1
|
Cetinkaya A, Kaya SI, Ozcelikay G, Budak F, Ozkan SA. Carbon Nanomaterials-Based Novel Hybrid Platforms for Electrochemical Sensor Applications in Drug Analysis. Crit Rev Anal Chem 2024; 54:1227-1242. [PMID: 35943520 DOI: 10.1080/10408347.2022.2109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Nowadays, the rapid improvements in the medical and pharmaceutical fields increase the diversity and use of drugs. However, problems such as the use of multiple or combined drugs in the treatment of diseases and insensible use of over-the-counter drugs have caused concerns about the side-effect profiles and therapeutic ranges of drugs and environmental contamination and pollution problems due to pharmaceuticals waste. Therefore, the analysis of drugs in various media such as biological, pharmaceutical, and environmental samples is an important topic of discussion. Electrochemical methods are advantageous for sensor applications due to their easy application, low cost, versatility, high sensitivity, and environmentally-friendliness. Carbon nanomaterials such as diamond-like carbon thin films, carbon nanotubes, carbon nanofibers, graphene oxide, and nanodiamonds are used to enhance the performance of the electrochemical sensors with catalytic effects. To further improve this effect, it is aimed to create hybrid platforms by using different carbon nanomaterials together or with materials such as conductive polymers and ionic liquids. In this review, the most used carbon nanoforms will be evaluated in terms of electrochemical characterizations and physicochemical properties. Furthermore, the effect of hybrid platforms developed in the most recent studies on electrochemical sensors will be examined and evaluated in terms of drug analysis studies in the last five years.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Goksu Ozcelikay
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Fatma Budak
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Su Y, Lu J, Liu J, Wang N, Li F, Lei H. Optimization, validation, and application of a liquid chromatography-tandem mass spectrometry method for the determination of 47 banned drug and related chemical residues in livestock urine using graphitized carboxyl multi-walled carbon nanotubes-based QuEChERS extraction. J Chromatogr A 2024; 1721:464858. [PMID: 38564928 DOI: 10.1016/j.chroma.2024.464858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/21/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
The establishment of an efficient method for the analysis of drug residues in animal urine facilitates the real-time monitoring of drugs used in the production of animal-derived food. A modified QuEChERS extraction-liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was established for the determination of 47 banned drug and related chemical residues in livestock urine. The sample was extracted with acetonitrile by converting the acid-base environment. The sample cleanup effects of seven solid phase extraction cartridges and two EMR-Lipid products were compared, and three materials, including graphitized carboxyl multi-walled carbon nanotubes (MWCNTs), PSA, and C18, were selected as QuEChERS adsorbents from 24 materials. All analytes showed good linearity, with correlation coefficients (R2) greater than 0.9936. Low limits of quantification could be obtained, ranging from 0.2 to 5.5 ng/mL. The average recoveries at low, medium, and high spiked levels were in the range of 70.8-114.9 %, with intra-day precision ranging from 2.4 % to 11.2 % and inter-day precision ranging from 4.5 % to 16.1 %. Swine urine and bovine urine samples collected from different farms were effectively analyzed using the developed method, and metronidazole was detected in three swine urine samples.
Collapse
Affiliation(s)
- Youzhi Su
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, North 4th road NO.221, Shihezi 832003, China; Yining Customs Technology Center, Yining 83500, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, North 4th road NO.221, Shihezi 832003, China.
| | - Jun Liu
- Chengdu Customs Technology Center, No. 28, South 4th Section, First Ring Road, Wuhou District, Chengdu 610041, China.
