1
|
Dehghan R, Piri K, Abdoli A, Hosseinkhani S. Parameters Optimization for Improving Bioluminescence Inhibition Assay Using Vibrio fischeri Bacteria to Detect Lipopolysaccharide Toxicity in Aquatic Environments. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:61. [PMID: 39466431 DOI: 10.1007/s00128-024-03970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Bioluminescence inhibition of Vibrio fischeri is a widely used method for toxicity testing in aquatic environments. Certain complex biological contaminants, such as lipopolysaccharide (LPS), can interfere with metabolic pathways during toxicity assays. The standard 15-minute Vibrio fischeri bioluminescence assay has limitations when evaluating and screening water toxicity against complex and emerging chemicals like LPS. To accurately determine the effects of such substances, it is crucial to use a bioassay that encompasses a sufficient cell cycle period. This study tested LPS at varying incubation times (ranging from 60 s to 60 min) and concentrations (1-1*10- 12 mg/ml) to identify the appropriate incubation time for bioluminescence inhibition and toxicity testing. The results indicated that bioluminescence inhibition begins within 60 s and reaches maximum inhibition at 60 min. However, at 30 and 45 min, the bacterial response to different concentrations of LPS varied, with some concentrations causing increased bioluminescence. The EC50 values at different times (60 s, 15, 30, 45, and 60 min) were found to be 0.0012, 0.0063, 4.07e + 54, 3.85e-8, and 3.34e-9 mg/ml respectively. This study highlights the importance of considering incubation time when using bioluminescence inhibition to detect acute toxicity in aquatic ecosystems. A longer incubation time may enhance the method's sensitivity and improve its ability to detect low levels of toxins, such as LPS, in water resources.
Collapse
Affiliation(s)
- Reyhaneh Dehghan
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Khosro Piri
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Asghar Abdoli
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Tsoukalas D, Hoel S, Lerfall J, Valdramidis VP, May L, Jakobsen AN. Insight to the diversity of Photobacterium spp. isolated from European plaice (Pleuronectes platessa) based on phylogenetic analysis, phenotypic characterisation and spoilage potential. Int J Food Microbiol 2024; 410:110485. [PMID: 37984214 DOI: 10.1016/j.ijfoodmicro.2023.110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
This study aimed to explore the diversity of fifty-four Photobacterium strains isolated from muscle tissue of European plaice (Pleuronectes platessa) caught at different fishing seasons and stored 14-days under various conditions. Single phylogenetic markers (16S rRNA, gapA, gyrB and recA) and multilocus sequence analysis (MLSA) were employed to classify isolates at species level. Furthermore, intra- and interspecies variability in the phenotypic traits, maximum specific growth rate (μmax) and spoilage potential of the Photobacterium isolates were investigated. The isolates were classified into the P. iliopiscarium (53.7 %), P. phosphoreum (40.7 %) and P. piscicola (5.6 %) clades using MLSA. Two housekeeping genes, gyrB and recA, exhibited a consistent phylogenetic relationship with MLSA, suggesting that they might be used as individual phylogenetic markers for the Photobacterium genus. Intra- and interspecies variability in the expression of phenotypic characteristics and the production of trimethylamine (TMA), inosine (HxR), and hypoxanthine (Hx) were observed. A growth optimum temperature for P. iliopiscarium was approximately 20 °C, while those for P. phosphoreum and P. piscicola were closer to 15 °C. All isolates exhibited the highest growth density at 1.5 % NaCl, followed by 0.5 %, 3 %, and 6 % NaCl. However, P. phosphoreum demonstrated a higher NaCl tolerance than the other two species. Although, the high CO2 atmosphere significantly inhibited the growth of all strains at 4 °C, P. phosphoreum and P. piscicola showed higher growth density at 15 °C than P. iliopiscarium. Notably, all strains demonstrated H2S production. The μmax varied considerably within each species, highlighting the significance of strain-level variability. This study demonstrates that P. iliopiscarium and P. piscicola, alongside P. phosphoreum, are efficient TMA-, HxR-, Hx-, and H2S-producers, suggesting their potential contribution to synergistic off-odour generation and spoilage. Moreover, the Photobacterium isolates seem to exhibit diverse adaptations to their environments, resulting in fluctuated growth and spoilage potential. Understanding intra- and interspecies variability will facilitate modelling seafood spoilage in microbial risk assessments and developing targeted hurdles to prolong products' shelf-life.
Collapse
Affiliation(s)
- Dionysios Tsoukalas
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Sunniva Hoel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Vasilis P Valdramidis
- Department of Chemistry, National and Kapodistrian University of Athens, 15171 Athens, Greece
| | - Lea May
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
3
|
Eom H. Development of an Improved Sulfur-Oxidizing Bacteria-Based Ecotoxicity Test for Simple and Rapid On-Site Application. TOXICS 2023; 11:352. [PMID: 37112579 PMCID: PMC10145486 DOI: 10.3390/toxics11040352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Microbial toxicity tests are considered efficient screening tools for the assessment of water contamination. The objective of this study was to develop a sulfur-oxidizing bacteria (SOB)-based ecotoxicity test with high sensitivity and reproducibility for simple and rapid on-site application. To attain this goal, we developed a 25 mL vial-based toxicity kit and improved our earlier SOB toxicity test technique. The current study applied a suspended form of SOB and shortened the processing time to 30 min. Moreover, we optimized the test conditions of the SOB toxicity kit in terms of initial cell density, incubating temperature, and mixing intensity during incubation. We determined that 2 × 105 cells/mL initial cell density, 32 °C incubating temperature, and 120 rpm mixing intensity are the optimal test conditions. Using these test conditions, we performed SOB toxicity tests for heavy metals and petrochemicals, and obtained better detection sensitivity and test reproducibility, compared to earlier SOB tests. Our SOB toxicity kit tests have numerous advantages, including a straightforward test protocol, no requirement of sophisticated laboratory equipment, and no distortion of test results from false readings of end-points and properties of test samples, making it suitable for simple and rapid on-site application.
Collapse
Affiliation(s)
- Heonseop Eom
- Department of Civil Engineering, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| |
Collapse
|
4
|
Hassan H, Eltarahony M, Abu-Elreesh G, Abd-Elnaby HM, Sabry S, Ghozlan H. Toxicity monitoring of solvents, hydrocarbons, and heavy metals using statistically optimized model of luminous Vibrio sp. 6HFE. J Genet Eng Biotechnol 2022; 20:91. [PMID: 35776216 PMCID: PMC9249957 DOI: 10.1186/s43141-022-00360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/02/2022] [Indexed: 11/22/2022]
Abstract
Background The utilization of bioluminescent bacteria in environmental monitoring of water contaminates considers being a vital and powerful approach. This study aimed to isolate, optimize, and apply luminescent bacteria for toxicity monitoring of various toxicants in wastewater. Results On the basis of light intensity, strain Vibrio sp. 6HFE was initially selected, physiologically/morphologically characterized, and identified using the 16SrDNA gene. The luminescence production was further optimized by employing statistical approaches (Plackett-Burman design and central composite design). The maximum bioluminescence intensity recorded 1.53 × 106 CPS using optimized medium containing (g/L), yeast extract (0.2g), CaCl2 (4.0), MgSO4 (0.1), and K2HPO4 (0.1) by 2.3-fold increase within 1h. The harnessing of Vibrio sp. 6HFE as a bioluminescent reporter for toxicity of organic solvents was examined using a bioluminescence inhibition assay. According to IC50 results, the toxicity order of such pollutants was chloroform > isoamyl > acetic acid > formamide > ethyl acetate > acetonitrile > DMSO > acetone > methanol. However, among eight heavy metals tested, the bioluminescence was most sensitive to Ag+ and Hg+ and least sensitive to Co2+ and Ni2+. Additionally, the bioluminescence was inhibited by benzene, catechol, phenol, and penta-chlorophenol at 443.1, 500, 535.1, and 537.4 ppm. Conclusion Vibrio sp. 6HFE succeeded in pollution detection at four different environmental and wastewater samples revealing its efficiency in ecotoxicity monitoring.
