1
|
Yan XY, Zhang R, Yang YN, Feng ZM, Jiang JS, Yuan X, Wang DM, Wang GC, Zhang X, Zhang PC. Three new flavonoids from the roots of Sophora tonkinensis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1305-1310. [PMID: 38860491 DOI: 10.1080/10286020.2024.2364909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Three new flavonoids including two isoflavanones sophortones A and B (1 and 2), and one chalcone sophortone C (3) were isolated from the roots of Sophora tonkinensis. Their structures were established by UV, IR, HRESIMS, and NMR data. The absolute configurations of 1 and 2 were determined by electronic circular dichroism (ECD) calculations.
Collapse
Affiliation(s)
- Xiao-Yun Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot 010059, China
| | - Rui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ya-Nan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zi-Ming Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Shuang Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiang Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dong-Mei Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guo-Cheng Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot 010059, China
| | - Xu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
2
|
Jia D, Tian X, Chen Y, Liu J, Wang M, Hao Z, Wang C, Zhao D. Preparation of enzymatic hydrolysates of mulberry leaf flavonoids and investigation into its treatment and mechanism for zebrafish inflammatory bowel disease. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109960. [PMID: 39393613 DOI: 10.1016/j.fsi.2024.109960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
INTRODUCTION The incidence of inflammatory bowel disease (IBD) has been increasing year by year in recent years. Flavonoids are the main components of mulberry leaves exerting anti-inflammatory effects and have potential applications in drug screening for IBD treatment. Enzymatic hydrolysis can enhance the bioavailability and activity of flavonoid glycosides. No relevant reports on the potentiation of mulberry leaf flavonoids (MLF) after deglycosylation have been retrieved. METHODS An enzymatic method was used to prepare enzymatic hydrolysates of MLF (EMLF). The protective effect of EMLF on zebrafish with IBD was evaluated by observing zebrafish intestinal length and width, intestinal histopathological morphology, as well as neutrophil and goblet expression. Network pharmacology and metabolomics were performed to explore the mechanism of action of EMLF against IBD. Finally, the mechanism of EMLF against IBD was validated using Western Blot and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS The EMLF was successfully prepared by hydrolyzing MLF with snailase for the first time, and the anti-inflammatory effect of EMLF was clarified to be superior to that of MLF in IBD zebrafish. The network pharmacology and metabolomics studies showed that the mechanism of EMLF for IBD may be related to regulation of purine metabolic pathway. The expression levels of adenosine deaminase (ADA), critical targets in purine metabolism, were significantly down-regulated, while the expression of adenine phosphoribosyltransferase (APRT) and xanthine dehydrogenase (XDH) was significantly increased when compared with the TNBS group. CONCLUSION The results suggested that enzymatic deglycosylation is an effective measure to enhance the anti-inflammatory activity of MLF, which provides referable ideas and methods for the deep processing and utilization of natural drug resources.
Collapse
Affiliation(s)
- Dongsheng Jia
- Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, PR China; Institute of Cash Crop, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050051, PR China
| | - Xi Tian
- Institute of Cash Crop, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050051, PR China
| | - Yuting Chen
- Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, PR China
| | - Jie Liu
- Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, PR China
| | - Man Wang
- Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, PR China
| | - Zhangsen Hao
- Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, PR China
| | - Changshun Wang
- Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, PR China
| | - Ding Zhao
- Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, PR China.