| | - Ning Wang
- Yining Customs Technology Center, Yining 83500, China; School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Yili Normal University, Yining 835000, China
| | - Fang Li
- Yining Customs Technology Center, Yining 83500, China
| | - Hongqin Lei
- Yining Customs Technology Center, Yining 83500, China
| |
Collapse
|
3
|
Pengsomjit U, Alabdo F, Karuwan C, Kraiya C, Alahmad W, Ozkan SA. Innovative Graphene-Based Nanocomposites for Improvement of Electrochemical Sensors: Synthesis, Characterization, and Applications. Crit Rev Anal Chem 2024:1-19. [PMID: 38656227 DOI: 10.1080/10408347.2024.2343854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Graphene, renowned for its exceptional physicochemical attributes, has emerged as a favored substrate for integrating a wide array of inorganic and organic materials in scientific endeavors and innovations. Electrochemical graphene-based nanocomposite sensors have been developed by incorporating diverse nanoparticles into graphene, effectively immobilized onto electrodes through various techniques. These graphene-based nanocomposite sensors have effectively detected and quantified various electroactive species in samples. This review delves into using graphene nanocomposites to fabricate electrochemical sensors, leveraging the exceptional electrical, mechanical, and thermal properties inherent to graphene derivatives. These nanocomposites showcase electrocatalytic activity, substantial surface area, superior electrical conductivity, adsorption capabilities, and notable porosity, which are highly advantageous for sensing applications. A myriad of characterization techniques, including Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET surface area analysis, and X-ray diffraction (XRD), have proven effective in exploring the properties of graphene nanocomposites and validating the adjustable formation of these nanomaterials with graphene. The applicability of these sensors across various matrices, encompassing environmental, food, and biological domains, has been evaluated through electrochemical measurements, such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). This review provides a comprehensive overview of synthesis methods, characterization techniques, and sensor applications pertinent to graphene-based nanocomposites. Furthermore, it deliberates on the challenges and future prospects within this burgeoning field.
Collapse
Affiliation(s)
- Untika Pengsomjit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Chemistry, Faculty of Science, Electrochemistry and Optical Spectroscopy Center of Excellence, Chulalongkorn University, Bangkok, Thailand
| | - Fatima Alabdo
- Department of Chemistry and Physics, Faculty of Science, Idlib University, Idlib, Syria
| | - Chanpen Karuwan
- Graphene Research Team (GRP), National Nanotechnology Center (NANOTEC), National Science and Technology Development (NSTDA), Pathum Thani, Thailand
| | - Charoenkwan Kraiya
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Chemistry, Faculty of Science, Electrochemistry and Optical Spectroscopy Center of Excellence, Chulalongkorn University, Bangkok, Thailand
| | - Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkiye
| |
Collapse
|
4
|
Traipop S, Jesadabundit W, Khamcharoen W, Pholsiri T, Naorungroj S, Jampasa S, Chailapakul O. Nanomaterial-based Electrochemical Sensors for Multiplex Medicinal Applications. Curr Top Med Chem 2024; 24:986-1009. [PMID: 38584544 DOI: 10.2174/0115680266304711240327072348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024]
Abstract
This review explores the advancements in nanomaterial-based electrochemical sensors for the multiplex detection of medicinal compounds. The growing demand for efficient and selective detection methods in the pharmaceutical field has prompted significant research into the development of electrochemical sensors employing nanomaterials. These materials, defined as functional materials with at least one dimension between 1 and 100 nanometers, encompass metal nanoparticles, polymers, carbon-based nanocomposites, and nano-bioprobes. These sensors are characterized by their enhanced sensitivity and selectivity, playing a crucial role in simultaneous detection and offering a comprehensive analysis of multiple medicinal complexes within a single sample. The review comprehensively examines the design, fabrication, and application of nanomaterial- based electrochemical sensors, focusing on their ability to achieve multiplex detection of various medicinal substances. Insights into the strategies and nanomaterials employed for enhancing sensor performance are discussed. Additionally, the review explores the challenges and future perspectives of this evolving field, highlighting the potential impact of nanomaterial-based electrochemical sensors on the advancement of medicinal detection technologies.
Collapse
Affiliation(s)
- Surinya Traipop
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Whitchuta Jesadabundit
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wisarut Khamcharoen
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Thailand
| | - Tavechai Pholsiri
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sarida Naorungroj
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sakda Jampasa
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
5
|
Megale JD, De Souza D. New approaches in antibiotics detection: The use of square wave voltammetry. J Pharm Biomed Anal 2023; 234:115526. [PMID: 37385092 DOI: 10.1016/j.jpba.2023.115526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023]
Abstract
Antibiotics belongs to a class of pharmaceutical compounds widely used due to their effectiveness against bacterial infections. However, if consumed or inappropriately disposed of in the environment can results in environmental and public health problems, because they are considered emerging contaminants and their residues represent damage, whether in the long or short term, to different terrestrial ecosystems, in addition to bringing potential risks to agricultural sectors, such as livestock and fish farming. For this, the development of analytical methods for low-concentration detection and identification of antibiotics in natural waters, wastewaters, soil, foods, and biological fluids is necessary. This review shows the applicability of square wave voltammetry for the analytical determination of antibiotics from different chemical classes and covers a variety of samples and working electrodes that are used as voltammetric sensors. The review involved the analysis of scientific publications from the Science Direct® and Scopus® databases, with scientific manuscripts covering the period between January 2012 and May 2023. Various manuscripts were discussed indicating the applicability of square wave voltammetry in antibiotics detection in urine, blood, natural waters, milk, among other complex samples.
