1
|
Ziaei Darounkolaei N, Mousavi Kiasary SMS, Behzadi A, Nabavi Mosavi N, Ferdowsi SM. Instrument shank-assisted ovariohysterectomy: a randomized clinical trial of surgical and pain alleviation efficiency of a single-person modified technique. Front Vet Sci 2023; 10:1210089. [PMID: 37915948 PMCID: PMC10616265 DOI: 10.3389/fvets.2023.1210089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Objectives To evaluate a modified ovariohysterectomy (OHE) technique performed by a single person and compare it with the conventional method based on time efficiency, trauma, and postoperative pain. Methods In a prospective, randomized, experimental study, 18 healthy, large, deep-chested, mixed-breed intact female dogs were randomly allocated to conventional (n = 9) and instrument shank-assisted (n = 9) groups. On the basis of video recordings, the various surgical step durations were analyzed: total surgery time (TST), pedicle intervention time (PIT), suspensory release time (SRT), shanking time (ShT), clamping time (ClpT), ligating time (LigT), and closure time (CT). The Glasgow composite pain scale short-form (GCMPS-SF), university of Melbourne pain scale (UMPS), and Visual Analogue Scales (VAS) were used to measure pain. C-reactive protein (CRP) fluctuation was also investigated. These evaluations were completed before and 6, 24, 48, and 72 h postoperatively. Results Instrument shank-assisted OHE was less time-consuming than conventional OHE (p = 0.005), improved PIT by 30.7% (6.44 min for both pedicles, p = 0.014), and correlated strongly with TST (ρ = 0.862, p = 0.003 and ρ = 0.955, p = 0.000, respectively). The two method's surgical step durations were also TST = 47.40 ± 9.9 vs. 34.70 ± 6.7 min, PIT = 20.96 ± 5.78 vs. 14.52 ± 3.73 min, SRT = 78.97 ± 69.10 vs. ShT = 20.39 ± 8.18 s (p = 0.035), ClpT = 50.66 ± 45.04 vs. 63.55 ± 37.15 s (p = 0.662), LigT = 12.82 ± 3.37 vs. 8.02 ± 3.11 min (p = 0.005), and CT = 16.40 ± 4.5 vs. 11.60 ± 2.5 min (p = 0.013), respectively. While both techniques inflicted pain on the animals, the novel approach resulted in a reduction of pain at T6 (GCMPS-SF, p = 0.015 and VAS, p = 0.002), T24 (UMPS, p = 0.003), and T48 (GCMPS-SF, p = 0.015 and UMPS, p = 0.050). Both methods exhibited a peak in CRP level after 24 h, which subsequently returned to baseline after 48 h. However, the shank-assisted method demonstrated a significantly lower reduction in CRP level at the 48-h compared to the other group (p = 0.032). Conclusion Instrument shank-assisted technique permitted ovarian removal without an assistant, less damage to animals and reducing its time when compared to a conventional technique, and resulting in an alternative that causes less surgical stress and fatigue. Further research with a larger population size is required to determine the serum CRP levels as an alternative pain biomarker.