| |
Collapse
|
3
|
Zeng FF, Chen ZH, Luo FH, Liu CJ, Yang X, Zhang FX, Shi W. Sophorae tonkinensis radix et rhizoma: A comprehensive review of the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics, toxicology and detoxification strategy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118784. [PMID: 39244176 DOI: 10.1016/j.jep.2024.118784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophorae tonkinensis Radix et Rhizoma (STR), the dried root and rhizome of Sophora tonkinensis Gagnep., is commonly used in the treatment of tonsillitis and pharyngitis, throat soreness and throat obstruction, swelling and aching of gum, etc. in China or other Asian countries. STR is usually used as the core herb in traditional Chinese medicine preparations, such as "Biyanling Tablets", "Fufang Muji Granules" and "Ganyanling Injections", etc. AIM OF THE REVIEW: This review aimed to provide a comprehensive analysis of STR in terms of botany, traditional use, phytochemistry, ethnopharmacology, pharmacology, pharmacokinetics, toxicology and detoxification strategy, to provide a rational application in future research. MATERIALS AND METHODS The information involved in the study was gathered from a variety of electronic resources, including China National Knowledge Infrastructure (CNKI), SciFinder, Google Scholar, PubMed, Web of Science, and Chinese Masters and Doctoral Dissertations. RESULTS Till now, a total of 333 chemical components have been identified in STR, including 85 alkaloids, 124 flavonoids, 24 triterpenes, 27 triterpene saponins, 34 organic acids, 8 polysaccharides, etc. STR and its main active constituents have cardiovascular protection, anti-tumor activity, anti-inflammatory activity, antipyretic activity, analgesic activity, antibacterial activity, antifungal activity, antiviral activity, and hepatoprotective activity, etc. However, toxic effects of STR on the liver, nerves, heart, and gastrointestinal tract have also been observed. To mitigate these risks, STR needs attenuation before use, with the most common detoxification methods being processing and combined use with other drugs. The pharmacokinetics of STR in vivo and traditional and clinical prescriptions containing STR have been sorted out. Despite the potential therapeutic benefits of STR, further research is warranted to elucidate its hepatotoxicity, particularly in vivo, exploring aspects such as in vivo metabolism, distribution, and mechanisms. CONCLUSION This review serves to emphasize the therapeutic potential of STR and highlights the crucial need to address its toxicity concerns before considering clinical application. Further research is required to comprehensively investigate the toxicological properties of STR, with particular emphasis on its hepatotoxicity and neurotoxicity. Such research endeavors have the potential to standardize the rational application of STR for optimal therapeutic outcomes.
Collapse
Affiliation(s)
- Fen-Fen Zeng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zi-Hao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Fu-Hui Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Cheng-Jun Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xia Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
4
|
Dou Y, Shu L, Jia X, Yao Y, Chen S, Xu Y, Li Y. Rapid classification and identification of chemical constituents in Leonurus japonicus Houtt based on UPLC-Q-Orbitrap-MS combined with data post-processing techniques. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4978. [PMID: 37946617 DOI: 10.1002/jms.4978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023]
Abstract
Leonurus japonicus Houtt (LJH) is a bulk medicinal material commonly used in clinical practice, but its complex constituents have not been completely understood, posing challenges to pharmacology, pharmacokinetic research, and scientific and rational drug use. As a result, it is critical to develop an efficient and accurate method for classifying and identifying the chemical composition of LJH. In this study, ultra-performance liquid chromatography-quadrupole electrostatic field-orbital trap high resolution mass spectrometry (UPLC-Q-Orbitrap-MS) was successfully established, along with two data post-processing techniques, characteristic fragmentations (CFs) and neutral losses (NLs), to quickly classify and identify the chemical constituents in LJH. As a result, 44 constituents of LJH were identified, including four alkaloids, 20 flavonoids, two phenylpropanoids, 17 organic acids, and one amino acid. The method in this paper enables classification and identification of chemical compositions rapidly, providing a scientific foundation for further research on the effective and toxic substances of LJH.
