1
|
Pérez-Lucas G, Navarro S. How Pharmaceutical Residues Occur, Behave, and Affect the Soil Environment. J Xenobiot 2024; 14:1343-1377. [PMID: 39449417 PMCID: PMC11503385 DOI: 10.3390/jox14040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Many pharmaceuticals (PhMs), compounds for the treatment or prevention of diseases in humans and animals, have been identified as pollutants of emerging concern (PECs) due to their wide environmental distribution and potential adverse impact on nontarget organisms and populations. They are often found at significant levels in soils due to the continuous release of effluent and sludge from wastewater treatment plants (WWTPs), the release of which occurs much faster than the removal of PhMs. Although they are generally present at low environmental concentrations, conventional wastewater treatment cannot successfully remove PhMs from influent streams or biosolids. In addition, the soil application of animal manure can result in the pollution of soil, surface water, and groundwater with PhMs through surface runoff and leaching. In arid and semiarid regions, irrigation with reclaimed wastewater and the soil application of biosolids are usual agricultural practices, resulting in the distribution of a wide number of PhMs in agricultural soils. The ability to accurately study the fate of PhMs in soils is critical for careful risk evaluation associated with wastewater reuse or biosolid return to the environment. The behavior and fate of PhMs in soils are determined by a number of processes, including adsorption/desorption (accumulation) to soil colloids, biotic (biodegradation) and abiotic (chemical and photochemical degradation) degradation, and transfer (movement) through the soil profile. The sorption/desorption of PhMs in soils is the main determinant of the amount of organic chemicals taken up by plant roots. The magnitude of this process depends on several factors, such as crop type, the physicochemical properties of the compound, environmental properties, and soil-plant characteristics. PhMs are assumed to be readily bioavailable in soil solutions for uptake by plants, and such solutions act as carriers to transport PhMs into plants. Determining microbial responses under exposure conditions can assist in elucidating the impact of PhMs on soil microbial activity and community size. For all of the above reasons, soil remediation is critical when soil pollutants threaten the environment.
Collapse
Affiliation(s)
| | - Simón Navarro
- Department of Agricultural Chemistry, Geology and Pedology, School of Chemistry, University of Murcia, Campus Universitario de Espinardo, E-30100 Murcia, Spain;
| |
Collapse
|
2
|
Fučík J, Jašek V, Hamplová M, Navrkalová J, Zlámalová Gargošová H, Mravcová L. Assessing Lettuce Exposure to a Multi-Pharmaceutical Mixture in Soil: Insights from LC-ESI-TQ Analysis and the Impact of Biochar on Pharmaceutical Bioavailability. ACS OMEGA 2024; 9:39065-39081. [PMID: 39310173 PMCID: PMC11411693 DOI: 10.1021/acsomega.4c05831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Agricultural practices introduce pharmaceutical (PhAC) residues into the terrestrial environment, potentially endangering agricultural crops and human health. This study aimed to evaluate various aspects related to the presence of pharmaceuticals in the lettuce-soil system, including bioconcentration factors (BCFs), translocation factors (TFs), ecotoxicological effects, the influence of biochar on the PhAC bioavailability, persistence in soil, and associated environmental and health risks. Lettuce (Lactuca sativa L.) was exposed to a mixture of 25 PhACs in two scenarios: initially contaminated soil (ranging from 0 to 10,000 ng·g-1) and soil irrigated with contaminated water (ranging from 0 to 1000 μg·L-1) over a 28-day period. The findings revealed a diverse range of BCFs (0.068-3.7) and TFs (0.032-0.58), indicating the uptake and translocation potential of pharmaceuticals by lettuce. Significant ecotoxicological effects on L. sativa, including weight change and increased mortality, were observed (p < 0.05). Interestingly, biochar did not significantly affect PhAC uptake by L. sativa (p > 0.05), while it significantly influenced the soil degradation kinetics of 12 PhACs (p < 0.05). Additionally, the estimated daily intake of PhACs through the consumption of L. sativa suggested negligible health risks, although concerns arose regarding the potential health risks if other vegetable sources were similarly contaminated with trace residues. Furthermore, this study evaluated the environmental risk associated with the emergence of antimicrobial resistance (AMR) in soil, as medium to high. In conclusion, these findings highlight the multifaceted challenges posed by pharmaceutical contamination in agricultural environments and emphasize the importance of proactive measures to mitigate the associated risks to both environmental and human health.
Collapse
Affiliation(s)
- Jan Fučík
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Vojtěch Jašek
- Institute
of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Marie Hamplová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Jitka Navrkalová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Helena Zlámalová Gargošová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Ludmila Mravcová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| |
Collapse
|
3
|
Zanni S, Cammalleri V, D'Agostino L, Protano C, Vitali M. Occurrence of pharmaceutical residues in drinking water: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34544-8. [PMID: 39103588 DOI: 10.1007/s11356-024-34544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
The aim of the present paper was to give a complete picture on the drinking water contamination by pharmaceutical residues all over the world. For this purpose, a systematic review was carried out for identifying all available research reporting original data resulting by sampling campaign and analysis of "real" drinking water samples to detect pharmaceutical residues. The investigated databases were PubMed, Scopus, and Web of Science. A total of 124 studies were included; among these, 33 did not find target analytes (all below the limit of detection), while the remaining 91 studies reported the presence for one or more compounds, in concentrations ranging from a few units to a few tens of nanograms. The majority of the studies were performed in Europe and the most represented categories were nonsteroidal anti-inflammatory drugs and analgesics. The most common analytical approach used is the preparation and analysis of the samples by solid-phase extraction and chromatography coupled to mass spectrometry. The main implications resulting from our review are the need for (a) further studies aimed to allow more accurate environmental, wildlife, and human health risk assessments and (b) developing integrated policies promoting less environmentally persistent drugs, the reduction of pharmaceuticals in livestock breeding, and the update of wastewater and drinking water treatment plants for a better removal of drugs and their metabolites.
Collapse
Affiliation(s)
- Stefano Zanni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy
| | - Vincenzo Cammalleri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy
| | - Ludovica D'Agostino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy
| | - Carmela Protano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy.
| |
Collapse
|
4
|
Mesa-Ramos L, Palacios OA, Adame-Gallegos JR, Chávez-Flores D, Nevárez-Moorillón GV. Assessing antibiotic residues in sediments from mangrove ecosystems: A review. MARINE POLLUTION BULLETIN 2024; 204:116512. [PMID: 38810504 DOI: 10.1016/j.marpolbul.2024.116512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
Antibiotics' widespread and abusive use in aquaculture and livestock leads to extensive environmental dissemination and dispersion, consequently increasing antibiotic-resistant bacteria in marine ecosystems. Hence, there is an increased need for efficient methods for identifying and quantifying antibiotic residues in soils and sediments. From a review of the last 20 years, we propose and compare different chromatographic techniques for detecting and quantifying antibiotics in sediment samples from marine ecosystems, particularly in mangrove forest sediments. The methods typically include three stages: extraction of antibiotics from the solid matrix, cleaning, and concentration of samples before quantification. We address the leading causes of the occurrence of antibiotics in marine ecosystem sediments and analyze the most appropriate methods for each analytical stage. Ultimately, selecting a method for identifying antibiotic residues depends on multiple factors, ranging from the nature and physicochemical properties of the analytes to the availability of the necessary equipment and the available resources.
Collapse
Affiliation(s)
- Liber Mesa-Ramos
- Facultad de Ciencias Químicas Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua CP 31125, Mexico
| | - Oskar A Palacios
- Facultad de Ciencias Químicas Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua CP 31125, Mexico
| | - Jaime Raúl Adame-Gallegos
- Facultad de Ciencias Químicas Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua CP 31125, Mexico
| | - David Chávez-Flores
- Facultad de Ciencias Químicas Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua CP 31125, Mexico
| | | |
Collapse
|
5
|
Mravcová L, Amrichová A, Navrkalová J, Hamplová M, Sedlář M, Gargošová HZ, Fučík J. Optimization and validation of multiresidual extraction methods for pharmaceuticals in Soil, Lettuce, and Earthworms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33120-33140. [PMID: 38676866 PMCID: PMC11133184 DOI: 10.1007/s11356-024-33492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
The presence of human and veterinary pharmaceuticals (PhACs) in the environment poses potential risks. To comprehensively assess these risks, robust multiresidual analytical methods are essential for determining a broad spectrum of PhAC classes in various environmental compartments (soil, plants, and soil organisms). This study optimized extraction methods for analyzing over 40 PhACs from various matrices, including soil, lettuce, and earthworms. A four-step ultrasonic extraction method with varying extraction conditions and subsequent solid phase extraction was developed for soil samples. QuEChERS methods were optimized for extracting PhACs from lettuce and earthworm samples, addressing a literature gap in these less-studied matrices. The quantification of PhACs in soil, lettuce, and earthworm extracts was performed using a single LC-MS/MS method. Following thorough method validation, earthworms and lettuce were exposed to a mixture of 27 pharmaceuticals in a soil environment. The method validation results demonstrated the robustness of these methods for a broad spectrum of PhACs. Specifically, 29 out of 42 PhACs were extracted with an average efficiency > 50% and RSD < 30% from the soil; 40 out of 42 PhACs exhibited average efficiency > 50% and %RSD < 30% from the earthworms, while 39 out of 42 PhACs showed average efficiency > 50% and RSD < 30% from the lettuce. Exposure experiments confirmed the viability of these methods for quantifying a diverse range of PhACs in different environmental compartments. This study presents three thoroughly validated methods for determining more than 40 PhACs in diverse matrices, enabling a comprehensive assessment of PhAC dissemination in the environment.
