1
|
Qu Q, Zhang X, Muhire J, Yang A, Xie M, Xiong R, Cheng W, Pei D, Huang C. Biomimetic triggered release from hydroxyethyl cellulose @ Prussian blue microparticles for tri-modality biofilm removal. Colloids Surf B Biointerfaces 2024; 244:114184. [PMID: 39214032 DOI: 10.1016/j.colsurfb.2024.114184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Human health is under growing threat from the increasing incidence of bacterial infections. Through their antimicrobial mechanisms, bacteria use appropriate strategies to overcome the antimicrobial effects of antibiotics. The enhanced effects of synergistic strategies on drug-resistant bacteria and biofilms have led to increasing interest in these approaches in recent years. Herein, biomimetic hydroxyethyl cellulose @ Prussian blue microparticles (HEC@PB MPs) generated by the gas-shearing method show a synergistic antibacterial property induced by antibiotic-, photothermal- and photodynamic- effect. MPs, as tri-modality antibacterial agents, exhibit ideal antibacterial activity and biofilm removal effect, and their mode of action on bacteria was investigated. Additionally, a drug release concept encouraged by the ROS-driven breakdown of cellulose, as seen in brown-rot fungi, was introduced. It combines ROS-responsive HEC and photodynamic PB and is likely to fit a niche in many applications.
Collapse
Affiliation(s)
- Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China; Research Center for Natural Medicine and Chemical Metrology and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Jules Muhire
- Research Center for Natural Medicine and Chemical Metrology and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anquan Yang
- Zhejiang OSM Group Co., Ltd., Huzhou 313000, China
| | - Min Xie
- Zhejiang OSM Group Co., Ltd., Huzhou 313000, China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Weixia Cheng
- Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| | - Dong Pei
- Research Center for Natural Medicine and Chemical Metrology and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| |
Collapse
|
2
|
Hulankova R. Methods for Determination of Antimicrobial Activity of Essential Oils In Vitro-A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2784. [PMID: 39409654 PMCID: PMC11478843 DOI: 10.3390/plants13192784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
Essential oils (EOs) have been gaining popularity in the past decades among researchers due to their potential to replace conventional chemicals used in the fight against pests, pathogenic and spoilage microbes, and oxidation processes. EOs are complex mixtures with many chemical components, the content of which depends on many factors-not just the plant genus, species, or subspecies, but also chemotype, locality, climatic conditions, phase of vegetation, method of extraction, and others. Due to this fact, there is still much to study, with antimicrobial effect being one of the key properties of EOs. There are many methods that have been frequently used by researchers for in vitro evaluation; however, although the research has been going on for decades, an internationally accepted standard is still missing. Most of methods are based on time-proven standards used for the testing of antibiotics. Due to the specific properties of EOs and their components, such as volatility and hydrophobicity, many modifications of these standard procedures have been adopted. The aim of this review is to describe the most common methods and their modifications for the testing of antimicrobial properties of EOs and to point out the most controversial variables which can potentially affect results of the assays.
Collapse
Affiliation(s)
- Radka Hulankova
- Department of Hygiene and Technology of Food of Animal Origin and Gastronomy, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| |
Collapse
|
3
|
Tyagi A, Kumar V, Joshi N, Dhingra HK. Combinatorial Effects of Ursodeoxycholic Acid and Antibiotic in Combating Staphylococcus aureus Biofilm: The Roles of ROS and Virulence Factors. Microorganisms 2024; 12:1956. [PMID: 39458266 PMCID: PMC11509559 DOI: 10.3390/microorganisms12101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Staphylococcus aureus is a biofilm-forming bacterium responsible for various human infections, one particularly challenging to treat due to its antibiotic resistance. Biofilms can form on both soft tissues and medical devices, leading to persistent and hard-to-treat infections. Combining multiple antimicrobials is a potential approach to overcoming this resistance. This study explored the effects of ursodeoxycholic acid (UDCA) combined with the antibiotic ciprofloxacin against S. aureus biofilms, aiming to evaluate any synergistic effects. Results showed that UDCA and ciprofloxacin co-treatment significantly reduced biofilm formation and disrupted pre-formed biofilms more effectively than either agent alone (p < 0.01). The combination also displayed a slight synergistic effect, with a fractional inhibitory concentration of 0.65. Additionally, the treatment reduced the production of extracellular polymeric substances, increased reactive oxygen species production, decreased metabolic activity, altered cell membrane permeability, and lowered cell surface hydrophobicity in S. aureus. Furthermore, it diminished biofilm-associated pathogenic factors, including proteolytic activity and staphyloxanthin production. Overall, the UDCA-ciprofloxacin combination shows considerable promise as a strategy to combat infections related to staphylococcal biofilms, offering a potential solution to the healthcare challenges posed by antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Anuradha Tyagi
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh 332311, Rajasthan, India; (A.T.); (N.J.)
| | - Vinay Kumar
- Department of Medicine, Pennsylvania State University, Hershey Medical Center, Hershey, PA 17033, USA
| | - Navneet Joshi
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh 332311, Rajasthan, India; (A.T.); (N.J.)
| | - Harish Kumar Dhingra
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh 332311, Rajasthan, India; (A.T.); (N.J.)
| |
Collapse
|
4
|
Wesche J, Schnabel G. Influence of Propiconazole and Metconazole Formulations on Bacillus subtilis Vegetative Cell Growth and Disease Control of Fruit Crops. PHYTOPATHOLOGY 2024; 114:1515-1524. [PMID: 38489213 DOI: 10.1094/phyto-01-24-0029-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Biological control agent Bacillus subtilis formulated as Theia is registered for control of fungal and bacterial diseases of fruit crops. Combinations of Theia and strategic concentrations of two demethylation inhibitor (DMI) fungicides were investigated to explore potential synergisms. Bacteria were cultured in nutrient broth and combined with technical grades and two formulations of propiconazole (emulsifiable concentrate [EC] and wettable powder) and metconazole (EC and water-dispersible granule) at 0, 10, 50, 100, and 150 µg/ml of active ingredient. After cocultivation, the optical density (OD600) and colony forming units (CFU/ml) were evaluated. In contrast to EC formulations, the wettable powder or water-dispersible granule formulations at 10 or 50 µg/ml of both DMIs did not affect vegetative cell growth. The mixture of Theia and each formulated DMI at 50 µg/ml of active ingredient resulted in a significant reduction of Monilinia fructicola lesion development on apple, Colletotrichum siamense lesion development on cherry, and Botrytis cinerea lesion development on cherry. The combination of Theia with EC formulations showed weaker disease reduction due to antagonism. Only Theia plus non-EC formulated propiconazole and metconazole significantly reduced brown rot disease incidence of apple compared with the respective solo treatments and anthracnose disease incidence of cherry compared with the untreated control. Our results indicated that at least some DMI fungicides possess bactericidal effects depending on the formulation and concentration. The combination of Theia with a lower-than-label-rate concentration (50 µg/ml) of the DMI fungicides propiconazole and metconazole showed potential for synergistic effects, especially when non-EC formulations were used.
Collapse
Affiliation(s)
- Johanna Wesche
- Department of Plant and Environmental Science, Clemson University, 105 Collings Street Clemson, SC 29634
| | - Guido Schnabel
- Department of Plant and Environmental Science, Clemson University, 105 Collings Street Clemson, SC 29634
| |
Collapse
|
5
|
Sarangi A, Das BS, Sahoo A, Jena B, Patnaik G, Giri S, Chattopadhyay D, Bhattacharya D. Deciphering the Antibiofilm, Antibacterial, and Antioxidant Potential of Essential Oil from Indian Garlic and its Phytocompounds Against Foodborne Pathogens. Curr Microbiol 2024; 81:245. [PMID: 38940852 DOI: 10.1007/s00284-024-03753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Garlic (Allium sativum L.), particularly its volatile essential oil, is widely recognized for medicinal properties. We have evaluated the efficacy of Indian Garlic Essential Oil (GEO) for antimicrobial and antibiofilm activity and its bioactive constituents. Allyl sulfur-rich compounds were identified as predominant phytochemicals in GEO, constituting 96.51% of total volatile oils, with 38% Diallyl trisulphide (DTS) as most abundant. GEO exhibited significant antibacterial activity against eleven bacteria, including three drug-resistant strains with minimum inhibitory concentrations (MICs) ranging from 78 to 1250 µg/mL. In bacterial growth kinetic assay GEO effectively inhibited growth of all tested strains at its ½ MIC. Antibiofilm activity was evident against two important human pathogens, S. aureus and P. aeruginosa. Mechanistic studies demonstrated that GEO disrupts bacterial cell membranes, leading to the release of nucleic acids, proteins, and reactive oxygen species. Additionally, GEO demonstrated potent antioxidant activity at IC50 31.18 mg/mL, while its isolated constituents, Diallyl disulphide (DDS) and Diallyl trisulphide (DTS), showed effective antibacterial activity ranging from 125 to 500 µg/mL and 250-1000 µg/mL respectively. Overall, GEO displayed promising antimicrobial and antibiofilm activity against enteric bacteria, suggesting its potential application in the food industry.
Collapse
Affiliation(s)
- Ashirbad Sarangi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Bhabani Shankar Das
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Ambika Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Biswajit Jena
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Gautam Patnaik
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sidhartha Giri
- ICMR-Regional Medical Research Centre (RMRC), Bhubaneswar, Odisha, India
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
- School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata, India.
| | - Debapriya Bhattacharya
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India.
| |
Collapse
|
6
|
Sena G, De Rose E, Crudo M, Filippelli G, Passarino G, Bellizzi D, D’Aquila P. Essential Oils from Southern Italian Aromatic Plants Synergize with Antibiotics against Escherichia coli, Pseudomonas aeruginosa and Enterococcus faecalis Cell Growth and Biofilm Formation. Antibiotics (Basel) 2024; 13:605. [PMID: 39061287 PMCID: PMC11274178 DOI: 10.3390/antibiotics13070605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The spread of antibiotic-resistant pathogens has prompted the development of novel approaches to identify molecules that synergize with antibiotics to enhance their efficacy. This study aimed to investigate the effects of ten Essential Oils (EOs) on the activity of nine antibiotics in influencing growth and biofilm formation in Escherichia coli, Pseudomonas aeruginosa, and Enterococcus faecalis. The effects of the EOs alone and in combination with antibiotics on both bacterial growth and biofilm formation were analyzed by measuring the MIC values through the broth microdilution method and the crystal violet assay, respectively. All EOs inhibited the growth of E. coli (1.25 ≤ MIC ≤ 5 mg/mL) while the growth of P. aeruginosa and E. faecalis was only affected by EOs from Origanum vulgare, (MIC = 5 mg/mL) and O. vulgare (MIC = 1.25 mg/mL) and Salvia rosmarinus (MIC = 5 mg/mL), respectively. In E. coli, most EOs induced a four- to sixteen-fold reduction in the MIC values of ampicillin, ciprofloxacin, ceftriaxone, gentamicin, and streptomycin, while in E. faecalis such a reduction is observed in combinations of ciprofloxacin with C. nepeta, C. bergamia, C. limon, C. reticulata, and F. vulgare, of gentamicin with O. vulgare, and of tetracycline with C. limon and O. vulgare. A smaller effect was observed in P. aeruginosa, in which only C. bergamia reduced the concentration of tetracycline four-fold. EO-antibiotic combinations also inhibit the biofilm formation. More precisely, all EOs with ciprofloxacin in E. coli, tetracycline in P. aeruginosa, and gentamicin in E. faecalis showed the highest percentage of inhibition. Combinations induce up- and down-methylation of cytosines and adenines compared to EO or antibiotics alone. The study provides evidence about the role of EOs in enhancing the action of antibiotics by influencing key processes involved in resistance mechanisms such as biofilm formation and epigenetic changes. Synergistic interactions should be effectively considered in dealing with pathogenic microorganisms.