Collapse
Affiliation(s)
- Júlia Duarte Megale
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil.
| |
Collapse
|
6
|
Sarakatsanou C, Karastogianni S, Girousi S. Preparation of a glassy carbon electrode modified with saffron conjugated silver nanoparticles for the sensitive and selective electroanalytical determination of amoxicillin in urine samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4572-4581. [PMID: 37646321 DOI: 10.1039/d3ay01331f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Determination of antibiotics is crucial in order to assess their potential impacts on human health and the environment. This study aimed to develop a modified glassy carbon electrode with saffron conjugated silver nanoparticles for the determination of amoxicillin antibiotic in urine samples. The modified electrode was prepared by electrodeposition of silver nanoparticles on the electrode surface, followed by deposition of amoxicillin on the surface. The electrochemical behavior of the modified electrode was studied by cyclic voltammetry and square wave voltammetry. The results showed that the modified electrode exhibited enhanced electrocatalytic activity toward the oxidation of amoxicillin. The calibration curve was linear in the concentration range from 1.273 × 10-4 g L-1 to 2.217 × 10-3 g L-1, with a high linear correlation coefficient of 0.9998. The detection limit was determined to be 4.199 × 10-5 g L-1. The precision of the sensor was adequate, with relative standard deviations of 4.3% and 4.0% for AMX concentrations of 9.199 × 10-5 g L-1 and 1.194 × 10-4 g L-1, respectively. The modified electrode was then applied to the determination of amoxicillin in urine samples. The method showed linearity over the amoxicillin concentration range from 0.00 to 2.00 × 10-4 g L-1, with a detection limit of 9.739 × 10-6 g L-1, indicating the potential of the modified electrode for the determination of amoxicillin in biological samples. Overall, the modified glassy carbon electrode with silver nanoparticles showed very promising results for the sensitive and selective determination of amoxicillin in urine samples.
Collapse
Affiliation(s)
- Christina Sarakatsanou
- Analytical Chemistry Laboratory, School of Chemistry, Faculty of Sciences, 54124 Thessaloniki, Greece.
| | - Sophia Karastogianni
- Analytical Chemistry Laboratory, School of Chemistry, Faculty of Sciences, 54124 Thessaloniki, Greece.
| | - Stella Girousi
- Analytical Chemistry Laboratory, School of Chemistry, Faculty of Sciences, 54124 Thessaloniki, Greece.
| |
Collapse
|
7
|
Silva RM, da Silva AD, Camargo JR, de Castro BS, Meireles LM, Silva PS, Janegitz BC, Silva TA. Carbon Nanomaterials-Based Screen-Printed Electrodes for Sensing Applications. BIOSENSORS 2023; 13:bios13040453. [PMID: 37185528 PMCID: PMC10136782 DOI: 10.3390/bios13040453] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Electrochemical sensors consisting of screen-printed electrodes (SPEs) are recurrent devices in the recent literature for applications in different fields of interest and contribute to the expanding electroanalytical chemistry field. This is due to inherent characteristics that can be better (or only) achieved with the use of SPEs, including miniaturization, cost reduction, lower sample consumption, compatibility with portable equipment, and disposability. SPEs are also quite versatile; they can be manufactured using different formulations of conductive inks and substrates, and are of varied designs. Naturally, the analytical performance of SPEs is directly affected by the quality of the material used for printing and modifying the electrodes. In this sense, the most varied carbon nanomaterials have been explored for the preparation and modification of SPEs, providing devices with an enhanced electrochemical response and greater sensitivity, in addition to functionalized surfaces that can immobilize biological agents for the manufacture of biosensors. Considering the relevance and timeliness of the topic, this review aimed to provide an overview of the current scenario of the use of carbonaceous nanomaterials in the context of making electrochemical SPE sensors, from which different approaches will be presented, exploring materials traditionally investigated in electrochemistry, such as graphene, carbon nanotubes, carbon black, and those more recently investigated for this (carbon quantum dots, graphitic carbon nitride, and biochar). Perspectives on the use and expansion of these devices are also considered.
