in 1998. Many endogenous and exogenous molecules have been suggested to act as agonists of GPR35 including kynurenic acid, zaprinast, lysophosphatidic acid, and CXCL17. However, complex and controversial responses to ligands among species have become a huge hurdle in the development of therapeutics in addition to the orphan state. Recently, a serotonin metabolite, 5-hydroxyindoleacetic acid (5-HIAA), is reported to be a high potency ligand for GPR35 by investigating the increased expression of GPR35 in neutrophils. In addition, a transgenic knock-in mouse line is developed, in which GPR35 was replaced with a human ortholog, making it possible not only to overcome the different selectivity of agonists among species but also to conduct therapeutic experiments on human GPR35 in mouse models. In the present article, I review the recent advances and prospective therapeutic directions in GPR35 research. Especially, I'd like to draw attention of readers to the finding of 5-HIAA as a ligand of GPR35 and lead to apply the 5-HIAA and human GPR35 knock-in mice to their research fields in a variety of pathophysiological conditions.
Collapse
Affiliation(s)
- Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences and Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02446, Republic of Korea.
- Laboratory of Pharmacology, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
8
|
Milligan G. GPR35: from enigma to therapeutic target. Trends Pharmacol Sci 2023; 44:263-273. [PMID: 37002007 DOI: 10.1016/j.tips.2023.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 04/16/2023]
Abstract
The orphan G-protein-coupled receptor 35 (GPR35), although poorly characterised, is attracting considerable interest as a therapeutic target. Marked differences in pharmacology between human and rodent orthologues of the receptor and a dearth of antagonists with affinity for mouse and rat GPR35 have previously restricted the use of preclinical disease models. The development of improved ligands, novel transgenic knock-in mouse lines, and detailed analysis of the disease relevance of single-nucleotide polymorphisms (SNPs) have greatly enhanced understanding of the key roles of GPR35 and have stimulated efforts towards disease-targeted proof-of-concept studies. In this opinion article, new information on the biology of the receptor is considered, whilst insight into how GPR35 is currently being assessed for therapeutic utility - in areas ranging from inflammatory bowel diseases to nonalcoholic steatohepatitis and various cancers - is also provided.
Collapse
Affiliation(s)
- Graeme Milligan
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
9
|
Zhang YW, Cao MM, Li YJ, Sheng RW, Zhang RL, Wu MT, Chi JY, Zhou RX, Rui YF. The Preventive Effects of Probiotic Prevotella histicola on the Bone Loss of Mice with Ovariectomy-Mediated Osteoporosis. Microorganisms 2023; 11:microorganisms11040950. [PMID: 37110373 PMCID: PMC10146713 DOI: 10.3390/microorganisms11040950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
It has been demonstrated that the disturbance of gut microbiota (GM) is closely related to the reduction of bone mass and incidence of osteoporosis (OP). The aim of this study is to investigate whether the supplementation of Prevotella histicola (Ph) can prevent the bone loss in mice with ovariectomy (OVX)-mediated OP, and further explore relevant mechanisms. Regular (once a day for 8 consecutive weeks) and quantitative (200 µL/d) perfusion of Ph (the bacteria that orally gavaged) was conducted starting from 1 week after the construction of mice models. Bone mass and bone microstructure were detected by Micro-computed tomography (Micro-CT). Expressions of intestinal permeability, pro-inflammatory cytokines, and osteogenic and osteoclastic activities of mice were analyzed by histological staining and immunohistochemistry (IHC). 16S rRNA high throughput sequencing technique was applied to analyze the alterations of composition, abundance, and diversity of collected feces. Regular and quantitative perfusion of Ph mitigated the bone loss in mice with OVX-mediated OP. Compared with OVX + PBS group, perfusion of Ph repressed osteoclastogenesis and promoted osteogenesis, reduced release of pro-inflammatory cytokine cytokines (interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α)), and reversed expressions of tight junction proteins (zonula occludens protein 1 (ZO-1) and Occludin). Besides, the perfusion of Ph improved the composition, abundance, and diversity of GM. Collectively, this study revealed that regular and quantitative perfusion of Ph can improve the bone loss in mice with OVX-mediated OP by repairing intestinal mucosal barrier damage, optimizing intestinal permeability, inhibiting release of pro-osteoclastogenic cytokines, and improving disturbance of GM.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Mu-Min Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ren-Wang Sheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ruo-Lan Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Meng-Ting Wu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Jia-Yu Chi