Collapse
Affiliation(s)
- Ludmila Mravcová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Anna Amrichová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Jitka Navrkalová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Marie Hamplová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Marian Sedlář
- CEITEC Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Helena Zlámalová Gargošová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Jan Fučík
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| |
Collapse
|
6
|
Su D, Wei Y, Chelimuge, Ma Y, Chen Y, Liu Z, Ben W, Wang Y. Distribution, ecological risks and priority of pharmaceuticals in the coastal water of Qinhuangdao, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167955. [PMID: 37875199 DOI: 10.1016/j.scitotenv.2023.167955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/26/2023]
Abstract
Although there has been a surge of interest in research focused on the presence of pharmaceuticals in the marine environment, study on the distribution and risks of pharmaceuticals in coastal waters remains inadequately documented due to the specific features of the marine environment, such as strong dilution, high salinity, and complex hydrodynamics. In this study, thirty pharmaceuticals with diverse physicochemical properties were analyzed in a coastal sea with low hydrodynamic energy caused by various artificial structures. The results indicate that 14 compounds were detected in seawater, with concentrations ranging from <1 to 201.4 ng L-1, among which caffeine, metoprolol, and atenolol were detected at high levels. Statistical analysis reveals the prevalence of the most target pharmaceuticals with downward trends in concentrations from estuary to offshore region, demonstrating the significant impacts of riverine inputs on the coastal water. Nevertheless, the distribution patterns of caffeine and atenolol were intricate, suggesting that they may have also originated from other unknown sources. A newly-developed method combining risk quotient (RQ) and species sensitivity distribution (SSD) models was used in ecological risk assessment. The results indicate generally higher risks of target pharmaceuticals in the estuary compared to the offshore region, with caffeine, carbamazepine, and norfloxacin identified as the top three priority pollutants.
Collapse
Affiliation(s)
- Du Su
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| | - Yuhong Wei
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| | - Chelimuge
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Yue Ma
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| | - Yang Chen
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| | - Zhiliang Liu
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China.
| | - Weiwei Ben
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Yibo Wang
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| |
Collapse
|
7
|
Khan NA, López-Maldonado EA, Majumder A, Singh S, Varshney R, López JR, Méndez PF, Ramamurthy PC, Khan MA, Khan AH, Mubarak NM, Amhad W, Shamshuddin SZM, Aljundi IH. A state-of-art-review on emerging contaminants: Environmental chemistry, health effect, and modern treatment methods. CHEMOSPHERE 2023; 344:140264. [PMID: 37758081 DOI: 10.1016/j.chemosphere.2023.140264] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Pollution problems are increasingly becoming e a priority issue from both scientific and technological points of view. The dispersion and frequency of pollutants in the environment are on the rise, leading to the emergence have been increasing, including of a new class of contaminants that not only impact the environment but also pose risks to people's health. Therefore, developing new methods for identifying and quantifying these pollutants classified as emerging contaminants is imperative. These methods enable regulatory actions that effectively minimize their adverse effects to take steps to regulate and reduce their impact. On the other hand, these new contaminants represent a challenge for current technologies to be adapted to control and remove emerging contaminants and involve innovative, eco-friendly, and sustainable remediation technologies. There is a vast amount of information collected in this review on emerging pollutants, comparing the identification and quantification methods, the technologies applied for their control and remediation, and the policies and regulations necessary for their operation and application. In addition, This review will deal with different aspects of emerging contaminants, their origin, nature, detection, and treatment concerning water and wastewater.
Collapse
Affiliation(s)
- Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP 22390, Tijuana, Baja California, México.
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Radhika Varshney
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - J R López
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, C.P. 80000, Culiacán, Sinaloa, México
| | - P F Méndez
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, C.P. 80000, Culiacán, Sinaloa, México
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering and Technology, Knowledge Park I, Greater Noida, 201310, Uttar Pradesh, India
| | - Afzal Husain Khan
- Department of Civil Engineering, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Waqas Amhad
- Institute of Fundamental and Frontier Sciences, University of Electonic Science and Technology of China, Chengdu, 610054 China
| | - S Z M Shamshuddin
- Chemistry Research Laboratory, HMS Institute of Technology, Tumakuru, 572104, Karnataka, India
| | - Isam H Aljundi
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia; Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
8
|
Sanusi IO, Olutona GO, Wawata IG, Onohuean H. Occurrence, environmental impact and fate of pharmaceuticals in groundwater and surface water: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90595-90614. [PMID: 37488386 DOI: 10.1007/s11356-023-28802-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
In many nations and locations, groundwater serves as the population's primary drinking water supply. However, pharmaceuticals found in groundwater and surface waters may affect aquatic ecosystems and public health. As a result, their existence in natural raw waters are now more widely acknowledged as a concern. This review summarises the evidence of research on pharmaceuticals' occurrence, impact and fate, considering results from different water bodies. Also, various analytical techniques were reviewed to compare different pharmaceuticals' detection frequencies in water bodies. These include liquid chromatography-mass spectrometry (LC-MS), high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and gas chromatography-mass spectrometry (GC-MS). However, owing to LC-MS's high sensitivity and specification, it is the most reported instrument used for analysis. The PRISMA reviewing methodology was adopted based on relevant literature in order to focus on aim of the review. Among other pharmaceuticals reviewed, sulfamethoxazole was found to be the most frequently detected drug in wastewater (up to 100% detection frequency). The most reported pharmaceutical group in this review is antibiotics, with sulfamethoxazole having the highest concentration among the analysed pharmaceuticals in groundwater and freshwater (up to 5600 ng/L). Despite extensive study and analysis on the occurrence and fate of pharmaceuticals in the environment, appropriate wastewater management and disposal of pharmaceuticals in the water environment are not still monitored regularly. Therefore, there is a need for mainstream studies tailored to the surveillance of pharmaceuticals in water bodies to limit environmental risks to human and aquatic habitats in both mid and low-income nations.
Collapse
Affiliation(s)
- Idris Olatunji Sanusi
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda.
| | - Godwin Oladele Olutona
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Industrial Chemistry Programme, College of Agriculture Engineering and Science, Bowen University, Iwo, Nigeria
- Department of Basic Science, School of Science and Technology, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| | - Ibrahim Garba Wawata
- Department of Basic Science, School of Science and Technology, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Department of Pure and Applied Chemistry, Kebbi State University of Science and Technology, Aliero, PMB +243 1144, Birnin Kebbi, Nigeria
| | - Hope Onohuean
- Biomolecules, Metagenomics, Endocrine and Tropical Disease Research Group (BMETDREG), Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| |
Collapse
|
9
|
Mostafa A, Shaaban H, Alqarni A, Al-Ansari R, Alrashidi A, Al-Sultan F, Alsulaiman M, Alsaif F, Aga O. Multi-class determination of pharmaceuticals as emerging contaminants in wastewater from Eastern Province, Saudi Arabia using eco-friendly SPE-UHPLC-MS/MS: Occurrence, removal and environmental risk assessment. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Lavrukhina OI, Amelin VG, Kish LK, Tretyakov AV, Pen’kov TD. Determination of Residual Amounts of Antibiotics in Environmental Samples and Food Products. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822110077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Cao H, Bu Q, Li Q, Gao X, Xie H, Gong W, Wang X, Yang L, Tang J. Development and applications of diffusive gradients in thin films for monitoring pharmaceuticals in surface waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119979. [PMID: 35988678 PMCID: PMC9386599 DOI: 10.1016/j.envpol.2022.119979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/05/2023]
Abstract
Pharmaceutical contaminants in surface water have raised significant concerns because of their potential ecological risks. In particular, coronavirus disease 2019 (COVID-19)-related pharmaceuticals can be released to surface water and reduce environmental water quality. Therefore, reliable and robust sampling tools are required for monitoring pharmaceuticals. In this study, passive sampling devices of diffusive gradients in thin films (DGTs) were developed for sampling 35 pharmaceuticals in surface waters. The results demonstrated that hydrophilic-lipophilic balance (HLB) was more suitable for DGT-based devices compared with XAD18 and XDA1 resins. For most pharmaceuticals, the performance of the HLB-DGT devices were independent of pH (5.0-9.0), ionic strength (0.001-0.5 M), and flow velocity (0-400 rpm). The HLB-DGT devices exhibited linear pharmaceutical accumulation for 7 days, and time-weighted average concentrations provided by the HLB-DGT were comparable to those measured by conventional grab sampling. Compared to previous studies, we extended DGT monitoring to include three antiviral drugs used for COVID-19 treatment, which may inspire further exploration on identifying the effects of COVID-19 on ecological and human health.