Collapse
Affiliation(s)
- Howaida Hassan
- National Institute of Oceanography and Fisheries (NIOF), Marine Environment Division, Marine Microbiology Lab., Kayet Bay, El-Anfushy, Alexandria, Egypt.
| | - Marwa Eltarahony
- City of Scientific Research and Technology Applications (SRTA-City), Genetic Engineering and Biotechnology Research Institute (GEBRI), Environmental Biotechnology Department, Alexandria, Egypt
| | - Gadallah Abu-Elreesh
- City of Scientific Research and Technology Applications (SRTA-City), Genetic Engineering and Biotechnology Research Institute (GEBRI), Environmental Biotechnology Department, Alexandria, Egypt
| | - Hanan M Abd-Elnaby
- National Institute of Oceanography and Fisheries (NIOF), Marine Environment Division, Marine Microbiology Lab., Kayet Bay, El-Anfushy, Alexandria, Egypt
| | - Soraya Sabry
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hanan Ghozlan
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Yang J, Liao A, Hu S, Zheng Y, Liang S, Han S, Lin Y. Acute and Chronic Toxicity of Binary Mixtures of Bisphenol A and Heavy Metals. TOXICS 2022; 10:255. [PMID: 35622668 PMCID: PMC9145676 DOI: 10.3390/toxics10050255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 01/03/2023]
Abstract
Bisphenol A (BPA) and heavy metals are widespread contaminants in the environment. However, the combined toxicities of these contaminants are still unknown. In this study, the bioluminescent bacteria Vibrio qinghaiensis Q67 was used to detect the single and combined toxicities of BPA and heavy metals, then the joint effects of these contaminants were evaluated. The results show that chronic toxicities of chromium (Cr), cadmium (Cd), lead (Pb), arsenic (As), mercury (Hg), nickel (Ni), and BPA were time−dependent; in fact, the acute toxicities of these contaminants were stronger than the chronic toxicities. Furthermore, the combined toxicities of BPA and heavy metals displayed BPA + Hg > BPA + Cr > BPA + As > BPA + Ni > BPA + Pb > BPA + Cd in the acute test and BPA + Hg > BPA + Cd > BPA + As > BPA + Cd in the chronic test, which suggested that the combined toxicity of BPA and Hg was stronger than that of other mixtures in acute as well as chronic tests. Additionally, both CA and IA models underestimated the toxicities of mixtures at low concentrations but overestimated them at high concentrations, which indicates that CA and IA models were not suitable to predict the toxicities of mixtures of BPA and heavy metals. Moreover, the joint effects of BPA and heavy metals mainly showed antagonism and additive in the context of acute exposure but synergism and additive in the context of chronic exposure. Indeed, the difference in the joint effects on acute and chronic exposure can be explained by the possibility that mixtures inhibited cell growth and luminescence in chronic cultivation. The chronic toxicity of the mixture should be considered if the mixture results in the inhibition of the growth of cells.
Collapse
Affiliation(s)
- Jun Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Anqi Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
| | - Shulin Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yiwen Zheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuli Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuangyan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Huang Y, Yu X, Gan H, Jiang L, Gong H. Degradation and chlorination mechanism of fumaric acid based on SO 4•-: an experimental and theoretical study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48471-48480. [PMID: 33907958 DOI: 10.1007/s11356-021-12756-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
It is well known that chloride ions could affect the oxidation kinetics and mechanism of contaminant based on SO4•- in the wastewater. Here, the degradation of an organic acid, fumaric acid (FA), was investigated in the presence of chloride (0-300 mM) by the Fe(II)/peroxymonosulfate (Fe(II)/PMS) system. A negative impact of chloride was observed on the rates of FA degradation. The degree of inhibitory effect was higher in Fe(II)/PMS addition order. Some chlorinated byproducts were identified during the FA oxidation process in the presence of Cl- by the ultraperformance liquid chromatography and quadrupole-time of flight mass spectrometer (UPLC-QTOF-MS). With the increasing content of Cl-, an accumulation of adsorbable organic halogen (AOX), an increase in acute toxicity, and an inhibition of mineralization were observed. According to the results of kinetic modeling, the production and transformation of oxidative species were dependent on Cl- dosage and reaction time. SO4•- was supposed to be the main radical for FA degradation with Cl- concentration below 5 mM, whereas Cl2•- was primarily responsible for the depletion of FA at [Cl-] > 5 mM. A possible degradation pathway of FA was discussed. This study reveals the potential environmental risk of organic acid and is necessary to explore useful strategies for ameliorating the treatment of chloride-rich wastewater.
Collapse
Affiliation(s)
- Ying Huang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Xubiao Yu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Huihui Gan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Li Jiang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Hancheng Gong
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| |
Collapse
|
7
|
Muneeswaran T, Kalyanaraman N, Vennila T, Rajesh Kannan M, Ramakritinan CM. Rapid assessment of heavy metal toxicity using bioluminescent bacteria Photobacterium leiognathi strain GoMGm1. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:109. [PMID: 33537887 DOI: 10.1007/s10661-021-08860-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Several commercial test kits such as Microtox, LUMIStox, ToxAlert, Aboatox, and ToxScreen have been widely used for toxicity screening. Though this time saving assays offer excellent sensitivity, cost-effectiveness, and accuracy, these commercial assays are limited in terms of real-time monitoring in Indian coastal environment due to warmer temperatures. This necessitates the need to develop a rapid and accurate assay that can be effectively employed for real time monitoring with respect to heavy metals in the Indian coastal waters. With this objective, the present study was conducted by isolating an indigenous luminescent bacterium from the light organs of chordates Gazza minuta which showed higher luminescence in a wide range of temperatures. The isolate could grow well in the temperature of 30 ± 2 °C and withstand temperature up to 35 ± 2 °C. The isolated bacterium was identified as Photobacterium leiognathi GoMGm1 based on 16S rDNA and luxA gene sequences. The suitable growing medium was optimized using central composite rotational design (CCRD) method to obtain optimal growth and luminescence. The optimized medium exemplified the maximal growth and luminescence of P. leiognathi at OD600 nm of 5.78 ± 0.12 and RLU of 12.49 ± 0.43. The isolate was used to assess the toxicity of several heavy metals. The IC50 values of 0.0051, 1.13, 1.37, 3.1, and 6.68 mg L-1 were observed for the Hg, Cr, Cu, Ni, and Zn, respectively, after 15 min of exposure. Results obtained from principal component analysis (PCA) displayed the present assay's compatibility with other luminescent bacterial assay and commercial Microtox™ assay. Thus, it would the right candidate as an early detection system for heavy metals in aquatic bodies in tropical countries. Schematic representation of the present study.
