1
|
Moore M, Ryzhov S, Sawyer DB, Gartner C, Vary CP. ALK1 Signaling in Human Cardiac Progenitor Cells Promotes a Pro-angiogenic Secretome. JOURNAL OF CELLULAR SIGNALING 2024; 5:122-142. [PMID: 39430425 PMCID: PMC11488643 DOI: 10.33696/signaling.5.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Pro-angiogenic paracrine/autocrine signaling impacts myocardial repair in cell-based therapies. Activin A receptor-like type 1 (ACVRL1, ALK1) signaling plays a pivotal role in cardiovascular development and maintenance, but its importance in human-derived therapeutic cardiac cells is not well understood. Here, we isolated a subpopulation of human highly proliferative cells (hHiPCs) from adult epicardial tissue and found that they express ALK1, a high affinity receptor for bone morphogenetic protein-9 (BMP9), which signals via SMAD1/5 to regulate paracrine/autocrine signaling and angiogenesis. We show that in humans, circulating BMP9 level is negatively associated with the number of epicardial hHiPC and positively associated with endothelial cell (EC) number in the adult heart, implicating the potential importance of this signaling pathway in cardiac cell fate and vascular maintenance. To investigate BMP9/ALK1 signaling in hHiPCs, we selected a primary cell population of hHiPC from each of 3 individuals and studied their responses to BMP9 and BMP10 treatment in vitro. Proteins were collected in conditioned media (CM) for mass spectrometry and cell-based assays on human ECs and hHiPCs. Proteomic analysis of the hHiPC secretome following BMP9 or BMP10 treatment demonstrates that the secreted proteins, sclerostin (SOST), meflin/immunoglobulin superfamily containing leucine rich repeat (ISLR), and insulin-like growth factor binding protein-3 (IGFBP3), are novel regulated targets of BMP9/ALK1 signaling. Lentiviral shRNA and pharmacological inhibition of ALK1 in hHiPCs suppressed transcription and secretion of SOST, ISLR, and IGFBP3 following BMP9 treatment. Moreover, the BMP9-treated secretome of hHiPC increased capillary-like tube formation of ECs and hHiPCs. Treatment of hHiPCs with recombinant SOST increased VEGF-a expression, increased tube formation and enhanced expression of EC receptor marker annexin A2 (ANXA2). These data provide the first proteomic characterization of hHiPC, identifying BMP9/ALK1-mediated target protein secretion in hHiPCs, and underscore the complex role of BMP9/ALK1 signaling in paracrine/autocrine mediated angiogenesis. Data are available via ProteomeXchange with identifier PXD055302.
Collapse
Affiliation(s)
- Michayla Moore
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth 81 Research Drive, Scarborough, Maine, USA
- Graduate School of Biomedical Science and Engineering, University of Maine Orono, Maine, USA
| | - Sergey Ryzhov
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth 81 Research Drive, Scarborough, Maine, USA
- Graduate School of Biomedical Science and Engineering, University of Maine Orono, Maine, USA
| | - Douglas B. Sawyer
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth 81 Research Drive, Scarborough, Maine, USA
- Graduate School of Biomedical Science and Engineering, University of Maine Orono, Maine, USA
| | - Carlos Gartner
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth 81 Research Drive, Scarborough, Maine, USA
| | - Calvin P.H. Vary
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth 81 Research Drive, Scarborough, Maine, USA
- Graduate School of Biomedical Science and Engineering, University of Maine Orono, Maine, USA
| |
Collapse
|
2
|
Zajkowska M, Dulewicz M, Kulczyńska-Przybik A, Safiejko K, Juchimiuk M, Konopko M, Kozłowski L, Mroczko B. CXCL5 and CXCL14, but not CXCL16 as potential biomarkers of colorectal cancer. Sci Rep 2023; 13:17688. [PMID: 37848726 PMCID: PMC10582048 DOI: 10.1038/s41598-023-45093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023] Open
Abstract