Collapse
Affiliation(s)
- Hongmei Cao
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China.
| | - Qingshan Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China
| | - Xiaohong Gao
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China
| | - Huaijun Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Wenwen Gong
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoxiao Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
12
|
Lis H, Paszkiewicz M, Godlewska K, Maculewicz J, Kowalska D, Stepnowski P, Caban M. Ionic liquid-based functionalized materials for analytical chemistry. J Chromatogr A 2022; 1681:463460. [DOI: 10.1016/j.chroma.2022.463460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022]
|
13
|
Occurrence, analysis and removal of pesticides, hormones, pharmaceuticals, and other contaminants in soil and water streams for the past two decades: a review. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Shi X, Zhang S, Zhang Y, Geng Y, Wang L, Peng Y, He Z. Novel and simple analytical method for simultaneous determination of sulfonamide, quinolone, tetracycline, macrolide, and chloramphenicol antibiotics in soil. Anal Bioanal Chem 2022; 414:6497-6506. [PMID: 35829769 DOI: 10.1007/s00216-022-04206-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
The multiclass determination of antibiotic residues in the soil is challenging because of its complex physicochemical properties. In this study, a simple analytical method was developed to simultaneously extract and determine 58 antibiotics from the soil. A novel acidity-regulated extraction-partition-concentration protocol was established for the simultaneous extraction of five classes (23 sulfonamides, 18 quinolones, five tetracyclines, eight macrolides, and four chloramphenicols) of antibiotics from the soil. Compared to traditional methods, the sample preparation efficiency was significantly improved by four times (45 min vs. 230 min) by optimizing the extraction method and omitting the time-consuming solid-phase extraction (SPE) procedure. The ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was optimized to determine the 58 antibiotics in a single run by applying positive/negative switching acquisition mode in less than 10 min with the baseline separation of sulfameter and sulfamethoxypyridazine. Suitable recoveries, ranging between 60 and 120%, were obtained for most antibiotics, with RSD <20%. The limits of quantification (LOQ) of the method were 2 μg/kg and 5 μg/kg. Thus, this study provides a simple, reliable, and economical method for accurately and rapidly determining a multiclass of antibiotics in the soil.
Collapse
Affiliation(s)
- Xiaomeng Shi
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Shan Zhang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Yanwei Zhang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Yue Geng
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Lu Wang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Yi Peng
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Zeying He
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| |
Collapse
|
15
|
Kanwischer M, Asker N, Wernersson AS, Wirth MA, Fisch K, Dahlgren E, Osterholz H, Habedank F, Naumann M, Mannio J, Schulz-Bull DE. Substances of emerging concern in Baltic Sea water: Review on methodological advances for the environmental assessment and proposal for future monitoring. AMBIO 2022; 51:1588-1608. [PMID: 34637089 PMCID: PMC9005613 DOI: 10.1007/s13280-021-01627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 05/13/2023]
Abstract
The Baltic Sea is among the most polluted seas worldwide. Anthropogenic contaminants are mainly introduced via riverine discharge and atmospheric deposition. Regional and international measures have successfully been employed to reduce concentrations of several legacy contaminants. However, current Baltic Sea monitoring programs do not address compounds of emerging concern. Hence, potentially harmful pharmaceuticals, UV filters, polar pesticides, estrogenic compounds, per- and polyfluoroalkyl substances, or naturally produced algal toxins are not taken into account during the assessment of the state of the Baltic Sea. Herein, we conducted literature searches based on systematic approaches and compiled reported data on these substances in Baltic Sea surface water and on methodological advances for sample processing and chemical as well as effect-based analysis of these analytically challenging marine pollutants. Finally, we provide recommendations for improvement of future contaminant and risk assessment in the Baltic Sea, which revolve around a combination of both chemical and effect-based analyses.
Collapse
Affiliation(s)
- Marion Kanwischer
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Noomi Asker
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18A, 41390 Göteborg, Sweden
| | - Ann-Sofie Wernersson
- Department for Management of Contaminated Sites, Swedish Geotechnical Institute, Hugo Grauers gata 5 B, 41296 Göteborg, Sweden
| | - Marisa A. Wirth
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Kathrin Fisch
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Elin Dahlgren
- Swedish University of Agricultural Sciences, Stångholmsvägen 2, 178 93 Drottningholm, Sweden
| | - Helena Osterholz
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Friederike Habedank
- State Office for Agriculture, Food Safety and Fisheries, Mecklenburg-Western Pomerania, Thierfelderstraße 18, 18059 Rostock, Germany
| | - Michael Naumann
- Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Jaakko Mannio
- Centre for Sustainable Consumption and Production/Contaminants, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Detlef E. Schulz-Bull
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| |
Collapse
|
16
|
Hidalgo AM, Gómez M, Murcia MD, León G, Miguel B, Gago I, Martínez PM. Ibuprofen Removal by Graphene Oxide and Reduced Graphene Oxide Coated Polysulfone Nanofiltration Membranes. MEMBRANES 2022; 12:membranes12060562. [PMID: 35736268 PMCID: PMC9229169 DOI: 10.3390/membranes12060562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023]
Abstract
The presence of pharmaceutical products, and their metabolites, in wastewater has become a focus of growing environmental concern. Among these pharmaceutical products, ibuprofen (IBU) is one of the most consumed non-steroidal anti-inflammatory drugs and it can enter the environment though both human and animal consumption, because it is not entirely absorbed by the body, and the pharmaceutical industry wastewater. Nanofiltration has been described as an attractive process for the treatment of wastewater containing pharmaceutical products. In this paper, the modification of a polysulfone nanofiltration membrane by coating with graphene oxide (GO) and reduced graphene oxide (RGO) has been carried out. The morphology and elemental composition of the active layer of unmodified and modified membranes were analyzed by scanning electronic microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX), respectively. Initial characterization membranes was carried out, studying their water permeability coefficient and their permeate flux and rejection coefficients, at different applied pressures, using magnesium chloride solutions. The behavior of both pristine and coated membranes against ibuprofen solutions were analyzed by studying the permeate fluxes and the rejection coefficients at different pressures and at different contaminant concentrations. The results have shown that both GO and RGO coated membranes lead to higher values of ibuprofene rejection than that of uncoated membrane, the latter being the one that presents better results in the studies of permeability, selectivity, and fouling.
Collapse
Affiliation(s)
- Asunción M. Hidalgo
- Departamento de Ingeniería Química, Universidad de Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain; (M.G.); (M.D.M.); (P.M.M.)
- Correspondence:
| | - María Gómez
- Departamento de Ingeniería Química, Universidad de Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain; (M.G.); (M.D.M.); (P.M.M.)
| | - María D. Murcia
- Departamento de Ingeniería Química, Universidad de Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain; (M.G.); (M.D.M.); (P.M.M.)
| | - Gerardo León
- Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 52, 30206 Cartagena, Spain; (G.L.); (B.M.); (I.G.)
| | - Beatriz Miguel
- Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 52, 30206 Cartagena, Spain; (G.L.); (B.M.); (I.G.)
| | - Israel Gago
- Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 52, 30206 Cartagena, Spain; (G.L.); (B.M.); (I.G.)
| | - Pilar M. Martínez
- Departamento de Ingeniería Química, Universidad de Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain; (M.G.); (M.D.M.); (P.M.M.)
| |
Collapse
|
17
|
From monitoring to treatment, how to improve water quality: The pharmaceuticals case. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
18
|
Paszkiewicz M, Godlewska K, Lis H, Caban M, Białk-Bielińska A, Stepnowski P. Advances in suspect screening and non-target analysis of polar emerging contaminants in the environmental monitoring. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Marine sediment analysis – A review of advanced approaches and practices focused on contaminants. Anal Chim Acta 2022; 1209:339640. [DOI: 10.1016/j.aca.2022.339640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022]
|
20
|
Rendedula D, Satyanarayana GNV, Asati A, Kaliyaperumal M, Mudiam MKR. Development of a multiclass method to quantify phthalates, pharmaceuticals, and personal care products in river water using ultra-high performance liquid chromatography coupled with quadrupole hybrid Orbitrap mass spectrometry. ANALYTICAL SCIENCE ADVANCES 2021; 2:373-386. [PMID: 38715960 PMCID: PMC10989606 DOI: 10.1002/ansa.202000015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 09/28/2024]
Abstract
RATIONALE The organic micropollutants such as phthalates, pharmaceuticals, and personal care products (PPPCPs) enter the surface water through various routes. The aim of this study is to develop a sensitive and efficient method to identify and quantify 26 PPPCPs found in river water with acceptable accuracy and precision using a liquid chromatograph hyphenated with quadrupole hybrid Orbitrap mass spectrometry (Q-Orbitrap-MS) in a single chromatographic run. METHOD The organic micropollutants were extracted from river water by solid-phase extraction (SPE) using hydrophilic-lipophilic balance sorbent and analyzed using an ultra-high performance liquid chromatograph (UHPLC) equipped with C18 stationary phase for chromatographic separation. The targeted mass experiments were conducted in a Q-Orbitrap-MS system in positive and negative electrospray ionization mode. RESULTS The method was found to be linear in the concentration range of 1-125 ng/L with coefficient of determination lying in the range of 0.995-0.999. The method achieved limit of quantification in the range of 0.41-1.72 ng/L, and method recovery measured at three different concentrations was found to be in the range of 75-115%. Intra- and interday precision expressed as percent relative standard deviation was found to be <15%. Matrix effect was found to be in the range of 83.5-109.79%. The matrix match calibration was used for quantification of PPPCPs in river water sample. The method performance was evaluated by analyzing real samples collected from Ganga River, and the concentrations of 21 analytes were found to be in the range of 0.76-9.49 ng/L for pharmaceuticals, 1.49-8.67 ng/L for phthalates, and 0.9-7.58 ng/L for personal care products. CONCLUSIONS The present method was found to be precise, sensitive, and rapid to determine 26 PPPCPs including phthalates in river water samples using SPE-UHPLC-Q-Orbitrap-MS.