Collapse
Affiliation(s)
- Thillaichidambaram Muneeswaran
- Department of Marine and Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Narayanan Kalyanaraman
- Molecular Biology Lab, Meenakshi Mission Hospital and Research Centre (MMHRC), Madurai, Tamil Nadu, 625107, India
| | | | - Murugesan Rajesh Kannan
- Department of Marine and Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Chockalingam Muthiah Ramakritinan
- Department of Marine and Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
8
|
Eom H, Park M, Jang A, Kim S, Oh SE. A simple and rapid algal assay kit to assess toxicity of heavy metal-contaminated water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116135. [PMID: 33290954 DOI: 10.1016/j.envpol.2020.116135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
This study presents a novel algal-based toxicity test suitable for simple and rapid assessment of heavy metal (Hg2+, Cr6+, Cd2+, Pb2+, or As3+)-contaminated water. A closed-system kit-type algal assay was developed using Chlorella vulgaris. Toxicity was assessed by oxygen evolution in the gaseous phase of the assay kits, which was measured via a needle-type oxygen sensor. Initial cell density, light intensity, and exposure time that enabled favorable test performance for the algal assay kits were 103 cells/mL, 250 μmol m-2s-1, and 18 h, respectively. Results from the heavy metal toxicity tests demonstrate that Hg2+, Cr6+, Cd2+, and Pb2+ are more toxic in inhibiting algal photosynthetic activity than As3+. The 18 h half-maximum effective concentrations (EC50) for Hg2+, Cr6+, Cd2+, Pb2+, and As3+ were determined to be 31.3 ± 0.5, 179.6 ± 7.5, 301.3 ± 6.1, 476.1 ± 10.5, and 2184.1 ± 31.1 μg/L, respectively. A strong correlation between oxygen concentrations in the headspace of the assay kits and chlorophyll a production indicates that oxygen evolution in the gaseous phase is able to represent algal photosynthetic activity and serve as the end-point in algal toxicity tests. High test sensitivity and reproducibility as well as an easy test protocol and rapid processing time make the algal assay kit a suitable tool for simple and rapid toxicity testing of heavy metal-contaminated water.
Collapse
Affiliation(s)
- Heonseop Eom
- Department of Biological Environment, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Minseung Park
- EH R&C Co. Ltd, 410 Jeongseojin-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Seunggyu Kim
- Department of Biological Environment, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
9
|
Mirjani M, Soleimani M, Salari V. Toxicity assessment of total petroleum hydrocarbons in aquatic environments using the bioluminescent bacterium Aliivibrio fischeri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111554. [PMID: 33254411 DOI: 10.1016/j.ecoenv.2020.111554] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Toxicity monitoring of environmental pollutants especially petroleum hydrocarbons as priority pollutants is an important environmental issue. This study addresses a rapid, sensitive and cost effective method for the detection of total petroleum hydrocarbons (TPHs) using Aliivibrio fischeri bioluminescence inhibition bioassay. At the first step, the optimum conditions including time, pH and temperature for growth of A. fischeri were determined. Then, two methods were used to evaluate the toxicity of petroleum compounds. In the first method, short-term (15 min) and long-term (16 h) toxicity assays were performed. In the second method luminescence kinetics of A. fischeri was investigated during 24 h. The results demonstrated the most appropriate time for the bacterial growth occurred 16 h after inoculation and optimum temperature and pH were found 25 °C and 7, respectively. Short-term and long-term toxicity did not indicate any toxicity for various concentrations of TPHs (30, 50, 110, 160, 220 mg/L). Considering the luminescence kinetics of A. fischeri the long-term assay was introduced as 6 h. The half maximal effective concentration (EC50) was achieved 1.77 mg/L of TPHs. It is concluded that the luminescence kinetics of A. fischeri can be a valuable approach for assessing toxicity of TPHs in aquatic environments.
Collapse
Affiliation(s)
- Marzieh Mirjani
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohsen Soleimani
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Vahid Salari
- Department of Physics, Isfahan University of Technology, Isfahan, 84156-83111, Iran; Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apdo. 644, 48080, Bilbao, Spain
| |
Collapse
|
10
|
Adnan NA, Halmi MIE, Gani SSA, Zaidan UH, Othman R, Shukor MYA. Statistical Modeling for the Optimization of Bioluminescence Production by Newly Isolated Photobacterium sp. NAA-MIE. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, INDIA SECTION B: BIOLOGICAL SCIENCES 2020; 90:797-810. [DOI: 10.1007/s40011-019-01154-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/30/2019] [Accepted: 11/20/2019] [Indexed: 09/02/2023]
|
11
|
Reyes S, Le N, Fuentes MD, Upegui J, Dikici E, Broyles D, Quinto E, Daunert S, Deo SK. An Intact Cell Bioluminescence-Based Assay for the Simple and Rapid Diagnosis of Urinary Tract Infection. Int J Mol Sci 2020; 21:E5015. [PMID: 32708609 PMCID: PMC7404122 DOI: 10.3390/ijms21145015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
Urinary tract infection (UTI) is one of the most common infections, accounting for a substantial portion of outpatient hospital and clinic visits. Standard diagnosis of UTI by culture and sensitivity can take at least 48 h, and improper diagnosis can lead to an increase in antibiotic resistance following therapy. To address these shortcomings, rapid bioluminescence assays were developed and evaluated for the detection of UTI using intact, viable cells of Photobacterium mandapamensis USTCMS 1132 or previously lyophilized cells of Photobacterium leiognathi ATCC 33981™. Two platform technologies-tube bioluminescence extinction technology urine (TuBETUr) and cellphone-based UTI bioluminescence extinction technology (CUBET)-were developed and standardized using artificial urine to detect four commonly isolated UTI pathogens-namely, Escherichia coli, Proteus mirabilis, Staphylococcus aureus, and Candida albicans. Besides detection, these assays could also provide information regarding pathogen concentration/level, helping guide treatment decisions. These technologies were able to detect microbes associated with UTI at less than 105 CFU/mL, which is usually the lower cut-off limit for a positive UTI diagnosis. Among the 29 positive UTI samples yielding 105-106 CFU/mL pathogen concentrations, a total of 29 urine specimens were correctly detected by TuBETUr as UTI-positive based on an 1119 s detection window. Similarly, the rapid CUBET method was able to discriminate UTIs from normal samples with high confidence (p ≤ 0.0001), using single-pot conditions and cell phone-based monitoring. These technologies could potentially address the need for point-of-care UTI detection while reducing the possibility of antibiotic resistance associated with misdiagnosed cases of urinary tract infections, especially in low-resource environments.