Experts emphasize that colorectal cancer (CRC) incidence and mortality are increasing. That is why its early detection is of the utmost importance. Patients with cancer diagnosed in earlier stages have a better prognosis and a chance for faster implementation of treatment. Consequently, it is vital to search for new parameters that could be useful in its diagnosis. Therefore, we evaluated the usefulness of CXCL5, CXCL14 and CXCL16 in serum of 115 participants (75 CRC patients and 40 healthy volunteers). Concentrations of all parameters were measured using Luminex. CRP (C-reactive protein) levels were determined by immunoturbidimetry, while levels of classical tumor markers were measured using CMIA (Chemiluminescence Microparticle Immunoassay). Concentrations of CXCL5 were statistically higher in the CRC group when compared to healthy controls. The diagnostic sensitivity, specificity, positive and negative predictive value, and area under the ROC curve (AUC) of CXCL5 and CXCL14 were higher than those of CA 19-9. Obtained results suggest the usefulness of CXCL5 and CXCL16 in the determination of distant metastases and differentiation between TNM (Tumor-Node-Metastasis) stages, as well as the usefulness of CXCL14 and CRP combination in CRC detection (primary or recurrence). However, further studies concerning their role in CRC progression are crucial to confirm and explain their diagnostic utility and clinical application as biomarkers.
Collapse
Affiliation(s)
- Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269, Bialystok, Poland.
| | - Maciej Dulewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269, Bialystok, Poland
| | | | - Kamil Safiejko
- Department of Oncological Surgery with Specialized Cancer Treatment Units, Maria Sklodowska-Curie Oncology Center, 15-027, Bialystok, Poland
| | - Marcin Juchimiuk
- Department of Oncological Surgery with Specialized Cancer Treatment Units, Maria Sklodowska-Curie Oncology Center, 15-027, Bialystok, Poland
| | - Marzena Konopko
- Department of Oncological Surgery with Specialized Cancer Treatment Units, Maria Sklodowska-Curie Oncology Center, 15-027, Bialystok, Poland
| | - Leszek Kozłowski
- Department of Oncological Surgery with Specialized Cancer Treatment Units, Maria Sklodowska-Curie Oncology Center, 15-027, Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269, Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269, Bialystok, Poland
| |
Collapse
|
3
|
Singh AJ, Gray JW. Chemokine signaling in cancer-stroma communications. J Cell Commun Signal 2021; 15:361-381. [PMID: 34086259 PMCID: PMC8222467 DOI: 10.1007/s12079-021-00621-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/25/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a multi-faceted disease in which spontaneous mutation(s) in a cell leads to the growth and development of a malignant new organ that if left undisturbed will grow in size and lead to eventual death of the organism. During this process, multiple cell types are continuously releasing signaling molecules into the microenvironment, which results in a tangled web of communication that both attracts new cell types into and reshapes the tumor microenvironment as a whole. One prominent class of molecules, chemokines, bind to specific receptors and trigger directional, chemotactic movement in the receiving cell. Chemokines and their receptors have been demonstrated to be expressed by almost all cell types in the tumor microenvironment, including epithelial, immune, mesenchymal, endothelial, and other stromal cells. This results in chemokines playing multifaceted roles in facilitating context-dependent intercellular communications. Recent research has started to shed light on these ligands and receptors in a cancer-specific context, including cell-type specificity and drug targetability. In this review, we summarize the latest research with regards to chemokines in facilitating communication between different cell types in the tumor microenvironment.
Collapse
Affiliation(s)
- Arun J Singh
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA.
| | - Joe W Gray
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
4
|
Di Zazzo A, Gaudenzi D, Yin J, Coassin M, Fernandes M, Dana R, Bonini S. Corneal angiogenic privilege and its failure. Exp Eye Res 2021; 204:108457. [PMID: 33493471 PMCID: PMC10760381 DOI: 10.1016/j.exer.2021.108457] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022]
Abstract
The cornea actively maintains its own avascular status to preserve its ultimate optical function. This corneal avascular state is also defined as "corneal angiogenic privilege", which results from a critical and sensitive balance between anti-angiogenic and pro-angiogenic mechanisms. In our review, we aim to explore the complex equilibrium among multiple mediators which prevents neovascularization in the resting cornea, as well as to unveil the evolutive process which leads to corneal angiogenesis in response to different injuries.