Collapse
Affiliation(s)
- Rafael Matias Silva
- Department of Chemistry, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | | | - Jéssica Rocha Camargo
- Laboratory of Sensors, Nanomedicine, and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, SP, Brazil
| | | | - Laís Muniz Meireles
- Federal Center for Technological Education of Minas Gerais, Timóteo 35180-008, MG, Brazil
| | | | - Bruno Campos Janegitz
- Laboratory of Sensors, Nanomedicine, and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, SP, Brazil
| | - Tiago Almeida Silva
- Department of Chemistry, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| |
Collapse
|
8
|
Zokhtareh R, Rahimnejad M, Najafpour-Darzi G, Karimi-Maleh H. A novel sensing platform for electrochemical detection of metronidazole antibiotic based on green-synthesized magnetic Fe 3O 4 nanoparticles. ENVIRONMENTAL RESEARCH 2023; 216:114643. [PMID: 36341789 DOI: 10.1016/j.envres.2022.114643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/02/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The spread of antibiotic resistant genes has become a serious global concern. Thus, the development of efficient antibiotic monitoring systems to reduce their environmental risks is of great importance. Here, a potent electrochemical sensor was fabricated to detect metronidazole (MNZ) on the basis of green synthesis of Fe3O4 nanoparticles (NPs) using Sambucus ebulus L. leaves alcoholic plant extract as a safe and impressive reducing and stabilizing agent. Several analyses such as X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), and dynamic light scattering (DLS) confirmed the production of homogeneous, monodisperse, regular, and stable magnetite NPs with a spherical morphology. The as-prepared Fe3O4NPs were afterwards applied to evaluate the electrochemical activity of MNZ by merging them with graphene nanosheets (GR NSs) on the glassy carbon electrode (GCE). The GR/Fe3O4NPs/GCE represented extraordinary catalytic activity toward MNZ with two dynamic ranges of 0.05-5 μM and 5-120 μM, limit of detection (LOD) of 0.23 nM, limit of quantification (LOQ) of 0.76 nM, and sensitivity of 7.34 μA μM-1 cm-2. The fabricated sensor was further employed as a practical tool for electrochemical detection of MNZ in real aqueous samples.
Collapse
Affiliation(s)
- Rosan Zokhtareh
- Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Ghasem Najafpour-Darzi
- Biotechnology Research Laboratory, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028 Johannesburg, P.O. Box 17011, South Africa
| |
Collapse
|
9
|
Jiwanti PK, Wardhana BY, Sutanto LG, Dewi DMM, Putri IZD, Savitri INI. Recent Development of Nano-Carbon Material in Pharmaceutical Application: A Review. Molecules 2022; 27:7578. [PMID: 36364403 PMCID: PMC9654677 DOI: 10.3390/molecules27217578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Carbon nanomaterials have attracted researchers in pharmaceutical applications due to their outstanding properties and flexible dimensional structures. Carbon nanomaterials (CNMs) have electrical properties, high thermal surface area, and high cellular internalization, making them suitable for drug and gene delivery, antioxidants, bioimaging, biosensing, and tissue engineering applications. There are various types of carbon nanomaterials including graphene, carbon nanotubes, fullerenes, nanodiamond, quantum dots and many more that have interesting applications in the future. The functionalization of the carbon nanomaterial surface could modify its chemical and physical properties, as well as improve drug loading capacity, biocompatibility, suppress immune response and have the ability to direct drug delivery to the targeted site. Carbon nanomaterials could also be fabricated into composites with proteins and drugs to reduce toxicity and increase effectiveness in the pharmaceutical field. Thus, carbon nanomaterials are very effective for applications in pharmaceutical or biomedical systems. This review will demonstrate the extraordinary properties of nanocarbon materials that can be used in pharmaceutical applications.