Collapse
Affiliation(s)
- Navid Ziaei Darounkolaei
- Babol Branch, Department of Surgery and Radiology, Faculty of Veterinary Medicine, Islamic Azad University, Babol, Iran
| | - Seyed Mohamad Sadegh Mousavi Kiasary
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amirhoushang Behzadi
- Babol Branch, Faculty of Veterinary Medicine, Islamic Azad University, Babol, Iran
| | - Niki Nabavi Mosavi
- Babol Branch, Department of Surgery and Radiology, Faculty of Veterinary Medicine, Islamic Azad University, Babol, Iran
| | | |
Collapse
|
2
|
Du Z, Zang Z, Luo J, Liu T, Yang L, Cai Y, Wang L, Zhang D, Zhao J, Gao J, Lv K, Wang L, Li H, Gong H, Fan X. Chronic exposure to (2 R,6 R)-hydroxynorketamine induces developmental neurotoxicity in hESC-derived cerebral organoids. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131379. [PMID: 37054645 DOI: 10.1016/j.jhazmat.2023.131379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
(R,S)-ketamine (ketamine) has been increasingly used recreationally and medicinally worldwide; however, it cannot be removed by conventional wastewater treatment plants. Both ketamine and its metabolite norketamine have been frequently detected to a significant degree in effluents, aquatic, and even atmospheric environments, which may pose risks to organisms and humans via drinking water and aerosols. Ketamine has been shown to affect the brain development of unborn babies, while it is still elusive whether (2 R,6 R)-hydroxynorketamine (HNK) induces similar neurotoxicity. Here, we investigated the neurotoxic effect of (2 R,6 R)-HNK exposure at the early stages of gestation by applying human cerebral organoids derived from human embryonic stem cells (hESCs). Short-term (2 R,6 R)-HNK exposure did not significantly affect the development of cerebral organoids, but chronic high-concentration (2 R,6 R)-HNK exposure at day 16 inhibited the expansion of organoids by suppressing the proliferation and augmentation of neural precursor cells (NPCs). Notably, the division mode of apical radial glia was unexpectedly switched from vertical to horizontal division planes following chronic (2 R,6 R)-HNK exposure in cerebral organoids. Chronic (2 R,6 R)-HNK exposure at day 44 mainly inhibited the differentiation but not the proliferation of NPCs. Overall, our findings indicate that (2 R,6 R)-HNK administration leads to the abnormal development of cortical organoids, which may be mediated by inhibiting HDAC2. Future clinical studies are needed to explore the neurotoxic effects of (2 R,6 R)-HNK on the early development of the human brain.
Collapse
Affiliation(s)
- Zhulin Du
- School of Life Sciences, Chongqing University, Chongqing, China, Chongqing 401331, China; Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Zhenle Zang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Jing Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Ling Yang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Yun Cai
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Liuyongwei Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Dandan Zhang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Jinghui Zhao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Keyi Lv
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 40037, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| |
Collapse
|
3
|
Goswami N, Aleem M, Manda K. Intranasal (2R, 6R)-hydroxynorketamine for acute pain: Behavioural and neurophysiological safety analysis in mice. Clin Exp Pharmacol Physiol 2023; 50:169-177. [PMID: 36371631 DOI: 10.1111/1440-1681.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
Ketamine is known for its antinociceptive effect and is also used for treatment-resistant depression. However, the efficacy and safety of (2R, 6R)-hydroxynorketamine (HNK), a ketamine metabolite has been sparingly investigated for acute pain management. The current study aims at investigating the antinociceptive effect of intranasal (2R, 6R)-HNK using pre-clinical models of acute pain. Additionally, the behavioural and neurophysiological safety analyses were carried out for the effective time window. Antinociceptive efficacy of (2R, 6R)-HNK was evaluated using the hot plate test and Hargreaves' plantar test. The formalin test was carried out in both the acute and tonic phases. The neurophysiological and behavioural safety analyses were carried out separately for the haemodynamic function, cortical electroencephalography (EEG), and spontaneous behavioural functions. Analgesic effect of (2R, 6R)-HNK was evident by a significant increase in paw-withdrawal latency in both Hargreaves' and hot plate tests. Additionally, the (2R, 6R)-HNK showed a significant ameliorative effect on pain-related behaviour in the second phase of the formalin test. (2R, 6R)-HNK exhibited an anxiolytic effect without causing any significant changes in locomotor activity and haemodynamic parameters. Power spectral density (PSD) analysis of electroencephalogram revealed no significant changes except a comparative increase in the gamma band range. Both the locomotor functions in the open field test and the PSD value of delta wave indicated no sedative effect at the given dose of (2R, 6R)-HNK. The results demonstrated the pain-alleviating effect of (2R, 6R)-HNK without compromising the neurophysiological and behavioural function. Therefore, intranasal (2R, 6R)-HNK is suggested as a safe candidate for further clinical study in the management of acute pain.