Collapse
Affiliation(s)
- Yajie Dou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lexin Shu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuchen Jia
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaqi Yao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siyue Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanyan Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Zhang J, Wang H, Ai C, Lu R, Chen L, Xiao J, Teng H. Food matrix-flavonoid interactions and their effect on bioavailability. Crit Rev Food Sci Nutr 2023; 64:11124-11145. [PMID: 37427580 DOI: 10.1080/10408398.2023.2232880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Flavonoid compounds exhibit a wide range of health benefits as plant-derived dietary components. Typically, co-consumed with the food matrix,they must be released from the matrix and converted into an absorbable form (bioaccessibility) before reaching the small intestine, where they are eventually absorbed and transferred into the bloodstream (bioavailability) to exert their biological activity. However, a large number of studies have revealed the biological functions of individual flavonoid compounds in different experimental models, ignoring the more complex but common relationships established in the diet. Besides, it has been appreciated that the gut microbiome plays a crucial role in the metabolism of flavonoids and food substrates, thereby having a significant impact on their interactions, but much progress still needs to be made in this area. Therefore, this review intends to comprehensively investigate the interactions between flavonoids and food matrices, including lipids, proteins, carbohydrates and minerals, and their effects on the nutritional properties of food matrices and the bioaccessibility and bioavailability of flavonoid compounds. Furthermore, the health effects of the interaction of flavonoid compounds with the gut microbiome have also been discussed.HIGHLIGHTSFlavonoids are able to bind to nutrients in the food matrix through covalent or non-covalent bonds.Flavonoids affect the digestion and absorption of lipids, proteins, carbohydrates and minerals in the food matrix (bioaccessibility).Lipids, proteins and carbohydrates may favorably affect the bioavailability of flavonoids.Improved intestinal flora may improve flavonoid bioavailability.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Rui Lu
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Jianbo Xiao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Teng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| |
Collapse
|
6
|
Huang YL, Xiang Q, Zou JJ, Wu Y, Yu R. Zuogui Jiangtang Shuxin formula Ameliorates diabetic cardiomyopathy mice via modulating gut-heart axis. Front Endocrinol (Lausanne) 2023; 14:1106812. [PMID: 36843604 PMCID: PMC9948445 DOI: 10.3389/fendo.2023.1106812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND There is growing evidence demonstrating that the gut microbiota plays a crucial role in multiple endocrine disorders, including diabetic cardiomyopathy (DCM). Research shows that the Chinese herb reduces disease occurrence by regulating gut microbiota. Zuogui Jiangtang Shuxin formula (ZGJTSXF), a Chinese medicinal formula, has been clinically used for treatment of DCM for many years. However, there is still no clear understanding of how ZGJTSXF treatment contributes to the prevention and treatment of DCM through its interaction with gut microbiota and metabolism. METHODS In this study, mice models of DCM were established, and ZGJTSXF's therapeutic effects were assessed. Specifically, serum glycolipid, echocardiography, histological staining, myocardial apoptosis rate were assessed. Using 16s rRNA sequencing and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), we determined the impact of ZGJTSXF on the structure of gut microbiota and content of its metabolite TMAO. The mechanism of ZGJTSXF action on DCM was analyzed using quantitative real-time PCR and western blots. RESULTS We found that ZGJTSXF significantly ameliorated DCM mice by modulating gut-heart axis: ZGJTSXF administration improved glycolipid levels, heart function, cardiac morphological changes, inhibited cardiomyocytes apoptosis, and regulate the gut microbiota in DCM mice. Specifically, ZGJTSXF treatment reverse the significant changes in the abundance of certain genera closely related to DCM phenotype, including Lactobacillus, Alloprevotella and Alistipes. Furthermore, ZGJTSXF alleviated DCM in mice by blunting TMAO/PERK/FoxO1 signaling pathway genes and proteins. CONCLUSION ZGJTSXF administration could ameliorate DCM mice by remodeling gut microbiota structure, reducing serum TMAO generation and suppressing TMAO/PERK/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Ya-lan Huang
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Qin Xiang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jun-ju Zou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yongjun Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Rong Yu, ; Yongjun Wu,
| | - Rong Yu
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Rong Yu, ; Yongjun Wu,
| |
Collapse
|
7
|
Biological Activities and Secondary Metabolites from Sophora tonkinensis and Its Endophytic Fungi. Molecules 2022; 27:molecules27175562. [PMID: 36080327 PMCID: PMC9457587 DOI: 10.3390/molecules27175562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
The roots of Sophora tonkinensis Gagnep., a traditional Chinese medicine, is known as Shan Dou Gen in the Miao ethnopharmacy. A large number of previous studies have suggested the usage of S. tonkinensis in the folk treatment of lung, stomach, and throat diseases, and the roots of S. tonkinensis have been produced as Chinese patent medicines to treat related diseases. Existing phytochemical works reported more than 300 compounds from different parts and the endophytic fungi of S. tonkinensis. Some of the isolated extracts and monomer compounds from S. tonkinensis have been proved to exhibit diverse biological activities, including anti-tumor, anti-inflammatory, antibacterial, antiviral, and so on. The research progress on the phytochemistry and pharmacological activities of S. tonkinensis have been systematically summarized, which may be useful for its further research.