Collapse
Affiliation(s)
- Sherwin Reyes
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.R.); (N.L.); (J.U.); (E.D.); (D.B.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute of University of Miami, Miami, FL 33136, USA
- FEU-Nicanor Reyes Medical Foundation, Institute of Medicine, West Fairview, Quezon City 1118, Philippines;
- The Graduate School, University of Santo Tomas, España Manila 1015, Philippines;
| | - Nga Le
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.R.); (N.L.); (J.U.); (E.D.); (D.B.); (S.D.)
| | - Mary Denneth Fuentes
- FEU-Nicanor Reyes Medical Foundation, Institute of Medicine, West Fairview, Quezon City 1118, Philippines;
- The Graduate School, University of Santo Tomas, España Manila 1015, Philippines;
| | - Jonathan Upegui
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.R.); (N.L.); (J.U.); (E.D.); (D.B.); (S.D.)
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.R.); (N.L.); (J.U.); (E.D.); (D.B.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute of University of Miami, Miami, FL 33136, USA
| | - David Broyles
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.R.); (N.L.); (J.U.); (E.D.); (D.B.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute of University of Miami, Miami, FL 33136, USA
| | - Edward Quinto
- The Graduate School, University of Santo Tomas, España Manila 1015, Philippines;
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.R.); (N.L.); (J.U.); (E.D.); (D.B.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute of University of Miami, Miami, FL 33136, USA
- Clinical and Translational Science Institute of University of Miami, Miami, FL 33136, USA
| | - Sapna K. Deo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.R.); (N.L.); (J.U.); (E.D.); (D.B.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute of University of Miami, Miami, FL 33136, USA
| |
Collapse
|
12
|
Suominen EN, Putus T, Atosuo J. Investigating the short- and long-term effects of antibacterial agents using a real-time assay based on bioluminescent E. coli-lux. Heliyon 2020; 6:e04232. [PMID: 32642580 PMCID: PMC7334431 DOI: 10.1016/j.heliyon.2020.e04232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/05/2020] [Accepted: 06/12/2020] [Indexed: 11/20/2022] Open
Abstract
We have previously established that the E. coli-lux assessment is a convenient tool for rapid measurements of the kinetical features of short-term toxicity caused by various factors. In this study, kinetic measurements of seven specifically acting model antibacterials (i.e., polymyxin B, chloramphenicol, nalidixic acid, kanamycin, deoxynivalenol, erythromycin and tetracycline) and two metals (AgNO3 and CdCl2) against E. coli-lux through a bioluminescence- and optical density-based real-time assay that combined short- and long-term toxicity assessments were performed. Bacteria were exposed to antibacterials and the effects were reported as the half-maximum effective concentration (EC50) after 30 min and 10 h. Regarding the 10-hour endpoints, all reference compounds, except deoxynivalenol, showed dose-response inhibition in the studied concentration range. The analysis of chloramphenicol, kanamycin, erythromycin, tetracycline and nalidixic acid clearly revealed the limitations of short-term inhibition tests. No significant differences were observed between the results obtained from luminescence inhibition and growth inhibition assays. The kinetical data from measurements provide differentiation between bacteriostatic and bactericidal mechanisms of various types of antibacterial agents. The combined assessment of short- and long-term effects reduces the risk of the underestimation of toxicity due to an inaccurate endpoint selection. The cost-efficient and fully automated E. coli-lux assessment technique may offer possibilities for high-throughput screening procedures.
Collapse
Affiliation(s)
- Eetu N. Suominen
- The Department of Biochemistry, Faculty of Science and Engineering, University of Turku, Finland
- Department of Occupational and Environmental Health, Faculty of Medicine, University of Turku, Finland
- Corresponding author.
| | - Tuula Putus
- Department of Occupational and Environmental Health, Faculty of Medicine, University of Turku, Finland
| | - Janne Atosuo
- The Department of Biochemistry, Faculty of Science and Engineering, University of Turku, Finland
| |
Collapse
|
13
|
Gan T, Zhao N, Yin G, Chen M, Wang X, Liu J, Liu W. Optimal chlorophyll fluorescence parameter selection for rapid and sensitive detection of lead toxicity to marine microalgae Nitzschia closterium based on chlorophyll fluorescence technology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111551. [DOI: 10.1016/j.jphotobiol.2019.111551] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/11/2019] [Accepted: 07/04/2019] [Indexed: 11/28/2022]
|
14
|
Eom H, Hwang JH, Hassan SH, Joo JH, Hur JH, Chon K, Jeon BH, Song YC, Chae KJ, Oh SE. Rapid detection of heavy metal-induced toxicity in water using a fed-batch sulfur-oxidizing bacteria (SOB) bioreactor. J Microbiol Methods 2019; 161:35-42. [DOI: 10.1016/j.mimet.2019.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 02/09/2023]
|
15
|
Mi Y, Tao X, Zhang X, Si Y. Acute biotoxicity assessment of heavy metals in sewage sludge based on the glucose consumption of Escherichia coli. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181769. [PMID: 30800404 PMCID: PMC6366162 DOI: 10.1098/rsos.181769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/11/2018] [Indexed: 05/31/2023]
Abstract
As a simple and feasible method for acute biotoxicity assessment, personal glucose meter (PGM) can be successfully applied in the early warning of environmental pollutants in sewage. In this paper, the acute biotoxicity of single and joint heavy metals in sewage and real sludge samples was systematically described based on the glucose metabolism of Escherichia coli (E. coli). Results indicated that the biotoxicity order of five single heavy metals in sewage was Hg2+ > As3+ > Cu2+ > Zn2+ > Cd2+. The joint heavy metals of Cu2+ + Zn2+, Cu2+ + Cd2+, and Cu2+ + Hg2+ produced synergistic effects, while Cu2+ + As3+ and Cd2+ + Zn2+ possessed antagonistic effects for the combined biotoxicity. In spiked sludge, Cd2+ and Zn2+ owned higher biotoxicity than Cu2+ and As3+. Notably, the electroplate factory and housing estate sludge respectively showed the highest and lowest inhibition rates as 57.4% and 17.7% under the real sludge biotoxicity assessment. These results demonstrated that PGM was a sensitive and portable method, which could be widely used for acute biotoxicity assessment of heavy metals in sewage sludge.