Collapse
Affiliation(s)
- Nidhi Goswami
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Mohd Aleem
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Kailash Manda
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| |
Collapse
|
4
|
Langmia IM, Just KS, Yamoune S, Müller JP, Stingl JC. Pharmacogenetic and drug interaction aspects on ketamine safety in its use as antidepressant - implications for precision dosing in a global perspective. Br J Clin Pharmacol 2022; 88:5149-5165. [PMID: 35863300 DOI: 10.1111/bcp.15467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 12/01/2022] Open
Abstract
Ketamine and its enantiomer S-ketamine (esketamine) are known to produce rapid-onset antidepressant effects in major depression. Intranasal esketamine has recently come into the market as an antidepressant. Besides experience from short-term use in anesthesia and analgesia, the experience with ketamine as long-term medication is rather low. The use of ketamine and esketamine is limited due to potential neurotoxicity, psychocomimetic side effects, potential abuse and interindividual variability in treatment response including cessation of therapy. Therefore, taking a look at individual patient risks and potential underlying variability in pharmacokinetics may improve safety and dosing of these new antidepressant drugs in clinical practice. Differential drug metabolism due to polymorphic cytochrome P450 (CYP) enzymes and gene-drug interactions are known to influence the efficacy and safety of many drugs. Ketamine and esketamine are metabolized by polymorphic CYP enzymes including CYP2B6, CYP3A4, CYP2C9 and CYP2A6. In antidepressant drug therapy, usually multiple drugs are administered which are substrates of CYP enzymes, increasing the risk for drug-drug interactions (DDIs). We reviewed the potential impact of polymorphic CYP variants and common DDIs in antidepressant drug therapy affecting ketamine pharmacokinetics, and the role for dose optimization. The use of ketamine or intranasal esketamine as antidepressants demands a better understanding of the factors that may impact its metabolism and efficacy in long-term use. In addition to other clinical and environmental confounders, prior information on the pharmacodynamic and pharmacokinetic determinants of response variability to ketamine and esketamine may inform on dose optimization and identification of individuals at risk of adverse drug reactions.
Collapse
Affiliation(s)
- Immaculate M Langmia
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Katja S Just
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Sabrina Yamoune
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany.,Federal Institute for Drugs and Medical Devices, BfArM, Bonn, Germany
| | - Julian Peter Müller
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Julia C Stingl
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| |
Collapse
|
5
|
Highland JN, Morris PJ, Konrath KM, Riggs LM, Hagen NR, Zanos P, Powels CF, Moaddel R, Thomas CJ, Wang AQ, Gould TD. Hydroxynorketamine Pharmacokinetics and Antidepressant Behavioral Effects of (2 ,6)- and (5 R)-Methyl-(2 R,6 R)-hydroxynorketamines. ACS Chem Neurosci 2022; 13:510-523. [PMID: 35113535 PMCID: PMC9926475 DOI: 10.1021/acschemneuro.1c00761] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
(R,S)-Ketamine is rapidly metabolized to form a range of metabolites in vivo, including 12 unique hydroxynorketamines (HNKs) that are distinguished by a cyclohexyl ring hydroxylation at the 4, 5, or 6 position. While both (2R,6R)- and (2S,6S)-HNK readily penetrate the brain and exert rapid antidepressant-like actions in preclinical tests following peripheral administration, the pharmacokinetic profiles and pharmacodynamic actions of 10 other HNKs have not been examined. We assessed the pharmacokinetic profiles of all 12 HNKs in the plasma and brains of male and female mice and compared the relative potencies of four (2,6)-HNKs to induce antidepressant-relevant behavioral effects in the forced swim test in male mice. While all HNKs were readily brain-penetrable following intraperitoneal injection, there were robust differences in peak plasma and brain concentrations and exposures. Forced swim test immobility rank order of potency, from most to least potent, was (2R,6S)-, (2S,6R)-, (2R,6R)-, and (2S,6S)-HNK. We hypothesized that distinct structure-activity relationships and the resulting potency of each metabolite are linked to unique substitution patterns and resultant conformation of the six-membered cyclohexanone ring system. To explore this, we synthesized (5R)-methyl-(2R,6R)-HNK, which incorporates a methyl substitution on the cyclohexanone ring. (5R)-Methyl-(2R,6R)-HNK exhibited similar antidepressant-like potency to (2R,6S)-HNK. These results suggest that conformation of the cyclohexanone ring system in the (2,6)-HNKs is an important factor underlying potency and that additional engineering of this structural feature may improve the development of a new generation of HNKs. Such HNKs may represent novel drug candidates for the treatment of depression.