Collapse
Affiliation(s)
- Deviprasad Rendedula
- Analytical and Structural Chemistry DepartmentCSIR‐Indian Institute of Chemical TechnologyTarnaka, Uppal RoadHyderabad500007India
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad201002India
- Discovery Analytical Sciences DivisionGVK BiosciencesHyderabad500007India
| | - Gubbala Naga Venkata Satyanarayana
- Analytical Chemistry LaboratoryRegulatory Toxicology GroupCSIR‐Indian Institute of Toxicology ResearchLucknow226001India
- Department of ChemistrySchool of Applied SciencesBabu Banarasi Das UniversityLucknow226028India
| | - Ankita Asati
- Analytical and Structural Chemistry DepartmentCSIR‐Indian Institute of Chemical TechnologyTarnaka, Uppal RoadHyderabad500007India
| | | | - Mohana Krishna Reddy Mudiam
- Analytical and Structural Chemistry DepartmentCSIR‐Indian Institute of Chemical TechnologyTarnaka, Uppal RoadHyderabad500007India
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad201002India
| |
Collapse
|
21
|
Recent Advances in Solid-Phase Extraction (SPE) Based on Molecularly Imprinted Polymers (MIPs) for Analysis of Hormones. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Steroid hormones are active substances that are necessary in the normal functioning of all physiological activities in the body, such as sexual characteristics, metabolism, and mood control. They are also widely used as exogenous chemicals in medical and pharmaceutical applications as treatments and at times growth promoters in animal farming. The vast application of steroid hormones has resulted in them being found in different matrices, such as food, environmental, and biological samples. The presence of hormones in such matrices means that they can easily come into contact with humans and animals as exogenous compounds, resulting in abnormal concentrations that can lead to endocrine disruption. This makes their determination in different matrices a vital part of pollutant management and control. Although advances in analytical instruments are constant, it has been determined that these instruments still require some sample preparation steps to be able to determine the occurrence of pollutants in the complex matrices in which they occur. Advances are still being made in sample preparation to ensure easier, selective, and sensitive analysis of complex matrices. Molecularly imprinted polymers (MIPs) have been termed as advanced solid-phase (SPE) materials for the selective extraction and preconcentration of hormones in complex matrices. This review explores the preparation and application of MIPs for the determination of steroid hormones in different sample types.
Collapse
|
22
|
Branchet P, Arpin-Pont L, Piram A, Boissery P, Wong-Wah-Chung P, Doumenq P. Pharmaceuticals in the marine environment: What are the present challenges in their monitoring? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142644. [PMID: 33077207 DOI: 10.1016/j.scitotenv.2020.142644] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
During the last years, there has been a growing interest in the research focused on the pharmaceutical residues in the environment. Those compounds have been recognized as a possible threat to aquatic ecosystems, due to their inherent biological activity and their "pseudo-persistence". Their presence has been relatively few investigated in the marine environment, though it is the last receiver of the continental contamination. Thus, pharmaceuticals monitoring data in marine waters are necessary to assess water quality and to allow enhancing future regulations and management decisions. A review of the current practices and challenges in monitoring strategies of pharmaceuticals in marine matrices (water, sediment and biota) is provided through the analysis of the available recent scientific literature. Key points are highlighted for the different steps of marine waters monitoring as features to consider for the targeted substance selection, the choice of the marine site configuration and sampling strategies to determine spatio-temporal trends of the contamination. Some marine environment specific features, such as the strong dilution occurring, the complex hydrodynamic and local logistical constraints are making this monitoring a very difficult and demanding task. Thus key knowledge gap priorities for future research are identified and discussed. Suitable passive samplers to monitor pharmaceutical seawater levels need further development and harmonization. Non-target analysis approaches would be promising to understand the fate of the targeted molecules and to enhance the list of substances to analyze. The implementation of integrated monitoring through long-term ecotoxicological tests on sensitive marine species at environmental levels would permit to better assess the ecological risk of these compounds for the marine ecosystems.
Collapse
Affiliation(s)
- Perrine Branchet
- Aix Marseille University, CNRS, LCE, Bâtiment Villemin BP80, 13545 Aix-en-Provence Cedex 4, France.
| | - Lauren Arpin-Pont
- Aix Marseille University, CNRS, LCE, Bâtiment Villemin BP80, 13545 Aix-en-Provence Cedex 4, France
| | - Anne Piram
- Aix Marseille University, CNRS, LCE, Bâtiment Villemin BP80, 13545 Aix-en-Provence Cedex 4, France.
| | - Pierre Boissery
- Agence de l'Eau Rhône Méditerranée Corse, 2, street Henri Barbusse, CS 90464, 13207 Marseille Cedex 01, France
| | - Pascal Wong-Wah-Chung
- Aix Marseille University, CNRS, LCE, Bâtiment Villemin BP80, 13545 Aix-en-Provence Cedex 4, France
| | - Pierre Doumenq
- Aix Marseille University, CNRS, LCE, Bâtiment Villemin BP80, 13545 Aix-en-Provence Cedex 4, France
| |
Collapse
|
23
|
Caban M, Lis H, Stepnowski P. Limitations of Integrative Passive Samplers as a Tool for the Quantification of Pharmaceuticals in the Environment - A Critical Review with the Latest Innovations. Crit Rev Anal Chem 2021; 52:1386-1407. [PMID: 33673780 DOI: 10.1080/10408347.2021.1881755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This review starts with a presentation of the theory of kinetic uptake by passive sampling (PS), which is traditionally used to distinguish between integrative and equilibrium samplers. Demonstrated limitations of this model for the passive sampling of pharmaceuticals from water were presented. Most notably, the contribution of the protective membrane in the resistance to mass transfer of lipophilic analytes and the well documented effect of external parameters on sampling rates contributed to the greatest uncertainty in PS application. The diffusion gradient in thin layer (DGT) technique seems to reduce the effect of external parameters (e.g., flow rate) to some degree. The laboratory-determined integrative uptake periods over defined sampler deployments was compared, and the discrepancy found suggests that the most popular Polar Organic Chemical Integrative Sampler (POCIS) could in some cases utilized as an equilibrium sampler. This assertion is supported by own calculations for three pharmaceuticals with extremely different lipophilic characters. Finally, the reasons performance reference compounds (PRCs) are not recommended for the reduction in uncertainty of the TWAC found by adsorptive samplers were presented. It was concluded that techniques of passive sampling of pharmaceuticals need a new uptake model to fit the current situation.
Collapse
Affiliation(s)
- Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Hanna Lis
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| |
Collapse
|
24
|
Muhammad N, Zia-ul-Haq M, Ali A, Naeem S, Intisar A, Han D, Cui H, Zhu Y, Zhong JL, Rahman A, Wei B. Ion chromatography coupled with fluorescence/UV detector: A comprehensive review of its applications in pesticides and pharmaceutical drug analysis. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
25
|
Xu X, Feng X, Liu Z, Xue S, Zhang L. 3D flower-liked Fe 3O 4/C for highly sensitive magnetic dispersive solid-phase extraction of four trace non-steroidal anti-inflammatory drugs. Mikrochim Acta 2021; 188:52. [PMID: 33496871 DOI: 10.1007/s00604-021-04708-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
A low cost-effective and simple synthesis method was adopted to acquire three-dimensional flower-like structure Fe3O4/C that has large specific area, suitable pore structure and sufficient saturation magnetism. The obtained Fe3O4/C exhibits outstanding preconcentration ability and was applied to extracting non-steroidal anti-inflammatory drugs from complex environmental and biological samples. The parameters of magnetic solid-phase extraction were optimized by univariate and multivariate methods (Box-Behnken design). The high degree of linearity from 2.5 to 1000.0 ng mL-1 (R2 ≥ 0.9976), the limits of detection from 0.25 to 0.5 ng mL- 1 (S/N = 3), and the limits of quantitation from 1.0 to 2.0 ng mL- 1 (S/N = 10) were yielded by adopting this novel method after the optimization. Moreover, the recoveries of non-steroidal anti-inflammatory drugs from 89.6 to 107.0% were acquired in spiked plasma, urine and lake samples. In addition, the adsorption of non-steroidal anti-inflammatory drugs on Fe3O4/C was explored by adsorption isotherms and kinetic studies. Furthermore, the adsorption mechanism for non-steroidal anti-inflammatory drugs by Fe3O4/C was proposed, which was hydrogen bonding and π-π interaction between non-steroidal anti-inflammatory drugs and Fe3O4/C. Graphical abstract.