Collapse
Affiliation(s)
| | | | | | - Youbin Si
- Anhui Province Key Laboratory of FarmLand Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
16
|
Nikoleli GP, Nikolelis DP, Siontorou CG, Karapetis S, Varzakas T. Novel Biosensors for the Rapid Detection of Toxicants in Foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 84:57-102. [PMID: 29555073 DOI: 10.1016/bs.afnr.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The modern environmental and food analysis requires sensitive, accurate, and rapid methods. The growing field of biosensors represents an answer to this demand. Unfortunately, most biosensor systems have been tested only on distilled water or buffered solutions, although applications to real samples are increasingly appearing in recent years. In this context, biosensors for potential food applications continue to show advances in areas such as genetic modification of enzymes and microorganisms, improvement of recognition element immobilization, and sensor interfaces. This chapter investigates the progress in the development of biosensors for the rapid detection of food toxicants for online applications. Recent progress in nanotechnology has produced affordable, mass-produced devices, and to integrate these into components and systems (including portable ones) for mass market applications for food toxicants monitoring. Sensing includes chemical and microbiological food toxicants, such as toxins, insecticides, pesticides, herbicides, microorganisms, bacteria, viruses and other microorganisms, phenolic compounds, allergens, genetically modified foods, hormones, dioxins, etc. Therefore, the state of the art of recent advances and future targets in the development of biosensors for food monitoring is summarized as follows: biosensors for food analysis will be highly sensitive, selective, rapidly responding, real time, massively parallel, with no or minimum sample preparation, and platform suited to portable and handheld nanosensors for the rapid detection of food toxicants for online uses even by nonskilled personnel.
Collapse
Affiliation(s)
- Georgia-Paraskevi Nikoleli
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Chemical Sciences, National Technical University of Athens, Athens, Greece
| | | | - Christina G Siontorou
- Laboratory of Simulation of Industrial Processes, School of Maritime and Industry, University of Piraeus, Piraeus, Greece
| | - Stephanos Karapetis
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Chemical Sciences, National Technical University of Athens, Athens, Greece
| | - Theo Varzakas
- Laboratory of Inorganic Chemistry, University of Athens, Athens, Greece; Technological Educational Institute of Peloponnese, Kalamata, Greece
| |
Collapse
|
17
|
Gao G, Fang D, Yu Y, Wu L, Wang Y, Zhi J. A double-mediator based whole cell electrochemical biosensor for acute biotoxicity assessment of wastewater. Talanta 2017; 167:208-216. [DOI: 10.1016/j.talanta.2017.01.081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/23/2017] [Accepted: 01/29/2017] [Indexed: 01/05/2023]
|
18
|
Wang W, Shi C, Yan Y, Yang Y, Zhou B. Eco-toxicological bioassay of atmospheric fine particulate matter (PM2.5) with Photobacterium Phosphoreum T3. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:226-234. [PMID: 27467023 DOI: 10.1016/j.ecoenv.2016.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
A bioluminescent bacterium, Photobacterium phosphoreum T3 (PPT3), was used as a bio-indicator for the atmospheric fine particulate matter (PM2.5) to determine the eco-toxicity of PM2.5. The PM2.5 contains toxic chemicals, which reduce light output. The PM2.5 samples were collected in the period from March 2014 to January 2015 in Nanjing and analyzed for the chemical composition versus their eco-toxicity. The eco-toxicological responses of each toxicant were detected in PM2.5 samples with PPT3. The dose-response curves obtained were verified using the Weibull fitting function. According to the measured EC50 values (EC50, the concentration of a toxicant that inhibits 50% of the bioluminescence), the toxicity sequence was: B[a]P>hexa-PCB>tetra-PCB>tri-PCB>Pb(2+)>DEHP>Cu(2+)>DBP>BDE209>Zn(2+)>DMP>DEP, where B[a]P is benzo(a)pyrene, PCB is polychlorinated biphenyl, DEHP is diethylhexyl phthalate, DBP is dibutyl phthalate, BDE209 is decabromodiphenyl ether, DMP is dimethyl phthalate, and DEP is diethyl phthalate. All the PM2.5 samples analyzed proved to be weak toxic for PPT3. The toxicity of PM2.5 was assessed by the dose-addition of organic species and heavy metallic elements existing in PM2.5 with PPT3. The bioluminescence test showed that the metals and organics detected in PM2.5 promoted PM2.5 toxicity. The total detectable organics (denoted by ΣOrs) exhibited slightly higher toxicity than the total metals (denoted by ΣMs). In contrast, the sum of water-soluble ions (denoted by ΣIons) was beneficial to PPT3. The PM2.5 toxicity increased as the PM2.5 trapped more organics or metallic elements from the industrial or densely populated urban areas, where the PM2.5 had a high inhibition rate of bioluminescence for PPT3 in contrast to the residential PM2.5 samples, where the minimum inhibition rate was observed. The toxicity of PM2.5 samples varied with the mass concentrations, chemical constituents, and sampling locations. The chemicals in PM2.5, especially organic species and metallic elements, affected its eco-toxicity. These data provided good understanding of the atmospheric PM2.5 pollution in the large portion of the East China.
Collapse
Affiliation(s)
- Wenxin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chanzhen Shi
- Shanghai Institute of Measurement and Testing, Shanghai 201203, China
| | - Yan Yan
- Department of Laboratory Analysis, Environment Monitoring Center of Jiangsu Province, Nanjing 210036, China
| | - Yunfei Yang
- Jiangsu Province Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Bin Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Fudan Tyndall Center, China.
| |
Collapse
|
19
|
Qambrani NA, Hwang JH, Oh SE. Comparison of chromium III and VI toxicities in water using sulfur-oxidizing bacterial bioassays. CHEMOSPHERE 2016; 160:342-348. [PMID: 27393970 DOI: 10.1016/j.chemosphere.2016.06.090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 05/26/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
The toxicities of Cr (III) and Cr (VI) in water were evaluated using sulfur-oxidizing bacterial (SOB) bioassays both in batch and fed-batch conditions. Two days were enough for a quick buildup of SOB consortium in the master culture reactor (MCR). At concentrations up to 100 mg L(-1), Cr (III) was found to be nontoxic in both conditions, while Cr (VI) at very low concentrations (0.1-2 mg L(-1)) was very toxic to the SOB. Literature review suggested that the nontoxic nature of Cr (III) might be due to the absence of the iron uptake pathway in Acidithiobacillus caldus (the predominant bacteria in our reactors), which is required for Cr (III) uptake. The 2-h median effective concentration (EC50) values obtained for Cr (VI) in the batch and fed-batch tests were 2.7 mg L(-1) and 1.5 mg L(-1), respectively.
Collapse
Affiliation(s)
- Naveed Ahmed Qambrani
- Department of Biological Environment, Kangwon National University, Gangwon-do, South Korea
| | - Ji-Hoon Hwang
- Department of Biological Environment, Kangwon National University, Gangwon-do, South Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, Gangwon-do, South Korea.
| |
Collapse
|
20
|
Bolelli L, Ferri EN, Girotti S. The management and exploitation of naturally light-emitting bacteria as a flexible analytical tool: A tutorial. Anal Chim Acta 2016; 934:22-35. [PMID: 27506340 DOI: 10.1016/j.aca.2016.05.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
Abstract
Conventional detection of toxic contaminants on surfaces, in food, and in the environment takes time. Current analytical approaches to chemical detection can be of limited utility due to long detection times, high costs, and the need for a laboratory and trained personnel. A non-specific but easy, rapid, and inexpensive screening test can be useful to quickly classify a specimen as toxic or non toxic, so prompt appropriate measures can be taken, exactly where required. The bioluminescent bacteria-based tests meet all these characteristics. Bioluminescence methods are extremely attractive because of their high sensitivity, speed, ease of implementation, and statistical significance. They are usually sensitive enough to detect the majority of pollutants toxic to humans and mammals. This tutorial provides practical guidelines for isolating, cultivating, and exploiting marine bioluminescent bacteria as a simple and versatile analytical tool. Although mostly applied for aqueous phase sample and organic extracts, the test can also be conducted directly on soil and sediment samples so as to reflect the true toxicity due to the bioavailability fraction. Because tests can be performed with freeze-dried cell preparations, they could make a major contribution to field screening activity. They can be easily conducted in a mobile environmental laboratory and may be adaptable to miniaturized field instruments and field test kits.