Collapse
Affiliation(s)
- Giada Sena
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (G.S.); (E.D.R.); (G.P.); (P.D.)
| | - Elisabetta De Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (G.S.); (E.D.R.); (G.P.); (P.D.)
| | - Michele Crudo
- Botanical Research Institute of Calabrian Knowledge (B.R.I.C.K.)—GOEL Società Cooperativa Sociale, Via Peppino Brugnano, 89048 Siderno, Italy;
| | - Gianfranco Filippelli
- Unità Operativa Complessa di Oncologia Medica, Ospedale San Francesco di Paola, 87027 Paola, Italy;
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (G.S.); (E.D.R.); (G.P.); (P.D.)
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (G.S.); (E.D.R.); (G.P.); (P.D.)
| | - Patrizia D’Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (G.S.); (E.D.R.); (G.P.); (P.D.)
| |
Collapse
|
7
|
Lindi AM, Gorgani L, Mohammadi M, Hamedi S, Darzi GN, Cerruti P, Fattahi E, Moeini A. Fenugreek seed mucilage-based active edible films for extending fresh fruit shelf life: Antimicrobial and physicochemical properties. Int J Biol Macromol 2024; 269:132186. [PMID: 38723815 DOI: 10.1016/j.ijbiomac.2024.132186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Trigonella foenum-graecum, known as fenugreek, belongs to the leguminous family of wild growth in Western Asia, Europe, the Mediterranean, and Asia; its ripe seeds contain a pool of bioactive substances with great potential in the food industry and medicine. In this study, fenugreek seed mucilage (FSM) was extracted and characterized in its structural properties by X-ray diffraction, nuclear magnetic resonance, and high-performance liquid chromatography. Then, the applicability of FSM as an antimicrobial agent was demonstrated via the development of novel, active, edible FSM-based biofilms containing carboxymethyl cellulose and rosemary essential oil (REO). Incorporating REO in the biofilms brought about specific changes in Fourier-transform infrared spectra, affecting thermal degradation behavior. Scanning electron microscopy and atomic force microscopy morphography showed an even distribution of REO and smoother surfaces in the loaded films. Besides, the solubility tests evidenced a reduction in water solubility with increasing REO concentration from 1 to 3 wt%. The biological assay evidenced the antimicrobial activity of REO-loaded biofilms against Staphylococcus aureus and Escherichia coli. Finally, whole apples were dip-coated with FSM-based solutions to showcase future edible systems. The REO-loaded biofilms extended the shelf life of apples to 30 days, demonstrating their potential for sustainable and active coatings.
Collapse
Affiliation(s)
- Ali Mohammadi Lindi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 47148 Babol, Iran
| | - Leila Gorgani
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 47148 Babol, Iran
| | - Maedeh Mohammadi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 47148 Babol, Iran
| | - Sepideh Hamedi
- Department of Bio-refinery, Faculty of New Technologies Engineering, Shahid Beheshti University, Tehran, Iran
| | - Ghasem Najafpour Darzi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 47148 Babol, Iran
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB) - CNR, Via Gaetano Previati, 1/E, 23900 Lecco, Italy
| | - Ehsan Fattahi
- Research Group of Fluid Dynamics, Chair of Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Arash Moeini
- Research Group of Fluid Dynamics, Chair of Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
8
|
Er-Rahmani S, Errabiti B, Matencio A, Trotta F, Latrache H, Koraichi SI, Elabed S. Plant-derived bioactive compounds for the inhibition of biofilm formation: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34859-34880. [PMID: 38744766 DOI: 10.1007/s11356-024-33532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
Biofilm formation is a widespread phenomenon that impacts different fields, including the food industry, agriculture, health care and the environment. Accordingly, there is a serious need for new methods of managing the problem of biofilm formation. Natural products have historically been a rich source of varied compounds with a wide variety of biological functions, including antibiofilm agents. In this review, we critically highlight and discuss the recent progress in understanding the antibiofilm effects of several bioactive compounds isolated from different plants, and in elucidating the underlying mechanisms of action and the factors influencing their adhesion. The literature shows that bioactive compounds have promising antibiofilm potential against both Gram-negative and Gram-positive bacterial and fungal strains, via several mechanisms of action, such as suppressing the formation of the polymer matrix, limiting O2 consumption, inhibiting microbial DNA replication, decreasing hydrophobicity of cell surfaces and blocking the quorum sensing network. This antibiofilm activity is influenced by several environmental factors, such as nutritional cues, pH values, O2 availability and temperature. This review demonstrates that several bioactive compounds could mitigate the problem of biofilm production. However, toxicological assessment and pharmacokinetic investigations of these molecules are strongly required to validate their safety.
Collapse
Affiliation(s)
- Sara Er-Rahmani
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università Di Torino, 10125, Turin, Italy
| | - Badr Errabiti
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco
| | - Adrián Matencio
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università Di Torino, 10125, Turin, Italy
| | - Francesco Trotta
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università Di Torino, 10125, Turin, Italy
| | - Hassan Latrache
- Laboratory of Bioprocesses and Bio-Interfaces, Faculty of Science and Technology, Sultan Moulay Slimane University, 23000, Beni Mellal, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco
| | - Soumya Elabed
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco.
| |
Collapse
|
9
|
Jafar M, Ahmad Khan MS, Akbar MJ, AlSaihaty HS, Alasmari SS. Obliteration of H. pylori infection through the development of a novel thyme oil laden nanoporous gastric floating microsponge. Heliyon 2024; 10:e29246. [PMID: 38638985 PMCID: PMC11024545 DOI: 10.1016/j.heliyon.2024.e29246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
Thyme oil (TO) is a valuable essential oil believed to possess a variety of bioactivities, including antibacterial, anticancer, and antioxidant properties. These attributes grant TO the excellent capability to treat a wide range of diseases, particularly the effective eradication of Helicobacter pylori infection in the stomach. However, its practical use is limited by its low stability under atmospheric conditions. Our current research aims to encapsulate TO in eudragit (EGT) microsponges to enhance its stability and improve its effectiveness against H. pylori. The TO microsponges were prepared using EGT as a polymer, polysorbate 80 as a stabilizer, and dichloromethane (DCM) as a solvent via the quasi-emulsion solvent evaporation method. The product yield, particle size, surface morphology, entrapment efficiency, drug-polymer interaction, in-vitro floating, and in-vitro drug release of the microsponges were evaluated. The most promising microsponge was tested against H. pylori ATCC 43504 strains. The results showed that the microsponges exhibited a high product yield (ranging from 41 % ± 0.75-81.27 % ± 1.13), excellent entrapment efficiency (ranging from 63.01 % ± 0.79-88.64 % ± 0.98), prolonged in-vitro floating time (more than 12 h) and sustained in-vitro drug release for 18 h (81.53 %). Scanning electron microscopy results indicated that the microsponges were spherical in shape with a spongy surface. The average particle size of the selected microsponges was determined to be 49.79 ± 1.4 μm, and their average pore size was measured to be 0.81 ± 0.14 μm. DSC study results revealed that TO was physically entrapped in the microsponges. In-vitro anti-H. pylori activity studies demonstrated that TO in microsponge was more effective against H. pylori than pure TO. In conclusion, the developed microsponges containing thyme oil provide a promising alternative for the efficient targeting and eradication of H. Pylori infection.
Collapse
Affiliation(s)
- Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Mohammad Jamal Akbar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Hadi Saleem AlSaihaty
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Sultan Saad Alasmari
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| |
Collapse
|
10
|
Yang X, Sima Y, Luo X, Li Y, He M. Analysis of GC × GC fingerprints from medicinal materials using a novel contour detection algorithm: A case of Curcuma wenyujin. J Pharm Anal 2024; 14:100936. [PMID: 38655399 PMCID: PMC11036100 DOI: 10.1016/j.jpha.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/24/2023] [Accepted: 01/11/2024] [Indexed: 04/26/2024] Open
Abstract
This study introduces an innovative contour detection algorithm, PeakCET, designed for rapid and efficient analysis of natural product image fingerprints using comprehensive two-dimensional gas chromatogram (GC × GC). This method innovatively combines contour edge tracking with affinity propagation (AP) clustering for peak detection in GC × GC fingerprints, the first in this field. Contour edge tracking significantly reduces false positives caused by "burr" signals, while AP clustering enhances detection accuracy in the face of false negatives. The efficacy of this approach is demonstrated using three medicinal products derived from Curcuma wenyujin. PeakCET not only performs contour detection but also employs inter-group peak matching and peak-volume percentage calculations to assess the compositional similarities and differences among various samples. Furthermore, this algorithm compares the GC × GC fingerprints of Radix/Rhizoma Curcumae Wenyujin with those of products from different botanical origins. The findings reveal that genetic and geographical factors influence the accumulation of secondary metabolites in various plant tissues. Each sample exhibits unique characteristic components alongside common ones, and variations in content may influence their therapeutic effectiveness. This research establishes a foundational data-set for the quality assessment of Curcuma products and paves the way for the application of computer vision techniques in two-dimensional (2D) fingerprint analysis of GC × GC data.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Yingyu Sima
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Xuhuai Luo
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Yaping Li
- Department of Quality Control, Xiangtan Central Hospital, Xiangtan, Hunan, 411100, China
| | - Min He
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| |
Collapse
|
11
|
Roy R, Paul P, Chakraborty P, Malik M, Das S, Chatterjee S, Maity A, Dasgupta M, Sarker RK, Sarkar S, Das Gupta A, Tribedi P. Cuminaldehyde and Tobramycin Forestall the Biofilm Threats of Staphylococcus aureus: A Combinatorial Strategy to Evade the Biofilm Challenges. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04914-6. [PMID: 38526664 DOI: 10.1007/s12010-024-04914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Staphylococcus aureus, an opportunistic Gram-positive pathogen, is known for causing various infections in humans, primarily by forming biofilms. The biofilm-induced antibiotic resistance has been considered a significant medical threat. Combinatorial therapy has been considered a reliable approach to combat antibiotic resistance by using multiple antimicrobial agents simultaneously, targeting bacteria through different mechanisms of action. To this end, we examined the effects of two molecules, cuminaldehyde (a natural compound) and tobramycin (an antibiotic), individually and in combination, against staphylococcal biofilm. Our experimental observations demonstrated that cuminaldehyde (20 μg/mL) in combination with tobramycin (0.05 μg/mL) exhibited efficient reduction in biofilm formation compared to their individual treatments (p < 0.01). Additionally, the combination showed an additive interaction (fractional inhibitory concentration value 0.66) against S. aureus. Further analysis revealed that the effective combination accelerated the buildup of reactive oxygen species (ROS) and increased the membrane permeability of the bacteria. Our findings also specified that the cuminaldehyde in combination with tobramycin efficiently reduced biofilm-associated pathogenicity factors of S. aureus, including fibrinogen clumping ability, hemolysis property, and staphyloxanthin production. The selected concentrations of tobramycin and cuminaldehyde demonstrated promising activity against the biofilm development of S. aureus on catheter models without exerting antimicrobial effects. In conclusion, the combination of tobramycin and cuminaldehyde presented a successful strategy for combating staphylococcal biofilm-related healthcare threats. This combinatorial approach holds the potential for controlling biofilm-associated infections caused by S. aureus.