Collapse
Affiliation(s)
- Antonio Di Zazzo
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy.
| | - Daniele Gaudenzi
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Jia Yin
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Marco Coassin
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Merle Fernandes
- Cornea and Anterior Segment Services, LV Prasad Eye Institute, GMR Varalakshmi Campus, Visakhapatnam, India
| | - Reza Dana
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Stefano Bonini
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
5
|
Dube U, Musiek A. SnapshotDx Quiz: January 2021. J Invest Dermatol 2021. [DOI: 10.1016/j.jid.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Onufer EJ, Aladegbami B, Imai T, Seiler K, Bajinting A, Courtney C, Sutton S, Bustos A, Yao J, Yeh CH, Sescleifer A, Wang LV, Guo J, Warner BW. EGFR in enterocytes & endothelium and HIF1α in enterocytes are dispensable for massive small bowel resection induced angiogenesis. PLoS One 2020; 15:e0236964. [PMID: 32931498 PMCID: PMC7491746 DOI: 10.1371/journal.pone.0236964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background Short bowel syndrome (SBS) results from significant loss of small intestinal length. In response to this loss, adaptation occurs, with Epidermal Growth Factor Receptor (EGFR) being a key driver. Besides enhanced enterocyte proliferation, we have revealed that adaptation is associated with angiogenesis. Further, we have found that small bowel resection (SBR) is associated with diminished oxygen delivery and elevated levels of hypoxia-inducible factor 1-alpha (HIF1α). Methods We ablated EGFR in the epithelium and endothelium as well as HIF1α in the epithelium, ostensibly the most hypoxic element. Using these mice, we determined the effects of these genetic manipulations on intestinal blood flow after SBR using photoacoustic microscopy (PAM), intestinal adaptation and angiogenic responses. Then, given that endothelial cells require a stromal support cell for efficient vascularization, we ablated EGFR expression in intestinal subepithelial myofibroblasts (ISEMFs) to determine its effects on angiogenesis in a microfluidic model of human small intestine. Results Despite immediate increased demand in oxygen extraction fraction measured by PAM in all mouse lines, were no differences in enterocyte and endothelial cell EGFR knockouts or enterocyte HIF1α knockouts by POD3. Submucosal capillary density was also unchanged by POD7 in all mouse lines. Additionally, EGFR silencing in ISEMFs did not impact vascular network development in a microfluidic device of human small intestine. Conclusions Overall, despite the importance of EGFR in facilitating intestinal adaptation after SBR, it had no impact on angiogenesis in three cell types–enterocytes, endothelial cells, and ISEMFs. Epithelial ablation of HIF1α also had no impact on angiogenesis in the setting of SBS.
Collapse
Affiliation(s)
- Emily J. Onufer
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Bola Aladegbami
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Toru Imai
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
- Department of Electrical Engineering, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Kristen Seiler
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Adam Bajinting
- Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - Cathleen Courtney
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Stephanie Sutton
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Aiza Bustos
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Junjie Yao
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Cheng-Hung Yeh
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Anne Sescleifer
- Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - Lihong V. Wang
- Department of Electrical Engineering, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Jun Guo
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Brad W. Warner
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
7
|
Angiogenic effect of platelet-rich concentrates on dental pulp stem cells in inflamed microenvironment. Clin Oral Investig 2019; 23:3821-3831. [PMID: 30687907 DOI: 10.1007/s00784-019-02811-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/11/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVE In this study, we aimed to determine the suitable concentrations of human platelet lysate (HPL) and platelet-rich plasma (PRP) for maintaining the in vitro proliferative and angiogenic potential of inflamed dental pulp stem cells. MATERIALS AND METHODS Lipopolysaccharide (LPS)-induced inflamed dental pulp-derived stem cells (iDPSCs) were treated with different concentrations of HPL and PRP (10% and 20%) followed by determination of viability using Alamar Blue assay. Expression of angiogenesis-, adhesion-, and inflammation-regulating genes was also analyzed using RT-qPCR array. Furthermore, expression of growth factors at protein level in the cell culture microenvironment was measured using multiplex assay. RESULTS Viability of iDPSCs was significantly (p < 0.05) higher in 20% HPL-supplemented media compared to iDPSCs. Expression of 10 out of 12 selected angiogenic genes, four out of seven adhesion molecules, and seven out of nine cytokine-producing genes were significantly (p < 0.05) higher in cells maintained in 20% HPL-supplemented media compared to that in FBS-supplemented media. Furthermore, expression of all the selected growth factors was significantly higher (p < 0.05) in the supernatants from 20% HPL media at 12 and 24 h post-incubation. CONCLUSION This study suggests that 20% HPL could be optimum to stimulate angiogenesis-related factors in iDPSCs while maintaining their viability. CLINICAL RELEVANCE This data may suggest the potential use of 20% HPL for expanding DPSCs scheduled for clinical trials for regenerative therapies including dental pulp regeneration.