Collapse
Affiliation(s)
- L Bolelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 15, 40127 Bologna, Italy
| | - E N Ferri
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 15, 40127 Bologna, Italy.
| | - S Girotti
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 15, 40127 Bologna, Italy
| |
Collapse
|
21
|
Hassan SHA, Van Ginkel SW, Hussein MAM, Abskharon R, Oh SE. Toxicity assessment using different bioassays and microbial biosensors. ENVIRONMENT INTERNATIONAL 2016; 92-93:106-18. [PMID: 27071051 DOI: 10.1016/j.envint.2016.03.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 03/05/2016] [Accepted: 03/05/2016] [Indexed: 05/23/2023]
Abstract
Toxicity assessment of water streams, wastewater, and contaminated sediments, is a very important part of environmental pollution monitoring. Evaluation of biological effects using a rapid, sensitive and cost effective method can indicate specific information on ecotoxicity assessment. Recently, different biological assays for toxicity assessment based on higher and lower organisms such as fish, invertebrates, plants and algal cells, and microbial bioassays have been used. This review focuses on microbial biosensors as an analytical device for environmental, food, and biomedical applications. Different techniques which are commonly used in microbial biosensing include amperometry, potentiometry, conductometry, voltammetry, microbial fuel cells, fluorescence, bioluminescence, and colorimetry. Examples of the use of different microbial biosensors in assessing a variety of environments are summarized.
Collapse
Affiliation(s)
- Sedky H A Hassan
- Botany Department, Faculty of Science, Assiut University, New Valley Branch, 72511 Al-Kharja, Egypt
| | - Steven W Van Ginkel
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Romany Abskharon
- National Institute of Oceanography and Fisheries (NIFO), 11516 Cairo, Egypt
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, 200-701 Chuncheon, Kangwon-do, South Korea.
| |
Collapse
|
22
|
Yong D, Liu C, Zhu C, Yu D, Liu L, Zhai J, Dong S. Detecting total toxicity in water using a mediated biosensor system with flow injection. CHEMOSPHERE 2015; 139:109-116. [PMID: 26071865 DOI: 10.1016/j.chemosphere.2015.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
A novel total toxicity detection method based on a mediated biosensor system with flow injection (MB-FI) was developed to rapidly and reliably detect respiration inhibitors (i.e., As2O3, KCN, salicylic acid (SA), 2,4-dintirophenol (DNP)) in water. The mediated biosensor toxicity assessment using microorganisms immobilized in calcium alginate filaments can greatly simplify the testing process and save time. In the MB-FI system, ferricyanide together with a respiration inhibitor was injected into the bioreactor, inhibiting the respiration of the immobilized microorganisms. The degree of inhibition was measured by determining the ferrocyanide generated in the effluent, expressed as the 50% inhibition concentration (IC50). The IC50 values for the four respiration inhibitors obtained using this method were comparable to those obtained using the classic method, confirming that this approach is an alternative alert method. More importantly, this constructed biosensor system with flow injection will facilitate the application and commercialization of this toxicity monitoring technology.
Collapse
Affiliation(s)
- Daming Yong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Changyu Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chengzhou Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dengbin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ling Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Junfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
23
|
Qambrani NA, Shin BS, Cho JS, Oh SE. Assessment of chromium-contaminated groundwater using a thiosulfate-oxidizing bacteria (TOB) biosensor. CHEMOSPHERE 2014; 104:32-36. [PMID: 24275152 DOI: 10.1016/j.chemosphere.2013.10.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 06/02/2023]
Abstract
The effect of Cr(6+)-contaminated groundwater was assessed using thiosulfate-oxidizing bacteria (TOB). Electrical conductivity (EC), pH, and sulfate production were determined based on thiosulfate oxidation. Final pH values in the different test treatments of Cr(6+)-contaminated groundwater (50-1000 μg Cr(6+)L(-1)) ranged from 2.02 ± 0.09 to 7.76 ± 0.07 and EC ranged from 5.95 ± 0.03 to 3.63 ± 0.03 mS cm(-1). Inhibition of TOB due to Cr(6+) was between 16.7% and 100%, with higher levels of inhibition occurring at higher Cr(6+) concentrations. The median effective concentration (EC50) was 78.96 μg Cr(6+)L(-1). These data demonstrate that TOB can detect less than 100 μg L(-1) of Cr(6+) in the groundwater and can be used as an effective bioassay for toxicity assessment.
Collapse
Affiliation(s)
- Naveed Ahmed Qambrani
- Department of Biological Environment, Kangwon National University, Gangwon-do, Chuncheon-si, South Korea
| | - Beom-Soo Shin
- Department of Biosystems Engineering, Kangwon National University, Gangwon-do Chuncheon-si, South Korea
| | - Ju-Sik Cho
- Department of Bio-environmental Sciences, Sunchon National University, Suncheon 540-950, Korea.
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, Gangwon-do, Chuncheon-si, South Korea.
| |
Collapse
|
24
|
Halmi MIE, Jirangon H, Johari WLW, Abdul Rachman AR, Shukor MY, Syed MA. Comparison of Microtox and Xenoassay light as a near real time river monitoring assay for heavy metals. ScientificWorldJournal 2014; 2014:834202. [PMID: 24977231 PMCID: PMC3995304 DOI: 10.1155/2014/834202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/23/2014] [Indexed: 11/18/2022] Open
Abstract
Luminescence-based assays for toxicants such as Microtox, ToxAlert, and Biotox have been used extensively worldwide. However, the use of these assays in near real time conditions is limited due to nonoptimal assay temperature for the tropical climate. An isolate that exhibits a high luminescence activity in a broad range of temperatures was successfully isolated from the mackerel, Rastrelliger kanagurta. This isolate was tentatively identified as Photobacterium sp. strain MIE, based on partial 16S rDNA molecular phylogeny. Optimum conditions that support high bioluminescence activity occurred between 24 and 30°C, with pH 5.5 to 7.5, 10 to 20 g/L of sodium chloride, 30 to 50 g/L of tryptone, and 4 g/L of glycerol as the carbon source. Assessment of near real time capability of this bacterial system, Xenoassay light to monitor heavy metals from a contaminated river running through the Juru River Basin shows near real time capability with assaying time of less than 30 minutes per samples. Samples returned to the lab were tested with a standard Microtox assay using Vibrio fishceri. Similar results were obtained to Xenoassay light that show temporal variation of copper concentration. Thus, this strain is suitable for near real time river monitoring of toxicants especially in the tropics.