Collapse
Affiliation(s)
- Jaclyn N. Highland
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Program in Toxicology, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Patrick J. Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville MD 20850, USA
| | - Kylie M. Konrath
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD 20850, USA
| | - Lace M. Riggs
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Natalie R. Hagen
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD 20850, USA
| | - Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Current address: Department of Psychology, University of Cyprus, Nicosia 1678, Cyprus
| | - Chris F. Powels
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore MD 21224, USA
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville MD 20850, USA
| | - Amy Q. Wang
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD 20850, USA
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Veterans Affairs Maryland Health Care System, Baltimore MD 21201, USA
| |
Collapse
|
6
|
Highland JN, Zanos P, Riggs LM, Georgiou P, Clark SM, Morris PJ, Moaddel R, Thomas CJ, Zarate CA, Pereira EFR, Gould TD. Hydroxynorketamines: Pharmacology and Potential Therapeutic Applications. Pharmacol Rev 2021; 73:763-791. [PMID: 33674359 PMCID: PMC7938660 DOI: 10.1124/pharmrev.120.000149] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hydroxynorketamines (HNKs) are formed in vivo after (R,S)-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially classified as inactive metabolites because of their lack of anesthetic effects, more recent studies have begun to reveal their biologic activities. In particular, (2R,6R)- and (2S 6)-HNK exert antidepressant-relevant behavioral and physiologic effects in preclinical models, which led to a rapid increase in studies seeking to clarify the mechanisms by which HNKs exert their pharmacological effects. To date, the majority of HNK research has focused on the actions of (2R,6R)-HNK because of its robust behavioral actions in tests of antidepressant effectiveness and its limited adverse effects. This review describes HNK pharmacokinetics and pharmacodynamics, as well as the putative cellular, molecular, and synaptic mechanisms thought to underlie their behavioral effects, both following their metabolism from ketamine and after direct administration in preclinical studies. Converging preclinical evidence indicates that HNKs modulate glutamatergic neurotransmission and downstream signaling pathways in several brain regions, including the hippocampus and prefrontal cortex. Effects on other neurotransmitter systems, as well as possible effects on neurotrophic and inflammatory processes, and energy metabolism, are also discussed. Additionally, the behavioral effects of HNKs and possible therapeutic applications are described, including the treatment of unipolar and bipolar depression, post-traumatic stress disorder, chronic pain, neuroinflammation, and other anti-inflammatory and analgesic uses. SIGNIFICANCE STATEMENT: Preclinical studies indicate that hydroxynorketamines (HNKs) exert antidepressant-relevant behavioral actions and may also have analgesic, anti-inflammatory, and other physiological effects that are relevant for the treatment of a variety of human diseases. This review details the pharmacokinetics and pharmacodynamics of the HNKs, as well as their behavioral actions, putative mechanisms of action, and potential therapeutic applications.