Collapse
|
8
|
Courtney CM, Onufer EJ, Seiler KM, Warner BW. An anatomic approach to understanding mechanisms of intestinal adaptation. Semin Pediatr Surg 2018; 27:229-236. [PMID: 30342597 DOI: 10.1053/j.sempedsurg.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cathleen M Courtney
- Division of Pediatric Surgery, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, 63110 MO, USA; Department of Surgery, Washington University School of Medicine, St. Louis, USA
| | - Emily J Onufer
- Division of Pediatric Surgery, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, 63110 MO, USA; Department of Surgery, Washington University School of Medicine, St. Louis, USA
| | - Kristen M Seiler
- Division of Pediatric Surgery, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, 63110 MO, USA; Department of Surgery, Washington University School of Medicine, St. Louis, USA
| | - Brad W Warner
- Division of Pediatric Surgery, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, 63110 MO, USA; Department of Surgery, Washington University School of Medicine, St. Louis, USA.
| |
Collapse
|
9
|
Selective IKK2 inhibitor IMD0354 disrupts NF-κB signaling to suppress corneal inflammation and angiogenesis. Angiogenesis 2018; 21:267-285. [PMID: 29332242 PMCID: PMC5878206 DOI: 10.1007/s10456-018-9594-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022]
Abstract
Corneal neovascularization is a sight-threatening condition caused by angiogenesis in the normally avascular cornea. Neovascularization of the cornea is often associated with an inflammatory response, thus targeting VEGF-A alone yields only a limited efficacy. The NF-κB signaling pathway plays important roles in inflammation and angiogenesis. Here, we study consequences of the inhibition of NF-κB activation through selective blockade of the IKK complex IκB kinase β (IKK2) using the compound IMD0354, focusing on the effects of inflammation and pathological angiogenesis in the cornea. In vitro, IMD0354 treatment diminished HUVEC migration and tube formation without an increase in cell death and arrested rat aortic ring sprouting. In HUVEC, the IMD0354 treatment caused a dose-dependent reduction in VEGF-A expression, suppressed TNFα-stimulated expression of chemokines CCL2 and CXCL5, and diminished actin filament fibers and cell filopodia formation. In developing zebrafish embryos, IMD0354 treatment reduced expression of Vegf-a and disrupted retinal angiogenesis. In inflammation-induced angiogenesis in the rat cornea, systemic selective IKK2 inhibition decreased inflammatory cell invasion, suppressed CCL2, CXCL5, Cxcr2, and TNF-α expression and exhibited anti-angiogenic effects such as reduced limbal vessel dilation, reduced VEGF-A expression and reduced angiogenic sprouting, without noticeable toxic effect. In summary, targeting NF-κB by selective IKK2 inhibition dampened the inflammatory and angiogenic responses in vivo by modulating the endothelial cell expression profile and motility, thus indicating an important role of NF-κB signaling in the development of pathologic corneal neovascularization.