Collapse
Affiliation(s)
- M. I. E. Halmi
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor, Malaysia
| | - Hussain Jirangon
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor, Malaysia
| | - W. L. W. Johari
- Department of Environmental Science, Faculty of Environmental Studies, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor, Malaysia
- Centre of Excellence for Environmental Forensics, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor, Malaysia
| | - A. R. Abdul Rachman
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor, Malaysia
| | - M. Y. Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor, Malaysia
| | - M. A. Syed
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor, Malaysia
| |
Collapse
|
25
|
Evaluation of the ecotoxicity of pollutants with bioluminescent microorganisms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 145:65-135. [PMID: 25216953 DOI: 10.1007/978-3-662-43619-6_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This chapter deals with the use of bioluminescent microorganisms in environmental monitoring, particularly in the assessment of the ecotoxicity of pollutants. Toxicity bioassays based on bioluminescent microorganisms are an interesting complement to classical toxicity assays, providing easiness of use, rapid response, mass production, and cost effectiveness. A description of the characteristics and main environmental applications in ecotoxicity testing of naturally bioluminescent microorganisms, covering bacteria and eukaryotes such as fungi and dinoglagellates, is reported in this chapter. The main features and applications of a wide variety of recombinant bioluminescent microorganisms, both prokaryotic and eukaryotic, are also summarized and critically considered. Quantitative structure-activity relationship models and hormesis are two important concepts in ecotoxicology; bioluminescent microorganisms have played a pivotal role in their development. As pollutants usually occur in complex mixtures in the environment, the use of both natural and recombinant bioluminescent microorganisms to assess mixture toxicity has been discussed. The main information has been summarized in tables, allowing quick consultation of the variety of luminescent organisms, bioluminescence gene systems, commercially available bioluminescent tests, environmental applications, and relevant references.
Collapse
|
26
|
Hassan SHA, Van Ginkel SW, Oh SE. Effect of organics and alkalinity on the sulfur oxidizing bacteria (SOB) biosensor. CHEMOSPHERE 2013; 90:965-970. [PMID: 22840537 DOI: 10.1016/j.chemosphere.2012.06.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/18/2012] [Accepted: 06/27/2012] [Indexed: 06/01/2023]
Abstract
The environmental risk assessment of toxic chemicals in stream water requires the use of a low cost standardized toxicity bioassay. Here, a biosensor for detection of toxic chemicals in stream water was studied using sulfur oxidizing bacteria (SOB) in continuous mode. The biosensor depends on the ability of SOB to oxidize sulfur particles under aerobic conditions to produce sulfuric acid. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH. The biosensor is based on the inhibition of SOB in the presence of toxic chemicals by measuring changes in EC and pH. We found that the SOB biosensor can detect Cr(6+)at a low concentration (50 ppb) which is lower than many whole-cell biosensors. The effect of organic material in real stream water on SOB activity was studied. Due to the presence of mixotrophic SOB, we found that the presence of organic matter increases SOB activity which decreases the biosensor start up period. Low alkalinity (22 mg L(-1) CaCO(3)) increased effluent EC and decreased effluent pH which is optimal for biosensor operation. While at high alkalinity (820 mg L(-1) CaCO(3), the activity of SOB little decreased. We found that system can detect 50 ppb of Cr(6+) at low alkalinity (22 mg L(-1) CaCO(3)) in few hours while, complete inhibition was observed after 35 h of operation at high alkalinity (820 mg L(-1) CaCO(3)).
Collapse
Affiliation(s)
- Sedky H A Hassan
- Department of Biological Environment, Kangwon National University, Kangwon-do, 200-701 Chuncheon, Republic of Korea
| | | | | |
Collapse
|
27
|
Ranjan R, Rastogi NK, Thakur MS. Development of immobilized biophotonic beads consisting of Photobacterium leiognathi for the detection of heavy metals and pesticide. JOURNAL OF HAZARDOUS MATERIALS 2012; 225-226:114-123. [PMID: 22626628 DOI: 10.1016/j.jhazmat.2012.04.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/10/2012] [Accepted: 04/30/2012] [Indexed: 06/01/2023]
Abstract
The present communication deals with construction of immobilized robust biophotonic bead using P. leiognathi, a marine luminescent bacterium for their possible application in monitoring of environmental toxicants. Immobilization efficiency of agar, carrageenan and sodium alginate was evaluated separately in terms of luminescence response and was recorded as 30.3, 77.4 or 99.5%, respectively. Under optimized storage conditions, the luminescent response of P. leiognathi in the immobilized state was studied over a period of 30 days. These biophotonic beads were further used as a rapid and reliable optical biosensing tool for the detection of heavy metals [Hg(II), As(V) or Cd(II)] and pesticide [2,4-dichlorophenoxyacetic acid (2,4-D)] in water systems. The concentration range for the detection of Hg(II), As(V), Cd(II) and 2,4-D was 2-32ppm, 4-128ppm, 16-512ppm and 100-600ppm, respectively, while corresponding sensitivity threshold was 2.0ppm, 4.0ppm, 16.0ppm and 100ppm. A comparison of inhibition constant (K(d)) (or EC(20)) values indicated that the sensitivity thresholds rank as Hg(II)>As(V)>Cd(II)>2,4-D. Moreover, the time taken for the detection of heavy metals and pesticide was less than 30min. Using the bioluminescence inhibition method, the concentration of heavy metals and pesticide could be predicted.
Collapse
Affiliation(s)
- Rajeev Ranjan
- Fermentation Technology and Bioengineering Department, Central Food Technological Research Institute, Mysore 570020, India
| | | | | |
Collapse
|
28
|
Hassan SHA, Van Ginkel SW, Oh SE. Detection of Cr6+ by the sulfur oxidizing bacteria biosensor: effect of different physical factors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:7844-7848. [PMID: 22703119 DOI: 10.1021/es301360a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A biosensor based on sulfur-oxidizing bacteria (SOB) for detection of toxic chemicals in water was developed. SOB are acidophilic microorganisms that get their energy through the oxidation of reduced sulfur compounds in the presence of oxygen to produce sulfuric acid. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH. The bioassay is based on the inhibition of SOB in the presence of toxic chemicals by measuring changes in EC and pH. The effect of different physical factors such as HRT, inorganic sulfur (S°) particle size, and temperature on detection of Cr(6+) was studied. The detection of Cr(6+) (50 ppb) was improved by decreasing the hydraulic retention time (HRT) from 30 to 10 min and increasing S° particle size from 1 to 4.75 mm. Detection time was shorter at 30 °C compared to 45 °C and the SOB were active over a wide range of temperatures with a maximum temperature for growth at 45 °C. This novel biosensor is simple, highly sensitive to low Cr(6+) concentrations (50 ppb), and also minimizes detection time. The present findings can be applied to the proper continuous screening of water ecosystem toxicity.