Collapse
|
8
|
Keranmu A, Pan LB, Yu H, Fu J, Liu YF, Amuti S, Han P, Ma SR, Xu H, Zhang ZW, Chen D, Yang FY, Wang MS, Wang Y, Xing NZ, Jiang JD. The potential biological effects of quercetin based on pharmacokinetics and multi-targeted mechanism in vivo. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:403-431. [PMID: 35282731 DOI: 10.1080/10286020.2022.2045965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Quercetin is a plant-derived polyphenol flavonoid that has been proven to be effective for many diseases. However, the mechanism and in vivo metabolism of quercetin remains to be clarified. It achieves a wide range of biological effects through various metabolites, gut microbiota and its metabolites, systemic mediators produced by inflammation and oxidation, as well as by multiple mechanisms. The all-round disease treatment of quercetin is achieved through the organic combination of multiple channels. Therefore, this article clarifies the metabolic process of quercetin in the body, and explores the new pattern of action of quercetin in the treatment of diseases.
Collapse
Affiliation(s)
- Adili Keranmu
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Li-Bin Pan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Yi-Fang Liu
- Department of Tuberculosis, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai Clinical Research Center of Tuberculosis, Shanghai 200433, China
| | - Siyiti Amuti
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Ürümqi 830011, China
| | - Pei Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Shu-Rong Ma
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Dong Chen
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fei-Ya Yang
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ming-Shuai Wang
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Nian-Zeng Xing
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
9
|
Chemical Characterization and Metabolic Profiling of the Compounds in the Chinese Herbal Formula Li Chang Decoction by UPLC-QTOF/MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1322751. [PMID: 35463075 PMCID: PMC9020952 DOI: 10.1155/2022/1322751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022]
Abstract
Background Li Chang decoction (LCD), a Chinese medicine formula, is commonly used to treat ulcerative colitis (UC) in clinics. Purpose This study aimed to identify the major components in LCD and its prototype and metabolic components in rat biological samples. Methods The chemical constituents in LCD were identified by establishing a reliable ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF/MS) method. Afterwards, the rats were orally administered with LCD, and the biological samples (plasma, urine, and feces) were collected for further analyzing the effective compounds in the treatment of UC. Result A total of 104 compounds were discriminated in LCD, including 26 flavonoids, 20 organic acids, 20 saponins, 8 amino acids, 5 oligosaccharides, 5 tannins, 3 lignans, 2 alkaloids, and 15 others (nucleosides, glycosides, esters, etc.). About 50 prototype and 94 metabolic components of LCD were identified in biological samples. In total, 29 prototype components and 22 metabolic types were detected in plasma. About 27 prototypes and 96 metabolites were discriminated in urine, and 34 prototypes and 18 metabolites were identified in feces. Conclusion The flavonoids, organic acids, and saponins were the major compounds of LCD, and this study promotes the further pharmacokinetic and pharmacological evaluation of LCD.