Collapse
|
10
|
Xu L, Wang R, Ziegelbauer J, Wu WW, Shen RF, Juhl H, Zhang Y, Pelosof L, Rosenberg AS. Transcriptome analysis of human colorectal cancer biopsies reveals extensive expression correlations among genes related to cell proliferation, lipid metabolism, immune response and collagen catabolism. Oncotarget 2017; 8:74703-74719. [PMID: 29088818 PMCID: PMC5650373 DOI: 10.18632/oncotarget.20345] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
Precise characterization of biological processes critical to proliferation and metastasis of colorectal cancer should facilitate the development of diagnostic and prognostic biomarkers as well as novel treatments. Using mRNA-Seq, we examined the protein coding messenger RNA (mRNA) expression profiles across different histologically defined stages of primary colon cancers and compared them to their patient matched normal tissue controls. In comparing 79 colorectal cancers to their matched normal mucosa, tumors were distinguished from normal non-malignant tissues not only in the upregulation of biological processes pertaining to cell proliferation, inflammation, and tissue remodeling, but even more strikingly, in downregulated biological processes including fatty acid beta oxidization for ATP production and epithelial cell differentiation and function. A network analysis of deregulated genes revealed newly described cancer networks and putative hub genes. Taken together, our findings suggest that, within an inflammatory microenvironment, invasive, dedifferentiated and rapidly dividing tumor cells divert the oxidation of fatty acids and lipids from energy production into lipid components of cell membranes and organelles to support tumor proliferation. A gene co-expression network analysis provides a clear and broad picture of biological pathways in tumors that may significantly enhance or supplant current histopathologic studies.
Collapse
Affiliation(s)
- Lai Xu
- Office of Biotechnology Products, CDER, FDA, Silver Spring, MD 20993, USA
| | - Rong Wang
- Office of Biotechnology Products, CDER, FDA, Silver Spring, MD 20993, USA
| | | | - Wells W Wu
- Facility for Biotechnology Resources, CBER, FDA, Silver Spring, MD 20993, USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, CBER, FDA, Silver Spring, MD 20993, USA
| | | | - Yaqin Zhang
- Office of Biotechnology Products, CDER, FDA, Silver Spring, MD 20993, USA
| | - Lorraine Pelosof
- Office of Hematology and Oncology Products, CDER, FDA, Silver Spring, MD 20993, USA
| | - Amy S Rosenberg
- Office of Biotechnology Products, CDER, FDA, Silver Spring, MD 20993, USA
| |
Collapse
|
11
|
Dang H, Wu W, Wang B, Cui C, Niu J, Chen J, Chen Z, Liu Y. CXCL5 Plays a Promoting Role in Osteosarcoma Cell Migration and Invasion in Autocrine- and Paracrine-Dependent Manners. Oncol Res 2017; 25:177-186. [PMID: 28277189 PMCID: PMC7840695 DOI: 10.3727/096504016x14732772150343] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
CXCL5, a CXC-type chemokine, is an important attractant for granulocytic immune cells by binding to its receptor CXCR2. Recently, CXCL5/CXCR2 has been found to play an oncogenic role in many human cancers. However, the exact role of CXCL5 in osteosarcoma cell migration and invasion has not been revealed. Here we found that the protein expression of CXCL5 was significantly increased in osteosarcoma tissues compared with that in matched adjacent nontumor tissues. Moreover, the expression of CXCL5 was significantly associated with advanced clinical stage and metastasis. Further investigation showed that the CXCL5 expression levels were also significantly increased in osteosarcoma cell lines, including Saos-2, MG63, U2OS, and SW1353, when compared with those in normal osteoblast hFoB1.19 cells. U2OS cells were further transfected with CXCL5-specific siRNA or overexpression plasmid. Knockdown of CXCL5 significantly suppressed U2OS cell migration and invasion. On the contrary, overexpression of CXLC5 remarkably promoted the migration and invasion of U2OS cells. Interestingly, both exogenous CXCL5 treatment and the conditioned medium of CXCL5-overexpressing hFoB1.19 cells could also enhance the migration and invasion of U2OS cells, suggesting that the promoting role of CXCL5 in U2OS cell migration and invasion is also in a paracrine-dependent manner. According to these data, our study demonstrates that CXCL5 is upregulated in osteosarcoma and may play an oncogenic role in osteosarcoma metastasis. Therefore, CXCL5 may become a potential therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Hongsheng Dang