Collapse
Affiliation(s)
- Sedky H A Hassan
- Department of Biological Environment, Kangwon National University, 200-701 Chuncheon, Kangwon-do, South Korea
| | | | | |
Collapse
|
29
|
Liu Y, Gao B, Yue Q, Guan Y, Wang Y, Huang L. Influences of two antibiotic contaminants on the production, release and toxicity of microcystins. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 77:79-87. [PMID: 22074855 DOI: 10.1016/j.ecoenv.2011.10.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/19/2011] [Accepted: 10/25/2011] [Indexed: 05/15/2023]
Abstract
The influences of spiramycin and amoxicillin on the algal growth, production and release of target microcystins (MCs), MC-LR, MC-RR and MC-YR, in Microcystis aeruginosa were investigated through the seven-day exposure test. Spiramycin were more toxic to M. aeruginosa than amoxicillin according to their 50 percent effective concentrations (EC(50)) in algal growth, which were 1.15 and 8.03 μg/l, respectively. At environmentally relevant concentrations of 100 ng/l-1 μg/l, spiramycin reduced the total MC content per algal cell and inhibited the algal growth, while exposure to amoxicillin led to increases in the total MC content per algal cell and the percentage of extracellular MCs, without affecting the algal growth. Toxicity of MCs in combination with each antibiotic was assessed in the luminescent bacteria test using the toxic unit (TU) approach. The 50 percent effective concentrations for the mixtures (EC(50mix)) were 0.56 TU and 0.48 TU for MCs in combination with spiramycin and amoxicillin, respectively, indicating a synergistic interaction between MCs and each antibiotic (EC(50mix)<1TU). After seven-day exposure to 100 ng/l-1 μg/l of antibiotics, spiramycin-treated algal media and amoxicillin-treated algal media showed significantly lower (p<0.05) and higher (p<0.05) inhibition on the luminescence of Photobacterium phosphoreum, respectively, compared with the untreated algal medium. These results indicated that the toxicity of MCs were alleviated by spiramycin and enhanced by amoxicillin, and the latter effect would increase threats to the aquatic environment.
Collapse
Affiliation(s)
- Ying Liu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Kurvet I, Ivask A, Bondarenko O, Sihtmäe M, Kahru A. LuxCDABE--transformed constitutively bioluminescent Escherichia coli for toxicity screening: comparison with naturally luminous Vibrio fischeri. SENSORS 2011; 11:7865-78. [PMID: 22164050 PMCID: PMC3231736 DOI: 10.3390/s110807865] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/04/2011] [Accepted: 08/08/2011] [Indexed: 12/13/2022]
Abstract
We show that in vitro toxicity assay based on inhibition of the bioluminescence of recombinant Escherichia coli encoding thermostable luciferase from Photorhabdus luminescens is a versatile alternative to Vibrio fischeri Microtox™ test. Performance of two luxCDABE-transformed E. coli MC1061 constructs (pDNlux) and (pSLlux) otherwise identical, but having 100-fold different background luminescence was compared with the performance of V. fischeri. The microplate luminometer and a kinetic Flash-Assay test format was used that differently from Microtox test is also applicable for high throughput analysis. Toxic effects (30-s till 30-min EC50) of four heavy metals (Zn, Cd, Hg, Cu) and three organic chemicals (aniline, 3,5-dichloroaniline and 3,5-dichlorophenol) were studied. Both E. coli strains had comparable sensitivity and the respective 30-min EC50 values highly correlated (log-log R2 = 0.99; p < 0.01) showing that the sensitivity of the recombinant bacteria towards chemicals analyzed did not depend on the bioluminescence level of the recombinant cells. The most toxic chemical for all used bacterial strains (E. coli, V. fischeri) was mercury whereas the lowest EC50 values for Hg (0.04–0.05 mg/L) and highest EC50 values for aniline (1,300–1,700 mg/L) were observed for E. coli strains. Despite of that, toxicity results obtained with both E. coli strains (pSLlux and pDNlux) significantly correlated with V. fischeri results (log-log R2 = 0.70/0.75; p < 0.05/0.01). The use of amino acids (0.25%) and glucose (0.05%)-supplemented M9 medium instead of leucine-supplemented saline significantly (p < 0.05) reduced the apparent toxicity of heavy metals to both E. coli strains up to three orders of magnitude, but had little or no complexing effect on organic compounds. Thus, P. luminescens luxCDABE-transformed E. coli strains can be successfully used for the acute toxicity screening of various types of organic chemicals and heavy metals and can replace V. fischeri in certain cases where the thermostability of luciferase >30 °C is crucial. The kinetic Flash Assay test format of the bioluminescence inhibition assay facilitates high throughput analysis. The assay medium, especially in case of testing heavy metals should be a compromise: optimal for the viability/luminescence of the recombinant test strain and of minimum complexing potential.
Collapse
Affiliation(s)
- Imbi Kurvet
- Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia; E-Mails: (I.K.); (O.B.); (M.S.)
- Department of Food Processing, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia
| | - Angela Ivask
- Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia; E-Mails: (I.K.); (O.B.); (M.S.)
- Authors to whom correspondence should be addressed; E-Mails: (A.I.); (A.K.); Tel.: +372-6-398-382 (A.I.); +372-6-398-373 (A.K.); Fax: +372-6-398-382 (A.I.); +372-6-398-382 (A.K.)
| | - Olesja Bondarenko
- Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia; E-Mails: (I.K.); (O.B.); (M.S.)
- Department of Gene Technology, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia
| | - Mariliis Sihtmäe
- Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia; E-Mails: (I.K.); (O.B.); (M.S.)
- Department of Chemical Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia
| | - Anne Kahru
- Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia; E-Mails: (I.K.); (O.B.); (M.S.)
- Authors to whom correspondence should be addressed; E-Mails: (A.I.); (A.K.); Tel.: +372-6-398-382 (A.I.); +372-6-398-373 (A.K.); Fax: +372-6-398-382 (A.I.); +372-6-398-382 (A.K.)
| |
Collapse
|
31
|
Van Ginkel SW, Hassan SHA, Ok YS, Yang JE, Kim YS, Oh SE. Detecting oxidized contaminants in water using sulfur-oxidizing bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:3739-3745. [PMID: 21417357 DOI: 10.1021/es1036892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
For the rapid and reliable detection of oxidized contaminants (i.e., nitrite, nitrate, perchlorate, dichromate) in water, a novel toxicity detection methodology based on sulfur-oxidizing bacteria (SOB) has been developed. The methodology exploits the ability of SOB to oxidize elemental sulfur to sulfuric acid in the presence of oxygen. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH. When oxidized contaminants were added to the system, the effluent EC decreased and the pH increased due to the inhibition of the SOB. We found that the system can detect these contaminants in the 5-50 ppb range (in the case of NO(3)(-), 10 ppm was detected), which is lower than many whole-cell biosensors to date. At low pH, the oxidized contaminants are mostly in their acid or nonpolar, protonated form which act as uncouplers and make the SOB biosensor more sensitive than other whole-cell biosensors which operate at higher pH values where the contaminants exist as dissociated anions. The SOB biosensor can detect toxicity on the order of minutes to hours which can serve as an early warning so as to not pollute the environment and affect public health.
Collapse
Affiliation(s)
- Steven W Van Ginkel
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University , P.O. Box 875701, Tempe, Arizona 85287-5701, United States
| | | | | | | | | | | |
Collapse
|