Collapse
Affiliation(s)
- Ritwik Roy
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Payel Paul
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Poulomi Chakraborty
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Moumita Malik
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sharmistha Das
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sudipta Chatterjee
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Alakesh Maity
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Monikankana Dasgupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Ranojit Kumar Sarker
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sarita Sarkar
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Anirban Das Gupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Prosun Tribedi
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| |
Collapse
|
12
|
Zhang K, Cao F, Zhao Y, Wang H, Chen L. Antibacterial Ingredients and Modes of the Methanol-Phase Extract from the Fruit of Amomum villosum Lour. PLANTS (BASEL, SWITZERLAND) 2024; 13:834. [PMID: 38592864 PMCID: PMC10975419 DOI: 10.3390/plants13060834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Epidemics of infectious diseases threaten human health and society stability. Pharmacophagous plants are rich in bioactive compounds that constitute a safe drug library for antimicrobial agents. In this study, we have deciphered for the first time antibacterial ingredients and modes of the methanol-phase extract (MPE) from the fruit of Amomum villosum Lour. The results have revealed that the antibacterial rate of the MPE was 63.64%, targeting 22 species of common pathogenic bacteria. The MPE was further purified by high performance liquid chromatography (Prep-HPLC), and three different constituents (Fractions 1-3) were obtained. Of these, the Fraction 2 treatment significantly increased the cell membrane fluidity and permeability, reduced the cell surface hydrophobicity, and damaged the integrity of the cell structure, leading to the leakage of cellular macromolecules of Gram-positive and Gram-negative pathogens (p < 0.05). Eighty-nine compounds in Fraction 2 were identified by ultra HPLC-mass spectrometry (UHPLC-MS) analysis, among which 4-hydroxyphenylacetylglutamic acid accounted for the highest 30.89%, followed by lubiprostone (11.86%), miltirone (10.68%), and oleic acid (10.58%). Comparative transcriptomics analysis revealed significantly altered metabolic pathways in the representative pathogens treated by Fraction 2 (p < 0.05), indicating multiple antibacterial modes. Overall, this study first demonstrates the antibacterial activity of the MPE from the fruit of A. villosum Lour., and should be useful for its application in the medicinal and food preservative industries against common pathogens.
Collapse
Affiliation(s)
- Kaiyue Zhang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Fengfeng Cao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yueliang Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hengbin Wang
- Department of Internal Medicine, Division of Hematology, Oncology, and Palliative Care, Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
13
|
Ergüden B, Lüleci HB, Ünver Y. Benzothiophene Schiff Bases Disrupt Cytoplasmic Membrane Integrity of Gram-Positive and -Negative Bacteria Cells. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2024; 50:128-137. [DOI: 10.1134/s1068162024010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 07/26/2024]
|
14
|
Chroho M, Rouphael Y, Petropoulos SA, Bouissane L. Carvacrol and Thymol Content Affects the Antioxidant and Antibacterial Activity of Origanum compactum and Thymus zygis Essential Oils. Antibiotics (Basel) 2024; 13:139. [PMID: 38391524 PMCID: PMC10885931 DOI: 10.3390/antibiotics13020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Essential oils are of great interest due to their potent pharmaceutical and biological activities. In this study, essential oils extracted from Origanum compactum and Thymus zygis originating from the Middle Atlas of Morocco were investigated. Their chemical compositions were analyzed using gas chromatography and mass spectrometry, while the assessment of the trapping power of the radical (DPPH: 1,1-diphenyl-2-picrylhydrazyl) and the reducing antioxidant potential of ferric ions (FRAP: Ferric Reducing Antioxidant Power) were performed in order to evaluate the antioxidant activity. Their antibacterial potency was tested against six bacterial strains through the disk diffusion method. The chromatography analyses of the extracted essential oils highlighted the presence of two main components, namely carvacrol at 75.70% in O. compactum and thymol at 40.67% in T. zygis. The antioxidant activity tests showed that both essential oils demonstrated a significant antioxidant activity comparable to the positive control (e.g., ascorbic acid). The antibacterial activity results showed a strong antimicrobial effect for both essential oils, compared to synthetic antibiotics. This study affirms the presence of bioactive components with interesting antioxidant and antibacterial activities in the essential oils extracted from Origanum compactum and Thymus zygis, which could find several applications in the food and pharmaceutical industries through the substitution of synthetic antioxidants and antibiotics.
Collapse
Affiliation(s)
- Mounia Chroho
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco
| |
Collapse
|
15
|
Hashim SBH, Tahir HE, Mahdi AA, Zhang J, Zhai X, Al-Maqtari QA, Zhou C, Mahunu GK, Xiaobo Z, Jiyong S. Enhancement of a hybrid colorimetric film incorporating Origanum compactum essential oil as antibacterial and monitor chicken breast and shrimp freshness. Food Chem 2024; 432:137203. [PMID: 37659328 DOI: 10.1016/j.foodchem.2023.137203] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/04/2023]
Abstract
Recently, intelligent packaging has combined several functions, including monitoring and preserving food freshness in real-time. This study was developed a hybrid film (active/ colorimetric) based on AM/CPC/9%SFW as a carrier of Origanum compactum essential oil (OC) in various concentrations (0%, 1%, 1.25%, and 1.5% v/v). The film's emulsions showed homogeneity regarding particle size, polydispersity index, and ζ -potential. Hybrid films' morphological, mechanical, water and light barrier, thermal, and antioxidant properties were enhanced with an increased OC. Interestingly, all films rapidly responded to pH/NH3 and reflected different colors. In the hybrid films, an inhibition effect against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria and OC (1.5%) film exhibited a large inhibition zone attained diameters of 37.33 and 15.67 mm, respectively, in the disc diffusion test. Outstanding, AM/CPC/9%SFW/1.5 %OC film displayed the ability to preserve and monitor chicken breast and shrimp freshness to 33 and 21 h, respectively, during storage at 25 °C.
Collapse
Affiliation(s)
- Sulafa B H Hashim
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Food Technology, Faculty of Agricultural Technology and Fish Sciences, Alneelain University, Khartoum, Sudan
| | - Haroon Elrasheid Tahir
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Amer Ali Mahdi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Junjun Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Qais Ali Al-Maqtari
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Chenguang Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Gustav Komla Mahunu
- Department of Food Science & Technology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Zou Xiaobo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Shi Jiyong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
16
|
Choi D, Bedale W, Chetty S, Yu JH. Comprehensive review of clean-label antimicrobials used in dairy products. Compr Rev Food Sci Food Saf 2024; 23:e13263. [PMID: 38284580 DOI: 10.1111/1541-4337.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 01/30/2024]
Abstract
Consumers expect safe, healthy, natural, and sustainable food. Within the food industry, ingredient use is changing due to these consumer demands. While no single agreed-upon definition of clean label exists, a "clean label" in the context of food refers to a product that has a simplified and transparent ingredient list, with easily recognizable and commonly understood components to the general public. Clean-label products necessitate and foster a heightened level of transparency between companies and consumers. Dairy products are vulnerable to being contaminated by both pathogens and spoilage microorganisms. These microorganisms can be effectively controlled by replacing conventional antimicrobials with clean-label ingredients such as protective cultures or bacterial/fungal fermentates. This review summarizes the perspectives of consumers and the food industry regarding the definition of "clean label," and the current and potential future use of clean-label antimicrobials in dairy products. A key goal of this review is to make the concept of clean-label antimicrobial agents better understood by both manufacturers and researchers.
Collapse
Affiliation(s)
- Dasol Choi
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wendy Bedale
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Suraj Chetty
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jae-Hyuk Yu
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
17
|
Kurmanjiang T, Wang X, Li J, Mamat N, Nurmamat M, Xu G. A novel pyrazolone complex P-FAH-Cu-bpy induces death of Escherichia coli and Staphylococcus aureus by disrupting cell structure and blocking energy. Arch Microbiol 2023; 205:376. [PMID: 37940792 DOI: 10.1007/s00203-023-03714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
A novel pyrazolone-based copper complex [Cu(L)(bpy)]∙CH3OH (P-FAH-Cu-bpy) was synthesized and previously characterized to have antitumor properties. This study aimed to investigate its antibacterial properties and action modes against Escherichia coli and Staphylococcus aureus. By agar diffusion assay, P-FAH-Cu-bpy showed strong antibacterial activity against E. coli and S. aureus with the diameter of inhibition zone of 10.17-12.50 mm and 11.83-14 mm, respectively. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the complex were 1.5 and 3 μM, respectively. Destroyed bacteria cells and debris were clearly observed by SEM. At 2 MIC and 4 MIC of P-FAH-Cu-bpy, 1.1683 and 1.9083 pg copper per cell was taken by E. coli, and 4.5670 and 8.5250 pg per cell by S. aureus, respectively. Multi-step resistance selection showed both bacteria were sensitive to P-FAH-Cu-bpy without induction of resistance within 30 generations. With P-FAH-Cu-bpy treatment, the release of nucleotides and proteins and alkaline phosphatase was increased, but the activity of K+-Na+-ATPase and Ca2+-Mg2+-ATPase and membrane conductivity were decreased in both pathogens. In conclusion, P-FAH-Cu-bpy induced death of both bacteria by destroying the cell membrane structure and blocking energy and exhibited strong antibacterial activity against E. coli and S. aureus without inducing microbial resistance.