Collapse
Affiliation(s)
- Prastika K. Jiwanti
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Brasstira Y. Wardhana
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Laurencia G. Sutanto
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Diva Meisya Maulina Dewi
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Ilmi Nur Indira Savitri
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
10
|
Yu T, Glennon L, Fenelon O, Breslin CB. Electrodeposition of bismuth at a graphene modified carbon electrode and its application as an easily regenerated sensor for the electrochemical determination of the antimicrobial drug metronidazole. Talanta 2022; 251:123758. [DOI: 10.1016/j.talanta.2022.123758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
|
11
|
A bifunctional electrochemical sensor for simultaneous determination of electroactive and non-electroactive analytes: A universal yet very effective platform serving therapeutic drug monitoring. Biosens Bioelectron 2022; 208:114233. [DOI: 10.1016/j.bios.2022.114233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 01/14/2023]
|
12
|
Fu L, Mao S, Chen F, Zhao S, Su W, Lai G, Yu A, Lin CT. Graphene-based electrochemical sensors for antibiotic detection in water, food and soil: A scientometric analysis in CiteSpace (2011-2021). CHEMOSPHERE 2022; 297:134127. [PMID: 35240147 DOI: 10.1016/j.chemosphere.2022.134127] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 05/25/2023]
Abstract
The residues of antibiotics in the environment pose a potential health hazard, so highly sensitive detection of antibiotics has always appealed to analytical chemists. With the widespread use of new low-dimensional materials, graphene-modified electrochemical sensors have emerged as an excellent candidate for highly sensitive detection of antibiotics. Graphene, its derivatives and its composites have been used in this field of exploration in the last decade. In this review, we have not only described the field using traditional summaries, but also used bibliometrics to quantify the development of the field. The literature between 2011 and 2021 was included in the analysis. Also, the sensing performance and detection targets of different sensors were compared. We were able to trace not only the flow of research themes, but also the future areas of development. Graphene is a material that has a high potential to be used on a large scale in the preparation of electrochemical sensors. How to design a sensor with selectivity and low cost is the key to bring this material from the laboratory to practical applications.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Shuduan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
13
|
Voltammetric sensing of tryptophan in dark chocolate bars, skimmed milk and urine samples in the presence of dopamine and caffeine. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01703-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Electrochemical Detection of Metronidazole Using Silver Nanoparticle-Modified Carbon Paste Electrode. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00722-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Ingle RG, Zeng S, Jiang H, Fang WJ. Current development of bioanalytical sample preparation techniques in pharmaceuticals. J Pharm Anal 2022; 12:517-529. [PMID: 36105159 PMCID: PMC9463481 DOI: 10.1016/j.jpha.2022.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
Sample preparation is considered as the bottleneck step in bioanalysis because each biological matrix has its own unique challenges and complexity. Competent sample preparation to extract the desired analytes and remove redundant components is a crucial step in each bioanalytical approach. The matrix effect is a key hurdle in bioanalytical sample preparation, which has gained extensive consideration. Novel sample preparation techniques have advantages over classical techniques in terms of accuracy, automation, ease of sample preparation, storage, and shipment and have become increasingly popular over the past decade. Our objective is to provide a broad outline of current developments in various bioanalytical sample preparation techniques in chromatographic and spectroscopic examinations. In addition, how these techniques have gained considerable attention over the past decade in bioanalytical research is mentioned with preferred examples. Modern trends in bioanalytical sample preparation techniques, including sorbent-based microextraction techniques, are primarily emphasized. Bioanalytical sampling techniques are described with suitable applications in pharmaceuticals. The pros and cons of each bioanalytical sampling techniques are described. Relevant biological matrices are outlined.