Collapse
Affiliation(s)
- Xu Xu
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, People's Republic of China.
| | - Xue Feng
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, People's Republic of China
| | - Zhen Liu
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, People's Republic of China
| | - Shan Xue
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, People's Republic of China
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, People's Republic of China.
| |
Collapse
|
26
|
Goh SXL, Goh EXY, Lee HK. Sodium dodecyl sulfate-multi-walled carbon nanotubes-coated-membrane solid phase extraction of glucocorticoids in aqueous matrices. Talanta 2021; 221:121624. [PMID: 33076152 DOI: 10.1016/j.talanta.2020.121624] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
A membrane-based solid phase extraction (SPE)-ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed for the determination of nine glucocorticoids in water. This new hybrid SPE approach involved the deposition of sodium dodecyl sulfate (SDS)-multi-walled carbon nanotubes (MWCNTs) on a piece of polypropylene membrane that served as the extraction device. Hitherto, such a sample preparation procedure has not been applied to the analysis of water contaminants before. The use of the surfactant helped to disperse the MWCNTs effectively so that they were coated uniformly onto the polypropylene membrane. This increased the overall extraction efficiency of the procedure. Characterisation of the SDS-MWCNTs material was performed using transmission electron microscopy and scanning electron microscopy. The membrane device did not require a pre-conditioning step. The most favourable extraction parameters such as type of surfactant, percentage of surfactant, type of desorption solvent, stirring rate, desorption time, extraction time, temperature, salting-out effect, pH and diameter of MWCNTs were obtained. The method showed linearity ranges from 0.2 to 100 ng mL-1 for hydrocortisone, dexamethasone, cortisone acetate and beclomethasone dipropionate, and 0.5-100 ng mL-1 for the rest of the analytes. Limits of detection ranging from 0.019 to 0.098 ng mL-1, and limits of quantification ranging from 0.065 to 0.326 ng mL-1, were obtained for the analytes. The intra-day repeatability was between 1.77 and 3.56% while the inter-day reproducibility was between 2.69 and 9.53%, respectively. The method was used to analyse glucocorticoids as contaminants in the canal water samples.
Collapse
Affiliation(s)
- Shalene Xue Lin Goh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore; NUS Environmental Research Institute, National University of Singapore, T-Lab Building #02-01, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Esther Xue Yi Goh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore; NUS Environmental Research Institute, National University of Singapore, T-Lab Building #02-01, 5A Engineering Drive 1, Singapore, 117411, Singapore.
| |
Collapse
|
27
|
Li T, Li X, Liu H, Deng Z, Zhang Y, Zhang Z, He Y, Yang Y, Zhong S. Preparation and characterization of molecularly imprinted polymers based on β-cyclodextrin-stabilized Pickering emulsion polymerization for selective recognition of erythromycin from river water and milk. J Sep Sci 2020; 43:3683-3690. [PMID: 32700400 DOI: 10.1002/jssc.201901255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 12/18/2022]
Abstract
Molecularly imprinted polymers were prepared via β-cyclodextrin-stabilized oil-in-water Pickering emulsion polymerization for selective recognition and adsorption of erythromycin. The synthesized molecularly imprinted polymers were spherical in shape, with diameters ranging from 20 to 40 µm. The molecularly imprinted polymers showed high adsorption capacity (87.08 mg/g) and adsorption isotherm data fitted well with Langmuir model. Adsorption kinetics study demonstrated that the molecularly imprinted polymers acted in a fast adsorption kinetic pattern and the adsorption features of molecularly imprinted polymers followed a pseudo-first-order model. Adsorption selectivity analysis revealed that molecularly imprinted polymers had a much better specificity for erythromycin than that for spiramycin or amoxicillin, and the relative selectivity coefficient values on the bases of spiramycin and amoxicillin were 3.97 and 3.86, respectively. The Molecularly imprinted polymers also showed a satisfactory reusability after four times of regeneration. In addition, molecularly imprinted polymers exhibited good adsorption capacities for erythromycin under complicated environment, that is, river water and milk. These results proved that the as-prepared molecularly imprinted polymers is a potent absorbent for selective recognition of erythromycin, and therefore it may be a promising candidate for practical applications, such as wastewater treatment and detection of erythromycin residues in food.
Collapse
Affiliation(s)
- Tianhao Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Xiufang Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Zhiwei Deng
- School of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Yunshan Zhang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Zhuomin Zhang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Yao He
- School of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Yanjing Yang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Shian Zhong
- School of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| |
Collapse
|
28
|
Hlengwa NB, Mahlambi PN. Ultrasonic Followed by Solid Phase Extraction and Liquid Chromatography-Photodiode Array for Determination of Pharmaceutical Compounds in Sediment and Soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:464-470. [PMID: 32215685 DOI: 10.1007/s00128-020-02829-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
This work reports on the method optimization and application for quantitative analysis of non-steroidal anti-inflammatory drugs and anti-epileptic drug in soil and sediment samples. The analytes were extracted by ultrasonic extraction followed by solid phase extraction and quantified using liquid chromatographic coupled with photodiode array. The sensitivity of the method was determined based on the limit of detection and the limit of quantification which ranged between (0.010-0.027 µg/kg) and (0.025-0.049 µg/kg), respectively. The %recoveries of the method ranged between 74% and 112%. The concentrations obtained in real samples ranged from 0.055 to 0.426 µg/kg in sediment and 0.044-0.567 µg/kg in soil samples. The highest concentration was found for diclofenac in soil samples.
Collapse
Affiliation(s)
- N B Hlengwa
- Department of Chemistry, University of KwaZulu-Natal, King Edward Avenue, Scottsville, Private Bag X01, Pietermaritzburg, 3209, South Africa
| | - P N Mahlambi
- Department of Chemistry, University of KwaZulu-Natal, King Edward Avenue, Scottsville, Private Bag X01, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
29
|
Jaria G, Calisto V, Otero M, Esteves VI. Monitoring pharmaceuticals in the aquatic environment using enzyme-linked immunosorbent assay (ELISA)-a practical overview. Anal Bioanal Chem 2020; 412:3983-4008. [PMID: 32088755 DOI: 10.1007/s00216-020-02509-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/29/2020] [Accepted: 02/11/2020] [Indexed: 12/22/2022]
Abstract
The presence of pharmaceuticals, which are considered as contaminants of emerging concern, in natural waters is currently recognized as a widespread problem. Monitoring these contaminants in the environment has been an important field of research since their presence can affect the ecosystems even at very low levels. Several analytical techniques have been developed to detect and quantify trace concentrations of these contaminants in the aquatic environment, namely high-performance liquid chromatography, gas chromatography, and capillary electrophoresis, usually coupled to different types of detectors, which need to be complemented with time-consuming and costly sample cleaning and pre-concentration procedures. Generally, the enzyme-linked immunosorbent assay (ELISA), as other immunoassay methodologies, is mostly used in biological samples (most frequently urine and blood). However, during the last years, the number of studies referring the use of ELISA for the analysis of pharmaceuticals in complex environmental samples has been growing. Therefore, this work aims to present an overview of the application of ELISA for screening and quantification of pharmaceuticals in the aquatic environment, namely in water samples and biological tissues. The experimental procedures together with the main advantages and limitations of the assay are addressed, as well as new incomes related with the application of molecular imprinted polymers to mimic antibodies in similar, but alternative, approaches. Graphical Abstract.
Collapse
Affiliation(s)
- Guilaine Jaria
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vânia Calisto
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Marta Otero
- Department of Environment and Planning and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
30
|
Wolecki D, Caban M, Pazda M, Stepnowski P, Kumirska J. Evaluation of the Possibility of Using Hydroponic Cultivations for the Removal of Pharmaceuticals and Endocrine Disrupting Compounds in Municipal Sewage Treatment Plants. Molecules 2019; 25:molecules25010162. [PMID: 31906110 PMCID: PMC6982867 DOI: 10.3390/molecules25010162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 01/30/2023] Open
Abstract
The problem of the presence of pharmaceuticals and endocrine disrupting compounds (EDCs) in the environment is closely related to municipal wastewater and in consequence to municipal wastewater treatment plants (MWWTPs) because wastewater is the main way in which these compounds are transferred to the ecosystem. For this reason, the development of cheap, simple but very effective techniques for the removal of such residues from wastewater is very important. In this study, the analysis of the potential of using three new plants: Cyperus papyrus (Papyrus), Lysimachia nemorum (Yellow pimpernel), and Euonymus europaeus (European spindle) by hydroponic cultivation for the removal of 15 selected pharmaceuticals and endocrine disrupting compounds (EDCs) in an MWWTP is presented. In order to obtain the most reliable data, this study was performed using real WWTP conditions and with the determination of the selected analytes in untreated sewage, treated sewage, and in plant materials. For determining the target compounds in plant materials, an Accelerated Solvent Extraction (ASE)-Solid-Phase Extraction (SPE)-GC-MS(SIM) method was developed and validated. The obtained data proved that the elimination efficiency of the investigated substances from wastewater was in the range of 35.8% for diflunisal to above 99.9% for paracetamol, terbutaline, and flurbiprofen. Lysimachia nemorum was the most effective for the uptake of target compounds among the tested plant species. Thus, the application of constructed wetlands for supporting conventional MWWTPs allowed a significant increase in their removal from the wastewater stream.
Collapse
|
31
|
Ma M, Chen L, Zhao J, Liu W, Ji H. Efficient activation of peroxymonosulfate by hollow cobalt hydroxide for degradation of ibuprofen and theoretical study. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.09.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Świacka K, Maculewicz J, Smolarz K, Szaniawska A, Caban M. Mytilidae as model organisms in the marine ecotoxicology of pharmaceuticals - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113082. [PMID: 31472454 DOI: 10.1016/j.envpol.2019.113082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Growing production and consumption of pharmaceuticals is a global problem. Due to insufficient data on the concentration and distribution of pharmaceuticals in the marine environment, there are no appropriate legal regulations concerning their emission. In order to understand all aspects of the fate of pharmaceuticals in the marine environment and their effect on marine biota, it is necessary to find the most appropriate model organism for this purpose. This paper presents an overview of the ecotoxicological studies of pharmaceuticals, regarding the assessment of Mytilidae as suitable organisms for biomonitoring programs and toxicity tests. The use of mussels in the monitoring of pharmaceuticals allows the observation of changes in the concentration and distribution of these compounds. This in turn gives valuable information on the amount of pharmaceutical pollutants released into the environment in different areas. In this context, information necessary for the assessment of risks related to pharmaceuticals in the marine environment are provided based on what effective management procedures can be developed. However, the accumulation capacity of individual Mytilidae species, the bioavailability of pharmaceuticals and their biological effects should be further scrutinized.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland.