Collapse
Affiliation(s)
- Tamasha Kurmanjiang
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Xiaojing Wang
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Jinyu Li
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China.
| | - Nuramina Mamat
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Marhaba Nurmamat
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Guanchen Xu
- Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, China
| |
Collapse
|
18
|
Al-Mijalli SH, El Hachlafi N, Jeddi M, Abdallah EM, Assaggaf H, Qasem A, Lee LH, Law JWF, Aladhadh M, Alnasser SM, Bouyahya A, Mrabti HN. Unveiling the volatile compounds and antibacterial mechanisms of action of Cupressus sempervirens L., against Bacillus subtilis and Pseudomonas aeruginosa. Biomed Pharmacother 2023; 167:115609. [PMID: 37801906 DOI: 10.1016/j.biopha.2023.115609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023] Open
Abstract
Cupressus sempervirens is a known traditional plant used to manage various ailments, including cancer, inflammatory and infectious diseases. In this investigation, we aimed to explore the chemical profile of Cupressus sempervirens essential oil (CSEO) as well as their antibacterial mode of action. The volatile components were characterized using gas chromatography coupled to a mass spectrometer (GC-MS). The results revealed remarkable antibacterial properties of EO derived from C. sempervirens. GC-MS analysis indicated that C. sempervirens EO characterized by δ-3-carene (47.72%), D-limonene (5.44%), β-pinene (4.36%), β-myrcene (4.02%). The oil exhibited significant inhibitory effects against a range of bacteria, including Staphylococcus aureus ATCC 29213, Bacillus subtilis ATCC 13048, Bacillus cereus (Clinical isolate), Pseudomonas aeruginosa ATCC 27853, and Escherichia coli ATCC 25922. These inhibitory effects surpassed those of conventional antibiotics. Furthermore, the EO demonstrated low minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs), indicating its bactericidal nature (MBC/MIC < 4.0). Time-kill kinetics analysis showed that CSEO was particularly effective at 2 × MIC doses, rapidly reduced viable count of B. subtilis and P. aeruginosa within 8 h. This suggests that the oil acts quickly and efficiently. The cell membrane permeability test further demonstrated the impact of CSEO on the relative conductivity of B. subtilis and P. aeruginosa, both at 2 × MIC concentrations. These observations suggest that EO disrupts the bacterial membrane, thereby influencing their growth and viability. Additionally, the cell membrane integrity test indicated that the addition of CSEO to bacterial cultures resulted in the significant release of proteins from the bacterial cells. This suggests that EO affects the structural integrity of the bacterial cells. Furthermore, the anti-biofilm assay confirmed the efficacy of CSEO as a potent anti-biofilm agent. It demonstrated the oil's ability to inhibit quorum sensing, a crucial mechanism for biofilm formation, and its competitive performance compared to the tested antibiotics.
Collapse
Affiliation(s)
- Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road, P.O. Box 2202, Fez, Morocco.
| | - Mohamed Jeddi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road, P.O. Box 2202, Fez, Morocco.
| | - Emad M Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia.
| | - Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Ahmed Qasem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Learn-Han Lee
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Selangor Darul Ehsan, Malaysia; Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Next-Generation Precision Medicine and Therapeutics Research Group (NMeT), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia.
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Next-Generation Precision Medicine and Therapeutics Research Group (NMeT), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia.
| | - Mohammed Aladhadh
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat 10106, Morocco.
| | - Hanae Naceiri Mrabti
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road, P.O. Box 2202, Fez, Morocco; High Institute of Nursing Professions and Health Techniques Casablanca, Casablanca 20250, Morocco.
| |
Collapse
|
19
|
Qi Y, Chen Q, Cai X, Liu L, Jiang Y, Zhu X, Huang Z, Wu K, Luo H, Ouyang Q. Self-Assembled Amphiphilic Chitosan Nanomicelles: Synthesis, Characterization and Antibacterial Activity. Biomolecules 2023; 13:1595. [PMID: 38002276 PMCID: PMC10669896 DOI: 10.3390/biom13111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Although amphiphilic chitosan has been widely studied as a drug carrier for drug delivery, fewer studies have been conducted on the antimicrobial activity of amphiphilic chitosan. In this study, we successfully synthesized deoxycholic acid-modified chitosan (CS-DA) by grafting deoxycholic acid (DA) onto chitosan C2-NH2, followed by grafting succinic anhydride, to prepare a novel amphiphilic chitosan (CS-DA-SA). The substitution degree was 23.93% for deoxycholic acid and 29.25% for succinic anhydride. Both CS-DA and CS-DA-SA showed good blood compatibility. Notably, the synthesized CS-DA-SA can self-assemble to form nanomicelles at low concentrations in an aqueous environment. The results of CS, CS-DA, and CS-DA-SA against Escherichia coli and Staphylococcus aureus showed that CS-DA and CS-DA-SA exhibited stronger antimicrobial effects than CS. CS-DA-SA may exert its antimicrobial effect by disrupting cell membranes or forming a membrane on the cell surface. Overall, the novel CS-DA-SA biomaterials have a promising future in antibacterial therapy.
Collapse
Affiliation(s)
- Yi Qi
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Qizhou Chen
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
| | - Xiaofen Cai
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
| | - Lifen Liu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
| | - Yuwei Jiang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
| | - Xufeng Zhu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Zhicheng Huang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
| | - Kefeng Wu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Hui Luo
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Qianqian Ouyang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
20
|
Plugariu IA, Gradinaru LM, Avadanei M, Rosca I, Nita LE, Maxim C, Bercea M. Thermosensitive Polyurethane-Based Hydrogels as Potential Vehicles for Meloxicam Delivery. Pharmaceuticals (Basel) 2023; 16:1510. [PMID: 38004376 PMCID: PMC10674489 DOI: 10.3390/ph16111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Meloxicam (MX) is a nonsteroidal anti-inflammatory drug (NSAID) used mainly to reduce pain, inflammation, and fever. In the present study, thermosensitive polyurethane (PU)-based hydrogels with various excipients (PEG, PVP, HPC, and essential oil) were prepared and loaded with MX. Rheological investigations were carried out on the PU-based formulations in various shear regimes, and their viscoelastic characteristics were determined. The average size of the PU micelles was 35.8 nm at 37 °C and slightly increased at 37 nm in the presence of MX. The zeta potential values of the hydrogels were between -10 mV and -11.5 mV. At pH = 6 and temperature of 37 °C, the formulated PU-based hydrogels loaded with MX could deliver significant amounts of the active substance, between 60% and 80% over 24-48 h and more than 90% within 2 weeks. It was found that anomalous transport phenomena dominated MX's release mechanism from the PU-based networks. The results are encouraging for further studies aiming to design alternative carriers to commercial dosage forms of nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ioana-Alexandra Plugariu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Luiza Madalina Gradinaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Mihaela Avadanei
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Irina Rosca
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Loredana Elena Nita
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Claudia Maxim
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, 73A, D. Mangeron Blvd., 700050 Iasi, Romania;
| | - Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| |
Collapse
|
21
|
Jacinto-Valderrama RA, Andrade CT, Pateiro M, Lorenzo JM, Conte-Junior CA. Recent Trends in Active Packaging Using Nanotechnology to Inhibit Oxidation and Microbiological Growth in Muscle Foods. Foods 2023; 12:3662. [PMID: 37835315 PMCID: PMC10572785 DOI: 10.3390/foods12193662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Muscle foods are highly perishable products that require the use of additives to inhibit lipid and protein oxidation and/or the growth of spoilage and pathogenic microorganisms. The reduction or replacement of additives used in the food industry is a current trend that requires the support of active-packaging technology to overcome novel challenges in muscle-food preservation. Several nano-sized active substances incorporated in the polymeric matrix of muscle-food packaging were discussed (nanocarriers and nanoparticles of essential oils, metal oxide, extracts, enzymes, bioactive peptides, surfactants, and bacteriophages). In addition, the extension of the shelf life and the inhibitory effects of oxidation and microbial growth obtained during storage were also extensively revised. The use of active packaging in muscle foods to inhibit oxidation and microbial growth is an alternative in the development of clean-label meat and meat products. Although the studies presented serve as a basis for future research, it is important to emphasize the importance of carrying out detailed studies of the possible migration of potentially toxic additives, incorporated in active packaging developed for muscle foods under different storage conditions.
Collapse
Affiliation(s)
- Rickyn A. Jacinto-Valderrama
- Programa de Pós-Graduação em Ciência de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Avenida Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, RJ, Brazil; (R.A.J.-V.); (C.T.A.)
| | - Cristina T. Andrade
- Programa de Pós-Graduação em Ciência de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Avenida Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, RJ, Brazil; (R.A.J.-V.); (C.T.A.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (J.M.L.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (J.M.L.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Carlos Adam Conte-Junior
- Programa de Pós-Graduação em Ciência de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Avenida Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, RJ, Brazil; (R.A.J.-V.); (C.T.A.)
| |
Collapse
|
22
|
Świder O, Roszko MŁ, Wójcicki M. The inhibitory effects of plant additives on biogenic amine formation in fermented foods - a review. Crit Rev Food Sci Nutr 2023:1-26. [PMID: 37724793 DOI: 10.1080/10408398.2023.2258964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Fermented food has unique properties and high nutritional value, and thus, should constitute a basic element of a balanced and health-promoting diet. However, it can accumulate considerable amount of biogenic amines (BAs), which ingested in excess can lead to adverse health effects. The application of plant-derived additives represents a promising strategy to ensure safety or enhance the functional and organoleptic properties of fermented food. This review summarizes currently available data on the application of plant-origin additives with the aim to reduce BA content in fermented products. The importance of ensuring fermented food safety has been highlighted considering the growing evidence of beneficial effects resulting from the consumption of this type of food, as well as the increasing number of individuals sensitive to BAs. The examined plant-origin additives reduced the BA concentration to varying degrees, and their efficacy depended on the type of additive, matrix, autochthonous, and inoculated microorganisms, as well as the manufacturing conditions. The main mechanisms of action include antimicrobial effects and the inhibition of microbial decarboxylases. Further research on the optimization of bioactive substances extraction, standardization of their chemical composition, and development of detailed procedures for its use in fermented products manufacturing are needed.