- Department of Orthopaedics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Dai Z, Wu J, Chen F, Cheng Q, Zhang M, Wang Y, Guo Y, Song T. CXCL5 promotes the proliferation and migration of glioma cells in autocrine- and paracrine-dependent manners. Oncol Rep 2016; 36:3303-3310. [PMID: 27748886 DOI: 10.3892/or.2016.5155] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/21/2016] [Indexed: 12/16/2022] Open
Abstract
CXCL5 and its receptor CXCR2 have been found to be involved in tumorigenesis and cancer progression. Recent studies have shown that CXCR2 is upregulated in glioma tissues, and associated with poor prognosis and recurrence. However, the role of CXCL5/CXCR2 signaling in mediating the malignant phenotypes of glioma cells, as well as the underlying mechanism, still remains unclear. In the present study, we found that CXCL5 was upregulated in glioma tissues compared to that noted in normal brain tissues. High CXCL5 levels were significantly associated with higher tumor grade, advanced clinical stage, and shorter survival time of glioma patients. In vitro studies indicated that the protein expression levels of CXCL5 and CXCR2 were markedly higher in human glioma cell lines (U87, U251, U373 and A172), when compared with those in normal human gliocyte HEB cells. Overexpression of CXLC5 significantly promoted the proliferation and migration of U87 cells, while knockdown of CXCL5 by small interfering RNA markedly inhibited U87 cell proliferation and migration. Moreover, both exogenous CXCL5 treatment and the conditioned medium of CXCL5-overexpressing HEB cells also enhanced the proliferation and migration of U87 cells. Molecular mechanism investigation revealed that CXLC5 activated the ERK, JNK, p38 MAPK signaling pathways, which play key roles in tumor growth and metastasis. According to these data, our study suggests that CXCL5 plays a promoting role in glioma in autocrine- and paracrine-dependent manners.
Collapse
Affiliation(s)
- Zhijie Dai
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jun Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fenghua Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ying Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yong Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Tao Song
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW This article summarizes the current and potential future nutritional approaches to stimulate adaptation in intestinal failure. Adaptation in this context usually refers to intestinal adaptation but also involves changes in whole body physiology as well as in eating/drinking behavior. RECENT FINDINGS Adaptation largely depends on residual functional anatomy. Luminal exposure to complex nutrients is the most important trigger for intestinal adaptation. Enteral fat as well as enteral or parenteral short chain fatty acids have a specific stimulatory effect. Zinc and vitamin A status need to be optimized for adaptation to proceed and be maintained. In the context of maintaining sodium and water homeostasis, flushing the remnant intestine because of uncontrolled thirst/drinking must be avoided. Complications of nutritional care such as malnutrition, intestinal failure-associated liver disease, and recurrent line sepsis also need optimal management. SUMMARY Stimulation by luminal nutrients as well as prophylaxis against and treatment of (nutritional) complications are the cornerstones of adaptation to the short bowel situation. Based on ample data from animal studies but only limited evidence in humans specific nutritional stimulators need to be studied more rigorously. As long as such data are missing they can be tried on an individual basis.