Collapse
|
10
|
Yuan W, Huang Z, Xiao S, Zhang Y, Chen W, Ye J, Xu X, Zu X, Shen Y. Systematic analysis of chemical profiles of Sophorae tonkinensis Radix et Rhizoma in vitro and in vivo by UPLC-Q-TOF-MS E. Biomed Chromatogr 2022; 36:e5357. [PMID: 35191054 DOI: 10.1002/bmc.5357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 11/06/2022]
Abstract
Sophorae tonkinensis Radix et Rhizoma (S. tonkinensis) has been recorded as a "poisonous" Chinese herbal medicine in Chinese Pharmacopoeia 2020. The clinical reaction reports of S. tonkinensis indicated its neurotoxicity, there exists still dispute about its toxic substances. At present, there is no report on the blood and brain prototype research of S. tonkinensis. Most studies focused on alkaloids, and less on other compounds. Moreover, the constituents absorbed into the blood and brain were rarely investigated so far. In this study, a rapid and efficient qualitative analysis method was established by UPLC-Q-TOF-MSE to characterize S. tonkinensis ingredients and those entering into the rat body after oral administration. A total of 91 compounds were identified in S. tonkinensis, of which 28 were confirmed by the standards. 30 and 19 prototypes were also firstly identified in rat blood and brain, respectively. It was found that except for alkaloids, most flavonoids were detected in the rat body and distributed in the cerebrospinal fluid, suggesting that flavonoids may be one of the important toxic or effective substances of S. tonkinensis, which provides new clues and data for clarifying its toxicity or efficacy of the medical plant.
Collapse
Affiliation(s)
- Wenlin Yuan
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zhengrui Huang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, China
| | - Sijia Xiao
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yuhao Zhang
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Chen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Ji Ye
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xike Xu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xianpeng Zu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yunheng Shen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
11
|
Sheng Z, Jiang Y, Liu J, Yang B. UHPLC-MS/MS Analysis on Flavonoids Composition in Astragalus membranaceus and Their Antioxidant Activity. Antioxidants (Basel) 2021; 10:1852. [PMID: 34829723 PMCID: PMC8614773 DOI: 10.3390/antiox10111852] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Astragalus membranaceus is a valuable medicinal plant species widely distributed in Asia. Its root is the main medicinal tissue rich in methoxylated flavonoids. Origin can highly influence the chemical composition and bioactivity. To characterize the principal chemicals influenced by origin and provide more information about their antioxidant profile, the extracts of A. membranaceus roots from four origins were analysed by UHPLC-MS/MS. Thirty-four flavonoids, including thirteen methoxylated flavonoids, fifteen flavonoid glycosides and six flavonols, were identified. By principal component analysis, eighteen identified compounds were considered to be principal compounds. They could be used to differentiate A. membranaceus from Shanxi, Inner Mongolia, Heilongjiang and Gansu. The antioxidant activity was analysed by ORAC assay, DPPH radical scavenging activity assay and cell antioxidant activity assay. 'Inner Mongolia' extract showed the highest antioxidant activity. These results were helpful to understand how origin influenced the quality of A. membranaceus.
Collapse
Affiliation(s)
- Zhili Sheng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Z.S.); (Y.J.)
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China;
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Z.S.); (Y.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junmei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China;
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Z.S.); (Y.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Abd-Alla HI, Souguir D, Radwan MO. Genus Sophora: a comprehensive review on secondary chemical metabolites and their biological aspects from past achievements to future perspectives. Arch Pharm Res 2021; 44:903-986. [PMID: 34907492 PMCID: PMC8671057 DOI: 10.1007/s12272-021-01354-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Sophora is deemed as one of the most remarkable genera of Fabaceae, and the third largest family of flowering plants. The genus Sophora comprises approximately 52 species, 19 varieties, and 7 forms that are widely distributed in Asia and mildly in Africa. Sophora species are recognized to be substantial sources of broad spectrum biopertinent secondary metabolites namely flavonoids, isoflavonoids, chalcones, chromones, pterocarpans, coumarins, benzofuran derivatives, sterols, saponins (mainly triterpene glycosides), oligostilbenes, and mainly alkaloids. Meanwhile, extracts and isolated compounds from Sophora have been identified to possess several health-promising effects including anti-inflammatory, anti-arthritic, antiplatelets, antipyretic, anticancer, antiviral, antimicrobial, antioxidant, anti-osteoporosis, anti-ulcerative colitis, antidiabetic, anti-obesity, antidiarrheal, and insecticidal activities. Herein, the present review aims to provide comprehensive details about the phytochemicals and biological effects of Sophora species. The review spotlighted on the promising phytonutrients extracted from Sophora and their plethora of bioactivities. The review also clarifies the remaining gaps and thus qualifies and supplies a platform for further investigations of these compounds.