Collapse
Affiliation(s)
- Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Marek Łukasz Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
23
|
Bukvicki D, D’Alessandro M, Rossi S, Siroli L, Gottardi D, Braschi G, Patrignani F, Lanciotti R. Essential Oils and Their Combination with Lactic Acid Bacteria and Bacteriocins to Improve the Safety and Shelf Life of Foods: A Review. Foods 2023; 12:3288. [PMID: 37685221 PMCID: PMC10486891 DOI: 10.3390/foods12173288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The use of plant extracts (e.g., essential oils and their active compounds) represents an interesting alternative to chemical additives and preservatives applied to delay the alteration and oxidation of foods during their storage. Essential oils (EO) are nowadays considered valuable sources of food preservatives as they provide a healthier alternative to synthetic chemicals while serving the same purpose without affecting food quality parameters. The natural antimicrobial molecules found in medicinal plants represent a possible solution against drug-resistant bacteria, which represent a global health problem, especially for foodborne infections. Several solutions related to their application on food have been described, such as incorporation in active packaging or edible film and direct encapsulation. However, the use of bioactive concentrations of plant derivatives may negatively impact the sensorial characteristics of the final product, and to solve this problem, their application has been proposed in combination with other hurdles, including biocontrol agents. Biocontrol agents are microbial cultures capable of producing natural antimicrobials, including bacteriocins, organic acids, volatile organic compounds, and hydrolytic enzymes. The major effect of bacteriocins or bacteriocin-producing LAB (lactic acid bacteria) on food is obtained when their use is combined with other preservation methods. The combined use of EOs and biocontrol agents in fruit and vegetables, meat, and dairy products is becoming more and more important due to growing concerns about potentially dangerous and toxic synthetic additives. The combination of these two hurdles can improve the safety and shelf life (inactivation of spoilage or pathogenic microorganisms) of the final products while maintaining or stabilizing their sensory and nutritional quality. This review critically describes and collects the most updated works regarding the application of EOs in different food sectors and their combination with biocontrol agents and bacteriocins.
Collapse
Affiliation(s)
- Danka Bukvicki
- Faculty of Biology, Institute of Botany and Botanical Garden ‘Jevremovac’, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia;
| | - Margherita D’Alessandro
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Samantha Rossi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
24
|
Cui F, Wang Q, Liu J, Wang D, Li J, Li T. Effects of deletion of siderophore biosynthesis gene in Pseudomonas fragi on quorum sensing and spoilage ability. Int J Food Microbiol 2023; 396:110196. [PMID: 37031669 DOI: 10.1016/j.ijfoodmicro.2023.110196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Siderophores are important factors in the spoilage process of Pseudomonas fragi, considered to be one of the main spoilage bacterium of tuna, and the secretion of siderophores is regulated by quorum sensing (QS). This study aimed to construct a mutant with the deletion of the siderophore synthetase gene of P. fragi (MS-10), and to explore its effects on the growth, QS, and spoilage potential of P. fragi. The results showed that the deletion of the siderophore biosynthesis gene slowed down the growth rate of the strain. The apoptosis rate increased by 27.7 % compared with that of the wild-type strain at 4 °C for 48 h. Biofilm formation, extracellular protease expression, and signal molecule production were all significantly lower in the mutant strain compared with the wild-type strain. The total viable count and the histamine content showed that the tuna sterile fish block inoculated with the wild-type strain exceeded the acceptable standards by 5 days and was completely spoiled by 7 days, whereas the mutant strain exceeded the acceptable standards by 6 days and was completely spoiled by 9 days. The pH, texture, and other indicators showed that the variation range of the mutant strain was lower than that of the wild-type strain. The deletion of the siderophore biosynthesis gene reduced the spoilage ability of P. fragi. Based on the results, the development of novel preservation agents targeting the control of the siderophore biosynthesis gene could be a new idea for the preservation of aquatic products.
Collapse
|
25
|
Matté EHC, Luciano FB, Evangelista AG. Essential oils and essential oil compounds in animal production as antimicrobials and anthelmintics: an updated review. Anim Health Res Rev 2023; 24:1-11. [PMID: 37401263 DOI: 10.1017/s1466252322000093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Several countries have shown an increased prevalence of drug resistance in animal production due to the indiscriminate use of antibiotics and antiparasitics in human and veterinary medicine. This article aims to review existing methods using naturally occurring essential oils (EOs) and their isolated compounds (EOCs) as alternatives to antimicrobials and antiparasitic compounds in animal production and, consequently, to avoid resistance. The most-reported mechanism of action of EOs and EOCs was cell membrane damage, which leads to the leakage of cytoplasmic content, increased membrane permeability, inhibition of metabolic and genetic pathways, morphologic changes, antibiofilm effects, and damage to the genetic material of infections. In parasites, anticoccidial effects, reduced motility, growth inhibition, and morphologic changes have been reported. Although these compounds regularly show a similar effect to those promoted by traditional drugs, the elucidation of their mechanisms of action is still scarce. The use of EOs and EOCs can also positively influence crucial parameters in animal production, such as body weight gain, feed conversion rate, and cholesterol reduction, which also positively impact meat quality. The application of EOs and EOCs is enhanced by their association with other natural compounds or even by the association with synthetic chemicals, which has been found to cause synergism in their antimicrobial effect. By reducing the effective therapeutical/prophylactic dose, the chances of off-flavors – the most common issue in EO and EOC application – is greatly mitigated. However, there is very little work on the combination of EOs and EOCs in large in vivo studies. In addition, research must apply the correct methodology to properly understand the observed effects; for example, the use of only high concentrations may mask potential results obtained at lower dosages. Such corrections will also allow the elucidation of finer mechanisms and promote better biotechnologic use of EOs and EOCs. This manuscript presents several information gaps to be filled before the use of EOs and EOCs are fully applicable in animal production.
Collapse
Affiliation(s)
- Eduardo Henrique Custódio Matté
- Undergraduate Program in Biotechnology, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | | |
Collapse
|
26
|
Guillín Y, Cáceres M, Stashenko EE, Hidalgo W, Ortiz C. Untargeted Metabolomics for Unraveling the Metabolic Changes in Planktonic and Sessile Cells of Salmonella Enteritidis ATCC 13076 after Treatment with Lippia origanoides Essential Oil. Antibiotics (Basel) 2023; 12:antibiotics12050899. [PMID: 37237802 DOI: 10.3390/antibiotics12050899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Nontyphoidal Salmonella species are one of the main bacterial causes of foodborne diseases, causing a public health problem. In addition, the ability to form biofilms, multiresistance to traditional drugs, and the absence of effective therapies against these microorganisms are some of the principal reasons for the increase in bacterial diseases. In this study, the anti-biofilm activity of twenty essential oils (EOs) on Salmonella enterica serovar Enteritidis ATCC 13076 was evaluated, as well as the metabolic changes caused by Lippia origanoides thymol chemotype EO (LOT-II) on planktonic and sessile cells. The anti-biofilm effect was evaluated by the crystal violet staining method, and cell viability was evaluated through the XTT method. The effect of EOs was observed by scanning electron microscopy (SEM) analysis. Untargeted metabolomics analyses were conducted to determine the effect of LOT-II EO on the cellular metabolome. LOT-II EO inhibited S. Enteritidis biofilm formation by more than 60%, without decreasing metabolic activity. Metabolic profile analysis identified changes in the modulation of metabolites in planktonic and sessile cells after LOT-II EO treatment. These changes showed alterations in different metabolic pathways, mainly in central carbon metabolism and nucleotide and amino acid metabolism. Finally, the possible mechanism of action of L. origanoides EO is proposed based on a metabolomics approach. Further studies are required to advance at the molecular level on the cellular targets affected by EOs, which are promising natural products for developing new therapeutic agents against Salmonella sp. strains.
Collapse
Affiliation(s)
- Yuliany Guillín
- Escuela de Biología, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Marlon Cáceres
- Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Elena E Stashenko
- Center for Chromatography and Mass Spectrometry CROM-MASS, School of Chemistry, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - William Hidalgo
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Claudia Ortiz
- Escuela de Microbiología y Bioanálisis, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| |
Collapse
|
27
|
Vassiliou E, Awoleye O, Davis A, Mishra S. Anti-Inflammatory and Antimicrobial Properties of Thyme Oil and Its Main Constituents. Int J Mol Sci 2023; 24:ijms24086936. [PMID: 37108100 PMCID: PMC10138399 DOI: 10.3390/ijms24086936] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Thyme oil (TO) is derived from the flowers of various plants belonging to the genus Thymus. It has been used as a therapeutic agent since ancient times. Thymus comprises numerous molecular species exhibiting diverse therapeutic properties that are dependent on their biologically active concentrations in the extracted oil. It is therefore not surprising that oils extracted from different thyme plants present different therapeutic properties. Furthermore, the phenophase of the same plant species has been shown to yield different anti-inflammatory properties. Given the proven efficacy of TO and the diversity of its constituents, a better understanding of the interactions of the various components is warranted. The aim of this review is to gather the latest research findings regarding TO and its components with respect to their immunomodulatory properties. An optimization of the various components has the potential to yield more effective thyme formulations with increased potency.
Collapse
Affiliation(s)
- Evros Vassiliou
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| | - Oreoluwa Awoleye
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| | - Amanda Davis
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| | - Sasmita Mishra
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| |
Collapse
|
28
|
Zhang L, Piao X. Use of aromatic plant-derived essential oils in meat and derived products: Phytochemical compositions, functional properties, and encapsulation. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
29
|
Aksić J, Genčić M, Stojanović N, Radulović N, Zlatković D, Dimitrijević M, Stojanović-Radić Z, Srbljanović J, Štajner T, Jovanović L. New Iron Twist to Chloroquine─Upgrading Antimalarials with Immunomodulatory and Antimicrobial Features. J Med Chem 2023; 66:2084-2101. [PMID: 36661364 DOI: 10.1021/acs.jmedchem.2c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Herein, upgraded chloroquine (CQ) derivatives capable of overcoming Plasmodium resistance and, at the same time, suppressing excessive immune response and risk of concurrent bacteremia were developed. Twelve new ferrocene-CQ hybrids tethered with a small azathia heterocycle (1,3-thiazolidin-4-one, 1,3-thiazinan-4-one, or 5-methyl-1,3-thiazolidin-4-one) were synthesized and fully characterized. All hybrids were evaluated for their in vitro antiplasmodial, antimicrobial, and immunomodulatory activities. Additional assays were performed on selected hybrids to gain insights into their mode of action. Although only hybrid 4a was more potent than the parent drug toward CQ-resistant Dd2 Plasmodium falciparum strain, several other hybrids (such as 6b, 6c, and 6d) manifested substantially improved antimicrobial and immunomodulatory properties. Interesting structure-activity relationship data were obtained, hinting at future research for the development of new multitarget chemotherapies for malaria and other infectious diseases complicated by drug resistance, bacterial co-infection, and immune-driven pathology issues.