Collapse
Affiliation(s)
- Jaclyn N Highland
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Panos Zanos
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Lace M Riggs
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Polymnia Georgiou
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Sarah M Clark
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Patrick J Morris
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Ruin Moaddel
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Craig J Thomas
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Carlos A Zarate
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Edna F R Pereira
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Todd D Gould
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| |
Collapse
|
7
|
De Vries MC, Brown DA, Allen ME, Bindoff L, Gorman GS, Karaa A, Keshavan N, Lamperti C, McFarland R, Ng YS, O'Callaghan M, Pitceathly RDS, Rahman S, Russel FGM, Varhaug KN, Schirris TJJ, Mancuso M. Safety of drug use in patients with a primary mitochondrial disease: An international Delphi-based consensus. J Inherit Metab Dis 2020; 43:800-818. [PMID: 32030781 PMCID: PMC7383489 DOI: 10.1002/jimd.12196] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/29/2022]
Abstract
Clinical guidance is often sought when prescribing drugs for patients with primary mitochondrial disease. Theoretical considerations concerning drug safety in patients with mitochondrial disease may lead to unnecessary withholding of a drug in a situation of clinical need. The aim of this study was to develop consensus on safe medication use in patients with a primary mitochondrial disease. A panel of 16 experts in mitochondrial medicine, pharmacology, and basic science from six different countries was established. A modified Delphi technique was used to allow the panellists to consider draft recommendations anonymously in two Delphi rounds with predetermined levels of agreement. This process was supported by a review of the available literature and a consensus conference that included the panellists and representatives of patient advocacy groups. A high level of consensus was reached regarding the safety of all 46 reviewed drugs, with the knowledge that the risk of adverse events is influenced both by individual patient risk factors and choice of drug or drug class. This paper details the consensus guidelines of an expert panel and provides an important update of previously established guidelines in safe medication use in patients with primary mitochondrial disease. Specific drugs, drug groups, and clinical or genetic conditions are described separately as they require special attention. It is important to emphasise that consensus-based information is useful to provide guidance, but that decisions related to drug prescribing should always be tailored to the specific needs and risks of each individual patient. We aim to present what is current knowledge and plan to update this regularly both to include new drugs and to review those currently included.
Collapse
Affiliation(s)
- Maaike C. De Vries
- Radboudumc Amalia Children's HospitalRadboud Center for Mitochondrial MedicineNijmegenThe Netherlands
| | - David A. Brown
- Department of Human Nutrition, Foods, and Exercise and the Virginia Tech Center for Drug DiscoveryVirginia TechBlacksburgVirginia
| | - Mitchell E. Allen
- Department of Human Nutrition, Foods, and Exercise and the Virginia Tech Center for Drug DiscoveryVirginia TechBlacksburgVirginia
| | - Laurence Bindoff
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of NeurologyHaukeland University HospitalBergenNorway
| | - Gráinne S. Gorman
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- The Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Amel Karaa
- Genetics Unit, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusetts
| | - Nandaki Keshavan
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital NHS Foundation TrustLondonUK
| | - Costanza Lamperti
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- The Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- The Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Mar O'Callaghan
- Department of Neurology, Metabolic UnitHospital Sant Joan de DéuBarcelonaSpain
- CIBERERInstituto de Salud Carlos IIIBarcelonaSpain
| | - Robert D. S. Pitceathly
- Department of Neuromuscular DiseasesUCL Queen Square Institute of Neurology and The National Hospital for Neurology and NeurosurgeryLondonUK
| | - Shamima Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital NHS Foundation TrustLondonUK
| | - Frans G. M. Russel
- Department of Pharmacology and ToxicologyRadboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, RadboudumcNijmegenThe Netherlands
| | - Kristin N. Varhaug
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of NeurologyHaukeland University HospitalBergenNorway
| | - Tom J. J. Schirris
- Department of Pharmacology and ToxicologyRadboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, RadboudumcNijmegenThe Netherlands
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurological InstituteUniversity of PisaPisaItaly