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Rui-Xin Zhou
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
10
|
Chang X, Xu S, Zhang H. Regulation of bone health through physical exercise: Mechanisms and types. Front Endocrinol (Lausanne) 2022; 13:1029475. [PMID: 36568096 PMCID: PMC9768366 DOI: 10.3389/fendo.2022.1029475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis, characterized by bone mineral density reduction, bone mass loss, increased bone fragility, and propensity to fractures, is a common disease in older individuals and one of the most serious health problems worldwide. The imbalance between osteoblasts and osteoclasts results in the predominance of bone resorption and decreased bone formation. In recent years, it has been found that regular and proper exercise not only helps prevent the occurrence of osteoporosis but also adds benefits to osteoporosis therapy; accordingly, bone homeostasis is closely associated with mechanical stress and the intricate crosstalk between osteoblasts and osteoclasts. In this review, we summarize the mechanisms of exercise on osteoporosis and provide new proposals for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Xinyu Chang
- Department of Traumatic Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sheng Xu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Hao Zhang
- Department of Traumatic Orthopedics, the First Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, China
| |
Collapse
|
11
|
Wu H, Zhang D, Xia H, Li Y, Mao F, Liao Y. SDH5 down-regulation mitigates the damage of osteoporosis via inhibiting the MyD88/NF-κB signaling pathway. Immunopharmacol Immunotoxicol 2022; 45:317-327. [DOI: 10.1080/08923973.2022.2143372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hongzi Wu
- Department of Orthopaedic Surgery, The Center Hospital of Karamay, Karamay City
| | - Dehua Zhang
- Department of Orthopaedic Surgery, The Center Hospital of Karamay, Karamay City
| | - Haijun Xia
- Department of Orthopaedic Surgery, The Center Hospital of Karamay, Karamay City
| | - Yongqi Li
- Department of Orthopaedic Surgery, The Center Hospital of Karamay, Karamay City
| | - Feng Mao
- Department of Orthopaedic Surgery, The Center Hospital of Karamay, Karamay City
| | - Yi Liao
- Department of Orthopaedic Surgery, The Center Hospital of Karamay, Karamay City
| |
Collapse
|
12
|
Turska M, Paluszkiewicz P, Turski WA, Parada-Turska J. A Review of the Health Benefits of Food Enriched with Kynurenic Acid. Nutrients 2022; 14:4182. [PMID: 36235834 PMCID: PMC9570704 DOI: 10.3390/nu14194182] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Kynurenic acid (KYNA), a metabolite of tryptophan, is an endogenous substance produced intracellularly by various human cells. In addition, KYNA can be synthesized by the gut microbiome and delivered in food. However, its content in food is very low and the total alimentary supply with food accounts for only 1-3% of daily KYNA excretion. The only known exception is chestnut honey, which has a higher KYNA content than other foods by at least two orders of magnitude. KYNA is readily absorbed from the gastrointestinal tract; it is not metabolized and is excreted mainly in urine. It possesses well-defined molecular targets, which allows the study and elucidation of KYNA's role in various pathological conditions. Following a period of fascination with KYNA's importance for the central nervous system, research into its role in the peripheral system has been expanding rapidly in recent years, bringing some exciting discoveries. KYNA does not penetrate from the peripheral circulation into the brain; hence, the following review summarizes knowledge on the peripheral consequences of KYNA administration, presents data on KYNA content in food products, in the context of its daily supply in diets, and systematizes the available pharmacokinetic data. Finally, it provides an analysis of the rationale behind enriching foods with KYNA for health-promoting effects.
Collapse
Affiliation(s)
- Monika Turska
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Piotr Paluszkiewicz
- Department of General, Oncological and Metabolic Surgery, Institute of Hematology and Transfusion Medicine, 02-778 Warsaw, Poland
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jolanta Parada-Turska
- Department of Rheumatology and Connective Tissue Diseases, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
13
|
Cheung LWH. Special Issue: Metabolic diseases and injuries of skeletal muscles: Current diagnosis, treatment and prevention. J Orthop Translat 2022; 35:A1-A2. [PMID: 36381662 PMCID: PMC9630767 DOI: 10.1016/j.jot.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Louis Wing-Hoi Cheung
- Professor, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|