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Anna Szaniawska
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
33
|
Kumirska J, Łukaszewicz P, Caban M, Migowska N, Plenis A, Białk-Bielińska A, Czerwicka M, Qi F, Piotr S. Determination of twenty pharmaceutical contaminants in soil using ultrasound-assisted extraction with gas chromatography-mass spectrometric detection. CHEMOSPHERE 2019; 232:232-242. [PMID: 31154184 DOI: 10.1016/j.chemosphere.2019.05.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
In this paper, an analytical method for the simultaneous determination of twenty pharmaceuticals (eight non-steroidal anti-inflammatory drugs, five oestrogenic hormones, two antiepileptic drugs, two β-blockers, and three antidepressants) in soils was developed. The optimal method included ultrasound-assisted extraction, a clean-up step on a silica gel column, derivatization using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and 1% trimethylchlorosilane (TMCS) in pyridine and ethyl acetate (2:1:1, v/v/v) for 30 min at 60 °C, and determination by gas chromatography-mass spectrometry working in the selected ion monitoring mode. This affords good resolution, high sensitivity and reproducibility, and freedom from interferences even from complex matrices such as soils. The method detection limits ranged from 0.3 to 1.7 ng g-1, the intra-day precision represented as RSDs ranged from 1.1 to 10.0%, and the intra-day accuracy from 81.3 to 119.7%. The absolute recoveries of the target compounds were above 80%, except for valproic acid and diethylstilbestrol. The developed method was successfully applied in the analysis of the target compounds in soils collected in Poland. Among the 20 pharmaceuticals, 12 compounds were detected at least once in the soils. The determination of antiepileptic drugs, β-blockers, and antidepressants was also performed for the first time.
Collapse
Affiliation(s)
- Jolanta Kumirska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Paulina Łukaszewicz
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Magda Caban
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Natalia Migowska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Alina Plenis
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Anna Białk-Bielińska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Małgorzata Czerwicka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Fei Qi
- Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Stepnowski Piotr
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| |
Collapse
|
34
|
Praveena SM, Mohd Rashid MZ, Mohd Nasir FA, Sze Yee W, Aris AZ. Occurrence and potential human health risk of pharmaceutical residues in drinking water from Putrajaya (Malaysia). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:549-556. [PMID: 31128553 DOI: 10.1016/j.ecoenv.2019.05.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 05/22/2023]
Abstract
Occurrence of pharmaceutical residues in drinking water has been widely reported in countries that have registered steady economic growth. This can exert concerns among the general consumers, prompting them to explore the potential human health risks associated with continuous exposure to pharmaceuticals. However, such an occurrence is rarely reported in developing or under-developed countries. To give more contexts, this study looked at the presence of nine pharmaceutical residues in drinking water (amoxicillin, caffeine, chloramphenicol, ciprofloxacin, dexamethasone, diclofenac, nitrofurazone, sulfamethoxazole, and triclosan) at Putrajaya residential area in Malaysia. Additionally, the potential health risks associated with contaminated drinking water were investigated. This study has found the presence of pharmaceutical residue concentrations up to 0.38 ng/L, with the highest concentration of caffeine (0.38 ng/L) and the lowest concentration of diclofenac (0.14 ng/L). In comparison, all the nine pharmaceutical residues were substantially lower than previously reported studies. In general, Hazard Quotient (HQ) values indicated that low potential health hazards were present for all age groups. Nevertheless, quantitative occurrences of pharmaceutical residues in drinking water will help guide future toxicological studies to examine other chronic effects, while canvassing for proper framework to look into the water risk management and regulation in Malaysia.
Collapse
Affiliation(s)
- Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia.
| | - Maizatul Zahirah Mohd Rashid
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Fauzan Adzima Mohd Nasir
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Wee Sze Yee
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
35
|
Caban M, Lis H, Kobylis P, Stepnowski P. The triple-sorbents solid-phase extraction for pharmaceuticals and estrogens determination in wastewater samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.103965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Wolecki D, Caban M, Pazdro K, Mulkiewicz E, Stepnowski P, Kumirska J. Simultaneous determination of non-steroidal anti-inflammatory drugs and natural estrogens in the mussels Mytilus edulis trossulus. Talanta 2019; 200:316-323. [DOI: 10.1016/j.talanta.2019.03.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 11/30/2022]
|
37
|
Vanryckeghem F, Huysman S, Van Langenhove H, Vanhaecke L, Demeestere K. Multi-residue quantification and screening of emerging organic micropollutants in the Belgian Part of the North Sea by use of Speedisk extraction and Q-Orbitrap HRMS. MARINE POLLUTION BULLETIN 2019; 142:350-360. [PMID: 31232313 DOI: 10.1016/j.marpolbul.2019.03.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 05/26/2023]
Abstract
Knowledge about the occurrence of emerging organic micropollutants in the marine environment is still very limited, especially when focusing on the Belgian Part of the North Sea (BPNS). This study therefore optimized and validated a Speedisk® based SPE and LC-Q-Orbitrap HRMS method to tackle the challenge of measuring the expected ultra-trace concentrations in seawater. This method was applied to 18 samples collected at different locations in the open sea and harbor of the BPNS. Forty-eight compounds, among which several pharmaceuticals, personal care products or pesticides described in the EU Watchlist, were detected - some for the first time in seawater - at concentrations ranging up to 156 ng L-1. Moreover, the untargeted screening potential of the newly developed HRMS method was highlighted by revealing the presence of up to 1300 unknown components in a single sample and by assigning molecular formulae to those components demonstrating high discriminative potential between samples.
Collapse
Affiliation(s)
- Francis Vanryckeghem
- Ghent University, Faculty of Bioscience Engineering, Department of Green Chemistry and Technology, Research Group Environmental Organic Chemistry and Technology (EnVOC), Coupure Links 653, B-9000 Ghent, Belgium.
| | - Steve Huysman
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Herman Van Langenhove
- Ghent University, Faculty of Bioscience Engineering, Department of Green Chemistry and Technology, Research Group Environmental Organic Chemistry and Technology (EnVOC), Coupure Links 653, B-9000 Ghent, Belgium.
| | - Lynn Vanhaecke
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820 Merelbeke, Belgium; Queen's University, Institute for Global Food Security, School of Biological Sciences, University Road BT7 1NN, Belfast, Northern Ireland, United Kingdom.
| | - Kristof Demeestere
- Ghent University, Faculty of Bioscience Engineering, Department of Green Chemistry and Technology, Research Group Environmental Organic Chemistry and Technology (EnVOC), Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
38
|
Carter LJ, Chefetz B, Abdeen Z, Boxall ABA. Emerging investigator series: towards a framework for establishing the impacts of pharmaceuticals in wastewater irrigation systems on agro-ecosystems and human health. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:605-622. [PMID: 30932118 DOI: 10.1039/c9em00020h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Use of reclaimed wastewater for agricultural irrigation is seen as an attractive option to meet agricultural water demands of a growing number of countries suffering from water scarcity. However, reclaimed wastewater contains pollutants which are introduced to the agro-environment during the irrigation process. While water reuse guidelines do consider selected classes of pollutants, they do not account for the presence of pollutants of emerging concern such as pharmaceuticals and the potential risks these may pose. Here we use source-pathway-receptor analysis (S-P-R) to develop a holistic framework for evaluating the impacts of pharmaceuticals, present in wastewater used for agricultural irrigation, on human and ecosystem health and evaluate the data availability for the framework components. The developed framework comprised of 34 processes and compartments but a good level of knowledge was available for only five of these suggesting that currently it is not possible to fully establish the impacts of pharmaceuticals in wastewater irrigation systems. To address this, work is urgently needed to understand the fate and transport of pharmaceuticals in arable soil systems and the effects of chronic low-level exposure to these substances on microbes, invertebrates, plants, wildlife and humans. In addition, research pertaining to the fate, uptake and effects of pharmaceutical mixtures and metabolites is lacking as well as data on bio-accessibility of pharmaceuticals after ingestion. Scientific advancements in the five areas prioritised in terms of future research are needed before we are able to fully quantify the agricultural and human health risks associated with reclaimed wastewater use.