| |
Collapse
|
8
|
Farmer CA, Gilbert JR, Moaddel R, George J, Adeojo L, Lovett J, Nugent AC, Kadriu B, Yuan P, Gould TD, Park LT, Zarate CA. Ketamine metabolites, clinical response, and gamma power in a randomized, placebo-controlled, crossover trial for treatment-resistant major depression. Neuropsychopharmacology 2020; 45:1398-1404. [PMID: 32252062 PMCID: PMC7297997 DOI: 10.1038/s41386-020-0663-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022]
Abstract
A single, subanesthetic dose of (R,S)-ketamine (ketamine) exerts rapid and robust antidepressant effects. Several groups previously reported that (2S,6S;2R,6R)-hydroxynorketamine (HNK) had antidepressant effects in rodents, and that (2R,6R)-HNK increased cortical electroencephalographic gamma power. This exploratory study examined the relationship between ketamine metabolites, clinical response, psychotomimetic symptoms, and gamma power changes in 34 individuals (ages 18-65) with treatment-resistant depression (TRD) who received a single ketamine infusion (0.5 mg/kg) over 40 min. Plasma concentrations of ketamine, norketamine, and HNKs were measured at 40, 80, 120, and 230 min and at 1, 2, and 3 days post-infusion. Linear mixed models evaluated ketamine metabolites as mediators of antidepressant and psychotomimetic effects and their relationship to resting-state whole-brain magnetoencephalography (MEG) gamma power 6-9 h post-infusion. Three salient findings emerged. First, ketamine concentration positively predicted distal antidepressant response at Day 11 post-infusion, and an inverse relationship was observed between (2S,6S;2R,6R)-HNK concentration and antidepressant response at 3 and 7 days post-infusion. Norketamine concentration was not associated with antidepressant response. Second, ketamine, norketamine, and (2S,6S;2R,6R)-HNK concentrations at 40 min were positively associated with contemporaneous psychotomimetic symptoms; post-hoc analysis revealed that ketamine was the predominant contributor. Third, increased (2S,6S;2R,6R)-HNK maximum observed concentration (Cmax) was associated with increased MEG gamma power. While contrary to preclinical observations and our a priori hypotheses, these exploratory results replicate those of a recently published study documenting a relationship between higher (2S,6S;2R,6R)-HNK concentrations and weaker antidepressant response in humans and provide further rationale for studying gamma power changes as potential biomarkers of antidepressant response.
Collapse
Affiliation(s)
- Cristan A Farmer
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jessica R Gilbert
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ruin Moaddel
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jomy George
- Clinical Pharmacokinetics Research Unit, Pharmacy Department, National Institutes of Health, Bethesda, MD, USA
| | - Lilian Adeojo
- Clinical Pharmacokinetics Research Unit, Pharmacy Department, National Institutes of Health, Bethesda, MD, USA
| | - Jacqueline Lovett
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Allison C Nugent
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Magnetoencephalography Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bashkim Kadriu
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Peixiong Yuan
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Todd D Gould
- Departments of Psychiatry, Pharmacology, and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Lawrence T Park
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Kraus C, Wasserman D, Henter ID, Acevedo-Diaz E, Kadriu B, Zarate CA. The influence of ketamine on drug discovery in depression. Drug Discov Today 2019; 24:2033-2043. [PMID: 31382015 PMCID: PMC6842425 DOI: 10.1016/j.drudis.2019.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/24/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022]
Abstract
Recent research demonstrating that the glutamatergic modulator ketamine has rapid, robust, and sustained antidepressant effects has been a turning point in drug discovery for depression. The recent FDA approval of esketamine for adults with treatment-resistant major depressive disorder (MDD) has further underscored the relevance of this agent in spurring investigation into novel and mechanistically distinct agents for use in depression. Over the past two decades, ketamine research has ushered in a new wave of studies seeking to not only identify its mechanism of action but also to examine the antidepressant potential of novel or repurposed agents. This article reviews the approaches that have proven particularly fruitful for the field of neuropsychiatry.
Collapse
Affiliation(s)
- Christoph Kraus
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, USA
| | - Daniel Wasserman
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, USA
| | - Ioline D Henter
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, USA
| | - Elia Acevedo-Diaz
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, USA
| | - Bashkim Kadriu
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, USA.