Collapse
Affiliation(s)
- Jelena Aksić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000Niš, Serbia
| | - Marija Genčić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000Niš, Serbia
| | - Nikola Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, Bulevar Zorana D̵ind̵ića 81, 18000Niš, Serbia
| | - Niko Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000Niš, Serbia
| | - Dragan Zlatković
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000Niš, Serbia
| | - Marina Dimitrijević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000Niš, Serbia
| | - Zorica Stojanović-Radić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000Niš, Serbia
| | - Jelena Srbljanović
- National Reference Laboratory for Toxoplasmosis, Centre for Parasitic Zoonoses, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, 11129Belgrade, Serbia
| | - Tijana Štajner
- National Reference Laboratory for Toxoplasmosis, Centre for Parasitic Zoonoses, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, 11129Belgrade, Serbia
| | - Ljiljana Jovanović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000Novi Sad, Serbia
| |
Collapse
|
30
|
Compositional changes and ecological characteristics of earthworm mucus under different electrical stimuli. Sci Rep 2023; 13:2332. [PMID: 36759532 PMCID: PMC9911739 DOI: 10.1038/s41598-023-29125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Earthworm mucus is rich in nutrients that can initiate the mineralization and humification of organic matter and is of great importance for contaminated soil remediation and sludge reutilization. In this study, six voltage and current combinations were utilized to promote earthworm mucus production (5 V and 6 V at 10, 20 and 30 mA, respectively), to explore the compositional changes of the mucus produced under different electrical stimuli, and to propose the best electrical stimulation group and mucus fraction applicable to soil heavy metal pollution remediation and sludge reutilization. The results showed that the mucus produced by the six electrical stimuli was mainly composed of proteins, amino acids, carbohydrates, fatty acids, and polysaccharides, with small amounts of alcohol, phenol, and ester organic substances. Under different electrical stimuli, each component changed significantly (P < 0.05). pH and conductivity were higher at 6 V 20 mA, total nitrogen and phosphorus contents reached their maximum at 5 V 30 mA, and total potassium at 6 V 10 mA. Protein, amino acids, and carbohydrates were most abundant in the mucus produced at 5 V 10 mA, while trace metal elements reached their lowest values at 5 V 10 mA. Finally, based on principal component analysis and combined with previous studies, it was concluded that the mucus produced at 5 V 10 mA was weakly alkaline, high in amino acids and nutrients and low in trace metal elements, and most suitable for sludge and straw composting experiments, soil remediation and amendment experiments.
Collapse
|
31
|
Yammine J, Gharsallaoui A, Fadel A, Mechmechani S, Karam L, Ismail A, Chihib NE. Enhanced antimicrobial, antibiofilm and ecotoxic activities of nanoencapsulated carvacrol and thymol as compared to their free counterparts. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
32
|
Yammine J, Chihib NE, Gharsallaoui A, Dumas E, Ismail A, Karam L. Essential oils and their active components applied as: free, encapsulated and in hurdle technology to fight microbial contaminations. A review. Heliyon 2022; 8:e12472. [PMID: 36590515 PMCID: PMC9798198 DOI: 10.1016/j.heliyon.2022.e12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/24/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Microbial contaminations are responsible for many chronic, healthcare, persistent microbial infections and illnesses in the food sector, therefore their control is an important public health challenge. Over the past few years, essential oils (EOs) have emerged as interesting alternatives to synthetic antimicrobials as they are biodegradable, extracted from natural sources and potent antimicrobials. Through their multiple mechanisms of actions and target sites, no microbial resistance has been developed against them till present. Although extensive documentation has been reported on the antimicrobial activity of EOs, comparisons between the use of whole EOs or their active components alone for an antimicrobial treatment are less abundant. It is also essential to have a good knowledge about EOs to be used as alternatives to the conventional antimicrobial products such as chemical disinfectants. Moreover, it is important to focus not only on planktonic vegetative microorganisms, but to study also the effect on more resistant forms like spores and biofilms. The present article reviews the current knowledge on the mechanisms of antimicrobial activities of EOs and their active components on microorganisms in different forms. Additionally, in this review, the ultimate advantages of encapsulating EOs or combining them with other hurdles for enhanced antimicrobial treatments are discussed.
Collapse
Affiliation(s)
- Jina Yammine
- Univ Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Unité Matériaux et Transformations, Lille, France,Plateforme de Recherches et d’Analyses en Sciences de l’Environnement (PRASE), Ecole Doctorale des Sciences et Technologies, Université Libanaise, Hadath, Lebanon
| | - Nour-Eddine Chihib
- Univ Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Unité Matériaux et Transformations, Lille, France
| | - Adem Gharsallaoui
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Emilie Dumas
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Ali Ismail
- Plateforme de Recherches et d’Analyses en Sciences de l’Environnement (PRASE), Ecole Doctorale des Sciences et Technologies, Université Libanaise, Hadath, Lebanon
| | - Layal Karam
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar,Corresponding author.
| |
Collapse
|
33
|
MRABTİ NN, MRABTİ HN, DOUDACH L, KHALİL Z, KACHMAR MR, MEKKAOUİ M, FAOUZİ MEA, ABDALLAH EM, ZENGİN G, BOUYAHYA A, ELHALLAOUİ M. Mineral contents, antimicrobial profile, acute and chronic toxicity of the aqueous extract of Moroccan Thymus vulgaris in rodents. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.1106820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Moroccan flora is rich in plants used in traditional medicine, but the further scientific investigation is necessary. The aim of the research was to evaluate the nutritional content and antimicrobial activity of Moroccan Thymus vulgaris, as well as its possible acute and chronic toxicological effects on rodents. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to determine the mineral content. The antimicrobial activity was determined using a well-diffusion test, a minimum inhibitory concentration (MIC), and a minimum bactericidal/fungicidal concentration (MBC/MFC) assay. Acute and chronic toxicity studies were conducted in vivo on mice and rats, respectively. Following that, haematological, serum-biochemistry, and histological investigations were performed. Moroccan Thyme was shown to be a source of numerous minerals which are necessary for health promotion. All antimicrobial testing, disc diffusion, MIC, and MBC tests revealed that thyme had potent antibacterial activity against all microorganisms tested. Staphylococcus aureus was the most susceptible bacterium, followed by Salmonella enterica and Escherichia coli. Additionally, thyme exhibited great antifungal efficacy against Candida albicans. The acute toxicity results indicated that the aqueous extract of T. vulgaris is almost non-toxic when taken orally. According to the chronic toxicity study, the extract is generally safe when taken orally over an extended period of time. The biochemical and haematological characteristics of the serum and blood were within acceptable limits, and histological examination revealed no abnormalities. In conclusion, the findings of this investigation, confirm the antimicrobial efficacy of the aqueous extract of Moroccan T. vulgaris and its safety for experimental animals.
Collapse
|
34
|
Alotaibi B, Negm WA, Elekhnawy E, El-Masry TA, Elharty ME, Saleh A, Abdelkader DH, Mokhtar FA. Antibacterial activity of nano zinc oxide green-synthesised from Gardenia thailandica triveng. Leaves against Pseudomonas aeruginosa clinical isolates: in vitro and in vivo study. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:96-106. [PMID: 35361019 DOI: 10.1080/21691401.2022.2056191] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The increasing emergence of bacterial resistance is a challenge for the research community, thus novel antibacterial agents should be developed. Metal nanoparticles are promising antibacterial agents and could solve the problem of antibiotic resistance. Herein, we used Gardenia thailandica methanol extract (GTME) to biogenically synthesise zinc oxide nanoparticles (ZnO-NPs). The characterisation of ZnO-NPs was performed by UV spectroscopy, FTIR, scanning and transmission electron microscopes, dynamic light scattering, and X-ray diffraction. The antibacterial activity of ZnO-NPs was studied both in vitro and in vivo against Pseudomonas aeruginosa clinical isolates. Its minimum inhibitory concentration values ranged from 2 to 64 µg/mL, and it significantly decreased the membrane integrity and resulted in a significant increase in the inner and outer membrane permeability. Also, the ZnO-NPs treated cells possessed a distorted and deformed shape when examined by scanning electron microscope. The in vivo study (biochemical parameters and histological investigation) was conducted and it revealed a protective effect of ZnO-NPs against the deleterious influences of P. aeruginosa bacteria on lung, liver, and kidney tissues. LC-ESI-MS/MS revealed a phytochemical tentative identification of 57 compounds for the first time. We propose that GTME is a useful source for ZnO-NPs which has a promising antibacterial activity.
Collapse
Affiliation(s)
- Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mohamed E Elharty
- Study Master in Pharmaceutical Science at the Institute of Research and Environmental Studies, Al Sadat, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - Dalia H Abdelkader
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, Al Salam University, Al Gharbia, Egypt
| |
Collapse
|
35
|
Zhang L, Gao F, Ge J, Li H, Xia F, Bai H, Piao X, Shi L. Potential of Aromatic Plant-Derived Essential Oils for the Control of Foodborne Bacteria and Antibiotic Resistance in Animal Production: A Review. Antibiotics (Basel) 2022; 11:1673. [PMID: 36421318 PMCID: PMC9686951 DOI: 10.3390/antibiotics11111673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023] Open
Abstract
Antibiotic resistance has become a severe public threat to human health worldwide. Supplementing antibiotic growth promoters (AGPs) at subtherapeutic levels has been a commonly applied method to improve the production performance of livestock and poultry, but the misuse of antibiotics in animal production plays a major role in the antibiotic resistance crisis and foodborne disease outbreaks. The addition of AGPs to improve production performance in livestock and poultry has been prohibited in some countries, including Europe, the United States and China. Moreover, cross-resistance could result in the development of multidrug resistant bacteria and limit therapeutic options for human and animal health. Therefore, finding alternatives to antibiotics to maintain the efficiency of livestock production and reduce the risk of foodborne disease outbreaks is beneficial to human health and the sustainable development of animal husbandry. Essential oils (EOs) and their individual compounds derived from aromatic plants are becoming increasingly popular as potential antibiotic alternatives for animal production based on their antibacterial properties. This paper reviews recent studies in the application of EOs in animal production for the control of foodborne pathogens, summarizes their molecular modes of action to increase the susceptibility of antibiotic-resistant bacteria, and provides a promising role for the application of nanoencapsulated EOs in animal production to control bacteria and overcome antibiotic resistance.