Collapse
|
16
|
Wu B, Xu H, Shi Y, Yao Z, Yu J, Zhou H, Li Y, Chen Q, Long Y. Microelectrode glucose biosensor based on nanoporous platinum/graphene oxide nanostructure for rapid glucose detection of tomato and cucumber fruits. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyab030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Microelectrode glucose biosensor based on three-dimensional hybrid nanoporous platinum/graphene oxide nanostructure was developed for rapid glucose detection of tomato and cucumber fruits. The nanostructure was fabricated by a two-step modification method on microelectrode for loading a larger amount of glucose oxidase. The nanoporous structure was prepared on the surface of the platinum microelectrode by electrochemical etching, and then graphene oxide was deposited on the prepared nanoporous electrode by electrochemical deposition. The nanoprorous platinum/graphene oxide nanostructure had the advantage of improving the effective surface area of the electrode and the loading quantity of glucose oxidase. As a result, the biosensor achieved a wide range of 0.1-20.0 mM in glucose detection, which had the ability to accurately detect the glucose content. It was found that the three-dimensional hybrid nanostructure on the electrode surface realized the rapid direct electrochemistry of glucose oxidase. Therefore, the biosensor achieved high glucose detection sensitivity (11.64 μA mM -1cm -2), low detection limit (13 μM) and rapid response time (reaching 95% steady-state response within 3 seconds), when calibrating in glucose standard solution. In agricultural application, the as-prepared biosensor was employed to detect the glucose concentration of tomato and cucumber samples. The results showed that the relative deviation of this method was less than 5% when compared with that of HPLC, implying high accuracy of the presented biosensor in glucose detection in plants.
Collapse
|
17
|
Singh V, Kuss S. Pico-molar electrochemical detection of ciprofloxacin at composite electrodes. Analyst 2022; 147:3773-3782. [DOI: 10.1039/d2an00645f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid determination of ciprofloxacin at OCNTs-PDA-Ag sensors enables environmental monitoring and future bioelectrochemical studies.
Collapse
Affiliation(s)
- Vikram Singh
- University of Manitoba, Department of Chemistry, Winnipeg R3T 2N2, Canada
| | - Sabine Kuss
- University of Manitoba, Department of Chemistry, Winnipeg R3T 2N2, Canada
| |
Collapse
|
18
|
Functionalization of Screen-Printed Sensors with a High Reactivity Carbonaceous Material for Ascorbic Acid Detection in Fresh-Cut Fruit with Low Vitamin C Content. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, carbon screen-printed sensors (C-SPEs) were functionalized with a high reactivity carbonaceous material (HRCM) to measure the ascorbic acid (AA) concentration in fresh-cut fruit (i.e., watermelon and apple) with a low content of vitamin C. HRCM and the functionalized working electrodes (WEs) were characterized by SEM and TEM. The increases in the electroactive area and in the diffusion of AA molecules towards the WE surface were evaluated by cyclic voltammetry (CV) and chronoamperometry. The performance of HRCM-SPEs were evaluated by CV and constant potential amperometry compared with the non-functionalized C-SPEs and MW-SPEs nanostructured with multi-walled carbon nanotubes. The results indicated that SPEs functionalized with 5 mg/mL of HRCM and 10 mg/mL of MWCNTs had the best performances. HRCM and MWCNTs increased the electroactive area by 1.2 and 1.4 times, respectively, whereas, after functionalization, the AA diffusion rate towards the electrode surface increased by an order of 10. The calibration slopes of HRCM and MWCNTs improved from 1.9 to 3.7 times, thus reducing the LOD of C-SPE from 0.55 to 0.15 and 0.28 μM, respectively. Finally, the functionalization of the SPEs proved to be indispensable for determining the AA concentration in the watermelon and apple samples.