| | - Carlos A Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, USA
| |
Collapse
|
10
|
Highland JN, Morris PJ, Zanos P, Lovett J, Ghosh S, Wang AQ, Zarate CA, Thomas CJ, Moaddel R, Gould TD. Mouse, rat, and dog bioavailability and mouse oral antidepressant efficacy of ( 2R,6R)-hydroxynorketamine. J Psychopharmacol 2019; 33:12-24. [PMID: 30488740 PMCID: PMC6541551 DOI: 10.1177/0269881118812095] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND (R,S)-ketamine has gained attention for its rapid-acting antidepressant actions in patients with treatment-resistant depression. However, widespread use of ketamine is limited by its side effects, abuse potential, and poor oral bioavailability. The ketamine metabolite, (2R,6R)-hydroxynorketamine, exerts rapid antidepressant effects, without ketamine's adverse effects and abuse potential, in rodents. METHODS We evaluated the oral bioavailability of (2R,6R)-hydroxynorketamine in three species (mice, rats, and dogs) and also evaluated five candidate prodrug modifications for their capacity to enhance the oral bioavailability of (2R,6R)-hydroxynorketamine in mice. Oral administration of (2R,6R)-hydroxynorketamine was assessed for adverse behavioral effects and for antidepressant efficacy in the mouse forced-swim and learned helplessness tests. RESULTS (2R,6R)-hydroxynorketamine had absolute bioavailability between 46-52% in mice, 42% in rats, and 58% in dogs. Compared to intraperitoneal injection in mice, the relative oral bioavailability of (2R,6R)-hydroxynorketamine was 62%, which was not improved by any of the candidate prodrugs tested. Following oral administration, (2R,6R)-hydroxynorketamine readily penetrated the brain, with brain to plasma ratios between 0.67-1.2 in mice and rats. Oral administration of (2R,6R)-hydroxynorketamine to mice did not alter locomotor activity or precipitate behaviors associated with discomfort, sickness, or stereotypy up to a dose of 450 mg/kg. Oral (2R,6R)-hydroxynorketamine reduced forced-swim test immobility time (15-150 mg/kg) and reversed learned helplessness (50-150 mg/kg) in mice. CONCLUSIONS These results demonstrate that (2R,6R)-hydroxynorketamine has favorable oral bioavailability in three species and exhibits antidepressant efficacy following oral administration in mice.
Collapse
Affiliation(s)
- Jaclyn N Highland
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA,Program in Toxicology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick J Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jacqueline Lovett
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Soumita Ghosh
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Amy Q Wang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Carlos A Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, Pereira EFR, Albuquerque EX, Thomas CJ, Zarate CA, Gould TD. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacol Rev 2018; 70:621-660. [PMID: 29945898 PMCID: PMC6020109 DOI: 10.1124/pr.117.015198] [Citation(s) in RCA: 673] [Impact Index Per Article: 112.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ketamine, a racemic mixture consisting of (S)- and (R)-ketamine, has been in clinical use since 1970. Although best characterized for its dissociative anesthetic properties, ketamine also exerts analgesic, anti-inflammatory, and antidepressant actions. We provide a comprehensive review of these therapeutic uses, emphasizing drug dose, route of administration, and the time course of these effects. Dissociative, psychotomimetic, cognitive, and peripheral side effects associated with short-term or prolonged exposure, as well as recreational ketamine use, are also discussed. We further describe ketamine's pharmacokinetics, including its rapid and extensive metabolism to norketamine, dehydronorketamine, hydroxyketamine, and hydroxynorketamine (HNK) metabolites. Whereas the anesthetic and analgesic properties of ketamine are generally attributed to direct ketamine-induced inhibition of N-methyl-D-aspartate receptors, other putative lower-affinity pharmacological targets of ketamine include, but are not limited to, γ-amynobutyric acid (GABA), dopamine, serotonin, sigma, opioid, and cholinergic receptors, as well as voltage-gated sodium and hyperpolarization-activated cyclic nucleotide-gated channels. We examine the evidence supporting the relevance of these targets of ketamine and its metabolites to the clinical effects of the drug. Ketamine metabolites may have broader clinical relevance than was previously considered, given that HNK metabolites have antidepressant efficacy in preclinical studies. Overall, pharmacological target deconvolution of ketamine and its metabolites will provide insight critical to the development of new pharmacotherapies that possess the desirable clinical effects of ketamine, but limit undesirable side effects.