Collapse
|
14
|
Yang T, Wang S, Zheng Q, Wang L, Li Q, Wei M, Du Z, Fan Y. Increased plasma levels of epithelial neutrophil-activating peptide 78/CXCL5 during the remission of Neuromyelitis optica. BMC Neurol 2016; 16:96. [PMID: 27401736 PMCID: PMC4940958 DOI: 10.1186/s12883-016-0622-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 06/23/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND In neuromyelitis optica (NMO), one of the underlying pathogenic mechanisms is the formation of antigen-antibody complexes which can trigger an inflammatory response by inducing the infiltration of neutrophils in lesions. Epithelial neutrophil-activating peptide 78 (ENA 78), known as Chemokine (C-X-C motif) ligand 5 (CXCL5), belongs to the ELR-CXCL family. It recruits and activates neutrophils. The aim of this study was to evaluate ENA 78, IL-1β and TNF-α plasma levels in multiple sclerosis (MS) and neuromyelitis optica (NMO) patients. METHODS ENA 78, IL-1β and TNF-α plasma levels were detected in 20 healthy controls (HC), 25 MS and 25 NMO patients using MILLIPLEX® map Human High Sensitivity Cytokine/Chemokine Panels. RESULTS Plasma levels of ENA 78 were significantly higher in NMO patients than in HC (P < 0.001) and MS patients (P < 0.05). The NMO patients showed higher plasma levels of IL-1β compared with HC (P < 0.01). Further, increased plasma levels of TNF-α were found in the MS (P < 0.05) and NMO patients (P < 0.001). In addition, NMO patients had higher Expanded Disability Status Scale (EDSS) scores compared with MS patients (P < 0.05). EDSS scores were correlated with plasma levels of ENA 78 in NMO patients (P < 0.05). There were no significant correlations between EDSS scores and plasma levels of ENA 78 in MS patients (P > 0.05). CONCLUSIONS The overproduction of pro-inflammatory cytokines such as IL-1β and TNF-α during the remission of NMO activates ENA 78, which in turn leads to neutrophil infiltration in lesions. ENA 78 plasma levels were correlated with EDSS scores in NMO patients. Elevated secretion of ENA 78 may be a critical step in neutrophil recruitment during the remission of NMO.
Collapse
Affiliation(s)
- Tao Yang
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Su Wang
- Department of Oncology, Hiser Medical Center of Qingdao, Qingdao, 266034, People's Republic of China
| | - Qi Zheng
- Department of oncology, Guang An Men Hospital of China Academy of Chinese Medical Sciences, Beijing, 100053, People's Republic of China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Qian Li
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Mingyan Wei
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Zongpan Du
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Yongping Fan
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| |
Collapse
|
15
|
Warner BW. The Pathogenesis of Resection-Associated Intestinal Adaptation. Cell Mol Gastroenterol Hepatol 2016; 2:429-438. [PMID: 27722191 PMCID: PMC5042605 DOI: 10.1016/j.jcmgh.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/06/2016] [Indexed: 12/14/2022]
Abstract
After massive small-bowel resection, the remnant bowel compensates by a process termed adaptation. Adaptation is characterized by villus elongation and crypt deepening, which increases the capacity for absorption and digestion per unit length. The mechanisms/mediators of this important response are multiple. The purpose of this review is to highlight the major basic contributions in elucidating a more comprehensive understanding of this process.
Collapse
Affiliation(s)
- Brad W. Warner
- Correspondence Address correspondence to: Brad W. Warner, MD, Washington University School of Medicine, St. Louis Children's Hospital, One Children's Place, Suite 5s40, St. Louis, Missouri 63110. fax: (314) 454-2442.Washington University School of MedicineSt. Louis Children's HospitalOne Children's PlaceSuite 5s40St. LouisMissouri 63110
| |
Collapse
|
16
|
Both epidermal growth factor and insulin-like growth factor receptors are dispensable for structural intestinal adaptation. J Pediatr Surg 2015; 50:943-7. [PMID: 25818318 PMCID: PMC4439349 DOI: 10.1016/j.jpedsurg.2015.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE Intestinal adaptation structurally represents increases in crypt depth and villus height in response to small bowel resection (SBR). Previously, we found that neither epidermal growth factor receptor (EGFR) nor insulin-like growth factor 1 receptor (IGF1R) function was individually required for normal adaptation. In this study, we sought to determine the effect of disrupting both EGFR and IGF1R expression on resection-induced adaptation. METHODS Intestinal-specific EGFR and IGF1R double knockout mice (EGFR/IGF1R-IKO) (n=6) and wild-type (WT) control mice (n=7) underwent 50% proximal SBR. On postoperative day (POD) 7, structural adaptation was scored by measuring crypt depth and villus height. Rates of crypt cell proliferation, apoptosis, and submucosal capillary density were also compared. RESULTS After 50% SBR, normal adaptation occurred in both WT and EGFR/IGF1R-IKO. Rates of proliferation and apoptosis were no different between the two groups. The angiogenic response was less in the EGFR/IGF1R-IKO compared to WT mice. CONCLUSION Disrupted expression of EGFR and IGF1R in the intestinal epithelial cells does not affect resection-induced structural adaptation but attenuates angiogenesis after SBR. These findings suggest that villus growth is driven by receptors and pathways that occur outside the epithelial cell component, while angiogenic responses may be influenced by epithelial-endothelial crosstalk.