Collapse
Affiliation(s)
- Lianhua Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fei Gao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwei Ge
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fei Xia
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
36
|
Wang M, Zhan X, Ma X, Wang R, Guo D, Zhang Y, Yu J, Chang Y, Lü X, Shi C. Antibacterial Activity of Thymoquinone Against Shigella flexneri and Its Effect on Biofilm Formation. Foodborne Pathog Dis 2022; 19:767-778. [PMID: 36367548 DOI: 10.1089/fpd.2022.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thymoquinone (TQ) has been demonstrated to have anti-cancer, anti-inflammatory, antioxidant, and anti-diabetic activities. Shigella flexneri is the main pathogen causing shigellosis in developing countries. In this study, the antibacterial activity of TQ against S. flexneri and its possible antibacterial mechanism were studied. In addition, the inhibitory effect of TQ on the formation of S. flexneri biofilm was also investigated. The results showed that both the minimum inhibitory concentration and the minimum bactericidal concentration of TQ against S. flexneri ATCC 12022 were 0.2 mg/mL. After treatment with TQ at 0.4 mg/mL in Luria-Bertani broth for 3 h, or treatment with 0.2 mg/mL TQ in phosphate-buffered saline for 60 min, the number of S. flexneri (initial number is 6.5 log colony-forming units/mL) dropped below the detection limit. TQ also displayed good antibacterial activity in contaminated lettuce juice. TQ caused an increase in intracellular reactive oxygen species level, a decrease in intracellular adenosine triphosphate (ATP) concentration, a change in the intracellular protein, damage to cell membrane integrity and changes in cell morphology. In addition, TQ showed the ability to inhibit the formation of S. flexneri biofilm; treatment resulted in a decrease in the amount of biofilm and extracellular polysaccharides, and the destruction of biofilm structure. These findings indicated that TQ had strong antimicrobial and antibiofilm activities and a potential to be applied in the fruit and vegetable processing industry or other food industries to control S. flexneri.
Collapse
Affiliation(s)
- Muxue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiao Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruixia Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, China
| | - Yunhe Chang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
37
|
Al-Mijalli SH, Mrabti NN, Ouassou H, Sheikh RA, Assaggaf H, Bakrim S, Abdallah EM, Alshahrani MM, Al Awadh AA, Lee LH, AlDhaheri Y, Sahebkar A, Zengin G, Attar AA, Bouyahya A, Mrabti HN. Chemical Composition and Antioxidant, Antimicrobial, and Anti-Inflammatory Properties of Origanum compactum Benth Essential Oils from Two Regions: In Vitro and In Vivo Evidence and In Silico Molecular Investigations. Molecules 2022; 27:7329. [PMID: 36364152 PMCID: PMC9653751 DOI: 10.3390/molecules27217329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 10/29/2023] Open
Abstract
The purposes of this investigatory study were to determine the chemical composition of the essential oils (EOs) of Origanum compactum from two Moroccan regions (Boulemane and Taounate), as well as the evaluation of their biological effects. Determining EOs' chemical composition was performed by a gas chromatography-mass spectrophotometer (GC-MS). The antioxidant activity of EOs was evaluated using free radical scavenging ability (DPPH method), fluorescence recovery after photobleaching (FRAP), and lipid peroxidation inhibition assays. The anti-inflammatory effect was assessed in vitro using the 5-lipoxygenase (5-LOX) inhibition test and in vivo using the carrageenan-induced paw edema model. Finally, the antibacterial effect was evaluated against several strains using the disk-diffusion assay and the micro-dilution method. The chemical constituent of O. compactum EO (OCEO) from the Boulemane zone is dominated by carvacrol (45.80%), thymol (18.86%), and α-pinene (13.43%). However, OCEO from the Taounate zone is rich in 3-carene (19.56%), thymol (12.98%), and o-cymene (11.16%). OCEO from Taounate showed higher antioxidant activity than EO from Boulemane. Nevertheless, EO from Boulemane considerably inhibited 5-LOX (IC50 = 0.68 ± 0.02 µg/mL) compared to EO from Taounate (IC50 = 1.33 ± 0.01 µg/mL). A similar result was obtained for tyrosinase inhibition with Boulemane EO and Taounate EO, which gave IC50s of 27.51 ± 0.03 μg/mL and 41.83 ± 0.01 μg/mL, respectively. The in vivo anti-inflammatory test showed promising effects; both EOs inhibit and reduce inflammation in mice. For antibacterial activity, both EOs were found to be significantly active against all strains tested in the disk-diffusion test, but O. compactum EO from the Boulemane region showed the highest activity. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) for O. compactum EO from the Boulemane region ranged from 0.06 to 0.25% (v/v) and from 0.15 to 0.21% (v/v) for O. compactum from the Taounate region. The MBC/MIC index revealed that both EOs exhibited remarkable bactericidal effects.
Collapse
Affiliation(s)
- Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nidal Naceiri Mrabti
- Computer Chemistry and Modeling Team, Laboratory of Materials, Modeling and Environmental Engineering (LIMME), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University (USMBA), BP 1796, Atlas, Fez 30000, Morocco
| | - Hayat Ouassou
- Faculty of Sciences, University Mohammed First, Boulevard Mohamed VI, BP 717, Oujda 60000, Morocco
| | - Ryan A. Sheikh
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Yusra AlDhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Gokhan Zengin
- Biochemistry and Physiology Research Laboratory, Department of Biology, Faculty of Science, Selcuk University, 42130 Konya, Turkey
| | - Ammar A. Attar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP 6203, Rabat 10000, Morocco
- Laboratoires TBC, Faculty of Pharmaceutical and Biological Sciences, B.P. 8359006 Lille, France
| |
Collapse
|
38
|
Berdejo D, Gayán E, Pagán E, Merino N, Campillo R, Pagán R, García-Gonzalo D. Carvacrol Selective Pressure Allows the Occurrence of Genetic Resistant Variants of Listeria monocytogenes EGD-e. Foods 2022; 11:3282. [PMID: 37431028 PMCID: PMC9602272 DOI: 10.3390/foods11203282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 09/07/2024] Open
Abstract
Essential oils and their constituents, such as carvacrol, are potential food preservatives because of their great antimicrobial properties. However, the long-term effects of these compounds are unknown and raise the question of whether resistance to these antimicrobials could emerge. This work aims to evaluate the occurrence of genetic resistant variants (RVs) in Listeria monocytogenes EGD-e by exposure to carvacrol. Two protocols were performed for the RVs selection: (a) by continuous exposure to sublethal doses, where LmSCar was isolated, and (b) by reiterative exposure to short lethal treatments of carvacrol, where LmLCar was isolated. Both RVs showed an increase in carvacrol resistance. Moreover, LmLCar revealed an increased cross-resistance to heat treatments at acid conditions and to ampicillin. Whole-genome sequencing identified two single nucleotide variations in LmSCar and three non-silent mutations in LmLCar. Among them, those located in the genes encoding the transcriptional regulators RsbT (in LmSCar) and ManR (in LmLCar) could contribute to their increased carvacrol resistance. These results provide information regarding the mode of action of this antimicrobial and support the importance of knowing how RVs appear. Further studies are required to determine the emergence of RVs in food matrices and their impact on food safety.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
39
|
Canibe N, Højberg O, Kongsted H, Vodolazska D, Lauridsen C, Nielsen TS, Schönherz AA. Review on Preventive Measures to Reduce Post-Weaning Diarrhoea in Piglets. Animals (Basel) 2022; 12:2585. [PMID: 36230326 PMCID: PMC9558551 DOI: 10.3390/ani12192585] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
In many countries, medical levels of zinc (typically as zinc oxide) are added to piglet diets in the first two weeks post-weaning to prevent the development of post-weaning diarrhoea (PWD). However, high levels of zinc constitute an environmental polluting agent, and may contribute to the development and/or maintenance of antimicrobial resistance (AMR) among bacteria. Consequently, the EU banned administering medical levels of zinc in pig diets as of June 2022. However, this may result in an increased use of antibiotic therapeutics to combat PWD and thereby an increased risk of further AMR development. The search for alternative measures against PWD with a minimum use of antibiotics and in the absence of medical levels of zinc has therefore been intensified over recent years, and feed-related measures, including feed ingredients, feed additives, and feeding strategies, are being intensively investigated. Furthermore, management strategies have been developed and are undoubtedly relevant; however, these will not be addressed in this review. Here, feed measures (and vaccines) are addressed, these being probiotics, prebiotics, synbiotics, postbiotics, proteobiotics, plants and plant extracts (in particular essential oils and tannins), macroalgae (particularly macroalgae-derived polysaccharides), dietary fibre, antimicrobial peptides, specific amino acids, dietary fatty acids, milk replacers, milk components, creep feed, vaccines, bacteriophages, and single-domain antibodies (nanobodies). The list covers measures with a rather long history and others that require significant development before their eventual use can be extended. To assess the potential of feed-related measures in combating PWD, the literature reviewed here has focused on studies reporting parameters of PWD (i.e., faeces score and/or faeces dry matter content during the first two weeks post-weaning). Although the impact on PWD (or related parameters) of the investigated measures may often be inconsistent, many studies do report positive effects. However, several studies have shown that control pigs do not suffer from diarrhoea, making it difficult to evaluate the biological and practical relevance of these improvements. From the reviewed literature, it is not possible to rank the efficacy of the various measures, and the efficacy most probably depends on a range of factors related to animal genetics and health status, additive doses used, composition of the feed, etc. We conclude that a combination of various measures is probably most recommendable in most situations. However, in this respect, it should be considered that combining strategies may lead to additive (e.g., synbiotics), synergistic (e.g., plant materials), or antagonistic (e.g., algae compounds) effects, requiring detailed knowledge on the modes of action in order to design effective strategies.
Collapse
Affiliation(s)
- Nuria Canibe
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | | | | | | | | | | | | |
Collapse
|
40
|
Abdelhamed FM, Abdeltawab NF, ElRakaiby MT, Shamma RN, Moneib NA. Antibacterial and Anti-Inflammatory Activities of Thymus vulgaris Essential Oil Nanoemulsion on Acne Vulgaris. Microorganisms 2022; 10:microorganisms10091874. [PMID: 36144477 PMCID: PMC9503056 DOI: 10.3390/microorganisms10091874] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Antibiotics are frequently used in acne treatment and their prolonged use has led to an emergence of resistance. This study aimed to investigate the use of natural antimicrobials as an alternative therapy. The antimicrobial and anti-inflammatory activities of five commonly used essential oils (EOs) (tea tree, clove, thyme, mentha and basil EOs), and their possible mechanisms of action against Cutibacterium acnes and Staphylococcus epidermidis, were explored. The effect of the most potent EO on membrane permeability was elucidated and its anti-inflammatory action, when formulated as nanoemulsion, was tested in an in vivo acne model. The in vitro studies showed that thyme EO had the most potent antimicrobial and antibiofilm activity, with phenolics and terpenoids as main antimicrobial constituents of EO. Thyme EO affected cell membrane permeability of both bacterial species, evident by the detection of the leakage of intracellular ions and membrane integrity by the leakage of nucleic acids. Morphological alteration in bacterial cells was confirmed by transmission electron microscopy. Thyme EO nanoemulsion led to the suppression of an inflammatory response in acne animal models along with a bacterial load decrease and positive histopathological changes. Collectively, thyme EO nanoemulsion showed potent antimicrobial and anti-inflammatory effects compared to the reference antibiotics, suggesting its effectiveness as a natural alternative in acne treatment.