Collapse
Affiliation(s)
- Panos Zanos
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Ruin Moaddel
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Patrick J Morris
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Lace M Riggs
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Jaclyn N Highland
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Polymnia Georgiou
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Edna F R Pereira
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Edson X Albuquerque
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Craig J Thomas
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Carlos A Zarate
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Todd D Gould
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| |
Collapse
|
12
|
Aleksandrova LR, Wang YT, Phillips AG. Hydroxynorketamine: Implications for the NMDA Receptor Hypothesis of Ketamine's Antidepressant Action. CHRONIC STRESS 2017; 1. [PMID: 30556028 PMCID: PMC6292673 DOI: 10.1177/2470547017743511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The prevailing hypothesis of ketamine’s unique antidepressant effects implicates
N-methyl-d-aspartate receptor (NMDAR) inhibition-dependent enhancement of
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated
transmission, activation of intracellular signalling pathways and increased
synaptogenesis. Recently, however, a seminal study by Zanos et al. directly
challenged the NMDAR hypothesis of ketamine with the claim that an active
ketamine metabolite, (2R,6R)-hydroxynorketamine, devoid of NMDAR binding
properties or key side effects of its parent compound, is both necessary and
sufficient for ketamine’s antidepressant effects in rodents. However, following
these encouraging initial findings, one preclinical study failed to replicate
the antidepressant effects of (2R,6R)-hydroxynorketamine (HNK), while others
have questioned the metabolite’s contribution to ketamine’s therapeutic effects
or argued against rejecting the NMDAR hypothesis of ketamine action. In light of
these potentially paradigm-shifting, but highly controversial, findings, this
review will summarise and critically evaluate the evidence for and against the
NMDA receptor hypothesis of ketamine action, with a particular focus on
(2R,6R)-HNK and the implications of its discovery for understanding ketamine’s
mechanism of action in depression. Ultimately, uncovering the molecular
mechanisms underlying the therapeutic effects of ketamine and possibly
(2R,6R)-HNK, will aid the development of novel and more efficacious
antidepressant agents so urgently needed to address a major public health
concern, and could hold potential for the treatment of other stress-related
psychopathologies, including bipolar disorder, post-traumatic stress disorder
and suicidality.
Collapse
Affiliation(s)
- Lily R Aleksandrova
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Yu Tian Wang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Anthony G Phillips
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Saland SK, Duclot F, Kabbaj M. Integrative analysis of sex differences in the rapid antidepressant effects of ketamine in preclinical models for individualized clinical outcomes. Curr Opin Behav Sci 2016; 14:19-26. [PMID: 28584860 DOI: 10.1016/j.cobeha.2016.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In major depressive disorder, women exhibit higher lifetime prevalence and different antidepressant response rates than men, which illustrates the importance of examining individual differences in the pathophysiology of depression and therapeutic response. In recent years, the consideration of sex in related preclinical research has thus gained interest-particularly in light of novel evidence for rapid-acting antidepressants. Notably, the literature recently revealed a higher sensitivity of females to the antidepressant effects of the N-methyl-D-aspartate receptor antagonist ketamine, in both baseline and preclinical conditions. Combined with its fast-acting and relatively sustained properties, this evidence highlights ketamine as a particularly interesting therapeutic alternative for this sensitive population, and supports the value in considering sex as a critical factor for improved individualized therapeutic strategies.
Collapse
Affiliation(s)
- Samantha K Saland
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL-32306.,Program in Neuroscience, Florida State University, Tallahassee, FL-32306
| | - Florian Duclot
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL-32306.,Program in Neuroscience, Florida State University, Tallahassee, FL-32306
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL-32306.,Program in Neuroscience, Florida State University, Tallahassee, FL-32306
| |
Collapse
|
14
|
Can A, Zanos P, Moaddel R, Kang HJ, Dossou KSS, Wainer IW, Cheer JF, Frost DO, Huang XP, Gould TD. Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters. J Pharmacol Exp Ther 2016; 359:159-70. [PMID: 27469513 DOI: 10.1124/jpet.116.235838] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022] Open
Abstract
Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine's antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-d-aspartate glutamate receptor inhibition. These antidepressant actions of (2S,6S;2R,6R)-HNK, or other metabolites, as well as ketamine's side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1-D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine's enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters (up to 10 μM). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect.
Collapse
Affiliation(s)
- Adem Can
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Panos Zanos
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Ruin Moaddel
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Hye Jin Kang
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Katinia S S Dossou
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Irving W Wainer
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Joseph F Cheer
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Douglas O Frost
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Xi-Ping Huang
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Todd D Gould
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| |
Collapse
|