Collapse
|
17
|
Diaz-Miron J, Sun R, Choi P, Sommovilla J, Guo J, Erwin CR, Mei J, Scott Worthen G, Warner BW. The effect of impaired angiogenesis on intestinal function following massive small bowel resection. J Pediatr Surg 2015; 50:948-53. [PMID: 25818317 PMCID: PMC4439276 DOI: 10.1016/j.jpedsurg.2015.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE Intestinal adaptation involves villus lengthening, crypt deepening, and increased capillary density following small bowel resection (SBR). Mice lacking the proangiogenic chemokine CXCL5 have normal structural adaptation but impaired angiogenesis. This work evaluates the impact of incomplete adaptive angiogenesis on the functional capacity of the intestine after SBR. METHODS CXCL5 knockout (KO) and C57BL/6 wild-type (WT) mice underwent 50% SBR. Magnetic resonance imaging measured weekly body composition. Intestinal absorptive capacity was evaluated through fecal fat analysis. Gene expression profiles for select macronutrient transporters were measured via RT-PCR. Postoperative crypt and villus measurements were assessed for structural adaptation. Submucosal capillary density was measured through CD31 immunohistochemistry. RESULTS Comparable postoperative weight gain occurred initially. Diminished weight gain, impaired fat absorption, and elevated steatorrhea occurred in KO mice after instituting high-fat diet. Greater postoperative upregulation of ABCA1 fat transporter occurred in WT mice, while PEPT1 protein transporter was significantly downregulated in KO mice. KO mice had impaired angiogenesis but intact structural adaptation. CONCLUSION After SBR, KO mice display an inefficient intestinal absorption profile with perturbed macronutrient transporter expression, impaired fat absorption, and slower postoperative weight gain. In addition to longer villi and deeper crypts, an intact angiogenic response may be required to achieve functional adaptation to SBR.
Collapse
Affiliation(s)
- Jose Diaz-Miron
- Division of Pediatric Surgery, St Louis Children's Hospital, Department of Surgery, Washington University School of Medicine, St Louis, MO
| | - Raphael Sun
- Division of Pediatric Surgery, St Louis Children's Hospital, Department of Surgery, Washington University School of Medicine, St Louis, MO
| | - Pamela Choi
- Division of Pediatric Surgery, St Louis Children's Hospital, Department of Surgery, Washington University School of Medicine, St Louis, MO
| | - Joshua Sommovilla
- Division of Pediatric Surgery, St Louis Children's Hospital, Department of Surgery, Washington University School of Medicine, St Louis, MO
| | - Jun Guo
- Division of Pediatric Surgery, St Louis Children's Hospital, Department of Surgery, Washington University School of Medicine, St Louis, MO
| | - Christopher R Erwin
- Division of Pediatric Surgery, St Louis Children's Hospital, Department of Surgery, Washington University School of Medicine, St Louis, MO
| | - Junjie Mei
- Division of Neonatology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - G Scott Worthen
- Division of Neonatology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Brad W Warner
- Division of Pediatric Surgery, St Louis Children's Hospital, Department of Surgery, Washington University School of Medicine, St Louis, MO.
| |
Collapse
|