Collapse
Affiliation(s)
- Howaida I Abd-Alla
- Chemistry of Natural Compounds Department, National Research Centre, El-Bohouth Street, Giza-Dokki, 12622, Egypt.
| | - Dalila Souguir
- Institut National de Recherches en Génie Rural, Eaux et Forêts (INRGREF), Université de Carthage, 10 Rue Hédi Karray, Manzeh IV, 2080, Ariana, Tunisia
| | - Mohamed O Radwan
- Chemistry of Natural Compounds Department, National Research Centre, El-Bohouth Street, Giza-Dokki, 12622, Egypt.
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
13
|
Network Pharmacology-Based Analysis of Gegenqinlian Decoction Regulating Intestinal Microbial Activity for the Treatment of Diarrhea. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5520015. [PMID: 34354757 PMCID: PMC8331269 DOI: 10.1155/2021/5520015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 01/30/2023]
Abstract
Gegenqinlian decoction (GD) has been extensively used for the treatment of diarrhea with intestinal dampness-heat syndrome (IDHS) with a satisfying therapeutic effect. The purpose of this study is to clarify the active ingredients and mechanism of GD in the treatment of diarrhea with IDHS. The TCMSP database was used to screen out the active ingredients of the four Chinese herbal medicines in GD, and the targets of the active ingredients were predicted. We selected the targets related to diarrhea through the DisGeNET database, then used the NCBI database to screen out related targets of lactase and sucrase, and constructed the visual network to search for the active ingredients of GD in the treatment of diarrhea and related mechanisms of the targets. Combined with network pharmacology, we screened out 146 active ingredients in GD corresponding to 252 ingredient targets, combined with 328 disease targets in diarrhea, and obtained 12 lactase targets and 11 sucrase targets. The key active ingredients involved quercetin, formononetin, β-sitosterol kaempferol, and wogonin. Furthermore, molecular docking showed that these five potential active ingredients had good affinities with the core targets PTGS2. The active ingredients in GD (such as quercetin, formononetin, and β-sitosterol) may increase the microbial activity of the intestinal mucosa of mice and reduce the microbial activity of the intestinal contents through multiple targets, thereby achieving the effect of treating diarrhea.
Collapse
|
14
|
Chen Z, Lv Y, Xu H, Deng L. Herbal Medicine, Gut Microbiota, and COVID-19. Front Pharmacol 2021; 12:646560. [PMID: 34305582 PMCID: PMC8293616 DOI: 10.3389/fphar.2021.646560] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus Disease 19 (COVID-19) is a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has grown to a worldwide pandemic with substantial mortality. The symptoms of COVID-19 range from mild flu-like symptoms, including cough and fever, to life threatening complications. There are still quite a number of patients with COVID-19 showed enteric symptoms including nausea, vomiting, and diarrhea. The gastrointestinal tract may be one of the target organs of SARS-CoV-2. Angiotensin converting enzyme 2 (ACE2) is the main receptor of SARS-CoV-2 virus, which is significantly expressed in intestinal cells. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Intestinal flora imbalance and endotoxemia may accelerate the progression of COVID-19. Many herbs have demonstrated properties relevant to the treatment of COVID-19, by supporting organs and systems of the body affected by the virus. Herbs can restore the structure of the intestinal flora, which may further modulate the immune function after SARS-CoV-2 infection. Regulation of intestinal flora by herbal medicine may be helpful for the treatment and recovery of the disease. Understanding the role of herbs that regulate intestinal flora in fighting respiratory virus infections and maintaining intestinal flora balance can provide new ideas for preventing and treating COVID-19.