Collapse
|
19
|
Fritea L, Banica F, Costea TO, Moldovan L, Dobjanschi L, Muresan M, Cavalu S. Metal Nanoparticles and Carbon-Based Nanomaterials for Improved Performances of Electrochemical (Bio)Sensors with Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6319. [PMID: 34771844 PMCID: PMC8585379 DOI: 10.3390/ma14216319] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Monitoring human health for early detection of disease conditions or health disorders is of major clinical importance for maintaining a healthy life. Sensors are small devices employed for qualitative and quantitative determination of various analytes by monitoring their properties using a certain transduction method. A "real-time" biosensor includes a biological recognition receptor (such as an antibody, enzyme, nucleic acid or whole cell) and a transducer to convert the biological binding event to a detectable signal, which is read out indicating both the presence and concentration of the analyte molecule. A wide range of specific analytes with biomedical significance at ultralow concentration can be sensitively detected. In nano(bio)sensors, nanoparticles (NPs) are incorporated into the (bio)sensor design by attachment to the suitably modified platforms. For this purpose, metal nanoparticles have many advantageous properties making them useful in the transducer component of the (bio)sensors. Gold, silver and platinum NPs have been the most popular ones, each form of these metallic NPs exhibiting special surface and interface features, which significantly improve the biocompatibility and transduction of the (bio)sensor compared to the same process in the absence of these NPs. This comprehensive review is focused on the main types of NPs used for electrochemical (bio)sensors design, especially screen-printed electrodes, with their specific medical application due to their improved analytical performances and miniaturized form. Other advantages such as supporting real-time decision and rapid manipulation are pointed out. A special attention is paid to carbon-based nanomaterials (especially carbon nanotubes and graphene), used by themselves or decorated with metal nanoparticles, with excellent features such as high surface area, excellent conductivity, effective catalytic properties and biocompatibility, which confer to these hybrid nanocomposites a wide biomedical applicability.
Collapse
Affiliation(s)
- Luminita Fritea
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Florin Banica
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Traian Octavian Costea
- Advanced Materials Research Infrastructure—SMARTMAT, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania;
| | - Liviu Moldovan
- Faculty of Electrical Engineering and Information Technology, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
| | - Luciana Dobjanschi
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Mariana Muresan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| |
Collapse
|
20
|
Silva IA, Lima AL, Gratieri T, Gelfuso GM, Sa-Barreto LL, Cunha-Filho M. Compatibility and stability studies involving polymers used in fused deposition modeling 3D printing of medicines. J Pharm Anal 2021; 12:424-435. [PMID: 35811629 PMCID: PMC9257448 DOI: 10.1016/j.jpha.2021.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
One of the challenges in developing three-dimensional printed medicines is related to their stability due to the manufacturing conditions involving high temperatures. This work proposed a new protocol for preformulation studies simulating thermal processing and aging of the printed medicines, tested regarding their morphology and thermal, crystallographic, and spectroscopic profiles. Generally, despite the strong drug-polymer interactions observed, the chemical stability of the model drugs was preserved under such conditions. In fact, in the metoprolol and Soluplus® composition, the drug's solubilization in the polymer produced a delay in the drug decomposition, suggesting a protective effect of the matrix. Paracetamol and polyvinyl alcohol mixture, in turn, showed unmistakable signs of thermal instability and chemical decomposition, in addition to physical changes. In the presented context, establishing protocols that simulate processing and storage conditions may be decisive for obtaining stable pharmaceutical dosage forms using three-dimensional printing technology. Preformulation protocol was proposed to guide the development of 3D-printed medicines. Drug models were able to support thermal processing equivalent to FDM/3D printing. Soluplus showed a protective effect for metoprolol after double heating and aging. Paracetamol and PVA mixture demonstrated incompatibility under heating processing.
Collapse
|
21
|
Batch injection analysis with amperometric detection for fluoroquinolone determination in urine, pharmaceutical formulations, and milk samples using a reduced graphene oxide-modified glassy carbon electrode. Anal Bioanal Chem 2021; 414:5309-5318. [PMID: 33890118 DOI: 10.1007/s00216-021-03342-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
In this work, the batch injection analysis system with amperometric detection using reduced graphene oxide as a modifier of glassy carbon electrode (GCE) was investigated for the simple, fast, and sensitive monitoring of levofloxacin (LEVO) and ciprofloxacin (CIPRO) in samples of pharmaceutical formulations, synthetic urine, and milk (low- and high-fat content). LEVO and CIPRO were quantified in seven samples using amperometric measurements at +1.10 V vs Ag/AgCl, KCl(sat). The developed methods showed excellent analytical performance with limits of detection of 0.30 and 0.16 μmol L-1, linear range from 3.0 to 50 μmol L-1 and 1.0 to 50 μmol L-1, relative standard deviation below 9.7 and 3.1%, and recovery ranges ranging from 80 to 107% and from 78 to 109% for LEVO and CIPRO, respectively. In addition, the minimum sample preparation (simple dilution) combined with a high analytical frequency (130 to 180 analyses per hour) can be highlighted. Thus, the methods are promising for implementation in routine analysis and quality control to different samples.
Collapse
|