Collapse
Affiliation(s)
- Farah M. Abdelhamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence: (F.M.A.); (N.F.A.)
| | - Nourtan F. Abdeltawab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence: (F.M.A.); (N.F.A.)
| | - Marwa T. ElRakaiby
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Rehab N. Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Nayera A. Moneib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
41
|
Li Q, Zhou W, Zhang J, Zhu J, Sun T, Li J, Cheng L. Synergistic effects of ε-polylysine hydrochloride and gallic acid on Shewanella putrefaciens and quality of refrigerated sea bass fillets. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Pharmacokinetic profile of sarcin and thionin from Aspergillus giganteus and in vitro validation against human fungal pathogen. Biosci Rep 2022; 42:231624. [PMID: 35924795 PMCID: PMC9469106 DOI: 10.1042/bsr20220229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/28/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Fungal infections are more predominant in agricultural and clinical fields. Aspergillosis caused by Aspergillus fumigatus leads to respiratory failure in patients along with various illnesses. Due to the limitation of antifungal therapy and antifungal drugs, there is an emergence to develop efficient antifungal compounds (AFCs) from natural sources to cure and prevent fungal infections. The present study deals with the investigation of the mechanism of the active compounds from Aspergillus giganteus against aspergillosis. Primarily, the bioavailability and toxicological properties of antifungal proteins such as, sarcin, thionin, chitinase and their derivatives have proved the efficiency of pharmacokinetic properties of selected compounds. Molecular interactions of selected compounds from A. giganteus with the virulence proteins of A. fumigatus (UDP-N-acetylglucosamine pyrophosphorylase, N-myristoyl transferase and Chitinase) have exhibited a good glide score and druggable nature of the AFCs. The antagonistic potential of AFCs on the pathogen was confirmed by SEM analysis where the shrunken and damaged spores of AFCs treated pathogen were observed. The integrity of A. fumigatus cell membrane and nuclear membrane treated with AFCs were analyzed by determining the release of cellular materials. The effective concentration of AFCs was found to be 250 µg/ml (P<0.0001). The GC-MS profiling has revealed the volatile bioactive metabolites present in A. giganteus. Further, interaction studies might provide more information on the synergism activity with the non-volatile metabolites which leads to the development of novel drugs for the treatment of aspergillosis.
Collapse
|
43
|
Ziyadi S, Iddar A, Errafiy N, Ridaoui K, Kabine M, El Mzibri M, Moutaouakkil A. Protective Effect of Some Essential Oils Against Gamma-Radiation Damages in Tetrahymena pyriformis Exposed to Cobalt-60 Source. Curr Microbiol 2022; 79:279. [PMID: 35920924 DOI: 10.1007/s00284-022-02924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/05/2022] [Indexed: 11/24/2022]
Abstract
The main purpose of this study was to investigate the protective effect of Rosmarinus officinalis, Origanum compactum, Lavandula angustifolia, and Eucalyptus globulus essential oils (EOs) against gamma-radiation-induced damages on Tetrahymena pyriformis growing in presence of cobalt-60 source. The chemical composition of the 4 EOs was analyzed by gas chromatography-mass spectrometry. The protective effects of EOs on growth, on morphology, and on some metabolic enzymes and antioxidant markers have been evaluated. Thus, addition of EOs significantly improves the growth parameters (generation number and time) in irradiating conditions. All EOs allowed restoring growth parameters over more than 90% compared to the controls. The morphological analysis indicated that T. pyriformis cells growing in irradiating conditions were able to regain their normal form in presence of the different EOs. Our results indicate that the 4 EOs also have protective effects on some metabolic enzymes. They allowed recovering totally or partially the glyceraldehyde 3-phosphate dehydrogenase and the succinate dehydrogenase activities compared to the controls. Moreover, the addition of EOs reduced the lipid peroxidation level and decreased the activities of catalase and superoxide dismutase induced by the gamma-radiation exposure. A more pronounced protective effect was found for O. compactum and L. angustifolia EOs compared to R. officinalis and E. globulus EOs. These results suggest that the studied EOs are efficient natural antioxidants that could offer protection against gamma-radiation-induced damages and can therefore be useful in clinical medicine.
Collapse
Affiliation(s)
- Soukaina Ziyadi
- Biotechnology and Biomolecule Engineering Unit, National Center for Nuclear Energy, Science and Technology (CNESTEN), BP 1382, 10001, Rabat, Morocco.,Health and Environment Laboratory, Faculty of Sciences Aïn-Chock, Hassan II University, Km 8 Route d'El Jadida, Mâarif, BP 5366, 20100, Casablanca, Morocco
| | - Abdelghani Iddar
- Biotechnology and Biomolecule Engineering Unit, National Center for Nuclear Energy, Science and Technology (CNESTEN), BP 1382, 10001, Rabat, Morocco
| | - Nadia Errafiy
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Bld Mohammed Taïeb Naciri, 82403, Casablanca, Morocco
| | - Khadija Ridaoui
- Health and Environment Laboratory, Faculty of Sciences Aïn-Chock, Hassan II University, Km 8 Route d'El Jadida, Mâarif, BP 5366, 20100, Casablanca, Morocco
| | - Mostafa Kabine
- Health and Environment Laboratory, Faculty of Sciences Aïn-Chock, Hassan II University, Km 8 Route d'El Jadida, Mâarif, BP 5366, 20100, Casablanca, Morocco
| | - Mohammed El Mzibri
- Biotechnology and Biomolecule Engineering Unit, National Center for Nuclear Energy, Science and Technology (CNESTEN), BP 1382, 10001, Rabat, Morocco
| | - Adnane Moutaouakkil
- Biotechnology and Biomolecule Engineering Unit, National Center for Nuclear Energy, Science and Technology (CNESTEN), BP 1382, 10001, Rabat, Morocco.
| |
Collapse
|
44
|
Antimicrobial activity of Thymus zygis essential oil against Listeria monocytogenes and its application as food preservative. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Martínez-Alva JE, Espinoza-Simón E, Bayona-Pérez Y, Ruiz-Pérez NC, Ochoa SA, Xicohtencatl-Cortes J, Torres J, Romo-Castillo M. In Vitro Analysis of Extracts of Plant Used in Mexican Traditional Medicine, Which Are Useful to Combat Clostridioides difficile Infection. Pathogens 2022; 11:pathogens11070774. [PMID: 35890019 PMCID: PMC9316953 DOI: 10.3390/pathogens11070774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
Recently, a worrying acceleration of the emergence of antibiotic-resistant bacteria has been reported. The increase in antibiotic-associated diseases, such as Clostridioides difficile infection (CDI), has promoted research on new treatments that could be more effective and less aggressive for CDI patients. This study evaluates eight plants with antimicrobial activity commonly used in Mexican traditional medicine to evaluate their potential against C. difficile. We provide essential information about these plants’ activities and action mechanisms against C. difficile and their effect on different bacterial infection activities: motility, adherence, sporulation, and germination. The selected plants are rosemary, estafiate, rue, epazote, mint, toloache, ajenjo, and thyme. We used clinical isolates to test their activity against strains responsible for current outbreaks to provide more information about the clinical impact of these extracts. We found that thyme, ajenjo, and mint were the most effective against the isolates. We identified that the extracts affected protein synthesis. In addition, the extracts affect the strains’ motility, and some, such as thyme extract, affect adherence, whereas rue extract affects sporulation. These results led to the identification of new compounds beneficial to CDI treatment.
Collapse
Affiliation(s)
| | - Emilio Espinoza-Simón
- Campus Chapultepec, Universidad del Valle de México, Mexico City 11810, Mexico; (J.E.M.-A.); (E.E.-S.)
| | - Yuli Bayona-Pérez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 80040, Mexico; (Y.B.-P.); (N.C.R.-P.)
| | - Nancy C. Ruiz-Pérez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 80040, Mexico; (Y.B.-P.); (N.C.R.-P.)
| | - Sara A. Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México “Federico Gómez”, Mexico City 06720, Mexico;
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México “Federico Gómez”, Mexico City 06720, Mexico;
- Correspondence: (J.X.-C.); (J.T.); (M.R.-C.)
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Mexico City 06720, Mexico
- Correspondence: (J.X.-C.); (J.T.); (M.R.-C.)
| | - Mariana Romo-Castillo
- Cátedras de Consejo Nacional de Ciencia y Tecnología (CONACYT), Posgrado en Fitosanidad-Fitopatología, Colegio de Postgraduados, Texcoco 56230, Mexico
- Correspondence: (J.X.-C.); (J.T.); (M.R.-C.)
| |
Collapse
|
46
|
Trans-cinnamaldehyde inhibits Penicillium italicum by damaging mitochondria and inducing apoptosis mechanisms. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Singh S, Chaurasia PK, Bharati SL. Functional roles of Essential oils as an effective alternative of synthetic food preservatives: A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sunita Singh
- Department of Chemistry, Navyug Kanya Mahavidyalaya University of Lucknow Lucknow, Uttar Pradesh India
| | - Pankaj Kumar Chaurasia
- P.G. Department of Chemistry, L.S. College B.R.A. Bihar University Muzaffarpur, Bihar India
| | - Shashi Lata Bharati
- Department of Chemistry North Eastern Regional Institute of Science and Technology Nirjuli, Arunachal Pradesh India
| |
Collapse
|
48
|
Antibacterial characteristics of oregano essential oil and its mechanisms against Escherichia coli O157:H7. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01393-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
In Vitro Antibacterial Mechanism of High-Voltage Electrostatic Field against Acinetobacter johnsonii. Foods 2022; 11:foods11070955. [PMID: 35407042 PMCID: PMC8997369 DOI: 10.3390/foods11070955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to investigate the antibacterial properties and mechanisms of a high-voltage static electric field (HVEF) in Acinetobacter johnsonii, which were assessed from the perspective of biochemical properties and stress-related genes. The time/voltage-kill assays and growth curves showed that an HVEF decreased the number of bacteria and OD600 values. In addition, HVEF treatment caused the leakage of cell contents (nucleic acids and proteins), increased the electrical conductivity and amounts of reactive oxygen substances (ROS) (16.88 fold), and decreased the activity of Na+ K+-ATPase in A. johnsonii. Moreover, the changes in the expression levels of genes involved in oxidative stress and DNA damage in the treated A. johnsonii cells suggested that HVEF treatment could induce oxidative stress and DNA sub-damage. This study will provide useful information for the development and application of an HVEF in food safety.
Collapse
|
50
|
Ultrasonication induced nano-emulsification of thyme essential oil: Optimization and antibacterial mechanism against Escherichia coli. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|