Collapse
Affiliation(s)
- Ziqi Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,Medical College, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Lv
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Huachong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Zhang SN, Li XZ, Tan LY, Zhu KY. A Review of Pharmacological and Toxicological Effects of Sophora tonkinensis with Bioinformatics Prediction. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:359-389. [DOI: 10.1142/s0192415x21500178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sophora tonkinensis Gagnep. (ST) (Fabaceae) is distributed chiefly in south-central and southeast China and Vietnam. In traditional Chinese medicine theory, the root and rhizome of ST are toxic and mainly used in the treatment of pharyngeal and laryngeal diseases. Modern studies provide new insights into the pharmacological and toxicological aspects of ST. The pharmacological and toxicological properties of ST were reviewed in this paper based on the literature from Google Scholar and CNKI, and the bioinformatics platforms were applied to explore the pharmacological and toxicological potentials of ST. The results of the literature analysis showed that ST has hepatoprotective, immunomodulatory, and anticancer effects and produces obvious toxicity to the liver and nervous and cardiovascular system. The results of bioinformatics showed that the compounds from ST may be applied to the treatment of cancer and digestive and nervous system diseases and show the possibility to cause hematotoxicity, neurotoxicity, and immunotoxicity. The present review demonstrates that attention should be paid to the potential toxicity of ST in the treatment of diseases and provides the reference for the subsequent pharmacological toxicological studies on the mechanism and chemical basis of ST.
Collapse
Affiliation(s)
- Shuai-Nan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area 550025, P. R. China
| | - Xu-Zhao Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area 550025, P. R. China
| | - Long-Yan Tan
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area 550025, P. R. China
| | - Kui-Yuan Zhu
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Nanshan, Shenzhen 518057, P. R. China
| |
Collapse
|
16
|
Chen L, Shao J, Luo Y, Zhao L, Zhao K, Gao Y, Wang S, Liu Y. An integrated metabolism in vivo analysis and network pharmacology in UC rats reveal anti-ulcerative colitis effects from Sophora flavescens EtOAc extract. J Pharm Biomed Anal 2020; 186:113306. [PMID: 32371325 DOI: 10.1016/j.jpba.2020.113306] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/28/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022]
Abstract
Ulcerative colitis (UC), an immune system disease, is characterized by long duration and easy relapse. Sophora flavescens (S. flavescens), also named "Kushen", is a traditional Chinese medicine, widely used to treat UC in clinics. Alkaloids and flavonoids are the main constituents of S. flavescens. Previous studies indicated that the effects of S. flavescens against UC mainly attribute to its alkaloids. In view of the clinical applications of its flavonoids and our preliminary experiments on the effects of S. flavescens treatment, we speculated that flavonoids also could exert an anti-UC effect, but its efficacy and mechanism are still not yet to be revealed. Herein, we examined the pharmacodynamic effects of the ethyl acetate (EtOAc) extract of S. flavescens EtOAc (SFE) against dextran sodium sulfate-induced UC rats for the first time. Pharmacodynamic effects indicated that SFE could significantly alleviate the loss in the body weight and shortening of the colon length, reduce colon bleeding and improve colon tissue damage of UC rats. A total of 28 prototypes and 41 metabolites were unambiguously or tentatively detected in rat's plasma and urine. Among them, 28 prototypes and 3 phase I metabolites shared 40 UC targets, the targets contributed to 51 metabolic pathways in 5 modules. Additionally, genistein, formononetin, isokurarinone, kurarinone, maackiain, kushenol N, trifolirnizin, kuraridin and norkurarinone were suggested to be potential active compounds in SFE for treating UC by comprehensively investigating the results of network pharmacology analysis, metabolic analysis in vivo, and previous researches. Finally, a combination of metabolic analysis in vivo with network pharmacology can elucidate the material basis and pharmacodynamic effect of traditional Chinese medicines, and lay the foundation for further clarify the anti-UC mechanism of SFE.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jing Shao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yun Luo
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Linlin Zhao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Kairui Zhao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yanping Gao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yi Liu
- School of Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|