Collapse
Affiliation(s)
- Laura J Carter
- School of Geography, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK.
| | | | | | | |
Collapse
|
39
|
Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU, Mohan D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem Rev 2019; 119:3510-3673. [DOI: 10.1021/acs.chemrev.8b00299] [Citation(s) in RCA: 827] [Impact Index Per Article: 165.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rahul Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kamal Kishor
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Charles U. Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
40
|
Detection of Antibiotics in Drinking Water Treatment Plants in Baghdad City, Iraq. ADVANCES IN PUBLIC HEALTH 2019. [DOI: 10.1155/2019/7851354] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Persistence of antibiotics in the aquatic environment has raised concerns regarding their potential influence on potable water quality and human health. This study analyzes the presence of antibiotics in potable water from two treatment plants in Baghdad City. The collected samples were separated using a solid-phase extraction method with hydrophilic-lipophilic balance (HLB) cartridge before being analyzed. The detected antibiotics in the raw and finished drinking water were analyzed and assessed using high-performance liquid chromatography (HPLC), with fluorometric detector and UV detector. The results confirmed that different antibiotics including fluoroquinolones andB-lactams were detected in the raw and finished water. The most frequently detected antibiotics were ciprofloxacin with highest concentration of 1.270 μg L−1in the raw water of Al-Wihda plant, whereas the highest concentration of levofloxacin was 0.177 μg L−1, while amoxicillin was not detected in this plant. In contrast, ciprofloxacin was found in both raw water and finished water of Al-Rasheed plant and recorded highest concentration of 1.344 and 1.312 μg L−1, respectively. Moreover, the residual amount of levofloxacin in the raw water was up to 0.414 μg L−1, whereas amoxicillin was shown to be the most detectable drug in the raw water of Al-Rasheed plant, with a concentration of 1.50 μg L−1. The results of this study revealed the existence of antibiotic drugs in raw and finished water and should be included in the Iraqi standard for drinking water quality assessment.
Collapse
|
41
|
Jiménez-Salcedo M, Monge M, Tena MT. Photocatalytic degradation of ibuprofen in water using TiO 2/UV and g-C 3N 4/visible light: Study of intermediate degradation products by liquid chromatography coupled to high-resolution mass spectrometry. CHEMOSPHERE 2019; 215:605-618. [PMID: 30342405 DOI: 10.1016/j.chemosphere.2018.10.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/27/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
The photocatalytic degradation of ibuprofen with TiO2 nanoparticles (NPs) and UV light and with graphitic carbon nitride (g-C3N4) 2D nanosheets and visible light are proposed and compared as advanced oxidation treatments for the removal of ibuprofen in water. By-products formed with both photocatalytic systems have been tentatively identified based on the results of ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry, using a quadrupole-time of flight mass spectrometer in positive and negative ionization modes, which allowed to obtain the elementary composition of their precursors and fragment ions. The removal of ibuprofen and the by-product formation were studied at three pH values. Ibuprofen depletion followed pseudo fist-order kinetics with rate constants of 0.04, 1.0 and 0.0006 min-1 at pH 2.50, 5.05 and 12.04 for TiO2/UV and 0.03, 0.007 and 0.0005 min-1 at pH 2.51, 5.05 and 11.33 for g-C3N4/vis, respectively. Around eighteen by-products have been detected with slight differences between the two photocatalytic systems studied. The evolution of the main common by-products (tentatively identified as 1-(4-ethylphenyl)-2-methylpropan-1-one, 1-(4-isobutylphenyl)ethan-1-ol, 1-(4-ethylphenyl)-2-methylpropan-1-ol and 1(-4-acetylphenyl)-2-methylpropan-1-one) were monitored and the results were consistent with reaction pathways based on hydroxyl radical attacks following/followed by decarboxylation. Moreover, some by-products have been reported for the first time in the photocatalytic oxidation of ibuprofen.
Collapse
Affiliation(s)
- Marta Jiménez-Salcedo
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), University of La Rioja, C/ Madre de Dios 51, E-26006 Logroño La Rioja, Spain
| | - Miguel Monge
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), University of La Rioja, C/ Madre de Dios 51, E-26006 Logroño La Rioja, Spain.
| | - María Teresa Tena
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), University of La Rioja, C/ Madre de Dios 51, E-26006 Logroño La Rioja, Spain.
| |
Collapse
|
42
|
Kafeenah HIS, Osman R, Bakar NKA. Disk solid-phase extraction of multi-class pharmaceutical residues in tap water and hospital wastewater, prior to ultra-performance liquid chromatographic-tandem mass spectrometry (UPLC-MS/MS) analyses. RSC Adv 2018; 8:40358-40368. [PMID: 35558236 PMCID: PMC9091434 DOI: 10.1039/c8ra06885b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/16/2018] [Indexed: 01/28/2023] Open
Abstract
In this work, a new clean-up and pre-concentration method based on disk solid-phase extraction (SPE) was developed to determine multi-class pharmaceutical residues covering a wide range of polarities (log K ow values from -0.5 to 5.1) in water systems, prior to ultra-performance liquid chromatographic-tandem mass spectrometry (UPLC-MS/MS) analyses. Electrospray ionisation in positive and negative modes was used for the simultaneous determination of both acidic and basic pharmaceuticals. The performances of disk SPE and cartridge SPE were compared. The targeted pharmaceutical compounds list included bronchodilators, antidiabetic drugs, antihypertensive drugs, a lipid-lowering agent, analgesics, and anti-inflammatory drugs. Based on our results, the disk SPE demonstrated a higher sensitivity and recovery value and less analysis time as compared to the cartridge SPE method. The limits of detection (LOD) for the new method ranged from 0.02-3.2 ng L-1, 0.02-3.1 ng L-1 and 0.02-4.7 ng L-1 for tap, effluent and influent wastewater, respectively. The method's absolute recovery values ranged from 70% to 122% for tap water, 62% to 121% for effluent wastewater and 62% to 121% for influent wastewater, except for metformin in which the absolute recovery value was approximately 48% for all samples. Intra-day precision for tap water, effluent and influent wastewater ranged from 3-12%, 4-9% and 2-8%, respectively. The method developed was applied for the determination of targeted pharmaceuticals in tap, effluent, and influent wastewater from one hospital treatment plant in Malaysia. The results revealed that the highest concentrations of certain pharmaceuticals were up to 49 424 ng L-1 (acetaminophen) and 1763 ng L-1 (caffeine) in the influent and effluent wastewater, respectively. The results also showed a variation in the treatment efficiencies for the hospital treatment plant from one compound to another. Nevertheless, the removal efficiencies ranged from 0-99%.
Collapse
Affiliation(s)
- Husam I S Kafeenah
- Department of Chemistry, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Rozita Osman
- Faculty of Applied Sciences, Universiti Teknologi MARA 40450 Shah Alam Selangor Malaysia
| | - N K A Bakar
- Department of Chemistry, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia
| |
Collapse
|
43
|
Praveena SM, Shaifuddin SNM, Sukiman S, Nasir FAM, Hanafi Z, Kamarudin N, Ismail THT, Aris AZ. Pharmaceuticals residues in selected tropical surface water bodies from Selangor (Malaysia): Occurrence and potential risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:230-240. [PMID: 29902621 DOI: 10.1016/j.scitotenv.2018.06.058] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/24/2018] [Accepted: 06/05/2018] [Indexed: 05/24/2023]
Abstract
This study investigated the occurrence of nine pharmaceuticals (amoxicillin, caffeine, chloramphenicol, ciprofloxacin, dexamethasone, diclofenac, nitrofurazone, sulfamethoxazole, and triclosan) and to evaluate potential risks (human health and ecotoxicological) in Lui, Gombak and Selangor (Malaysia) rivers using commercial competitive Enzyme-Linked Immunosorbent Assay (ELISA) kit assays. Physicochemical properties of these rivers showed the surface samples belong to Class II of Malaysian National Water Quality Standards which requires conventional treatment before consumption. All the pharmaceuticals were detected in all three rivers except for triclosan, dexamethasone and diclofenac which were not detected in few of sampling locations in these three rivers. Highest pharmaceutical concentrations were detected in Gombak river in line of being as one of the most polluted rivers in Malaysia. Ciprofloxacin concentrations were detected in all the sampling locations with the highest at 299.88 ng/L. While triclosan, dexamethasone and diclofenac concentrations were not detected in a few of sampling locations in these three rivers. All these nine pharmaceuticals were within the levels reported previously in literature. Pharmaceutical production, wastewater treatment technologies and treated sewage effluent were found as the potential sources which can be related with pharmaceuticals occurrence in surface water samples. Potential human risk assessment showed low health risk except for ciprofloxacin and dexamethasone. Instead, ecotoxicological risk assessment indicated moderate risks were present for these rivers. Nevertheless, results confirmation using instrumental techniques is needed for higher degree of specificity. It is crucial to continuously monitor the surface water bodies for pharmaceuticals using a cost-effective prioritisation approach to assess sensitive sub-populations risk.
Collapse
Affiliation(s)
- Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia.
| | - Siti Norashikin Mohamad Shaifuddin
- Department of Environmental Health and Safety, Faculty of Health Sciences, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Syazwani Sukiman
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia
| | - Fauzan Adzima Mohd Nasir
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia
| | - Zanjabila Hanafi
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia
| | - Norizah Kamarudin
- Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia
| | - Tengku Hanidza Tengku Ismail
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia
| |
Collapse
|
44
|
Simu GM, Atchana J, Soica CM, Coricovac DE, Simu SC, Dehelean CA. Pharmaceutical Mixtures: Still A Concern for Human and Environmental Health. Curr Med Chem 2018; 27:121-153. [PMID: 30406736 DOI: 10.2174/0929867325666181108094222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/09/2018] [Accepted: 01/29/2018] [Indexed: 11/22/2022]
Abstract
In the present work, recent data on the sources, occurrence and fate of human-use pharmaceutical active compounds (PhACs) in the aquatic environment have been reviewed. Since PhACs and their metabolites are usually present as mixtures in the environment at very low concentrations, a particular emphasis was placed onto the PhACs mixtures, as well as on their short-term and long-term effects against human and environmental health. Moreover, a general overview of the main conventional as well as of the latest trends in wastewaters decontaminant technologies was outlined. Advantages and disadvantages of current processes were also pointed out. It appears that numerous gaps still exist in the current knowledge related to this field of interest, and further studies should be conducted at the global level in order to ensure a more efficient monitorisation of the presence of PhACs and their metabolites into the aquatic environment and to develop new mitigation measures.
Collapse
Affiliation(s)
- Georgeta M Simu
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| | - Jeanne Atchana
- University of Maroua, Faculty of Sciences, Department of Chemistry, P.O. Box 46, University of Maroua, Maroua, Cameroon
| | - Codruta M Soica
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| | - Dorina E Coricovac
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| | - Sebastian C Simu
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| | - Cristina A Dehelean
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| |
Collapse
|
45
|
Li W, Huang L, Guo D, Zhao Y, Zhu Y. Self-assembling covalent organic framework functionalized poly (styrene-divinyl benzene-glycidylmethacrylate) composite for the rapid extraction of non-steroidal anti-inflammatory drugs in wastewater. J Chromatogr A 2018; 1571:76-83. [DOI: 10.1016/j.chroma.2018.08.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/03/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
|
46
|
Schafhauser BH, Kristofco LA, de Oliveira CMR, Brooks BW. Global review and analysis of erythromycin in the environment: Occurrence, bioaccumulation and antibiotic resistance hazards. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:440-451. [PMID: 29587215 DOI: 10.1016/j.envpol.2018.03.052] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/11/2018] [Accepted: 03/15/2018] [Indexed: 05/21/2023]
Abstract
Environmental observations of antibiotics and other pharmaceuticals have received attention as indicators of an urbanizing global water cycle. When connections between environment and development of antibiotic resistance (ABR) are considered, it is increasingly important to understand the life cycle of antibiotics. Here we examined the global occurrence of erythromycin (ERY) in: 1. wastewater effluent, inland waters, drinking water, groundwater, and estuarine and coastal systems; 2. sewage sludge, biosolids and sediments; and 3. tissues of aquatic organisms. We then performed probabilistic environmental hazard assessments to identify probabilities of exceeding the predicted no-effect concentration (PNEC) of 1.0 μg L-1 for promoting ABR, based on previous modeling of minimum inhibitory concentrations and minimal selective concentrations of ERY, and measured levels from different geographic regions. Marked differences were observed among geographic regions and matrices. For example, more information was available for water matrices (312 publications) than solids (97 publications). ERY has primarily been studied in Asia, North America and Europe with the majority of studies performed in China, USA, Spain and the United Kingdom. In surface waters 72.4% of the Asian studies have been performed in China, while 85.4% of the observations from North America were from the USA; Spain represented 41.9% of the European surface water studies. Remarkably, results from PEHAs indicated that the likelihood of exceeding the ERY PNEC for ABR in effluents was markedly high in Asia (33.3%) followed by Europe (20%) and North America (17.8%). Unfortunately, ERY occurrence data is comparatively limited in coastal and marine systems across large geographic regions including Southwest Asia, Eastern Europe, Africa, and Central and South America. Future studies are needed to understand risks of ERY and other antibiotics to human health and the environment, particularly in developing regions where waste management systems and treatment infrastructure are being implemented slower than access to and consumption of pharmaceuticals is occurring.
Collapse
Affiliation(s)
- Bruno Henrique Schafhauser
- Graduate Program in Environmental Management, Universidade Positivo, R. Prof. Pedro Viriato Parigot de Souza - Campo Comprido, Curitiba, Paraná, Brazil
| | - Lauren A Kristofco
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Cíntia Mara Ribas de Oliveira
- Graduate Program in Environmental Management, Universidade Positivo, R. Prof. Pedro Viriato Parigot de Souza - Campo Comprido, Curitiba, Paraná, Brazil.
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, USA.
| |
Collapse
|
47
|
Diuzheva A, Balogh J, Jekő J, Cziáky Z. Application of liquid-liquid microextraction for the effective separation and simultaneous determination of 11 pharmaceuticals in wastewater samples using high-performance liquid chromatography with tandem mass spectrometry. J Sep Sci 2018; 41:2870-2877. [PMID: 29772610 DOI: 10.1002/jssc.201800309] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/24/2023]
Abstract
A dispersive liquid-liquid microextraction method for the simultaneous determination of 11 pharmaceuticals has been developed. The method is based on a microextraction procedure applied to wastewater samples from different regions of Hungary followed by high-performance liquid chromatography with mass spectrometry. The effect of the nature of the extractant, dispersive solvent, different additives, and extraction time were examined on the extraction efficiently of the dispersive liquid-liquid microextraction method. Under optimal conditions, the linearity for determining the pharmaceuticals was in the range of 1-500 ng/mL, with the correlation coefficients ranging from 0.9922 to 0.9995. The limits of detection and limits of quantification were in the range of 0.31-6.65 and 0.93-22.18 ng/mL, respectively.
Collapse
Affiliation(s)
- Alina Diuzheva
- Department of Analytical Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - József Balogh
- Department of Chemistry, University of Nyíregyháza, Nyíregyháza, Hungary.,Department of Analytical Chemistry, Uzhgorod National University, Uzhgorod, Ukraine
| | - József Jekő
- Department of Chemistry, University of Nyíregyháza, Nyíregyháza, Hungary.,Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Nyíregyháza, Hungary
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Nyíregyháza, Hungary
| |
Collapse
|
48
|
Secrétan PH, Karoui M, Levi Y, Sadou Yayé H, Tortolano L, Solgadi A, Yagoubi N, Do B. Pemetrexed degradation by photocatalytic process: Kinetics, identification of transformation products and estimation of toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1082-1094. [PMID: 29625523 DOI: 10.1016/j.scitotenv.2017.12.182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/16/2017] [Accepted: 12/17/2017] [Indexed: 06/08/2023]
Abstract
This study employed a UV-A/visible/TiO2 system to investigate the degradation of pemetrexed, an antifolate agent used in chemotherapy. The laboratory-scale method employed a photostability chamber that could be used to study multiple samples. Reversed-phase HPLC coupled with high-resolution ESI-LTQ-Orbitrap mass spectrometry was used to determine the transformation products (TPs) of PEME. Based on the identified TPs and existing chemical knowledge, the mechanism of degradation of the target compound was proposed. Concentrations were monitored as a function of time, and the degradation kinetics were compared. The structures of seven TPs, four of which have not been described to date, were proposed. Most of the TPs stemmed from OH radical additions to the dihydropyrrole moiety and oxidative decarboxylation of the glutamate residue. Based on the elucidated structures, a computational toxicity assessment was performed, showing that the TPs with higher log D values than the parent compound are more toxic than the PEME itself. To support these findings, the toxicities of irradiated samples on Vibrio fischeri were monitored over time. The experimental results corresponded well with the results of previous computational studies.
Collapse
Affiliation(s)
- Philippe-Henri Secrétan
- University of Paris-Sud, Department of Pharmacy, Laboratory "Matériaux et Santé" EA 401, 5 rue Jean Baptiste Clément, 92296 Châtenay-Malabry, France; Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Department of Pharmacy, 149 Rue de Sèvres, 75015 Paris, France.
| | - Maher Karoui
- University of Paris-Sud, Department of Pharmacy, Laboratory "Matériaux et Santé" EA 401, 5 rue Jean Baptiste Clément, 92296 Châtenay-Malabry, France; Assistance Publique-Hôpitaux de Paris, Groupe hospitalier Henri Mondor, Department of Pharmacy, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Yves Levi
- University of Paris-Sud, Faculté de Pharmacie, UMR 8079, CNRS, AgroParisTech, Paris, France
| | - Hassane Sadou Yayé
- University of Paris-Sud, Department of Pharmacy, Laboratory "Matériaux et Santé" EA 401, 5 rue Jean Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Lionel Tortolano
- University of Paris-Sud, Department of Pharmacy, Laboratory "Matériaux et Santé" EA 401, 5 rue Jean Baptiste Clément, 92296 Châtenay-Malabry, France; Assistance Publique-Hôpitaux de Paris, Groupe hospitalier Henri Mondor, Department of Pharmacy, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Audrey Solgadi
- University of Paris-Sud, Faculté de Pharmacie, Service d'Analyse des Médicaments et Métabolites, Institut d'Innovation Thérapeutique, 5 rue Jean Baptiste Clément, 92296 Chatenay-Malabry, France
| | - Najet Yagoubi
- University of Paris-Sud, Department of Pharmacy, Laboratory "Matériaux et Santé" EA 401, 5 rue Jean Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Bernard Do
- University of Paris-Sud, Department of Pharmacy, Laboratory "Matériaux et Santé" EA 401, 5 rue Jean Baptiste Clément, 92296 Châtenay-Malabry, France; Assistance Publique-Hôpitaux de Paris, Groupe hospitalier Henri Mondor, Department of Pharmacy, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| |
Collapse
|
49
|
An effervescence-assisted switchable fatty acid-based microextraction with solidification of floating organic droplet for determination of fluoroquinolones and tetracyclines in seawater, sediment, and seafood. Anal Bioanal Chem 2018; 410:2671-2687. [DOI: 10.1007/s00216-018-0942-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/26/2018] [Accepted: 02/05/2018] [Indexed: 10/17/2022]
|
50
|
Effect of salinity and pH on the calibration of the extraction of pharmaceuticals from water by PASSIL. Talanta 2018; 179:271-278. [DOI: 10.1016/j.talanta.2017.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/24/2022]
|